
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title

Automated Timing Constraint Generation for Pulse Gate Circuits

Permalink

https://escholarship.org/uc/item/99217350

Authors

Brewer, Forrest
McCarthy, David
Miller, Merritt

Publication Date

2023-12-13

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/99217350
https://escholarship.org
http://www.cdlib.org/

Automated Timing Constraint Generation for Pulse
Gate Circuits

David Mc Carthy
ECE Department, UCSB

Santa Barbara, CA
davidmc@ece.ucsb.edu

Merritt Miller
ECE Department, UCSB

Santa Barbara, CA

Forrest Brewer
ECE Department, UCSB

Santa Barbara, CA

ABSTRACT
In this paper, we address the problem of verification of pulse-
gate circuits. These circuits enable the design of very high
performance logic functions such as data-recovery, pipeline
and FIFO control logic. We adopt an approach of using an
abstraction of the structure of the circuit as the specification.
From this we can first obtain the nominal case behaviour of
the circuit using conventional NFA exploration techniques
adapted to distributed activity systems. Following the identi-
fication of possible nominal states, we identify the critical
path inequalities that must be maintained to ensure this
behaviour in implementation. This strategy mimics the ab-
stract designer behavioral view of pulse gate activity and
leads to a practical set of timing constraints for composite
self-resetting and astable asynchronous logic circuits.
ACM Reference format:
David Mc Carthy, Merritt Miller, and Forrest Brewer. 2019. Auto-
mated Timing Constraint Generation for Pulse Gate Circuits. In
Proceedings of 28th International Workshop on Logic and Synthesis,
Lausanne, Switzerland, June 21–23, 2019 (IWLS ’19), 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Pulse gates[4] have signal propagation times that are 30-50%
slower than conventional CMOS gates. Nonetheless, pulse
gates represent a methodology to create circuits that op-
erate at much higher rates than conventional CMOS logic
in practice. This is due to execution with localized timing
signalling that is electrically co-incident with the data sig-
nal. Due to relatively high power density, high performance
pulse circuits are not appropriate for generic logic functions,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IWLS ’19, June 21–23, 2019, Lausanne, Switzerland
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

but are admirably suited for smaller, critical logic such as
SERDES, link subcircuits, FIFO/cache control and arbitra-
tion logic and selective clock technologies such as elastic
pipelines. We choose to create a construction paradigm that
allows exploitation of the high performance, but limits the
timing complexity to burst-mode asynchronous at the gate
level, and consensus at larger scales. Thus, pulses can be
gated or indeed subsumed by earlier pulses, but, pulse ar-
rival arbitration is handled by a separate circuit out of the
timing model. These constraints act to limit the complexity
of timing verification, avoiding factorial complexity growth
in more general asynchronous circuits.

1.1 Related work
The notion of self-resetting gates can be traced to work by
Sites and others at the dawn of NMOS technology. The first
systematic work was that of Martin and Nyström[6]. In this
work, pulse gates were used as part of Quasi-Delay Insensi-
tive design paradigm, so were used in circuits designed not to
exhibit external timing dependencies by structure and thus
the problem of static timing analysis or verification did not
arise. Greenstreet[1] created Pulse gate based micropipelines.
These circuits exhibited the relatively high performance po-
tential of pulse-gate designs, but beyond the pipeline stage
setup and hold issues, timing models were not developed.
SRCMOS is another pulse gate style aimed at data-path

computation. Computation is performed with overlapping
wide pulse, implyingmany timing constraints to ensure pulse
overlap[5]. However, such circuits treated these gates as
dynamic gates, locked in a governing synchronous paradigm.
This use enabled high stage performance of clocked designs,
notably Intel P4 arithmetic pipelines[3] (Intel used the term
self-resetting domino for this work). Again, the governing
synchronous clock (at 1/2 the state rate for Intel) cast the
timing problem back into the synchronous model.
Relative timing[7] is a method of identifying timing in-

equalities in extended burst-mode circuits, to allow the op-
timisation of slower hazard free structures into faster ones
with hazards that can be checked. The overall approach is
somewhat similar to this paper, in that intended behaviour
can be read from circuit structure. The local composition

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IWLS ’19, June 21–23, 2019, Lausanne, Switzerland David Mc Carthy, Merritt Miller, and Forrest Brewer

Critical Node

in out

Figure 1: Pulse gate implementation

rules used in that work mean that within the scope of analy-
sis, each signal is only used once and so inequalities can be
written in terms of the occurrence times of signals. In pulse
gate circuits, designers frequently include looping behaviour
even on a local level so it is necessary to analyse circuits
where gates are used many times per analysis scope. Thus
inequalities must be on paths rather than individual signals.
Yet another pulse gate timing algorithm appeared in [4].

This algorithm requires identification of frames where each
gate only used once, this technique did allow for looping
behaviour (i.e. self-circuit re-triggering), but the manual en-
forcement of timing frames open the potential for missing
actual behavior to verify and the model was incapable of
modeling pulse absorption, a behavior used in stabilizing
high performance clock phase generators.

2 PULSE GATE BEHAVIOR
Pulse gate circuits are composed of two types of signals.
"Pulse" signals carry timing information, and their presence
or absence can also convey state information. Pulses are
treated as atomic, that is, the pulse as a whole is considered as
conveying timing information not the rising and falling edges
separately. "Data" signals are levels coming out of a latch,
and convey state information only, and it is assumed that
circuits receiving data signals use only their instantaneous
value (at the arrival time of some pulse) and not the edge
timing.
A pulse gate circuit consists of two types of gates, the

pulse gates themselves and pulse latches. A pulse gate is a
self resetting CMOS gate, as shown in 1. An arriving pulse
pulls down the critical node. The output then starts rising.
After the propagation delay of the reset loop, the critical
node is pulled back up by the reset transistor, and the output
goes low to end the pulse. The gate is sized so as the pulse
is "round topped", ensuring that rising and falling times are
independent of input excitation. Thus the pulse shape is
largely dependent only on actuation arrival time, and not
slope or energy.
This simplest pulse gate is a pulse buffer and repeater,

taking an input pulse and generating a new pulse after the

A

A

F

F
B

A
F

A

F

B

A

A
F

F

D

D

S

R

QA F

A

F

Figure 2: Basic Pulse gates

propagation delay. Buffers are used to restore signal integrity
as both amplitude and pulse width are restored. Pulse gates
exhibit mild intra-pulse timing sensitivity in that pulses ef-
fectively repel each other. (The pulse propagation delay of
gate tends to increase if the gate was recently triggered).
This leads to long-term stability in that pulses will not ap-
proach each other in arbitrarily long gate chains[2]. Pulse
AND gates function as guarded pulse buffers and only pro-
duce a pulse if the logic level input is high when the pulse
arrives. Pulse OR gates take two pulse inputs and produce a
pulse output if either one of the input pulses arrive.
Coalesence is a behaviour of pulse OR gates where two

inputs can arrive near simultaneously, and result in the gate
firing once correctly in response the first pulse and the sec-
ond slightly slower pulse being ignored.

More complex, gates are possible by combining pulse and
data signals in relatively arbitrary pull-down networks. In
general, the allowed pull down networks are those that are
sum-of-product terms where each product term contains at
least one pulse signal and possibly additional data signals.

Finally, data signals are produced by set-reset pulse-latches,
where both the set and reset actions are sponsored by pulse
arrival. After the propagation time, (similar to pulse gate
propagation times), the output is a latched level.

3 SYSTEM CONSTRUCTION
A simple pulse binary counter is shown in Figure 3. It takes
a input clock pulse train, and using Pulse And and Or gates
to filter the incoming pulse into pulses which encoding both
timing and state information and then these are used to set
or reset state latches creating the effective next state data
signals. There are obviously many possible ways to organize
such a counter, and a trade-off between timing and state
propagation complexity. At one extreme, the circuit consists
of a pulse based clock network and state latches, on the other
extreme, multiple paths are selectively executed on arrival of
selected pulse paths or even race/consensusmode. The ability
to readily produce data-laden signalling events which are
locally timed accounts for the potential high performance.

Automated Timing Constraint Generation for Pulse Gate Circuits IWLS ’19, June 21–23, 2019, Lausanne, Switzerland

S

R

Q

Q

S

R

Q

Q

S

R

Q

Q

clk

clk_out

d[1]

d[2]

d[0]s[0]

s[1]

r[0]

r[1]

s[2]

r[2]

done_0_1

done_0

Figure 3: Pulse Gate Binary Counter

delay delay delay

d[0] d[1] d[2] d[3]

out_0 out_1

ser

delay:

in out

Figure 4: Pulse Gate 4-bit Serialiser

The main restrictions on pulse gate circuits are the typing
rules of pulse gate circuits are observed, that timing infor-
mation is derived only from pulses and not changes in data
signals, that two pulses arriving at a pulse gate are either
near enough to coalesce or far enough apart to facilitate two

complete output firings. Two pulses arriving at an Pulse SR
latch do not arrive so close as to cause meta stability, and
data signals are held steady when being sampled by a pulse.
Two strategies are commonly used for local coherence

in pulse gate circuits, one is depositing data in latches for
another pulse to read (the pulse path going into the latch thus
terminating and timing then being defined by the other pulse
path). The other is using coalescene to pick the first of two
pulses arriving at anOR gate.While this can only accomodate
a small amount of dispersion (before gate electrical rules are
violated) it can prevent these small amounts of dispersion
from accumulating over time.
Many of the standard asynchronous design styles can be

constructed with pulse gates within these rules. However,
pulse gates circuits are at present typically designed by hu-
man designers and optimised for high performance, Thus
these designs typically violate the assumptions made bymost
formal design styles. For example, many formal design styles
of asynchronous logic do not admit combinational looping
behaviours. That is, within the scope of one "evaluation" of a
local circuit, no signal changes more than once. An example
of a pulse gate circuit that admits looping behaviour is the
serialiser in figure 4, in this case, finite looping behaviour.

Given the wide variety of behaviour, designers don’t want
to commit to a formal specification model that would ex-
clude behaviours leading to better performing designs. In
particular, if a circuit has the desired simulated behavior and
that behavior is stable across a reasonable range of design
parameter variations, one would like to verify the layout tim-
ing behavior and validate the design’s timing robustness in
an automated way. This is approximated by symbolic execu-
tion of an abstraction of the circuit to determine all potential
"states" and then attempts to build timing constraints that
meet the above operating hazard conditions. Such a para-
digm operates well for sufficiently small designs but must
be augmented by consensus or handshake coherence mech-
anisms for large designs. The requirements to meet global
timing consensus are beyond the scope of this paper as quite
substantial circuits fit the pseudo-static assumption, detailed
below.

4 PSEUDO-STATIC ABSTRACTION
A key property of these gate circuits is that all pulse gates
tend to have a similar nominal-case propagation time, due to
the time being dominated by the common reset loop rather
than the input PDN. Thus designers workingwith the circuits
assume that if they have a set of nearly simultaneous pulses
in the system at one time in a local region of the circuit, then
one nominal gate delay later they will have the resultant
pulses one gate delay later, and that those resultant pulses
will also be almost simultaneous. Whether this unit-time

IWLS ’19, June 21–23, 2019, Lausanne, Switzerland David Mc Carthy, Merritt Miller, and Forrest Brewer

approximation is good or not depends on how large a region
of behaviour is being analysed. On a local scale, pulses will
only travel separately for a short number of gates before
interacting again. Thus only a small amount of attenuation
and dispersion can occur. On system scales, different blocks
of the system will have pulse behaviour that may be derived
from separate local timing loops and thus having no relation
to each other. System level timing solutions such as C-gates
or arbiters are required, and it would also make little sense
to apply the unit time approximation to this.
One way of quantifying whether the approximation is

appropriate is to look at how long the pulses in the region
of a system travel separately before all pulses remaining in
that region can attribute their timing back to one common
ancestor. This is called the "coherence depth". If the coher-
ence depth is small then only a small amount of variance
can occur.
This paper considers regions of circuits over which the

unit time approximation is reasonable, and attempts to gen-
erate timing constraints over the region. While this still
remains a local strategy that needs to be used within a global
system coherence model, the variety of behaviour that is
considered local behaviour is larger than other strategies, in
particular finite looping behaviour and coalescence are avail-
able within a local region while many local timing analyses
assume each gate it used once within a local timing region.

4.1 Unit-time Model
The unit time model of a pulse gate circuit is a formalisation
of the pseudo-static abstraction. It is a model defined by the
abstract gate-level model based on the circuit connections.
The behaviour of a circuit is defined as a sequence of discrete
’states’. This nominal behavioural model can then be used
as a specification to derive timing constraints, rather than
having to provide a formal specification in addition to the
structure.

A state in this model is defined as the set of pulses present
simultaneously in the circuit, as well as the value of the data
signals at that time. The successor of a state is defined as
the pulses present in the circuit simultaneously one nominal
gate delay later, with latches updated if they have accepted
pulses.
That is, the model assumes that all the gates in the cir-

cuit have the same nominal delay and thus the progression
of pulses can be modelled as bunches of temporally coinci-
dent pulses, which each bunch sponsoring the next bunch
such that the next bunch is assumed to also be temporally
coincident,

The state update function of this state model is defined by
evaluating all the gates exactly once on the current state (i.e.
set of pulses and data values), producing new data values

and a set of successor pulses. For a pulse gate the update
function is defined as:

pulse[n + 1] = f _pdn[n]
where f _pdn is the sum-of-products function defined by

the pull down network of the gate input. Data gates can be
defined similarly. While not contributing directly to the state,
it is also useful to track whether the data signal has changed
values or not, since it is changes in data value that leads to
data hazards, not the immediate value.

data[n + 1] = f _pdn_set[n] ∨ (¬f _pdn_reset[n] ∧ data[n])

data.chanдes[n + 1] = data[n] ⊕ data[n + 1]
Thus we effectively have a Non-deterministic Finite Au-

tomata model of a the nominal behaviour of the circuit. This
can explored using any NFA reachability analysis to enumer-
ate all the possible behaviours of the system.

5 HAZARDS
There are two possible ways in which a pulse-gate circuit
can function other than intended. Either an electrical error
in the pulse gates can occur, or the pulse gates can function
electrically correctly but logically incorrectly. Both these
types of failures are produced when two signals are com-
bined at a gate, and whether the failure is electrical or logical
depends on the degree to which the assumption is violated.
For signals that are meant to be separated in time, them mov-
ing closer together results in electrical errors. If the error is
sufficiently great that the signals move further apart again,
now in the wrong order, the circuit will function electrically
correctly again but will be logically incorrect. Similarly for
signals that are meant to be coincident, slight separations
will result in electrical errors but larger separations will give
electrically correct but logically incorrect behaviour.
Specifically, 5 categories of hazard exist in pulse gate cir-

cuit:
• A Hold hazard exists when a pulse is ANDed with a
data signal, and the pulse arrives and is expected to be
combined with the old value of the data signal before
the data signal changes. If the pulse arrives later than
nominal, or the data changes earlier, a hold violation
occurs.

• A Setup hazard exists when a pulse is meant to be
ANed with the new value of a data signal, after that
data signal changes.

• A Retrigger hazard exists when a pulse gate fires for
the second time too soon after the first, such that the
pulse loop is still resetting.

• A Set-Reset Order hazard exists when a SR latch re-
ceives a set activation after a reset activation (or

Automated Timing Constraint Generation for Pulse Gate Circuits IWLS ’19, June 21–23, 2019, Lausanne, Switzerland

Actual

Hold Setup

Coalescense Separtaion

Designed

S

R

Q

SR Order

Figure 5: Possible hazards in a pulse circuit

• A Coalesce hazard exists when two pulses are meant
to arrive at the same time at a gate and coalesce. If
they do not arrive at the same time, a near-miss Co-
alesce violation will results in electrical errors, and a
larger miss Coalesce violation will result in two dis-
tinct pulses and thus logically incorrect behaviour.

These hazards are illustrated in figure 5
Timing constrains are inequalities in time that enforce that

these hazards do not occur. The first 4 of the are hazards form
one sided constraints involving 2 paths, one nominally longer
path running fast and nominally shorter one slow. Thus
these can readily be expressed as inequalities. Coalescence
is a 2 sided constraint, but can be split into two one sided
constraints which similarly have a fast and slow path.
To ensure that the timing constraints are unambiguous

over all the desired circuit behaviours such as combinational
looping, the timing inequalities are expressed as inequalities
between paths rather than inequalities between signals. The
timing paths are built off a common ancestor. Inside the cir-
cuit this is a single pulse that fans out, and later combines
with itself. The primary input stimulus as a whole is con-
sidered a common ancestor for this purpose, so paths can
be expressed from two different input pulses plus the time
difference from those two input pulses.

5.1 Example timing constraints
On the binary counter above (figure 3) the reset toggle of
the LSB produces the following hold timing constraint:

t(clk → r [0] → d[0]) > t(clk) + thold (d[0]) at r [0], s[0]

That is the longer path must in fact take longer than the
shorter path plus any hold margin the gate requires. While
the signals the timing constraint is between is d[0] and clk ,
the constraint must be enforced not at their outputs but at the
inputs of the gates where those signals arise, since otherwise
we will omit the wire delay associated with that last wire.

For the next bit in the counter the same constraint be-
comes:
t(r [0] → r [1] → d[1]) > t(clk) + thold (d[1]) at r [1], s[1]

Here r [0] is the starting pulse for the paths since that is
where they diverge.

The setup constraints on these latches involves the time
between one clk pulse and the next, for example for bit 0:
t(clk . . . clk) + t(clk) > t(clk → s[0] → d[0] at s[0], r [0]

6 HAZARD IDENTIFICATION
6.1 Attributed states
To allow for hazards to be found and paths leading them to
be traced, we wish to trace all paths that start from a suitable
starting point and recombine at some gate. To achieve this,
we attribute the pulses in the nominal state space with speed
information.

In addition to the non-attributed definition of a state above,
an attributed state contains for each event (pulse or data
signal change) that occurs in that state, two bits of attribution
information, "fast" and "slow". These bits represent whether
the pulse is being considered as part of the fast path or slow
path leading to the hazard respectively. Each pulse or data
change can be labelled as either fast, slow, both ("colourful")
or neither ("colourless"). A colourful event change is one
being considered as the starting point of a hazard path in the
attributed state to which is belongs. A colourless event is one
not being considered as part of any paths in the attributed
state to which it belongs.
Given an already attributed state, the attributes for the

next state can be computed as follows:
• The existence of pulses and the value of data (and
changing status) is computed as for the non-attributed
case.

• Attributes are only defined on events that actually
occur in the present state.

• An event is labelled fast if it would have occurred if
and only if fast input pulses are considered

• An event is considered slow if it has any fast or slow
inputs pulses, but considering only the fast ones in the
update function does not lead to the event occurring.

• For colorful pulses, each receiving gate chooses to
interpret the each colourful pulse as fast or slow in-
dependently, and then applies above rules as if the
gate.

In addition to the current speed attributes, which are de-
fined in each state only for currently occurring events, each
signal is attributed with history bits which are defined for all
signals in all states as the previous speed attributes the signal
had the last time an event occurred on that signal. Note that
on states where the events actually occur the history bits are

IWLS ’19, June 21–23, 2019, Lausanne, Switzerland David Mc Carthy, Merritt Miller, and Forrest Brewer

still defined as having the previous value and are updated in
the next state only.

To get an attributed base case from an unattributed "nom-
inal" state, all currently occurring events in that nominal
state as colorful, and the history attribute of all signals are
set to colourless.

Given these definition of how to take an the nominal states
of the system and add starting attributes to them, and also a
attributed state update function as defined here, a symbolic
state space exploration can be performed as was done to
identify the nominal states from the starting states.

6.2 Hazards from attributes
Given this attribution, we can identify which hazards can
possibly occur in the circuit by querying the set of possible
attributed states for patterns. For each hazard the patterns
are:

• A Hold hazard exists where a set-reset latch is cur-
rently changing fast and a pulse which is ANDed with
that data signal at some gate input previously fired
slowly.

• A Setup hazard exists when a pulse is currently firing
fast and is to be ANDed with a data signal at some gate
input that currently fired slowly, or previously fired
slowly if isn’t currently firing.

• A Retrigger hazard exists when a pulse is currently
firing fast and previously the same pulse fired slowly.

• A Set-Reset Order hazard exists when a data sig-
nal is currently changing fast and previously changed
slowly.

• Coalesce hazard exists when one pulse is currently
firing fast and another is currently firing slow and
these are to be ORed together at a pulse gate.

Having identified which of these hazards potentially exist
given the circuit behaviour being considered, the next step
is to trace the paths that create these hazards. This will be
discussed in the following section.

6.3 Coherence depth determination
The other thing that can be determined from the search-
ing attributed states is the coherence depth of the system.
Consider traces in the set of possible traces where on the
second step (where colorful pulses sponsor fast or slow ones)
one fast pulse exists and other steps slow. If the system is
to become coherent again, then either this pulse terminates
in a latch and the pulses become monochromatic slow, or
eventually all remaining slow pulses will coalesce with this
fast pulse and since coalescence becomes fast then the pulses
become monochromatic fast.

Assignments on the second step with more than one fast
pulse becomemonochromatic fast if and only if at least one of

the pulses they contain becomes monochromatic fast. Second
steps that are monochromatic slow remain monochromatic
slow. Thus while the important information comes from the
one-fast second steps, it is not necessary to filter the search
space to just those cases.
Thus the coherence depth can be determined from the

number of iterations it takes the pulses in the system to
become monochromatic.

7 PATH TRACING
After we identify a hazard we can trace back to find the path
that lead to that hazard. Given an attributed state in which
we know a hazard occurs, first a series of states can be found
leading from a state with starting attributes to the hazard
state, and then within this series of states picking a valid
succession of pulses to form the path.

Given a current state with a chosen signal, and a previous
state we can determine the next pulses back in the path from
that signal by looking at all the pulses that fan into the gate
producing the signal, and test:

• If the previous pulse exists in the previous state.
• If the data values in the previous state are consistent
with the current gates pull-down network admitting
that pulse.

• If the previous pulse has the same colouring as the
previous state.

Any previous pulse that meets these 3 conditions is a valid
candidate in the previous step for having cause the current
pulse. When operating these procedures over a set of states
rather than just a state, each choice of previous pulse may
only apply to some of the previous states in the previous set,
so this set must be reduced appropriately.
For the fast path, and the slow path of coalescence and

some setup hazards where the slow signal is also presently
active in the final state and so this procedure can be applied
starting from the final state of the trace and followed all the
way back. For the slow paths of the other hazards it is just
known from the history attributes that the signal must have
been present in the past but it is not present in the current
state. Thus for these signals it is necessary to step a few
iterations back from the end of the trace before the path of
signals to be traced is found. Similarly for paths involving
two different primary inputs interacting, the path starting
from the later arriving primary input will have a signal trace
that starts later than the first state.

Having produced possible paths in this manner, it is neces-
sary to filter them for only paths that have well-conditioned
starting points. That is where both the fast and slow signal
paths start from the same signal, or both start from (possi-
bly different) primary inputs. This definition serves to re-
move subpaths of the primary paths of interest that would

Automated Timing Constraint Generation for Pulse Gate Circuits IWLS ’19, June 21–23, 2019, Lausanne, Switzerland

p1a p2a p3a

p3bp2bp2a

Figure 6: Cross-coupled ring oscillators

over-constrain the timing analysis without contributing to
behavioural soundness.

8 IMPLEMENTATION DETAILS
A tool implementing the analysis described here has been
implemented, searching the state-space symbolically using
Binary Decision Diagrams representations of the automata
model described above. First the space of nominal states is
established using a standard reachability analysis, then this
set of nominal states is attributed with the starting attributes
and the attributed state space is then established similarly.
To find which hazards exist, the gate database is iterated
over to find pairs of signals that are combined and masks are
generated which can be used to test the attributed state set.

For tracing back paths, first signal traces of different depths
are generated then each signal is iteratively traced back. For
each path a breadth first search is performed using a work
queue.
To apply inputs to the circuit a simple regular input lan-

guage generating pulses was used. This allows sequential
pulse inputs to be applied. However at present it does not
include primary input data changes, hence the results be-
low on the serialiser include the pulse hazards between one
clocking of the serialiser and the next but not the setup/hold
conditions that would be implied if the inputs changed.

This programwas implemented in Python, using the CUDD
BDD package through the PyCUDD wrapper.

9 RESULTS
The constraint generation analysis as described was applied
to some test circuits. The binary counter and serialiser have
already been discussed. A deserialiser (figure 7 based on a
tree of Pulse AND gates and toggle latches was also analysed,
as was a simple cross-coupled ring oscillator (figure 6) to test
coalescence modelling. The results are presented in table 1.

10 CONCLUSIONS
In this paper we have shown a methodology for analysing
pulse gate circuits to identify both their nominal behaviour
and timing constraints to ensure that behaviour. This was
achieved based on taking the structure of the circuit and

S

R

Q

outA_0

outA_1

in_0

in_1

outB_0

outB_1

toggle

which_way

in_0

in_1

deser_cell

deser_cell

deser_cell

out0_0
out0_1

out1_0
out1_1

out2_0
out2_1

out3_0
out3_1

deser_cell

Figure 7: Deserialiser

assuming unit time behaviour. We have identified the possi-
ble timing constraints that apply, and detailed a strategy to
search for them. Lastly we have implemented this strategy
and applied it to some example circuits.

10.1 Future Work
The first area of future work to be undertaken here is to im-
prove the performance of the unit time analysis so that larger
local circuits can be analysed. No particular effort has been
made to choose a good BDD order, which should lead to im-
mediate improvements. Also presently the entire attributed
state space is searched (albeit symbolically), efficiency could
be gained by searching only a sufficient subset of possible
attributions.
Going forward, it is desired to augment the current anal-

ysis so that multiple different pseudo-synchronous islands
in a system can be analysed, and the synchronisation be-
tween them. This in turn could be used to facilitate certain
optimisations or possibly even full synthesis of pulse gate
systems.
The timing information generated by either this local or

a future system analysis could be used to guide automated
layout of pulse gate circuits.

REFERENCES
[1] M. R. Greenstreet and. 2006. Surfing interconnect. In 12th IEEE Inter-

national Symposium on Asynchronous Circuits and Systems (ASYNC’06).
9 pp.–106. https://doi.org/10.1109/ASYNC.2006.28

https://doi.org/10.1109/ASYNC.2006.28

IWLS ’19, June 21–23, 2019, Lausanne, Switzerland David Mc Carthy, Merritt Miller, and Forrest Brewer

Circuit Gates Constraints of which Coherence Run Time
Hold Setup Retrigger SR Order Coalesce depth

Counter 12 34 6 6 16 6 0 1 7.8s
Serialiser 29 81 0 0 81 0 0 5 1037.0s
Deserialiser 18 63 15 24 12 12 0 2 11.9s
Ring Osc. 6 28 0 0 22 0 6 4 0.2s

Table 1: Constraints generated from different circuits

[2] A. Dalakoti, M. Miller, and F. Brewer. 2017. Pulse Ring Oscillator
Tuning via Pulse Dynamics. In 2017 IEEE International Conference on
Computer Design (ICCD). 469–472. https://doi.org/10.1109/ICCD.2017.
82

[3] G. Hinton, M. Upton, D. J. Sager, D. Boggs, D. M. Carmean, P. Roussel,
T. I. Chappell, T. D. Fletcher, M. S. Milshtein, M. Sprague, S. Samaan,
and R. Murray. 2001. A 0.18-/spl mu/m CMOS IA-32 processor with a
4-GHz integer execution unit. IEEE Journal of Solid-State Circuits 36,
11 (Nov 2001), 1617–1627. https://doi.org/10.1109/4.962281

[4] Merritt Miller, Carrie Segal, David Mc Carthy, Aditya Dalakoti,
Prashansa Mukim, and Forrest Brewer. 2018. Impolite High Speed
Interfaces with Asynchronous Pulse Logic. In Proceedings of the 2018
on Great Lakes Symposium on VLSI (GLSVLSI ’18). ACM, New York, NY,
USA, 99–104. https://doi.org/10.1145/3194554.3194592

[5] V. Narayanan, B. A. Chappell, and B. M. Fleischer. 1996. Static timing
analysis for self resetting circuits. In Proceedings of International Con-
ference on Computer Aided Design. 119–126. https://doi.org/10.1109/
ICCAD.1996.569415

[6] Mika Nyström. 2002. Asynchronous pulse logic. Kluwer Academic
Publishers, Boston.

[7] K. S. Stevens, R. Ginosar, and S. Rotem. 2003. Relative timing [asyn-
chronous design]. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 11, 1 (Feb 2003), 129–140. https://doi.org/10.1109/TVLSI.
2002.801606

https://doi.org/10.1109/ICCD.2017.82
https://doi.org/10.1109/ICCD.2017.82
https://doi.org/10.1109/4.962281
https://doi.org/10.1145/3194554.3194592
https://doi.org/10.1109/ICCAD.1996.569415
https://doi.org/10.1109/ICCAD.1996.569415
https://doi.org/10.1109/TVLSI.2002.801606
https://doi.org/10.1109/TVLSI.2002.801606

	Abstract
	1 Introduction
	1.1 Related work

	2 Pulse Gate Behavior
	3 System Construction
	4 Pseudo-Static Abstraction
	4.1 Unit-time Model

	5 Hazards
	5.1 Example timing constraints

	6 Hazard identification
	6.1 Attributed states
	6.2 Hazards from attributes
	6.3 Coherence depth determination

	7 Path Tracing
	8 Implementation details
	9 Results
	10 Conclusions
	10.1 Future Work

	References

