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Abstract

Learning graphs for dependence and conditional dependence at different levels

by

Sunpeng Duan

Repeated measurements are common in many fields, where random variables are ob-

served repeatedly across different subjects. Such data have an underlying hierarchical

structure, and it is of interest to learn dependence structures at different levels. Most

existing methods for sparse estimation of dependence and conditional dependence struc-

tures assume independent samples. Ignoring the underlying hierarchical structure within

the subject may lead to erroneous scientific conclusion.

In Part I, we study the problem of sparse and positive-definite estimation of between-

subject and within-subject covariance matrices for repeated measurements. Our estima-

tors are solutions to convex optimization problems that can be solved efficiently. We

establish estimation error rates for the proposed estimators and demonstrate their favor-

able performance through theoretical analysis and comprehensive simulation studies. We

further apply our methods to construct between-subject and within-subject covariance

graphs of clinical variables from hemodialysis patients.

Part II shifts the focus towards learning temporal, contemporaneous and between-

subjects conditional dependence graphs with a graphical vector autoregression model.

We propose a two-stage procedure for the simultaneous estimation of these three graphs.

Furthermore, Bayesian information criteria are formulated for tuning parameters selec-

tion in our two-stage method. The performance of the proposed method is evaluated

through extensive simulation studies and one real data application.
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Chapter 1

Introduction

1.1 Undirected and Directed Graphical Models

Capturing dependencies and conditional dependencies among a set of random vari-

ables is fundamental in modern multivariate analysis. Covariance graphs and graphical

models are powerful tools for the estimation of covariance and concentration or pre-

cision matrices in many fields such as biology, neuroscience, genomics, medicine, eco-

nomics, and finance (Drton and Maathuis [1], Fan et al. [2], Hastie et al. [3], and

Lauritzen [4]). A covariance graph or graphical model for a p-dimensional random vector

Y = (Y1, Y2, · · · , Yp)T is represented by a graph G = (V,E), where the vertex set V

contains p vertices corresponding to the p coordinates of Y and the edge set E ⊂ V × V

reveals a set of marginal or conditional dependencies among Y1, Y2, . . . , Yp.

Undirected graphical models, known as concentration graphs or Markov networks,

have been heavily investigated over the past decades, in which E reveals conditional

dependencies between variables. See, for example, Friedman et al. [5], Rothman et al.

[6], and Yuan and Lin [7]. In a concentration graph, the edge between Yi and Yj is absent

if and only if Yi and Yj are independent conditional on the other variables, denoted by
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Yi ⊥⊥ Yj | YV \{i,j}, where ⊥⊥ represents independency and YV \{i,j} indicates all variables

in Y except for Yi and Yj. And there is no distinction between an edge (i, j) ∈ E and

the edge (j, i). Due to its factorization and Markov properties, storage and computation

for a concentration graph are substantially efficient.

Unlike a concentration graph, a covariance graph or relevance network encodes marginal

dependence between variables, which is popular in genomics (Butte et al. [8]). By con-

vention, vertices i and j in a covariance graph are joined by a bi-directed edge if Yi and

Yj are not marginally independent. See, for example, Chaudhuri et al. [9]. That is,

(i, j) /∈ E when Yi ⊥⊥ Yj. Although the edge (i, j) ∈ E and the edge (j, i) are equiv-

alent in a covariance graph, the large number of arrowheads inside the graph increases

computational complexity and burden (Drton and Richardson [10]).

1.2 Gaussian Graphical Models

Among various parametric graphical models, the Gaussian graphical model is the

most popular one, due to its mathematical simplicity and the central limit theorem (Uhler

[11]). It can be applied in many fields, ranging from machine learning to computational

biology and finance.

For a p-dimensional random vector Y ∈ Rp that follows a multivariate Gaussian

distribution N (µ,Σ), it has the joint density function

fµ,Σ(y) =
1

(2π)
p
2 (detΣ)

1
2

exp

{
−1

2
(y − µ)TΣ−1(y − µ)

}
.

Let Ω = Σ−1 be the concentration matrix. Given an independent and identically

distributed (i.i.d.) sample of Y with size n, i.e., Y (1),Y (2), . . . ,Y (n), we define the

2
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sample mean Ȳ =
∑n

i=1 Y
(i)/n and the empirical covariance matrix

S =
1

n

n∑
i=1

(Y (i) − Ȳ )(Y (i) − Ȳ )T. (1.1)

Without loss of generality, assuming µ = 0, the negative log-likelihood function for

Σ = {Σi,j} ∈ Rp×p, up to a constant, can be written as

ℓ(Σ) =
n

2
log detΣ +

n

2
tr(Σ−1S). (1.2)

We can also rewrite ℓ(Σ) in terms of the concentration matrix Ω = {Ωi,j} ∈ Rp×p as

ℓ(Ω) = −n
2
log detΩ +

n

2
tr(ΩS). (1.3)

Under the normality assumption, in a concentration graph, Ωi,j = 0 if and only if

(i, j) /∈ E (Lauritzen [4], Edwards [12] and Whittaker [13]). With contemporary data, a

sparse concentration matrix or covariance matrix is usually assumed in high-dimensional

settings (Johnstone [14] and Rothman et al. [15]). To achieve a sparse graph structure,

Friedman et al. [5], Rothman et al. [6], and Yuan and Lin [7] minimize (1.3) with a lasso

type penalty. That is to seek the solution to

min
Ω≻0

{
− log detΩ + tr(ΩS) + λ∥P ∗ Ω∥1

}
, (1.4)

where ∥ · ∥1 is the ℓ1-norm of the input matrix, i.e., ∥A∥1 =
∑p

i=1

∑q
j=1 |Ai,j| for any

matrix A = {Ai,j} ∈ Rp×q, ∗ represents element-wise multiplication, and λ is a tuning

parameter that controls the sparsity of Ω: the larger the value of λ, the sparser the

estimation of Ω. P is a matrix with zeros on the diagonal to avoid the shrinkage of the

diagonal elements of Ω. The minimization (1.4) is a convex optimization problem of Ω.

3
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Yuan and Lin [7] use the interior point algorithm for the maxdet problem in Vandenberghe

et al. [16], while Friedman et al. [5] transform the problem into a lasso-type regression

(Tibshirani [17]) and propose a faster block coordinate descent algorithm. Rothman et

al. [6] develop a Cholesky-based iterative algorithm for solving (1.4) which may contain

more complicated penalties, such as a bridge penalty (Fu [18]) or a SCAD penalty (Fan

and Li [19]). Additionally, Cai et al. [20] introduce the constrained ℓ1-minimization for

inverse matrix estimation (CLIME) with the following optimization problem:

min ∥Ω∥1 subject to: |SΩ− I|∞ ≤ λn, Ω ∈ Rp×p, (1.5)

where |A|∞ = max1≤i≤p,1≤j≤q |Ai,j| for any matrix A = {Ai,j} ∈ Rp×q, and λn is the

tuning parameter. They further decompose the problem (1.5) into p vector minimiza-

tion problems and solve these column problems as linear programs with the primal-dual

interior method approach in Boyd et al. [21]. The solution to (1.5) is not symmetric in

general, and additional symmetrization should be applied.

1.3 Covariance Estimation

In a covariance graph, Σi,j = 0 if and only if (i, j) /∈ E. And covariance graphs in

the Gaussian setting are also studied by some researchers. The function ℓ(Σ) in (1.2) is

non-convex in Σ, which makes the minimization problem more challenging. Chaudhuri

et al. [9] develop an iterative conditional fitting algorithm, using simple least squares

computations. Drton and Richardson [10] further transform the Gaussian covariance

graph into a minimally oriented graph to avoid unnecessary computations in Chaudhuri

et al. [9]. To accommodating the sparsity of the covariance matrix in high-dimensional
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settings, Bien and Tibshirani [22] propose a majorize-minimize approach to solve

min
Σ≻0

{
log detΣ + tr(Σ−1S) + λ∥P ∗ Σ∥1

}
. (1.6)

Wang [23] derives a block-wise coordinate descent algorithm to find the minimizer of

(1.6), which is analogous to the method in Friedman et al. [5].

However, the penalized likelihood optimization in (1.6) is non-convex and computa-

tionally challenging. Thresholding methods for sparse estimation of covariance matrices

have also been developed for recovering the covariance graphs, in which the normality

assumption of the data is not required (see, for example, Bickel and Levina [24, 25]).

Bickel and Levina [24] propose to taper the empirical sample covariance matrix S in

(1.1), i.e.,

Bk(S) = {Si,j1(|i− j| ≤ k)} ∈ Rp×p,

where k is the banding (tuning) parameter. Bickel and Levina [25] and Rothman et al.

[26] later recommend the soft-thresholding operator,

Sb(S) = {sign(Si,j)max(|Si,j| − b, 0)} ∈ Rp×p,

where b is the universal thresholding (tuning) parameter. Cai and Liu [27] and Cai

and Yuan [28] propose the adaptive thresholding procedure for sparse covariance matrix

estimation, which are adaptive to the variability of individual entries of the covariance

matrix. They also prove that the adaptive thresholding estimators achieve the optimal

rate of convergence over a large class of sparse covariance matrices under the spectral

norm, while the commonly used universal thresholding estimators are sub-optimal over

the same parameter spaces.

5
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The thresholding methods do not guarantee the positive definiteness of the covariance

matrix estimator. Several researchers consider the positive definite constraint for the

thresholding methods. To obtain a positive definite covariance matrix estimator, Xue

et al. [29] suggest the alternating direction method of multipliers (ADMM) to solve the

following optimization problem,

min
Σ⪰δIp

1

2
∥Σ− S∥2F + λ|Σ|1, (1.7)

where S is the empirical sample covariance matrix defined in (1.1), δ is a small positive

number, ∥ · ∥F is the Frobenius norm, and | · |1 is the ℓ1-norm of the off-diagonal elements

of the input matrix. For a matrix A ∈ Rp×p, ∥A∥F =
√∑p

i=1

∑p
j=1A

2
i,j, and |A|1 =∑

i ̸=j |Ai,j|. Similarly, Rothman [30] considers a slightly perturbed version of (1.7) by

adding a log-determinant barrier function, i.e.,

min
Σ≻0

1

2
∥Σ− S∥2F − τ log detΣ + λ|Σ|1, (1.8)

where the barrier parameter τ is a fixed small positive constant. The optimization algo-

rithm for (1.8) is similar to the graphical lasso (Glasso) algorithm (Friedman et al. [5]).

Cui et al. [31] follow Xue et al. [29] and consider a positive definite correlation matrix

estimator with an adaptive ℓ1-penalty over the off-diagonal elements of the correlation

matrix.

1.4 Graphical Vector Autoregressive (VAR) Models

The analysis of time series presents distinct challenges in statistical modeling and

inference – most notably, the issue of the temporal correlation resulting from the sampling

of points in close temporal proximity (Shumway and Stoffer [32]). The introduction of

6
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the temporal correlation may be generated through lagged linear relations among the

observed data. The vector autoregression (VAR) model provides a classical framework

to model the lagged linear relationship among multivariate time series, which has gained

widespread popularity across various fields, including economics, finance, psychology,

and clinical research (e.g., Bringmann et al. [33], Sims [34], Stock and Watson [35],

and Wild et al. [36]). The VAR modeling technique was well described and studied in

Shumway and Stoffer [32], Hamilton [37] , Lütkepohl [38], Zivot and Wang [39], etc. Let

Yt = (Yt1, . . . , Ytk, . . . , Ytp)
T be the observation of the p-variate random variable Y ∈ Rp

at time t, t ∈ Z. The standard VAR model of order p, denoted by VAR(p) is given by

Yt = βT

1Yt−1 + βT

2Yt−2 + · · ·+ βT

pYt−p + εt, (1.9)

where βi’s are p × p coefficient matrices, and εt is a p-variate white noise process with

mean 0 and covariance matrix Σε = Ω−1
ε .

The graphical vector autoregression (graphical VAR) model combines the principles of

the VAR model with graphical models, which has been extensively applied in a wide range

of fields, including economics, finance, environmental studies, neuroscience, psychology,

epidemiology (e.g., Wild et al. [36], Ahelegbey et al. [40], Barnett and Seth [41] and

Eichler [42]). The graphical VAR model with (1.9) allows for the analysis of multivariate

time series data with a focus on uncovering the directional relationships and conditional

dependencies among multiple variables over time. We further assume that εt, t ∈ Z,

are i.i.d. normal. Then the relationships among variables in Y can be represented by

the graphs generated from βi’s and Ωε, simultaneously. In these graphs, the non-zero

elements in βi’s correspond to the edges in directed graphs, which indicate possible

Granger-causal relationships among variables in Y, while the non-zero elements in Ωε

reveal the unconditional contemporaneous dependencies among variables in Y (Eichler

7
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[43]).

For illustration, we consider the following four-dimensional VAR(1) model based on

the electronic diary data of obese patients with binge eating disorder (BED) in Wild et

al. [36],

Yt = βTYt−1 + εt,

where Yt = (eatt, dept, anxt, ctlt)
T represents the observation of eating behaviour, de-

pression, anxiety and eating control at time t, and εt
i.i.d.∼ N (0,Ω−1

ε ), t ∈ Z. We also have

the following parameter matrices,

β =



β11 0 0 β14

β21 β22 β23 0

0 0 β33 β34

β41 β42 0 β44


and Ωε =



Ω11 Ω12 0 Ω14

Ω21 Ω22 Ω23 Ω24

0 Ω32 Ω33 0

Ω41 Ω42 0 Ω44


. (1.10)

Figure 1.1: Two graphs obtained from β (left panel) and Ωε (right panel) with a
four-dimensional VAR(1) process that satisfies the parameter constraints in (1.10).

8
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With the parameter constraints in (1.10), we can generate two corresponding graphs

in Figure 1.1. For example, the directed edge between eat and dep encoded by β21 means

that depression Granger-causes eating behaviour for patients with BED. We also notice

the self-loops for eat, dep, anx and ctl in Figure 1.1, which represent the autocorrelations

in eating behaviour, depression, anxiety and eating control. Usually, these self-loops are

omitted, since they do not play any role in the graphical analysis of Granger-causal

relationships (Wild et al. [36]).

1.5 Multilevel Gaussian Graphical Models

Clustered data arise in many areas, such as economics, education, epidemiology,

medicine, psychology, and social science. Most existing methods for learning the struc-

ture of graphical models assume independent samples. It is well-known that ignoring

the correlation between observations may lead to flawed insights (Bae et al. [44]). In

addition, researchers are often interested in correlations at different levels and comparing

them (Epskamp et al. [45] and Ostroff [46]). For example, in psychology, variations in the

measurements between subjects are studied using a nomothetic approach, whereas vari-

ations within a subject are examined through an idiographic approach (Hamaker [47]).

Network psychometrics has emerged as useful additions to the psychometric toolbox in

recent years (Bringmann et al. [33]). Correlations at group and sub-group levels may be

different, an issue termed ecological fallacy or Simpson’s paradox (Epskamp et al. [45],

Hamaker [47], Freedman [48], and Piantadosi [49]). For example, typing faster than one’s

average speed tends to result in more errors (within a subject), while individuals who

generally type quickly often make fewer spelling errors (between subjects) (Epskamp et

al. [45] and Hamaker [47]).

This thesis uses the terms “subject” and “individual” to represent a generic experi-

9
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mental unit and each observation for simplicity. Consider p random variables Y1, . . . , Yp

with observations Yij = (Yij1, · · · , Yijp)T at group level i and individual level j. We are in-

terested in correlations or conditional correlations at the individual level (within-subject)

as well as correlations or conditional correlations at the group level (between-subject).

We assume that the observed groups are a random sample from a population of all group

levels. The between-subject correlations measure the correlations among variables at the

group level E(Yij | i) while within-subject correlations measure the correlations among

variables at the individual level Yij−E(Yij | i). There are different ways to define within

and between group correlations (see, for example, Bland and Altman [50, 51]). We define

them using a simple multivariate linear mixed effects model.

For simplicity, we will first consider a multivariate one-way random effect model.

Assume that Yij equals to a random mean vector for subject i, bi, plus random error for

individual j, εij:

Yij = bi + εij, j = 1, . . . , ni; i = 1, . . . ,m, (1.11)

where bi = (bi1, · · · , bip)T are i.i.d. random vectors with mean 0 and covariance ma-

trix Σb, and εij = (εij1, . . . , εijp)
T are i.i.d. random vectors with mean 0 and co-

variance matrix Σε, and bi and εij are mutually independent. For now, we assume

that the observations are centered such that E(Yij) = 0 (Yuan and Lin [7]). Denote

σ2
b,k = Var(bik) and σ2

ε,k = Var(εijk) for k = 1, · · · , p; and ρk1,k2 = Corr(Yijk1 , Yijk2),

ρb,k1,k2 = Corr(bik1 , bik2), and ρε,k1,k2 = Corr(εijk1 , εijk2) for k1, k2 = 1, · · · , p and k1 ̸= k2.

Then, (Σb)k1,k2 = ρb,k1,k2σb,k1σb,k2 and (Σb)k1,k2 = ρε,k1,k2σε,k1σε,k2 . Note that ρb,k1,k2 and

ρε,k1,k2 represent between-subject and within-subject correlations. These definitions of

between-subject and within-subject correlations are in a spirit similar to those in Ostroff

[46] and Piantadosi [49] where only the sample version of these quantities was defined.

10
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Furthermore, we have

ρk1,k2 =
σb,k1σb,k2√

(σ2
b,k1

+ σ2
ε,k1

)(σ2
b,k2

+ σ2
ε,k2

)
ρb,k1,k2 +

σϵ,k1σϵ,k2√
(σ2

b,k1
+ σ2

ε,k1
)(σ2

b,k2
+ σ2

ε,k2
)
ρε,k1,k2

which can be regarded as the population version of equation (3) in Piantadosi [49].

Based on the estimators of between-subject and with-subject covariance matrices

with Model (1.11), we could construct two separate covariance graphs as in Bien and

Tibshirani [22]. The edge between Yk1 and Yk2 exists at the group level (between-subject

covariance graph) if and only if (Σb)k1,k2 ̸= 0, and the edge between Yk1 and Yk2 exists at

the individual level (within-subject covariance graph) if and only if (Σε)k1,k2 ̸= 0. When

an edge is present, we will use blue and red to represent positive and negative correlations

(Epskamp et al. [45]), which will allow us to detect potential ecological fallacy.

In addition to the multivariate one-way random effects model (1.11), for multivariate

time series from multiple subjects, we will consider the following graphical VAR model

of order 1, denoted as GVAR(1),

Yit = βTYi(t−1) + bi + εit, t = 1, . . . , ni; i = 1, . . . ,m, (1.12)

where Yi(t−1) is the design matrix, and bi and εit follow the same assumptions as those in

(1.11). In addition, we assume that bi and εit follow multivariate Gaussian distribution.

To make model (1.12) consistent to the notation in time series analysis, we use index t to

represent the observation in each subject i. Obviously, model (1.11) is a special case of

model (1.12) with β = 0. Epskamp et al. [45] consider a similar model as model (1.12),

Yit = βT

i Yi(t−1) + (I − βT

i )µi + εit, t = 1, . . . , ni; i = 1, . . . ,m, (1.13)

11
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where µi = (µi1, · · · , µip)T are i.i.d. Gaussian random vectors with mean 0 and covariance

matrix Σµ = Ω−1
µ , and εij = (εij1, . . . , εijp)

T are independent Gaussian random vectors

with mean 0 and covariance matrix Σεi = Ω−1
εi , and µi and εij are mutually independent.

In addition, they also assume that both βi and Ωεi are random matrices with E(βi) = β

and E(Ωεi) = Ωε. Model (1.13) is a non-linear mixed effects model due to the product

of two random effects βi and µi. When βi and Ωεi are fixed matrices, i.e., βi = β and

Ωεi = Ωε for i = 1, . . . ,m, model (1.12) is equivalent to model (1.13), and (I − βT)µi in

(1.13) plays the same role as bi in (1.12).

A graphical VAR model in (1.12) has three graphical structures: the temporal network

decided by β, the contemporaneous network decided by Ωε, and the between-subjects

network decided by Ωb. As illustrated in Epskamp et al. [45], the graphical models at

different levels provide a powerful addition to the exploratory toolbox in many research

areas. We are interested in recovering these three graphs simultaneously. However, ex-

isting estimation methods reviewed in Epskamp et al. [45] have the following limitations:

(a) some procedures are ad hoc since they contain several steps such that existing meth-

ods can be used in each step; (b) some procedures use sample means from each subject

for the analysis of conditional between-subject dependence structure which could lead to

an erroneous structure; and (c) the computation is only feasible for small data sets and

up to eight variables.

1.6 Dissertation Outline

The goal of this dissertation is to develop new methods for learning dependence and

conditional dependence structures at different levels for clustered data. We focus on

clustered data with multilevel dependencies and conditional dependencies and construct

multilevel graphs under the sparsity assumptions simultaneously. The rest of this disser-
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tation is organized in two main parts as follows.

In Part I, we aim at estimating within-subject and between-subject covariance matri-

ces simultaneously in Chapter 2, 3 and 4. Chapter 2 discusses sparse covariance graphs

at within-subject and between-subject levels. We first introduce the sample estimates

for between-subject and within-subject covariance matrices. Based on these sample es-

timates, we propose sparse estimates that are guaranteed to be positive-definite. Our

proposed estimators are defined as solutions to convex optimization problems, which can

be solved efficiently using an ADMM algorithm. The statistical properties of our pro-

posed estimators are presented in Chapter 3. Chapter 3 also includes the comparison

between our proposed between-subject covariance estimator and the MANOVA-type esti-

mator. Chapter 4 investigates the numerical performance of our proposed two covariance

estimators with comprehensive simulations and an application to a dataset collected from

end-stage renal disease (ESRD) patients.

In Part II, we focus on estimating the fixed effect coefficient matrix, within-subject,

and between-subject precision matrices based on a GVAR(1) model. Chapter 5 intro-

duces a two-stage procedure for recovering sparse fixed effect coefficient, within-subject

and between-subject precision matrices. In the first stage, we iteratively estimate the

fixed effect coefficient and within-subject precision matrix with efficient moment meth-

ods based on the group-centered data. Subsequently, the sparse between-subject preci-

sion matrix is learned by the CLIME method in the second stage. The corresponding

Bayesian information criteria (BIC) are also developed for tuning parameter selection in

both stages. A comprehensive numerical study is conducted in Chapter 6, which also

includes a real data example. Future studies are discussed in Chapter 7.

13



Chapter 2

Sparse Estimation of Multilevel

Covariances with Repeated

Measurements

2.1 Introduction

Understanding the covariance structure among random variables is one of the most

fundamental tasks in statistics with applications in a wide range of fields, including

economics, biology, and biomedical sciences (Fan et al. [2] and Bickel and Levina [25]).

Various sparse estimation methods have been proposed in high-dimensional settings.

However, virtually all current methods require the critical assumption of independent

samples, which could be violated in many applications. This paper considers a special

correlated data structure where observations are repeated measurements.

In many fields, such as medicine, psychology, and neuroscience, random variables of

interest are often measured repeatedly across different subjects, which leads to depen-

dence among observations within each subject. For example, vital signs such as pulse

14
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and blood pressure are usually measured in multiple physical exams for each subject,

and these measurements from the same subject are correlated. Conclusions drawn from

ignoring such dependence structures among observations may be practically misguided

or even erroneous (Bae et al. [44]). Therefore, it is important to estimate covariance

structures in the presence of dependence due to repeated measurements (Ostroff [46]).

Repeated measurements have an underlying hierarchical structure, and it is of scien-

tific interest to define and estimate covariance structures at each level. In psychology, the

nomothetic approach is used to study variations between subjects, and the idiographic

approach is used to study variations within a subject (Hamaker [47]). Covariance struc-

tures between subjects and within a subject may thus be different. For example, physical

activity tends to increase the heart rate of a person (within a subject), while physically

active people tend to have a lower average heart rate (between subjects) (Epskamp et

al. [45]). This chapter aims to develop new methods to estimate the within-subject and

between-subject covariance structures simultaneously.

Recall model (1.11) in Section 1.5, we consider a multivariate one-way random effect

model for within-subject and between-subject covariance structures among p random

variables:

Yij = bi + εij, j = 1, . . . , ni; i = 1, . . . ,m,

where Yij = (Yij1, . . . , Yijp)
T ∈ Rp is the j-th (out of ni) observation of the i-th subject,

bi = (bi1, · · · , bip)T ∈ Rp are independent and identically distributed random vectors with

mean 0 and covariance matrix Σb ∈ Rp×p, and εij = (εij1, . . . , εijp)
T ∈ Rp are independent

and identically distributed random vectors with mean 0 and covariance matrix Σε ∈ Rp×p.

Additionally, bi and εij are mutually independent. The between-subject covariance Σb

measures the covariance structure among variables at the group level E(Yij | i). On
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the other hand, the within-subject covariance Σε characterizes the covariance structure

among components in Yij − E(Yij | i). Model (1.11) has found wide applications, e.g.,

in the classical test theory (Algina and Swaminathan [52]), where the observed score is

modeled as the summation of the true score (as a latent variable) and a random error.

For the cross-sectional data, which is a special case of (1.11) with ni = 1 for i =

1, . . . ,m, it is clear that one can only estimate the overall covariance Σb+Σε, which does

not separate the within-subject and between-subject covariance structures. When ni ≥ 2

for at least some i ∈ {1, . . . ,m}, a common approach is to aggregate data across subjects

and obtain {Ȳ1·, . . . , Ȳm·}, where Ȳi· =
∑ni

j=1 Yij/ni. The sample covariance estimate

based on this aggregated data,

Σ =
1

m− 1

m∑
i=1

(
Ȳi· −

1

m

m∑
i=1

Ȳi·

)(
Ȳi· −

1

m

m∑
i=1

Ȳi·

)T

, (2.1)

is an unbiased estimate of

E(Σ) = Σb +
m∑
i=1

1

mni
Σε. (2.2)

Consequently, Σ is a biased estimate of either Σε or Σb. Epskamp et al. [45] used (2.2)

to estimate the between-subject covariance structure. Statistical inferences based on

aggregated data may be misinterpreted (Fisher et al. [53]). In particular, analysis based

on aggregated data may result in an issue termed ecological fallacy or Simpson’s paradox

(Epskamp et al. [45], Hamaker [47], Freedman [48], and Piantadosi [49]).

Furthermore, in high-dimensional settings where p could be much larger thanm or N ,

the sample covariance estimate is no longer positive definite, making it less amenable for

interpretation or downstream statistical tasks. To our knowledge, there is no research on

covariance structure learning for high-dimensional repeated measures data. We fill in this
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methodological gap in this thesis by emphasizing the importance of treating the target of

estimation separately and proposing two new sparse positive definite estimators, one for

the within-subject covariance Σε and one for the between-subject covariance matrix Σb.

We demonstrate the benefit of our proposed estimators by comparing both theoretically

and numerically with other estimators that have been previously studied in different

settings.

2.2 Sparse Estimation of Within-subject and Between-

subject Covariance Matrices

Most recent approaches to estimating a large covariance matrix involve regularized

estimation based on an unbiased estimate of the target covariance matrix. In a setting

with independent and identically distributed samples, it is straightforward to use the

sample covariance matrix as an unbiased estimate, and methods in the literature differ in

various approaches to imposing regularization. Specifically, methods based on threshold-

ing the sample covariance matrix have been well-studied (Bickel and Levina [24, 25], and

Cai and Yuan [28]), and further improvements have been developed to ensure positive

definiteness in the resulting estimates (Rothman et al. [26], Xue et al. [29, 30], and

Cui et al. [31]). Bien and Tibshirani [22] proposed a penalized likelihood procedure for

estimating a sparse covariance matrix, which could be computationally intensive due to

the non-convexity of the likelihood in the covariance matrix.

There are several unbiased estimates of the two covariance matrices in the model
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(1.11). We first consider the following unbiased estimates:

Σ̂ε = (
m∑
i=1

ni −m)−1

m∑
i=1

ni∑
j=1

(Yij − Ȳi·)(Yij − Ȳi·)
T, (2.3)

Σ̂b = Σ−
m∑
i=1

(mni)
−1Σ̂ε. (2.4)

The sample estimate Σ̂ε is an unbiased estimate of Σε (Rao and Heckler [54]). From

(2.1), Σ̂b is an unbiased estimate of Σb, and is a multivariate extension of the unweighted

sum-of-squares estimator in Rao and Sylvestre [55]. We will consider another commonly

used unbiased estimate of Σb in Section 3.5 and demonstrate that it is suboptimal for

estimation.

Note that Σ̂ε in (2.3) may be singular in high-dimensional settings where p > m,

and Σ̂b may not be positive semi-definite for any dimensions. In particular, the diagonal

elements in Σ̂b could be negative. To derive sparse and positive-definite estimates of Σε

and Σb, we follow Xue et al. [29] and consider the following optimization problem for

estimating a generic covariance matrix Σ with input matrix D,

min
Σ⪰δIp

1

2
∥Σ−D∥2F + λ|Σ|1, (2.5)

where ∥ · ∥F is the Frobenius norm and | · |1 is the ℓ1-norm of the off-diagonal elements of

the input matrix. The constraint Σ ⪰ δIp imposes positive semi-definiteness on Σ− δIp,

which results in a positive definite solution to (2.5) with a small value of δ > 0. This

positive definiteness constraint is essential to provide a usable and accurate estimate.

A solution to (2.5) is simultaneously sparse, positive definite, and close to the input

matrix D, which is usually set as an unbiased sample estimate. Let Σ̂+
ε be the sparse and

positive definite estimate of Σε as the solution to (2.5) with D = Σ̂ε and λ = λε, and Σ̂+
b
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be the sparse and positive definite estimates of Σb as the solution to (2.5) with D = Σ̂b

and λ = λb. We study Σ̂+
ε and Σ̂+

b both theoretically and numerically. In addition, to

illustrate the suboptimality of using group aggregation in estimating either covariance

matrix, we further study Σ
+
, which is defined as the solution to (2.5) with D = Σ and

λ = λ0. The theoretical tuning parameter values λε, λb, and λ0 are discussed in Chapter

3.

The convex optimization problem (2.5) can be written equivalently as

min
Σ,Θ

{
1

2
∥Σ−D∥2F + λ|Θ|1 : Σ = Θ, Σ ⪰ δIp

}
, (2.6)

which we solve using the alternating direction method of multipliers (Boyd et al. [21]).

Specifically, the algorithm iteratively minimizes the following augmented Lagrangian

L(Σ,Θ;Λ) =
1

2
∥Σ−D∥2F + λ|Θ|1 + ⟨Λ,Σ−Θ⟩+ ρ

2
∥Σ−Θ∥2F ,

over Σ, Θ, and the dual variable Λ using the following updates until convergence:

Σ← argminΣ⪰δIp L(Σ,Θ;Λ) = 1
1+ρ

(D + ρΘ− Λ, δ)+, (2.7)

Θ← argminΘ L(Σ,Θ;Λ) = Sλ/ρ
(
Σ + 1

ρ
Λ
)
, (2.8)

Λ← Λ + ρ(Σ−Θ).

The update in (2.7) computes the projection onto a positive semi-definite cone, where

(A, δ)+ =
∑p

j=1 max(λj, δ)vjv
T
j for a generic matrix A ∈ Rp×p with the eigendecompo-

sition A =
∑p

j=1 λjvjv
T
j . The update in (2.8) evaluates element-wise soft-thresholding

operators, where {Sb(A)}j,k = sign(Aj,k)max(|Aj,k| − b, 0) for any matrix A and scalar

b ≥ 0. We follow Boyd et al. [21] for practical considerations in this algorithm, including
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the initial values, the stopping criterion, and the updating strategy for the optimization

parameter ρ, and refer to Section 2.3 for further implementation details. This algo-

rithm has been widely used in the literature on covariance estimation, (e.g., Bien and

Tibshirani[22] and Xue et al. [29]) with well-established convergence analysis (Nishi-

hara et al. [56]). The computational complexity of each update is dominated by the

eigendecomposition in (2.7), which requires O(p3) operations. An approximate alternat-

ing direction method of multipliers (Rontsis et al. [57]) could be used to improve the

computational complexity by avoiding repeated eigendecompositions.

2.3 Further Details on Optimization Algorithm Im-

plementation

The complete algorithm solving the convex optimization problem (2.6) in Section 2.2

is summarized in Algorithm 1.

Algorithm 1 Alternating direction method of multipliers for solving (2.6) in Section
2.2.
Require: δ, λ, ρ(0), D, Σ(0), Θ(0), Λ(0), and l = 0.
1: Repeat
2: Σ(l+1) ← 1

1+ρ(l)

(
D + ρΘ(l) − Λ(l), δ

)
+

3: Θ(l+1) ← Sλ/ρ(l)
(
Σ(l+1) + 1

ρ(l)
Λ(l)
)

4: Λ(l+1) ← Λ(l) + ρ(l)
(
Σ(l+1) −Θ(l+1)

)
5: Update ρ(l+1) based on equation (3.13) in Boyd et al. [21]
6: Until convergence

A reasonable stopping criterion suggested by Boyd et al. [21] is

∥Σ(l+1) −Θ(l+1)∥F ≤ ϵpri and ∥ρ(Θ(l+1) −Θ(l))∥F ≤ ϵdual.

where ϵpri and ϵdual are positive feasibility tolerances for the primal and dual feasibility
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conditions, which are controlled by an absolute criterion ϵabs and a relative criterion ϵrel:

ϵpri = pϵabs + ϵrel max{∥Σ(l+1)∥F , ∥Θ(l+1)∥F},

ϵdual = pϵabs + ϵrel∥Λ(l+1)∥F ,

where ϵabs > 0 and ϵrel > 0. In the numerical studies, we choose ϵabs = ϵrel = 10−8.

The choice of ρ can greatly impact the practical convergence of the alternating direc-

tion method procedure. To improve the convergence, we adopt an adaptive strategy

described in Boyd et al. [21] for varying penalty parameter ρ. In practice, we use the

soft-thresholding estimators based on the sample estimates as the initial (Σ(0), Θ(0)). And

the initial input for Λ(0) is a zero matrix. The initial penalty parameter ρ is 0.1. Without

the positive semi-definite constraints of Σε and Σb in (2.6), the unconstrained solutions

will be Sλ(Σ̂ε) and Sλ(Σ̂b) with D = Σ̂ε and D = Σ̂b, respectively. For efficient computa-

tion, we always first check the positive semi-definiteness of Sλ(Σ̂ε) and Sλ(Σ̂b). If Sλ(Σ̂ε)

and Sλ(Σ̂b) are positive semi-definite, they are the final solutions to (2.6), respectively.

Otherwise, we will use Algorithm 1 to solve (2.6).

2.4 Cross-validation Procedure for Tuning Parame-

ters Selection

The main optimization problem (2.6) defines various estimators that we study in this

thesis, where λ is the tuning parameter that controls the level of regularization of the

sample estimates. We present in this section a cross-validation procedure for selecting

the tuning parameter (Bickel and Levina [25], Rothman et al. [26] and Cai and Liu [27])

specifically in the presence of repeated measurements.

For each (of theK) split in aK-fold cross-validation procedure, we randomly partition
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them groups into a set ofm1 groups of training set, i.e., Tr = {Yij : i ∈ A} with |A| = m1

and a set of m−m1 groups of validation set, i.e., Te = {Yij : i ∈ Ac} with |Ac| = m−m1.

Let Ŝ+{λ, Ŝ(T )} denote a generic estimator, which is defined as a solution to the

optimization problem (2.6) with the tuning parameter value λ and input sample matrix

Ŝ(T ) evaluated using a dataset T . Specifically, the estimator Ŝ+{λ, Ŝ(T )} could refer

to Σ̂+
b , Σ̂

+
ε , Σ̃

+
b , and Σ

+
. And Ŝ(T ) refers to the unbiased estimator Σ̂b, Σ̂ε, Σ̃b, and

the biased estimator Σ. The cross-validation procedure is presented in the following

Algorithm 2 to choose the tuning parameter from a path of candidate tuning parameter

values {λ1 > λ2 > . . . > λL}.

Algorithm 2 A K-fold Cross-Validation Procedure

Require: {Yij : 1 ≤ i ≤ m, 1 ≤ j ≤ ni} and {λ1 > λ2 > . . . > λL}.
1: for ℓ = 1, . . . , L do
2: for ν = 1, . . . , K do
3: Divide {Yij : 1 ≤ i ≤ m, 1 ≤ j ≤ ni} into training set T (ν)

r and validation set

T (ν)
e ;

4: Compute the sample covariance matrix Ŝ(T (ν)
e ) on the validation set T (ν)

e ;

5: Compute the estimator Ŝ+{λℓ, Ŝ(T (ν)
r )} on the training set T (ν)

r .
6: end for
7: Compute CV estimate of error Eℓ =

∑K
ν=1 ∥Ŝ+{λℓ, Ŝ(T (ν)

r )} − Ŝ(T (ν)
e )∥2F/K.

8: end for
9: Let ℓ̂ = argminℓ=1,...,LEℓ, and return the selected tuning parameter λℓ̂.
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Chapter 3

Theoretical Properties of Sparse

Covariance Estimation with

Repeated Measurements

3.1 Notations and Assumptions

In this chapter, we derive the finite-sample estimation error rate of our proposed

estimators Σ̂+
ε (in Section 3.3) and Σ̂+

b (in Section 3.4), and establish their asymptotic

consistency. In comparison, we further establish that Σ
+
is inconsistent in estimating Σb

due to a non-vanishing bias even with an infinite number of subjects, thus illustrating

the pitfall of the sample estimator (2.1) based on the aggregated data.

We observe Yij ∈ Rp, which is the j-th repeated measurement of the i-th subject

for j = 1, . . . , ni and i = 1, . . . ,m, following the model (1.11), where εij and bi are p-

dimensional sub-Gaussian random vectors with the true within and between covariance

Var(εij) = Σ0
ε and Var(bi) = Σ0

b respectively, and bi and εij are mutually independent.

Let N =
∑m

i=1 ni be the total number of observations. We consider the following class of
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sparse covariance matrices:

U(M, s) =

{
Σ ∈ Sp×p++ : max

k
Σk,k ≤M,

max
k

p∑
ℓ=1

1(Σk,ℓ ̸= 0) ≤ s

}
,

where Sp×p++ is the set of all p-by-p symmetric positive definite matrices, and Σk,ℓ is the

(k, ℓ)-th entry of Σ. A matrix in U(M, s) has diagonals boundM and maximum row-wise

(and by symmetry, column-wise) sparsity level s.

3.2 Lemmas

We begin with several lemmas essential for the proof of the main results. In Lemma

1 and 2, we establish the entry-wise convergence rate for our unpenalized within-subject

and between-subject covariance estimator, i.e., Σ̂ε and Σ̂b in (2.3) and (2.4). According to

(2.2) in Section 2.1, Σ in (2.1) is a biased estimate for both within-subject and between-

subject covariance matrices. Therefore, we also compare Σ with Σb and Σε in Lemma 3

and 4.

Lemma 1 Consider the true within-subject covariance Σ0
ε with maxk(Σ

0
ε)k,k ≤ Mε. Let

λε = C1{N log p}1/2/(N −m) for a sufficiently large constant C1. If log p ≤ N , then the

unbiased within-subject sample estimate Σ̂ε satisfies

Pr
{
max
k,l

∣∣∣(Σ̂ε − Σ0
ε)k,l

∣∣∣ > λε

}
≤ 4p−C2 ,

where C2 > 0 only depends on C1 and Mε.
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Proof. We first rewrite Σ̂ε as follows,

Σ̂ε =
1

N −m

m∑
i=1

ni∑
j=1

(Yij − Ȳi·)(Yij − Ȳi·)
T

=
1

N −m

(
m∑
i=1

ni∑
j=1

εijε
T

ij −
m∑
i=1

niε̄i·ε̄
T

i·

)
.

Then,

(Σ̂ε)k,l =
1

N −m

(
m∑
i=1

ni∑
j=1

εijkεijl −
m∑
i=1

niε̄i·kε̄i·l

)

=
1

N −m

m∑
i=1

ni∑
j=1

εijkεijl −
1

N −m

m∑
i=1

niε̄i·kε̄i·l

=
1

N −m

m∑
i=1

ni∑
j=1

{
εijkεijl − (Σ0

ε)k,l
}

− 1

N −m

m∑
i=1

{
1

ni
Si·kSi·l − (Σ0

ε)k,l

}
+ (Σ0

ε)k,l, (3.1)

where Si·k =
∑ni

j=1 εijk.

By (3.1),

max
k,l

∣∣∣(Σ̂ε − Σ0
ε)k,l

∣∣∣
≤ max

k,l

1

N −m

∣∣∣∣∣
m∑
i=1

ni∑
j=1

{
εijkεijl − (Σ0

ε)k,l
}∣∣∣∣∣

+
1

N −m
max
k,l

∣∣∣∣∣
m∑
i=1

{
1

ni
Si·kSi·l − (Σ0

ε)k,l

}∣∣∣∣∣ . (3.2)

Now, we assume that εijk ∈ SG(σ2
ε,k), i.e., εijk is sub-Gaussian with a variance factor

σ2
ε,k for 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ p. It is easy to check that n

−1/2
i Si·k ∈ SG(σ2

ε,k).

Let ψ : R+ → R+ be a convex function with ψ(0) = 0, especially, ψq(v) = exp(|v|q)−1,

for q ∈ [1, 2]. Then for an R-valued random variable X, the Orlicz norm of X is ∥X∥ψ =
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inf{t ∈ R+ : E{ψ(|X|/t)} ≤ 1}. And by the properties of Orlicz norms, for any random

variable X and any increasing convex ψ : R+ → R+ with ψ(0) = 0, we have

∥X − E(X)∥ψ ≤ 2∥X∥ψ. (3.3)

Moreover, if X ∈ SG(σ2), then

∥X∥ψ2 ≤ c0σ, (3.4)

for some c0 ≤ (8/3)1/2.

Since εijk ∈ SG(σ2
ε,k) and n

−1/2
i Si·k ∈ SG(σ2

ε,k), by Lemma 2.7.7 in Vershyin [58],

εijkεijl and n
−1
i Si·kSi·l are sub-Exponential random variables. Let maxk σ

2
ε,k =Mε. Com-

bining (3.3) and (3.4), Lemma 2.7.7 in Vershyin [58] implies that

∥∥εijkεijl − (Σ0
ε)k,l

∥∥
ψ1
≤ 2 ∥εijkεijl∥ψ1

≤ 2 ∥εijk∥ψ2
∥εijl∥ψ2

≤ c1Mε,

and

∥∥n−1
i Si·kSi·l − (Σ0

ε)k,l
∥∥
ψ1
≤ 2

∥∥n−1
i Si·kSi·l

∥∥
ψ1
≤ 2

∥∥∥n−1/2
i Si·k

∥∥∥
ψ2

∥∥∥n−1/2
i Si·l

∥∥∥
ψ2

≤ c1Mε,

where c1 = 2c20.

Hence, for the first term in (3.2), by the union sum inequality and Bernstein’s in-

equality (Theorem 2.8.2 in Vershyin [58]), we can get

Pr

[
max
k,l

1

N −m

∣∣∣∣∣
m∑
i=1

ni∑
j=1

{εijkεijl − (Σ0
ε)k,l}

∣∣∣∣∣ ≥ t

]

≤ 2p2exp

[
−c2min

{
t2(N −m)2

NK2
1

,
t(N −m)

K1

}]
, (3.5)
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where c2 > 0, K1 = maxi,k,l ∥εijkεijl − (Σ0
ε)k,l∥ψ1 ≤ c1Mε.

Similarly,

Pr

[
1

N −m
max
k1

∣∣∣∣∣
m∑
i=1

{
1

ni
Si·k1Si·k2 − (Σ0

ε)k,l

}∣∣∣∣∣ ≥ t

]

≤ 2p2exp

[
−c3min

{
t2(N −m)2

mK2
2

,
t(N −m)

K2

}]
, (3.6)

where c3 > 0, K2 = maxi,k,l ∥n−1
i Si·kSi·l − (Σ0

ε)k,l∥ψ1 ≤ c1Mε.

By (3.5) and (3.6), take t = C1(N log p)1/2/{2(N−m)} for a sufficiently large constant

C1 > 0, with N > log p, we will have

Pr

[
max
k,l

1

N −m

∣∣∣∣∣
m∑
i=1

ni∑
j=1

{εijkεijl − (Σ0
ε)k,l}

∣∣∣∣∣ ≥ t

]

≤ 2exp

[
max

{(
2− c2NC

2
1

4mK2
1

)
log p, 2 log p− c2C1

2K1

(N log p)1/2
}]

≤ 2exp

{
max

(
2− c2C

2
1

4c21M
2
ε

, 2− c2C1

2c1Mε

)
log p

}
, (3.7)

and

Pr

[
1

N −m
max
k,l

∣∣∣∣∣
m∑
i=1

{
1

ni
Si·kSi·l − (Σ0

ε)k,l

}∣∣∣∣∣ ≥ t

]

≤ 2exp

[
max

{(
2− c3NC

2
1

4mK2
2

)
log p, 2 log p− c3C1

2K2

(N log p)1/2
}]

≤ 2exp

{
max

(
2− c3C

2
1

4c21M
2
ε

, 2− c3C1

2c1Mε

)
log p

}
. (3.8)
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Combining (3.7) and (3.8), with λε = C1(N log p)1/2/(N −m), we have

Pr
{
max
k,l

∣∣∣(Σ̂ε − Σ0
ε)k,l

∣∣∣ > λε

}
≤ Pr

[
1

N −m
max
k1

∣∣∣∣∣
m∑
i=1

{
1

ni
Si·kSi·l − (Σ0

ε)k,l

}∣∣∣∣∣ ≥ C1(N log p)1/2

2(N −m)

]

+Pr

[
max
k,l

1

N −m

∣∣∣∣∣
m∑
i=1

ni∑
j=1

{εijkεijl − (Σ0
ε)k,l}

∣∣∣∣∣ ≥ C1(N log p)1/2

2(N −m)

]

≤ 2exp

{
max

(
2− c3C

2
1

4c21M
2
ε

, 2− c3C1

2c1Mε

)
log p

}
+2exp

{
max

(
2− c2C

2
1

4c21M
2
ε

, 2− c2C1

2c1Mε

)
log p

}
≤ 4p−C2 ,

where C2 = min{c3C1(2c1Mε)
−1, c3, c2C1(2c1Mε)

−1, c2}(2c1Mε)
−1C1 − 2. □

Lemma 2 Consider the true within-subject covariance Σ0
ε with maxk(Σ

0
ε)k,k ≤ Mε and

the true between-subject covariance Σ0
b with maxk(Σ

0
b)k,k ≤Mb. Let

λb = C1

(
log p

m

)1/2

+ C2
(N log p)1/2

(N −m)n∗ +
Mb

m
+

Mε

mn∗

for sufficiently large C1, C2 > 0, where n∗ = m/
∑m

i=1 n
−1
i . If log p ≤ m, then the unbiased

between-subject sample estimate Σ̂b satisfies

Pr
{
max
k,l

∣∣∣(Σ̂b − Σ0
b)k,l

∣∣∣ > 2λb

}
≤ 8p−C3 ,

where C3 > 0 only depends on C1, C2 and max(Mε,Mb).
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Proof. Let Ȳi·k = bik + n−1
i

∑ni

j=1 εijk = bik + n−1
i Si·k = Wik, then by decomposition,

(Σ̂b − Σ0
b)k,l = {Σ− (n∗)−1Σ̂ε − Σ0

b}k,l

= [Σ− {Σ0
b + (n∗)−1Σ0

ε}]k,l − (n∗)−1(Σ̂ε − Σ0
ε)k,l

=
1

m− 1

m∑
i=1

{
WikWil −

(
Σ0
b + n−1

i Σ0
ε

)
k,l

}
− m

m− 1

(
1

m

m∑
i=1

Wik

)(
1

m

m∑
i=1

Wil

)

+
(Σ0

b)k,l
m− 1

+
(Σ0

ε)k,l
(m− 1)n∗ −

(Σ̂ε − Σ0
ε)k,l

n∗ . (3.9)

Then, with |(Σ0
b)k,l| ≤Mb and |(Σ0

ε)k,l| ≤Mε, we have

max
k,l

∣∣∣(Σ̂b − Σ0
b)k,l

∣∣∣ ≤ 2max
k,l

∣∣∣∣∣ 1m
m∑
i=1

{
WikWil −

(
Σ0
b + n−1

i Σ0
ε

)
k,l

}∣∣∣∣∣
+2max

k,l

∣∣∣∣∣
(

1

m

m∑
i=1

Wik

)(
1

m

m∑
i=1

Wil

)∣∣∣∣∣
+max

k,l
(n∗)−1

∣∣∣(Σ̂ε − Σ0
ε)k,l

∣∣∣
+
2Mb

m
+

2Mε

mn∗ . (3.10)

Assume that bik ∈ SG(σ2
b,k), i.e., bik is sub-Gaussian with a variance factor σ2

b,k for

1 ≤ i ≤ m, 1 ≤ k ≤ p. Then Wik ∈ SG(σ2
b,k + n−1

i σ2
ε,k). Let maxk σ

2
b,k = Mb. Then, by

Lemma 2.7.7 in Vershyin [58], we obtain

∥∥∥WikWil −
(
Σ0
b + n−1

i Σ0
ε

)
k,l

∥∥∥
ψ1

≤ 2 ∥Wik∥ψ2
∥Wil∥ψ2

≤ c1
(
Σ0
b + n−1

i Σ0
ε

)
k,l

≤ c1
(
1 + n−1

l

)
M∗

≤ 2c1M∗,
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where nl = minni andM∗ = max(Mε,Mb). And with the Bernstein’s inequality, we have

Pr

[
1

m

∣∣∣∣∣
m∑
i=1

{
WikWil − (Σ0

b + n−1
i Σ0

ε)k,l
}∣∣∣∣∣ ≥ t

]
≤ 2exp

{
−c4min

(
mt2

K2
3

,
mt

K3

)}
,

where c4 > 0, K3 = maxi,k,l ∥WikWil − (Σ0
b + n−1

i Σ0
ε)k,l∥ψ1 ≤ 2c1M∗.

By the union sum inequality and taking t = 2−1C1(log p/m)1/2 for a sufficiently large

constant C1 > 0, if m ≥ log p, we have

Pr

[
max
k,l

1

m

∣∣∣∣∣
m∑
i=1

{
WikWil − (Σ0

b + n−1
i Σ0

ε)k,l
}∣∣∣∣∣ ≥ t

]

≤ 2p2exp

[
−c4min

{
C2

1 log p

4K2
3

,
C1(m log p)1/2

2K3

}]
≤ 2exp

[{
2−min

(
c4C

2
1

16c21M
2
∗
,
c4C1

4c1M∗

)}
log p

]
. (3.11)

We use a union bound with the general Hoeffding’s inequality (Theorem 2.6.2 by

Vershyin [58]) to bound the second term in (3.10). Specifically, with m ≥ log p and

taking t = 2−1C1(log p/m)1/2, we have

Pr

max
k,l

∣∣∣∣∣ 1m
m∑
i=1

Wik

∣∣∣∣∣
2

≥ t

 = Pr

(
max
k,l

∣∣∣∣∣
m∑
i=1

Wik

∣∣∣∣∣ ≥ mt1/2

)

≤ 2pexp

(
− c5m

2t∑m
i=1 ∥Wik∥2ψ2

)

≤ 2pexp

(
− c5mt
c1M∗

)
= 2pexp

{
− c5C1

2c1M∗
(m log p)1/2

}
≤ 2exp

{(
1− c5C1

2c1M∗

)
log p

}
, (3.12)

where c5 > 0.
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For the third term in (3.10), by Lemma 1, for a sufficiently large constant C2 > 0, we

have

Pr

max
k,l

∣∣∣(Σ̂ε − Σ0
ε)k,l

∣∣∣
n∗ ≥ 2C2

(N log p)1/2

(N −m)n∗

 ≤ 4p−C
′
3 , (3.13)

where C ′
3 > 0 only depends on C2 and Mε.

Collecting (3.11)-(3.13), with

λb = C1

(
log p

m

)1/2

+ C2
(N log p)1/2

(N −m)n∗
+
Mb

m
+

Mε

mn∗
,

we have

Pr
{
max
k,l

∣∣∣(Σ̂b − Σ0
b)k,l

∣∣∣ ≥ 2λb

}
≤ Pr

[
max
k,l

2

m

∣∣∣∣∣
m∑
i=1

{
WikWil − (Σ0

b + n−1
i Σ0

ε)k,l
}∣∣∣∣∣ ≥ C1

(
log p

m

)1/2
]

+Pr

{
2max

k,l

∣∣∣∣∣
(

1

m

m∑
i=1

Wik

)(
1

m

m∑
i=1

Wil

)∣∣∣∣∣ ≥ C1

(
log p

m

)1/2
}

+Pr

max
k,l

∣∣∣(Σ̂ε − Σ0
ε)k,l

∣∣∣
n∗ ≥ 2C2

(N log p)1/2

(N −m)n∗


≤ 4p−C

′
3 + 4p−C

′′
3

≤ 8p−C3 ,

where C ′′
3 = min{c4C2

1(16c
2
1M

2
∗ )

−1, c4C1(4c1M∗)
−1, c5C1(2c1M∗)

−1 + 1} − 2 and C3 =

min(C ′
3, C

′′
3 ).

□

Lemma 3 Consider the true within-subject covariance Σ0
ε with maxk(Σ

0
ε)k,k ≤ Mε and
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the true between-subject covariance Σ0
b with maxk(Σ

0
b)k,k ≤Mb. Let

λ0 = C1

(
log p

m

)1/2

+
Mb

m
+
Mε

n∗

for sufficiently large C1 > 0, where n∗ = m/
∑m

i=1 n
−1
i . If log p ≤ m, then the naive

between-subject sample estimate Σ satisfies

Pr
{
max
k,l

∣∣(Σ− Σ0
b)k,l

∣∣ > 2λb

}
≤ 8p−C2

where C2 > 0 only depends on C1 and max(Mε,Mb).

Proof. Now, we will consider the convergence rate of maxk,l |(Σ − Σ0
b)k,l|. By (3.9), we

have

(Σ− Σ0
b)k,l =

1

m− 1

m∑
i=1

{
WikWil −

(
Σ0
b + n−1

i Σ0
ε

)
k,l

}
− m

m− 1

(
1

m

m∑
i=1

Wik

)(
1

m

m∑
i=1

Wil

)

+
(Σ0

b)k,l
m− 1

+
m(Σ0

ε)k,l
(m− 1)n∗ . (3.14)

Then, with |(Σ0
b)k,l| ≤Mb and |(Σ0

ε)k,l| ≤Mε, we have

max
k,l

∣∣(Σ− Σ0
b)k,l

∣∣ ≤ 2max
k,l

∣∣∣∣∣ 1m
m∑
i=1

{
WikWil −

(
Σ0
b + n−1

i Σ0
ε

)
k,l

}∣∣∣∣∣
+2max

k,l

∣∣∣∣∣
(

1

m

m∑
i=1

Wik

)(
1

m

m∑
i=1

Wil

)∣∣∣∣∣
+
2Mb

m
+

2Mε

n∗ . (3.15)
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Following the steps in Lemma 2, with

λ0 = C1

(
log p

m

)1/2

+
Mb

m
+
Mε

n∗

for a sufficiently large constant C1 > 0, we have

Pr
{
max
k,l

∣∣(Σ− Σ0
b)k,l

∣∣ > 2λ0

}
≤ 4p−C2 ,

where C2 > 0 only depends on C1 and max(Mε,Mb). □

Lemma 4 Consider the true within-subject covariance Σ0
ε with maxk(Σ

0
ε)k,k ≤ Mε and

the true between-subject covariance Σ0
b with maxk(Σ

0
b)k,k ≤Mb. Let

λ1 = C1

(
log p

m

)1/2

+Mb +
(2− n∗)Mε

2n∗

for sufficiently large C1 > 0, where n∗ = m/
∑m

i=1 n
−1
i . If log p ≤ m, then Σ satisfies

Pr
{
max
k,l

∣∣(Σ− Σ0
ε)k,l

∣∣ > 2λ1

}
≤ 4p−C2

where C2 > 0 only depends on C1 and max(Mε,Mb).

Proof. Now, we will consider the convergence rate of maxk,l |(Σ − Σ0
ε)k,l|. Note that

(Σ − Σ0
ε)k,l = (Σ − Σ0

b)k,l + (Σ0
b)k,l − (Σ0

ε)k,l. Then, by (3.14), with |(Σ0
b)k,l| ≤ Mb and
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|(Σ0
ε)k,l| ≤Mε, we have

max
k,l

∣∣(Σ− Σ0
ε)k,l

∣∣ ≤ 2max
k,l

∣∣∣∣∣ 1m
m∑
i=1

{
WikWil −

(
Σ0
b + n−1

i Σ0
ε

)
k,l

}∣∣∣∣∣
+2max

k,l

∣∣∣∣∣
(

1

m

m∑
i=1

Wik

)(
1

m

m∑
i=1

Wil

)∣∣∣∣∣
+2Mb +

(2− n∗)Mε

n∗ . (3.16)

Following the steps in Lemma 2, with

λ1 = C1

(
log p

m

)1/2

+Mb +
(2− n∗)Mε

2n∗

for a sufficiently large constant C1 > 0, we have

Pr
{
max
k,l

∣∣(Σ− Σ0
ε)k,l

∣∣ > 2λ1

}
≤ 4p−C2 ,

where C2 > 0 only depends on C1 and max(Mε,Mb). □

3.3 Estimation Error Rate for the Within-Subject

Covariance Estimator

Theorem 1 (Estimation error rate of Σ̂+
ε ) Assume that the true within-subject co-

variance matrix Σ0
ε ∈ U(Mε, sε). Let λε = C1(N log p)1/2/(N − m) be the value of the

tuning parameter λ in (2.5) for a sufficiently large constant C1 > 0. If log p ≤ N , the

proposed within-subject estimator Σ̂+
ε satisfies

∥∥∥Σ̂+
ε − Σ0

ε

∥∥∥
F
≤ 5λε(psε)

1/2
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with probability at least 1− 4p−C2, where C2 > 0 only depends on C1 and Mε.

Proof. Define ∆ε = Σε−Σ0
ε and Fε(∆ε) = ∥∆ε +Σ0

ε − Σ̂ε∥2F/2 + λε|∆ε +Σ0
ε|1, then the

objective function (2.6) is equivalent to

min
∆ε:∆ε=∆T

ε ,∆ε+Σ0
ε⪰δI

Fε(∆ε).

Consider the set

{∆ε : ∆ε = ∆T

ε ,∆ε + Σ0
ε ⪰ δI, ∥∆ε∥F = 5λε(psε)

1/2}. (3.17)

According to Xue et al. [29], under the probability event {|(Σ̂ε − Σ0
ε),k,l| ≤ λε,∀(i, j)},

we have

Fε(∆ε)− Fε(0) ≥
1

2
∥∆ε∥2F − 2λε

[
p∑

k,l=1

1{(Σ0
ε)k,l ̸= 0}

]1/2
∥∆ε∥F

≥ 1

2
∥∆ε∥2F − 2λε(psε)

1/2∥∆ε∥F

=
5

2
λ2εpsε

> 0.

Note that Fε(∆ε) is a convex function and Fε(∆̂ε) ≤ Fε(0) = 0. Then, the minimizer ∆̂ε

must be inside the sphere (3.17). Hence, we have

Pr
{∥∥∥Σ̂+

ε − Σ0
ε

∥∥∥
F
≤ 5λε(psε)

1/2
}

≥ 1− Pr
{
max
k,l

∣∣∣(Σ̂ε − Σ0
ε)k,l

∣∣∣ > λε

}
≥ 1− 4p−C2 .

□
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The term (psε)
1/2 in the error rate above represents the overall sparsity of the true

covariance matrix Σ0
ε. This dependence on sparsity level has also been noted in Rothman

et al. [6] and Xue et al. [29] over slightly different matrix classes. Notably, the estimation

error rate does not depend onMε or on the exact values of ni for i = 1, ...,m. Instead, the

effective sample size in λ is N1/2−N−1/2m, which only depends on the total observation

number N and the number of subjects m.

Remark 1. When the number of subject m is relatively small compared with the total

number of observations N in the scale of m = o(N1/2), Theorem 1 implies that

∥∥∥Σ̂+
ε − Σ0

ε

∥∥∥
F
= OP

{
(psεN

−1 log p)1/2
}
,

where Xn = OP (an) means that for a set of random variables Xn and a corresponding set

of constants an, Xn/an is bounded by a positive constant with probability approaching 1.

This rate coincides with those in Rothman et al. [6], Bickel and Levina [25], Rothman et

al. [26], Cai and Liu [27] and Xue et al. [29], which are derived based on the assumption

of independent and identically distributed observations.

Remark 2. On the other hand, with m = O(N), e.g., when the number of repeated

measurements of each subject is bounded by a constant, Theorem 1 implies that

∥∥∥Σ̂+
ε − Σ0

ε

∥∥∥
F
= OP

{
(psεm

−1 log p)1/2)
}
.

In this scenario, m plays the role of the effective sample size, and estimation consistency

is achieved when m approaches infinity.
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3.4 Estimation Error Rate for the Between-Subject

Covariance Estimator

Theorem 2 (Estimation error rate of Σ̂+
b ) Assume that the true between-subject co-

variance matrix Σ0
b ∈ U(Mb, sb) and the true within-subject covariance matrix Σ0

ε ∈

U(Mε, sε). Let

λb = C1

(
log p

m

)1/2

+ C2
(N log p)1/2

(N −m)n∗ +
Mb

m
+

Mε

mn∗ (3.18)

be the value of the tuning parameter λ in (2.5) for sufficiently large C1, C2 > 0, where

n∗ = m/
∑m

i=1 n
−1
i . If log p ≤ m, then the proposed between-subject estimator Σ̂+

b satisfies

∥∥∥Σ̂+
b − Σ0

b

∥∥∥
F
≤ 10λb(psb)

1/2

with probability at least 1−8p−C3, where C3 > 0 only depends on C1, C2 and max(Mε,Mb).

Unlike the estimation error rate for Σ̂ε in Theorem 1, the rate for Σ̂b depends on the

values of ni’s via the term n∗. A simple bound n∗ ≥ mini ni implies that the second term

in λb converges to 0 at a rate that is at least not slower than λε in Theorem 1. The rate

in λb is thus dominated by (m−1 log p)1/2.

Recall from (2.2) that Σ has a bias of Σε/n
∗ in estimating Σb. In practice, Σ has been

misused to provide a sample estimate for subsequent regularized estimation (Epskamp

et al. [45]). We establish the following estimation error rate for Σ
+
, which is defined as

the solution to (2.5) with input sample matrix D = Σ, to illustrate that the bias in the

sample estimate is carried over to the regularized estimation.

Theorem 3 (Estimation error rate of Σ
+
) Assume that the true between-subject co-

variance matrix Σ0
b ∈ U(Mb, sb) and the true within-subject covariance matrix Σ0

ε ∈
37



Theoretical Properties of Sparse Covariance Estimation with Repeated Measurements Chapter 3

U(Mε, sε). Let

λ0 = C1

(
log p

m

)1/2

+
Mb

m
+
Mε

n∗

be the value of the tuning parameter λ in (2.5) for sufficiently large C1 > 0, and the same

n∗ defined in Theorem 2. If log p ≤ m, then the aggregated between-subject estimator Σ
+

satisfies ∥∥∥Σ+ − Σ0
b

∥∥∥
F
≤ 10λ0(psb)

1/2

with probability at least 1− 4p−C2, where C2 > 0 only depends on C1 and max(Mε,Mb).

The upper bound of the estimation error rate in Σ
+
is strictly larger than that of Σ̂+

b due

to the dominant term Mε/n
∗ in λ0, which corresponds to the bias in (2.2). For example,

in the balanced setting where ni = n1 for all i = 1, . . . ,m, it holds that n∗ = n1 and this

bias term Mε/n1 does not vanish even if m → ∞ as long as n1 = O(1). We also show

that Σ
+
is inconsistent in estimating the within-subject covariance Σε in Theorem 4.

Theorem 4 Consider the true between-subject covariance matrix Σ0
b ∈ U(Mb, sb) and

the true within-subject covariance matrix Σ0
ε ∈ U(Mε, sε). Let

λ1 = C1

(
log p

m

)1/2

+Mb +
(2− n∗)Mε

2n∗

be the value of the tuning parameter λ in (2.6) for sufficiently large C1 > 0, and the same

n∗ defined in Theorem 2. If log p ≤ m, then the naive estimator Σ
+
satisfies

∥∥∥Σ+ − Σ0
ε

∥∥∥
F
≤ 10λ1(psε)

1/2

with probability at least 1− 4p−C2, where C2 > 0 only depends on C1 and max(Mε,Mb).
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The proof of Theorems 2, 3 and 4 follow straightforwardly from Theorem 1. In

some scenarios, the estimation of between-subject and within-subject correlation ma-

trices, instead of covariance matrices, is of interest and can be obtained similarly in

the proposed framework. We provide estimation error rates of the sparse positive defi-

nite estimators of two correlation matrices in Corollaries 1 and 2. And the sparse and

positive-definite estimate of Rε, denoted as R̂+
ε , and of Σb, denoted as R̂+

b are defined

as solution of (2.6) with D = R̂ε = D
−1/2
ε Σ̂εD

−1/2
ε and D = R̂b = D

−1/2
b Σ̂bD

−1/2
b , where

Dε = diag{(Σ̂ε)1,1, . . . , (Σ̂ε)p,p} and Db = diag{(Σ̂b)1,1, . . . , (Σ̂b)p,p}.

Corollary 1 Under conditions of Theorem 1, if mink(Σ
0
ε)k,k is bounded from below, then

∥∥∥R̂+
ε −R0

ε

∥∥∥
F
= OP

{
(psεN log p)1/2

N −m

}
,

uniformly on Σ0
ε ∈ U(Mε, sε), as N,m→∞.

Proof. By Lemma 1, we have

Pr
{
max
k,l

∣∣∣(Σ̂ε − Σ0
ε)k,l

∣∣∣ > C1
(N log p)1/2

N −m

}
= o(1). (3.19)

According to Lemma 2 in Cui et al. [31], with (3.19) and the fact that (R̂ε)k,l =

(Σ̂ε)k,l/{(Σ̂ε)k,k(Σ̂ε)l,l}1/2, for a sufficiently large constant C ′
1 > 0, we have

Pr
{
max
k,l

∣∣∣(R̂ε −R0
ε)k,l

∣∣∣ > C ′
1

(N log p)1/2

N −m

}
= o(1).

Following the steps in the proof of Theorem 1, it is easily shown that

∥∥∥R̂+
ε −R0

ε

∥∥∥
F
= OP

{
(psεN log p)1/2

N −m

}
.

□
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Corollary 2 Under conditions of Theorem 2, if mink(Σ
0
ε)k,k and mink(Σ

0
b)k,k are bounded

from below, then

∥∥∥R̂+
b −R

0
b

∥∥∥
F
= OP

[
(psb)

1/2

{
C ′

1

(
log p

m

)1/2

+ C ′
2

(N log p)1/2

(N −m)n0

}]
,

uniformly on Σ0
ε ∈ U(Mε, sε) and Σ0

b ∈ U(Mb, sb), for some large C ′
1, C

′
2 > 0, as m,n→

∞.

3.5 Comparison Between Two Unbiased Between-

Subject Covariance Estimators

We consider a commonly used unbiased estimator of Σb based on the multivariate

analysis of variance (Rao and Heckler [54]):

Σ̃b =
1

n0

{
m∑
i=1

ni
m− 1

(Ȳi· − Ȳ··)(Ȳi· − Ȳ··)
T − Σ̂ε

}
,

where n0 =
N −N−1

∑m
i=1 n

2
i

m− 1
, (3.20)

Ȳi· = n−1
i

∑ni

j=1 Yij, Ȳ·· = N−1
∑m

i=1

∑ni

j=1 Yij, and N =
∑m

i=1 ni.

It is straightforward to show that E(Σ̃b) = Σb. However, just like Σ̂b in (2.4), the

diagonal elements of Σ̃b could be negative, which is undesirable for an estimate of Σb.

Specifically, in the setting where bi and εij follow Gaussian distributions and ni’s are

all equal, it can be shown that Pr{(Σ̃b)k,k < 0} decreases with (Σ0
b)k,k/(Σ

0
ε)k,k. An

adjustment for negative diagonal values of Σ̃b is proposed in Rao and Heckler [54] based

on the assumption that Σ̂ε is positive definite, which is violated in the high-dimensional

settings.
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We demonstrate an additional limitation of using Σ̃b, in comparison with Σ̂b, in

obtaining a sparse positive definite estimate of Σb. Define Σ̃+
b as a solution of (2.5) with

D = Σ̃b. The following lemma and theorem show that the performance of Σ̃+
b hinges on

the data imbalance.

Lemma 5 Consider the true within-subject covariance Σ0
ε with maxk(Σ

0
ε)k,k ≤ Mε and

the true between-subject covariance Σ0
b with maxk(Σ

0
b)k,k ≤Mb. Let

λ̃b = C1
maxi ni
n0

(
log p

m

)1/2

+ C2
(N log p)1/2

n0(N −m)
+

(2N − n0m)Mb

2n0m
+

Mε

n0m

for sufficiently large C1, C2 > 0. If log p ≤ m, then Σ̃b satisfies

Pr
[
max
k,l

∣∣∣(Σ̃b − Σ0
b)k,l

∣∣∣ > 2λ̃b

]
≤ 8p−C3 ,

where C3 > 0 only depends on C1, C2 and max(Mε,Mb).

Proof. Consider

max
k,l
|(Σ̃b − Σ0

b)k,l|

= max
k,l

∣∣∣∣∣∣
(
Σ− Σ̂ε

n0

− Σ0
b

)
k,l

∣∣∣∣∣∣
= max

k,l

∣∣∣∣∣(Σ− n0Σ
0
b − Σ0

ε)k,l
n0

− (Σ̂ε − Σ0
ε)k,l

n0

∣∣∣∣∣
≤ max

k,l

∣∣∣∣(Σ− n0Σ
0
b − Σ0

ε)k,l
n0

∣∣∣∣+max
k,l

∣∣∣∣∣(Σ̂ε − Σ0
ε)k,l

n0

∣∣∣∣∣ . (3.21)
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With Ȳi·k = Wik, we have

Ȳ··k =
1

N

m∑
i=1

niWik,

(Σ)k,l =
1

m− 1

m∑
i=1

ni

(
Wik −

1

N

m∑
i=1

niWik

)(
Wil −

1

N

m∑
i=1

niWil

)

=
1

m− 1

m∑
i=1

niWikWil −
1

(m− 1)N

(
m∑
i=1

niWik

)(
m∑
i=1

niWil

)
.

Thus, we obtain

(Σ− n0Σ
0
b − Σ0

ε)k,l
n0

=
1

n0(m− 1)

m∑
i=1

{niWikWil − (niΣ
0
b + Σ0

ε)k,l}

− 1

n0(m− 1)N

(
m∑
i=1

niWik

)(
m∑
i=1

niWil

)

+

{
N

n0(m− 1)
− 1

}
(Σ0

b)k,l +
1

n0(m− 1)
(Σ0

ε)k,l.

Then, for the first term in (3.21), with |(Σ0
b)k,l| ≤Mb and |(Σ0

ε)k,l| ≤Mε, we have

max
k,l

∣∣∣∣(Σ− n0Σ
0
b − Σ0

ε)k,l
n0

∣∣∣∣
≤ max

k,l

2

n0m

∣∣∣∣∣
m∑
i=1

{niWikWil − (niΣ
0
b + Σ0

ε)k,l}

∣∣∣∣∣
+max

k

2

n0mN

∣∣∣∣∣
m∑
i=1

niWik

∣∣∣∣∣
2

+

{
2N

n0m
− 1

}
Mb +

2

n0m
Mε. (3.22)

Recall that by assumptions bik ∈ SG(σ2
b,k), i.e., bik is sub-Gaussian with a variance

factor σ2
b,k for 1 ≤ i ≤ m, 1 ≤ k ≤ p. Then we have Wik ∈ SG(σ2

b,k + n−1
i σ2

ε,k). Let

maxk σ
2
ε,k =Mε and maxk σ

2
b,k =Mb. Together with (3.3) and (3.4), we get ∥niWikWil −
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(niΣ
0
b +Σ0

ε)k,l∥ψ1 ≤ c1(niMb +Mε). Then, niWikWil − (niΣ
0
b +Σ0

ε)k,l is sub-Exponential.

With Bernstein’s inequality, for any k, l, we have

Pr

[∣∣∣∣∣ 1

n0m

m∑
i=1

{
niWikWil − (niΣ

0
b + Σ0

ε)k,l
}∣∣∣∣∣ ≥ t

]
≤ 2exp

{
−c6min

(
t2n2

0m

K2
4

,
tn0m

K4

)}
,

where c6 > 0, K4 = maxi,k,l ∥niWikWil − (niΣ
0
b + Σ0

ε)k,l∥ψ1 ≤ 2c1nuM∗, nu = maxi ni,

M∗ = max(Mε,Mb).

Take t = C1nu(2n0)
−1(log p/m)1/2 for a sufficiently large constant C1 > 0. With

m ≥ log p and the union sum inequality, we obtain

Pr

[
max
k,l

∣∣∣∣∣ 1

n0m

m∑
i=1

{
niWikWil − (niΣ

0
b + Σ0

ε)k,l
}∣∣∣∣∣ ≥ t

]

≤ 2p2exp

{
−c6min

(
t2n2

0m

4c21n
2
uM

2
∗
,

tn0m

2c1nuM∗

)}
= 2exp

[
2 log p−min

{
c6C

2
1

16c21M
2
∗
log p,

c6C1

4c1M∗
(m log p)1/2

}]
≤ 2exp

[{
2−min

(
c6C

2
1

16c21M
2
∗
,
c6C1

4c1M∗

)}
log p

]
. (3.23)

Then we will bound the second term in (3.22). By the property of sub-Gaussian

assumption, niWik = nibik +
∑ni

j=1 εijk ∈ SG(n2
iMb + niMε). Then, according to the

general Hoeffding’s inequality (Theorem 2.6.2 by Vershyin [58]), we have

Pr

 1

n0mN

∣∣∣∣∣
m∑
i=1

niWik

∣∣∣∣∣
2

≥ t

 ≤ Pr

{∣∣∣∣∣
m∑
i=1

niWik

∣∣∣∣∣ ≥ (tn0mN)1/2

}

≤ 2exp

{
− c7tn0mN∑m

i=1 c
2
0(n

2
iMb + niMε)

}
≤ 2exp

{
− c7tn0mN∑m

i=1 c
2
0(ninuMb + niMε)

}
≤ 2exp

(
− c7tn0m

c1nuM∗

)
,
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where c7 > 0.

Then, take t = C1nu(2n0)
−1(log p/m)1/2, withm ≥ log p, by the union sum inequality,

we have

Pr

max
k

1

n0mN

∣∣∣∣∣
m∑
i=1

niWik

∣∣∣∣∣
2

≥ t

 ≤ 2pexp

(
− c7tn0m

c1nuM∗

)

≤ 2pexp

{
− c7C1

2c1M∗
(m log p)1/2

}
≤ 2exp

{(
1− c7C1

2c1M∗

)
log p

}
(3.24)

for a sufficiently large constant C1 > 0.

To bound the second term in (3.21), by Lemma 1, for a sufficiently large constant

C2 > 0, we have

Pr

{
max
k,l

∣∣∣∣∣(Σ̂ε − Σ0
ε)k,l

n0

∣∣∣∣∣ > 2C2
(N log p)1/2

n0(N −m)

}
≤ 4p−C

′
3 , (3.25)

where C ′
3 > 0 only depends on C2 and Mε.

Then, with

λ̃b = C1
maxni
n0

(
log p

m

)1/2

+ C2
(N log p)1/2

n0(N −m)
+

(2N − n0m)Mb

2n0m
+

Mε

n0m
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for sufficiently large C1, C2 > 0, combining (3.21)-(3.25), we obtain

Pr
{
max
k,l

∣∣∣(Σ̃b − Σ0
b)k,l

∣∣∣ > 2λ̃b

}
≤ Pr

[
max
k,l

∣∣∣∣∣ 2

n0m

m∑
i=1

{
niWikWil − (niΣ

0
b + Σ0

ε)k,l
}∣∣∣∣∣ ≥ C1

maxi ni
n0

(
log p

m

)1/2
]

+Pr

max
k

2

n0mN

∣∣∣∣∣
m∑
i=1

niWik

∣∣∣∣∣
2

≥ C1
maxi ni
n0

(
log p

m

)1/2


+Pr

{
max
k,l

∣∣∣∣∣(Σ̂ε − Σ0
ε)k,l

n0

∣∣∣∣∣ > 2C2
(N log p)1/2

n0(N −m)

}
≤ 4p−C

′′
3 + 4p−C

′
3

≤ 8p−C3 ,

where C ′′
3 = min{c6C2

1(16c
2
1M

2
∗ )

−1, c6C1(4c1M∗)
−1, c7C1(2c1M∗)

−1 + 1} − 2 and C3 =

min{C ′
3, C

′′
3}.

□

Theorem 5 (Estimation error rate of Σ̃+
b ) Assume that the true between-subject co-

variance matrix Σ0
b ∈ U(Mb, sb) and the true within-subject covariance matrix Σ0

ε ∈

U(Mε, sε). Let

λ̃b = C1
maxi ni
n0

(
log p

m

)1/2

+ C2
(N log p)1/2

n0(N −m)

+
(2N − n0m)Mb

2n0m
+

Mε

n0m

be the value of the tuning parameter λ in (2.5) for sufficiently large C1, C2 > 0. If

log p ≤ m, then Σ̃+
b satisfies

∥∥∥Σ̃+
b − Σ0

b

∥∥∥
F
≤ 10λ̃b(psb)

1/2
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with probability at least 1−8p−C3, where C3 > 0 only depends on C1, C2 and max(Mε,Mb).

We define a measure of data imbalance as maxi ni/n0 ≥ 1, where n0 is defined in

(3.20). In the balanced dataset where all ni’s are equal, we have maxi ni/n0 = 1 and the

two estimators coincide Σ̂+
b = Σ̃+

b . This equivalence is also reflected by the same estima-

tion error rate since λb = λ̃b. When ni’s are not all equal, the imbalance maxi ni/n0 > 1

increases with maxi ni for fixed m and N . Comparing the first term in λb and λ̃b, the

estimation error rate of Σ̃+
b in the dimension p is strictly worse than that of Σ̂+

b , which

does not depend on the imbalance of the dataset. We numerically verify this compari-

son in Section 4, and demonstrate that the practical performance of Σ̃+
b could be very

sensitive to the imbalance of the data.
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Chapter 4

Numerical Study for Sparse

Covariance Estimations with

Repeated Measurements

4.1 General Settings

In this chapter, we evaluate the numeric performance of our proposed estimators Σ̂+
ε

(for the within-subject covariance Σε) and Σ̂+
b (for the between-subject covariance Σb),

and compare with Σ
+
(in estimating either Σb or Σε) and Σ̃+

b (in estimating Σb).

In each of the subsequent subsections, we generate observations Yij from model (1.11),

where bi ∼ N (0,Σ0
b) and εij ∼ N (0,Σ0

ε). All estimators in comparison are defined as

solutions to the optimization problem (2.5) with corresponding input sample covariance

matrices. We use a 5-fold cross-validation procedure in Section 2.4 to select the optimal

tuning parameter value λ in (2.5) for each problem.

To illustrate the established theoretical results in Chapter 3, we consider the following

models:
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Model 1 Banded matrices with bandwidth 10: set (Σ0
b)j,k = (1 − |j − k|/10)+ and

(Σ0
ε)j,k = (−1)|k1−k2|(1− |k1 − k2|/10)+;

Model 2 Covariance matrices corresponding to an ar(1) series: set (Σ0
b)j,k = 0.6|j−k|

and (Σ0
ε)j,k = (−0.6)|j−k|.

We note that the same covariance structures had been used in Bickel and Levina [24],

Xue et al. [29], Rothman [30], and Cui et al. [31].

4.2 Sanity Check for Positive-definiteness

We generate 100 independent data sets for both balanced Model 1 and Model 2 with

ni = 2, m = 100, and p = 100 or 200. We compare the performance of the unconstrained

estimators, Sλ(Σ̂ε) and Sλ(Σ̂b), and the constrained estimators, Σ̂+
ε and Σ̂+

b , in terms of

estimation errors and the percentage of positive definite estimators, where Sλ() is the

soft-thresholding operator defined in Section 2.2. The simulation results are summarized

in Table 4.1. In general, the constrained estimators have slightly better performance

in terms of estimation errors. In addition, we demonstrate that the positive definite

constraint is crucial by observing that in most cases, the unconstrained estimators are

not guaranteed to be positive definite, making them less qualified for interpretation or

downstream statistical tasks.

4.3 General Comparison

In Chapter 3, we have shown that the estimation error rates of the estimators we

study in this paper depend on various factors: the number of subjects m, the total

number of observations N , the ambient dimension p, and for Σ̃+
b the data imbalance, i.e.,
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Table 4.1: Comparison of the unconstrained and constrained estimators under the
balanced setting. Each metric is averaged over 100 replicates with the standard error
shown in the parentheses. Comparisons are in terms of the estimation errors (F -error
and L2-error) and the percentage of positive definite estimators.

Model 1 Model 2
p 100 200 100 200

Within-Subject

F -error
Sλ(Σ̂ε) 7.1804 (0.0562) 11.4040 (0.0490) 5.3956 (0.0202) 8.3116 (0.0159)

Σ̂+
ε 7.0548 (0.0552) 11.1804 (0.0490) 5.3956 (0.0202) 8.3116 (0.0159)

L2-error
Sλ(Σ̂ε) 3.6179 (0.0451) 4.2217 (0.0282) 2.7131 (0.0115) 2.1257 (0.0083)

Σ̂+
ε 3.5553 (0.0438) 4.1564 (0.0286) 2.7131 (0.0115) 2.1257 (0.0083)

PD%
Sλ(Σ̂ε) 18% 3% 100% 100%

Σ̂+
ε 100% 100% 100% 100%

Between-Subject

F -error
Sλ(Σ̂b) 10.8195 (0.0611) 17.0538 (0.0416) 7.6064 (0.0212) 11.6116 (0.0187)

Σ̂+
b 10.1304 (0.0635) 16.1446 (0.0436) 7.5382 (0.0222) 11.6005 (0.0139)

L2-error
Sλ(Σ̂b) 4.5419 (0.0447) 5.3739 (0.0258) 2.3508 (0.0104) 2.5681 (0.0051)

Σ̂+
b 4.2857 (0.0467) 5.0994 (0.0257) 2.3143 (0.0104) 2.5358 (0.0046)

PD%
Sλ(Σ̂b) 0% 0% 7% 12%

Σ̂+
b 100% 100% 100% 100%

Sλ(Σ̂ε) and Σ̂+
ε : unconstrained and constrained estimators for within-subject covariance;

Sλ(Σ̂b) and Σ̂+
b : unconstrained and constrained estimators for between-subject covariance;

PD%, percentage of positive definite estimators;
F -error: the Frobenius norm of Q̂ − Q0 , i.e., ∥Q̂ − Q0∥F , where Q̂ is an estimate of the a generic
parameter matrix Q0;
L2-error: the spectral norm of Q̂−Q0 , i.e., ∥Q̂−Q0∥2.
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maxi ni/n0. We consider Model 1 and Model 2 in Section 4.1. In each setting, we let

N = 1000 and m = 100 and consider p = 100 and p = 200. Furthermore, to study the

effect of data imbalance on the estimation error, we set ni = a for i = 1, 2, . . . , 99, where

a = {3, 4, · · · , 10}, and n100 = N − 99a. By doing so, we generate settings where the

measure of data imbalance, maxi ni/n0, varies.

Figure 4.1 summarizes the estimation error in the Frobenius norm averaged over 100

replications. We present the performance of four estimators: the proposed within-subject

estimator Σ̂+
ε for estimating Σ0

ε, and three between-subject estimators Σ̂+
b (our proposed

method), Σ̃+
b (the ANOVA type estimator), and Σ

+
(the aggregated estimator) for es-

timating either Σ0
b or Σ0

ε. Among the three between-subject estimators, our proposed

method Σ̂+
b achieves the lowest estimation error in all simulation settings. Furthermore,

being consistent with the results in Theorem 2, Theorem 3 and Theorem 5, the perfor-

mance of Σ̂+
b and Σ

+
are much less sensitive to the data imbalance maxi ni/n0 while the

error of Σ̃+
b dramatically increases as the data become less balanced. Surprisingly, in all

but the perfectly balanced case (maxi ni/n0 = 1), we observe that Σ̃+
b , which is built on

the unbiased sample estimate (3.20), performs much worse than Σ
+
which is built on the

biased Σ in (2.1). This suggests the dominating role of data imbalance in the estimation

error of Σ̃+
b . Our proposed method Σ̂+

ε also achieves much lower estimation errors than

Σ
+

in estimating within-subject covariance in all simulation settings. The decreasing

error of Σ
+
in estimating Σ0

ε is consistent with Theorem 4, which states that the error

rate of ∥Σ+ − Σ0
ε∥F is inversely proportional to the imbalance score maxi ni/n0.

We also measure the support recovery performance of an estimator Q̂ for the true
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Figure 4.1: Estimation error (in Frobenius norm, averaged over 100 replicates) for two
between-subject (solid) and one within-subject (dash) covariance matrix estimator:
Σ̃+
b (violet triangle), Σ̂+

b (orange circle), and Σ̂+
ε (pink diamond). The estimation

error of the aggregated estimator (Σ
+
, green square) is evaluated in estimating the

within-subject (dash) and the between-subject (solid) covariance matrices. The x-axis
is maxi ni/n0, which characterizes the imbalance of the data.
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Figure 4.2: Cross-validation curves and receiver operating characteristic (ROC) curves
between-subject and within-subject covariance sparsity recovery in Model 1 with
p = 100 and different values of maxi ni/n0. The top, middle and bottom rows cor-
respond to different levels of data imbalance (with a = 10, 7, and 4, respectively).
For simplicity of presentation, we randomly select 10 out of the 100 replicates. The
left and middle panels exhibit 5-fold cross-validation curves of Σ̂+

ε (pink) for with-

in-subject covariance, Σ̂+
b (orange), Σ̃+

b (violet), and Σ
+

(green) for between-subject

covariance. Diamonds (Σ̂+
ε ), circles (Σ̂+

b ), triangles (Σ̃+
b ), and squares (Σ

+
) in these

two panels mark the minimum points on these curves. The right panels present the
ROC curves. The diamonds (Σ̂+

ε ), circles (Σ̂+
b ), triangles (Σ̃+

b ), and squares (Σ
+
)

represent the true positive rate and false positive rate with λ values selected by the
5-fold cross-validation.
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parameter matrix Q0 using true positive rate (TPR) and false positive rate (FPR),

TPR(Q̂, Q0) =
#{(i, j) : Q̂i,j ̸= 0 and Q0

i,j ̸= 0}
#{(i, j) : Q0

i,j ̸= 0}
, (4.1)

FPR(Q̂, Q0) =
#{(i, j) : Q̂i,j ̸= 0 and Q0

i,j = 0}
#{(i, j) : Q0

i,j = 0}
. (4.2)

To demonstrate the effectiveness of regularization, in Figure 4.2, we present the cross-

validation curves and the receiver operating characteristic (ROC) of the sparsity recovery

of these estimators in Model 1 with p = 100 and under three different levels of data im-

balance. The optimal values of λ for Σ̂+
ε , Σ̂

+
b , and Σ

+
are relatively stable across different

levels of data imbalance, while the optimal value of λ for Σ̃+
b sharply fluctuates and gen-

erally increases with maxi ni/n0. This indicates that large values of maxi ni/n0 tend to

result in more shrinkage of the off-diagonal entries in Σ̃+
b towards 0. This observation is

aligned with the larger error of Σ̃+
b in Frobenius norm in Figure 4.1 for large values of

maxi ni/n0. While the theoretical guarantees of support recovery would be an interesting

and challenging problem for future research, we observe numerically that the data im-

balance seems not to affect the support recovery performance of Σ̂+
ε , Σ̂

+
b , and Σ

+
, which

is an established favorable properties of these estimators in terms of estimation error. In

contrast, just as in estimation error, Σ̃+
b suffers in sparsity recovery performance from

the data imbalance.

4.4 Understanding the Effects of the Bias in Sample

Estimates

As seen in Figure 4.1 and Figure 4.2, the estimator Σ
+
based on the biased sample

estimate Σ surprisingly has relatively acceptable numerical performance. This subsection
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investigates this observation by comparing our proposed between-subject estimator Σ̂+
b

with Σ
+
. We consider two modifications of Model 1 as follows:

Model 3 For any given a > 0, we set (Σ0
b)j,k = (1 − |j − k|/10)+ and (Σ0

ε)j,k = a(1 −

|j − k|/10)+.

Model 4 For any given a > 0, we set (Σ0
b)j,k = (1 − |j − k|/10)+ and (Σ0

ε)j,k =

a(−1)|j−k|(1− |j − k|/10)+.

From (2.2), the matrix of Σε can be considered as the additive noise for the task of

estimating Σb. We thus define the inverse signal-to-noise ratio as |Σ0
ε|∞/|Σ0

b |∞. By

varying |Σ0
ε|∞/|Σ0

b |∞ = a ∈ {1, 2, . . . , 10} in Model 3 and Model 4, we construct settings

where the relative signal strength from Σε and Σb is different. In comparison with Model

3, we alternate the signs of sub-diagonal elements in Σ0
ε in Model 4. In both models, we

generate balanced data with ni = 5 for i = 1, . . . ,m = 100 and p = 50. Estimation errors

in Frobenius norm are summarized (over 100 replications) in Figure 4.3.

In general, our proposed between-subject sample estimate Σ̂b significantly outper-

forms Σ in both examples. This demonstrates the effect of the bias correction as in (2.2).

Moreover, for both sample estimators, their regularized versions (dash lines) achieve lower

estimation errors, indicating the benefit of regularization.

Surprisingly, as |Σ0
ε|∞/|Σ0

b |∞ gets relatively small, Σ
+
achieves an even smaller estima-

tion error than Σ̂+
b . This is an interesting cancellation of two biases with opposite signs:

the estimation bias in the sample estimate Σ and the shrinkage bias in the ℓ1-penalty.

Specifically, for any index pair (j, k), (2.2) indicates that the bias of Σj,k in estimating

(Σ0
b)j,k is

∑
i(mni)

−1(Σ0
ε)j,k. In cases where (Σ0

ε)j,k and (Σ0
b)j,k have the same signs (as in

Model 3), this sample estimation bias has the opposite effect from the shrinkage bias from

the ℓ1 penalty. Consequently, these two biases could cancel each other when they have
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Figure 4.3: Estimation error (in Frobenius norm, averaged over 100 replicates) of the
two between-subject sample covariance (solid) estimators (Σ and Σ̂b) and their corre-

sponding sparse and positive definite (dash) covariance estimators (Σ
+
and Σ̂+

b ). The
horizontal axis is the inverse signal-to-noise ratio, i.e., |Σ0

ε|∞/|Σ0
b |∞. The estimation

errors of Σ and Σ
+
are marked in green, and the estimation errors of Σ̂b and Σ̂+

b are
marked in orange.
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similar magnitudes, which is achieved when (Σ0
ε)j,k is on a similar scale as λ, and thus

resulting in a surprisingly better performance of Σ̂b than Σ̂+
b . Notably, when the estima-

tion bias (as characterized by |Σ0
ε|∞/|Σ0

b |∞) is too large to be canceled by the shrinkage

bias, or when both biases have the same signs (as in Model 4), the performance of Σ̂+
b is

dominating that of Σ
+
.

4.5 Covariance Graphs of Clinical Measurements Col-

lected from Hemodialysis Patients

We apply our proposed methods to estimate the between-subject and within-subject

covariance structures among some clinical variables collected from hemodialysis patients.

Hemodialysis is a treatment that filters wastes and fluid from patients’ blood when the

kidneys no longer function well. Hemodialysis patients usually follow a strict schedule by

visiting a dialysis center about three times a week. Clinical variables, such as blood pres-

sure and pulse, are measured during each treatment. Since numerous metabolic changes

accompanying impaired kidney function affect all organ systems of the human body, it

is imperative to study correlations among clinical variables. Those clinical variables are

measured repeatedly for each hemodialysis patient at each treatment. We will investigate

correlation structures at the patient (between-patient) and treatment (within-patient)

levels.

We use a dataset of measurements of several clinical and laboratory variables during

2018 and 2021 from 5,000 hemodialysis patients. For homogeneity, we consider white,

non-diabetic, and non-Hispanic male patients who never had a COVID-19-positive poly-

merase chain reaction test. We use the measurements starting from the second year to

avoid large fluctuations in the first year of dialysis. The dataset contains 276 patients
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with at least three complete treatment records every 30 days. The data imbalance is

maxi ni/n0 = 2.54. For simplicity, we focus on the relationships among interdialytic

weight gain, blood pressure, and heart rate. Based on Ipema et al. [59], we consider the

following eight variables: idwg (interdialytic weight gain, kg), ufv (ultrafiltration volume,

L), min sbp (minimum systolic blood pressure, mmHg), min dbp (minimum diastolic

blood pressure, mmHg), max sbp (maximum systolic blood pressure, mmHg), max dbp

(maximum diastolic blood pressure, mmHg), min pulse (minimum pulse, beats/min),

and max pulse (maximum pulse, beats/min). In our analysis, ufv is set to be the differ-

ence between predialysis and postdialysis weight within a hemodialysis session.

We are interested in recovering the correlation structures at the patient and the treat-

ment levels. Estimating the correlation matrix corresponds to recovering the correlation

graph, where the nodes represent the random variables of interest and the edges present

the marginal correlation between the nodes (Chaudhuri et al. [9]). We apply our method

to repeated clinical measurements from these 276 patients. The regularization parameters

are chosen by 5-fold cross-validation with the one standard error rule (Hastie et al. [60]).

Figure 4.4 presents estimates of the within-subject (top right panel) and between-subject

(top left panel) correlations, which indeed present different correlation structures. We

also include the estimate using the aggregated data (bottom left panel) for comparison,

which coincides with our between-subject estimate. This is consistent with Theorem 3

for this dataset’s small value of maxi ni/n0.

It is important to realize that covariance structures at the treatment and patient lev-

els could differ and should be estimated separately. Existing biological studies based on

the aggregated measurements ignore such a difference in estimation and thus may lead

to erroneous conclusions. In particular, our estimated correlation graph at the treatment

level (within-subject) reveals much insight for hemodialysis treatment that cannot be

recovered using the aggregate data. Specifically, we discuss several important recovered
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Figure 4.4: Between-subject (top left) correlation graphs, within-subject (top right),
and correlation graph using the aggregated data (bottom left) for clinical variables
from hemodialysis patients. We present correlation matrices with the convention of
using bi-directed covariance graphs (Chaudhuri et al. [9]). The blue edges correspond
to the positive correlations, while the red edges represent the negative correlations.
The width of an edge corresponds to the strength of the correlation.
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correlations in Σ̂+
ε that have been missed in either Σ̂+

b or Σ
+
. Specifically, salt and fluid

intake between two hemodialysis sessions leads to interdialytic weight gain. A dialyzer,

an artificial kidney, should filter the cumulation of waste and fluid. Ultrafiltration volume

measures the waste and fluid removed from patients’ blood. Consequently, higher idwg

leads to larger ufv, confirmed by the positive correlation between idwg and ufv at the

treatment level in Figure 4.4. A rapid removal of fluid from a patient’s blood results in

the depletion of blood volume and subsequently leads to a decrease in systolic blood pres-

sure, confirmed by the negative correlation between ufv and min sbp at the treatment

level in Figure 4.4. The lowered blood pressure will be compensated by heart function-

ality, which elevates the heart rate, again confirmed by the negative correlation between

min sbp and max pulse at the treatment level in Figure 4.4. However, no relationships

among idwg, max pulse and min sbp have been observed at patient level in the middle

panel of Figure 4.4. This implies that we should focus on correlations between clinical

measurements at the treatment level rather than the patient level when evaluating the

effectiveness of hemodialysis.
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Chapter 5

Sparse Graph Estimation for

Graphical VAR Models with

Repeated Measurements

5.1 Introduction

The graphical VAR model is a framework that merges the principles of graphical

models with those of VAR models to analyze multivariate time series data. This syn-

thesis allows for identifying the dynamic interrelationships and conditional dependencies

among several time-dependent variables, which has wide applications in economics, fi-

nance, neuroscience, environmental science, and clinical research. For example, in Wild et

al. [36], the graphical VAR model was used to model dynamic dependence structures and

feedback mechanisms between symptom-relevant variables with the electronic diary data

from 35 obese German patients. In this study, symptom-relevant variables were moni-

tored daily for each patient. Despite the temporal dependencies among symptom-relevant

variables, these repeated daily measurements could also result in the dependence among
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observations within each patient. Therefore, in this chapter, we are interested in un-

covering the potential dynamic Granger-causal relationships, conditional within-subject,

and between-subject dependencies among multiple variables simultaneously.

Let Yit = (Yit1, Yit2, . . . , Yitp)
T ∈ Rp be the observation of p random variables Y1, . . . , Yp

at time t from subject i. Recall the GVAR(1) model with random effect in (1.12) in Sec-

tion 1.5,

Yit = βTYi(t−1) + bi + εit, i = 1, . . . ,m; t = 1, . . . , ni,

where β ∈ Rp×p is the fixed-effect coefficient matrix, bi = (bi1, bi2, . . . , bip)
T ∈ Rp is

a p-variate i.i.d. normal random variable with mean 0 and variance Σb = Ω−1
b , εit =

(εit1, εit2, . . . , εitp)
T ∈ Rp is a p-variate i.i.d. normal random variable with mean 0 and

variance Σε = Ω−1
ε . Moreover, bi and εit are mutually independent. In model (1.12), we

use bi to account for the dependence among variables of interest introduced by repeated

measurements. Recall model (1.13) with fixed β,

Yit = βTYi(t−1) + (I − βT)µi + εit, i = 1, . . . ,m; t = 1, . . . , ni, (5.1)

µi = (µi1, µi2, . . . , µip)
T ∈ Rp is a p-variate i.i.d. normal random variable with mean 0

and variance Σµ = Ω−1
µ , and µi and εit are mutually independent. Then, we know that

(I − βT)µi
i.i.d.∼ N{0, (I − βT)Ω−1

µ (I − β)}.

The random effect term, (I − βT)µi, in (5.1) plays the same role as bi in model (1.12).

Epskamp et al. [45] use the aggregated data across subjects {Ȳ1·, . . . , Ȳm·} to find the
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between-subject precision matrix Ωµ via Glasso, in which they estimate

{
Ω−1
µ +

1

n
(I − βT)−1Σε(I − β)−1

}−1

in place of Ωµ as the between-subject precision matrix, when I − βT is invertible and

ni = n for i = 1, . . . ,m. It could lead to erroneous conditional dependencies among

variables of interest. Besides the bias introduced by the aggregated data, the estimator

of the precision matrix based on the maximum likelihood method could also be biased

(Sun and Sun [61]).

Let N =
∑m

i=1 ni. For the i-th subject, with model (1.12), we have the following

matrix form,



Y T
i1

Y T
i2

...

Y T
ini


︸ ︷︷ ︸

Yi

=



Y T
i0

Y T
i1

...

Y T

i(ni−1)


︸ ︷︷ ︸

Xi



β11 β12 · · · β1p

β21 β22 · · · β2p
...

... · · · ...

βp1 βp2 · · · βpp


︸ ︷︷ ︸

β

+



1

1

...

1


︸ ︷︷ ︸
1ni

(
bi1 bi2 · · · bip

)
︸ ︷︷ ︸

bTi

+



εT
i1

εT
i2

...

εT
ini


︸ ︷︷ ︸

Ei

,

That is

Yi = Xiβ + 1ni
bT

i +Ei, (5.2)

where 1ni
is the vector of all ones with length ni. Finally, we concatenate the above
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matrix expressions for m groups,



Y1

Y2

...

Ym


︸ ︷︷ ︸

Y

=



X1

X2

...

Xm


︸ ︷︷ ︸

X

β +



1n1

1n2

. . .

1nm


︸ ︷︷ ︸

Z



bT
1

bT
2

...

bT
m


︸ ︷︷ ︸

B

+



E1

E2

...

Em


︸ ︷︷ ︸

E

,

i.e.,

Y = Xβ +ZB +E. (5.3)

For simplicity, we assume that columns of X and Y have been centered. In this chapter

and the remainder of this dissertation, with model (5.3), we are interested in recovering

temporal, contemporaneous, and between-subjects networks obtained from β, Ωε and Ωb,

respectively.

5.2 A Two-stage Estimation Method for GVARMod-

els

With the normality assumption of bi and εit, we have that

vec(Y T

i ) ∼ N [vec{(Xiβ)
T},1ni

1T

ni
⊗ Ω−1

b + Ini
⊗ Ω−1

ε ].

Let Ai = Ini
− 1

ni
Jni

and P = diag(A1, . . . ,Am), where Ini
is a ni × ni identity matrix,

and Jni
is a ni×ni matrix of ones. Then, given {Y1, . . . ,Ym}, the log-likelihood function
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ℓ̃(β,Ωε,Ωb) is

ℓ̃(β,Ωε,Ωb) = −Np
2

log 2π − 1

2

m∑
i=1

log det(Ω−1
ε + niΩ

−1
b ) +

N −m
2

log detΩε

−1

2
tr {Ωε(Y −Xβ)TP (Y −Xβ)}

−1

2
tr

{
m∑
i=1

1

ni

(
Ω−1
ε + niΩ

−1
b

)−1
(Yi −Xiβ)

TJni
(Yi −Xiβ)

}
.(5.4)

We note that the likelihood function is not jointly convex in β, Ωε and Ωb. Consequently,

solving penalized likelihood to simultaneously estimate these three matrices is computa-

tionally expensive. Therefore, we develop a projection and correct pooling framework for

GVAR(1) model (PCP-GVAR) to recover the multilevel networks in (1.12).

5.2.1 Estimation of Fixed Effect and Within-Subject Precision

Matrix

In the first stage (Stage 1), we will estimate the fixed effect β and the within-subject

precision matrix Ωε simultaneously. We first remove the random effect part by within-

group centering, i.e.,

AiYi = AiXiβ +AiEi.

With the projection matrix P , we have PY = PXβ +PE. By the normality assump-

tion, it is easy to show that

vec(PY )|X ∼ N{vec(PXβ),Σε ⊗ P }.
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Note that Σε ⊗ P is non-invertible, we will have a degenerate distribution with the

following probability density function,

f{vec(PY )} = (2π)−Np/2{pdet(Σε ⊗ P )}−1/2 ×

exp

[
−1

2
vec{P (Y −Xβ)}T(Σε ⊗ P )+vec{P (Y −Xβ)}

]
,

where pdet(A) and A+ are the pseudo-determiant and pseudo-inverse matrix for a generic

matrix A. Then two times the negative log-likelihood function for Σε and β, and ignoring

a constant term, is

ℓ(Σε,β) = log pdet(Σε ⊗ P ) + vec{P (Y −Xβ)}T(Σε ⊗ P )+vec{P (Y −Xβ)}. (5.5)

According to Castañeda and Nossek [62] and Petersen and Pedersen [63], we have

pdet(Σε ⊗ P ) = pdet(Σε)
rank(P )pdet(P )rank(Σε)

= det(Ωε)
−(N−m)pdet(P )p,

(Σε ⊗ P )+ = Σ+
ε ⊗ P+ = Ωε ⊗ P+.

By Theorem 16.2.2 in Harville [64], we obtain

[vec{P (Y −Xβ)}]T(Ωε ⊗ P+)vec{P (Y −Xβ)}

= tr[{P (Y −Xβ)}TP+P (Y −Xβ)Ωε]

= tr{(Y −Xβ)TP TP+P (Y −Xβ)Ωε}

= tr{(Y −Xβ)TP (Y −Xβ)Ωε}

= tr{(Y −Xβ)TP TP (Y −Xβ)Ωε}

= tr{(Ỹ − X̃β)T(Ỹ − X̃β)Ωε}, (5.6)
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where Ỹ = PY and X̃ = PX. Therefore, the negative log-likelihood function for Ωε

and β in (5.5) can be simplified to

ℓ(Ωε,β) = tr
{
(Ỹ − X̃β)T(Ỹ − X̃β)Ωε

}
− (N −m) log detΩε. (5.7)

The objective function ℓ(Ωε,β) in (5.7) is equivalent to (1.1) in Rothman et al. [15],

differing only by a constant multiplier. To obtain a spare Ωε and β, we consider the

following minimization problem,

(Ω̂ε, β̂) = argminΩε,β ℓ(Ωε,β) + λ1∥β∥1 + λ2∥Ωε∥1, (5.8)

where ∥ · ∥1 is the ℓ1-norm of the input matrix, which is defined in Section 1.2. The

negative log-likelihood function ℓ(Ωε,β) is biconvex rather than jointly convex in (β,Ωε).

Thus, Rothman et al. [15] propose the alternating two-step estimators, which do not rely

on the convexity of the full likelihood function to solve (5.8).

With a fixed β = β0, the optimization problem (5.8) is equivalent to

Ω̂ε(β0) = argminΩε
tr {Sε(β0)Ωε} − log detΩε + λ̃2∥Ωε∥1, (5.9)

where Sε(β0) =
1

N−m(Ỹ − X̃β0)
T(Ỹ − X̃β0), and λ̃2 = (N −m)−1λ2. The optimization

problem in (5.9) is considered in Yuan and Lin [7], Friedman et al. [5], and Rothman et

al. [6]. The solution to (5.9) satisfies

{
Ω̂ε(β0)

}−1

− Sε(β0) = λ̃2Ẑ,

where Ẑ ∈ Rp×p with Ẑk1,k2 = sign
{
Ω̂ε,k1,k2(β0)

}
if Ω̂ε,k1,k2(β0) ̸= 0 (k1, k2 = 1, . . . , p).
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It leads to the following CLIME optimization problem in Cai et al. [20],

min ∥Ωε∥1 subject to: |Sε(β0)Ωε − I|∞ ≤ λ̃2, Ωε ∈ Rp×p, (5.10)

which could be solved efficiently with linear programmings (Cai et al. [20]) in a column-

by-column fashion.

With a fixed Ωε = Ωε0, the optimization problem (5.8) yields to

min
β

tr
{
(Ỹ − X̃β)T(Ỹ − X̃β)Ωε0

}
+ λ1∥β∥1, (5.11)

which has a global minimizer β̂(Ωε0) =
{
β̂k1,k2

}
∈ Rp×p that satisfies the optimality

condition:

β̂(Ωε0) =
(
X̃TX̃

)−1

X̃TỸ︸ ︷︷ ︸
β̂OLS

−λ1
(
2X̃TX̃

)−1

ΓΩ−1
ε0 , (5.12)

where Γ is a p× p matrix with the (k1, k2)-th entry Γk1,k2 = sign(β̂k1,k2) if β̂k1,k2 ̸= 0 and

otherwise Γk1,k2 ∈ [−1, 1] with specific values chosen to solve (5.12)(Rothman et al. [15]).

The optimization problem in (5.11) could be easily solved with Algorithm 1 in Rothman

et al. [15].

5.2.2 Estimation of Between-Subject Precision Matrix

After obtaining the sparse Ω̂ε and β̂, we work on the estimation of Ωb in the second

stage (Stage 2). We first aggregate the original observations by subjects and consider

the following model:

Ȳi· = βTX̄i· + bi + ε̄i·, i = 1, . . . ,m, (5.13)
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where Ȳi· =
∑ni

t=1 Yit/ni, X̄i· =
∑ni−1

t=0 Yit/ni and ε̄i· =
∑ni

t=1 εit/ni. Under the normality

assumption of bi and εit, the new p-variate response also follows normal distribution,

Ȳi·|X̄i· = x̄i· ∼ N (βTx̄i·,Ω
−1
b + Ω−1

ε /ni).

Thus, we have

E
{(

Ȳi· − βTx̄i·
) (

Ȳi· − βTx̄i·
)T}

= Ω−1
b + Ω−1

ε /ni, for i = 1, . . . ,m

⇒ E
{(

Ȳi· − βTx̄i·
) (

Ȳi· − βTx̄i·
)T

Ωb

}
= Ip + Ω−1

ε Ωb/ni, for i = 1, . . . ,m

⇒ E

{
1

m

m∑
i=1

(
Ȳi· − βTx̄i·

) (
Ȳi· − βTx̄i·

)T
Ωb

}
= Ip +

(
m∑
i=1

1

mni

)
Ω−1
ε Ωb

⇒ E

[{
1

m

m∑
i=1

(
Ȳi· − βTx̄i·

) (
Ȳi· − βTx̄i·

)T − m∑
i=1

1

mni
Ω−1
ε

}
Ωb − Ip

]
= 0.

To estimate Ωb, we adopt the CLIME method in Cai et al. [20]. That is

min ∥Ωb∥1 subject to : (5.14)

|ŠbΩb − Ip|∞ ≤ λ3, Ωb ∈ Rp×p,

where

Šb =
1

m

m∑
i=1

(
Ȳi· − β̂Tx̄i·

)(
Ȳi· − β̂Tx̄i·

)T

︸ ︷︷ ︸
Š

−
m∑
i=1

1

mni
Σ̂ε, (5.15)

and Σ̂ε =
1

N−m(Ỹ − X̃β̂)T(Ỹ − X̃β̂).
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5.3 BIC for Tuning parameters Selection

An appropriate choice of tuning parameters involved in our proposed two-stage esti-

mators is important to control the sparsity and estimation error in β, Ωε and Ωb. The

K-fold cross-validation has been successfully applied in tuning hyper-parameters in mul-

tivariate regression with precision matrix estimation (Rothman et al. [15] and Lee and

Liu [65]) and graphical models (see, for example, Cai et al. [20] and Fan et al. [66]). Be-

sides the cross-validation procedure, the Bayesian information criterion (BIC) also gains

popularity in selecting the tuning parameters for mixed effect models (Delattre et al. [67]

and Müler et al. [68]) and fixed-effect models with precision matrix estimation (Abegaz

and Wit[69], Yin and Li [70], and Wang [71]), which has demonstrated effectiveness in

tuning penalized log-likelihood models (Wang et al. [72]).

Combining the BIC’s in Delattre et al. [67] and Abegaz and Wit [69], we first come

up with the following joint BIC for Stage 1 and Stage 2,

BIC(λ1, λ2, λ3) = −2ℓ̃(β̂λ1:3 , Ω̂ε,λ1:3 , Ω̂b,λ1:3)

+
(an
2

+ bn + p
)
log(N) +

(cn
2

+ p
)
log(m), (5.16)

where β̂λ1:3 ,Ω̂ε,λ1:3 and Ω̂b,λ1:3 are the corresponding estimators with the specific values of

(λ1, λ2, λ3), p is the number of variables, an and cn is the number of nonzero off-diagonal

elements of Ω̂ε,λ1:3 and Ω̂b,λ1:3 , respectively, and bn is the number of nonzero elements

of β̂λ1:3 . We are supposed to select the triplet of values of λ1, λ2 and λ3 that mini-

mizes BIC(λ1, λ2, λ3) in (5.16) with a grid search. However, it would be computationally

expensive to consider all combinations of λ1, λ2 and λ3.

Note that, after within-group centering, random effects are removed in Stage 1. And

Stage 2 only involves the estimation of the between-subject precision matrix. Therefore,
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we consider the following separate BIC’s, i.e., BICStage1(λ1, λ2) and BICStage2(λ3) for

Stages 1 and 2, respectively. In Stage 1, we will employ BICStage1 ,

BICStage1(λ1, λ2) = ℓ(Ω̂ε,λ1:2 , β̂λ1:2) +
(an
2

+ bn + p
)
log(N −m), (5.17)

while in Stage 2, the following BICStage2(λ3),

BICStage2(λ3) = tr

{
m∑
i=1

(
1

ni
Ω̂−1
ε,λ1:2

+ Ω̂−1
b,λ3

)−1

(Ȳi· − β̂T

λ1:2
X̄i·)(Ȳi· − β̂T

λ1:2
X̄i·)

T

}

+
m∑
i=1

log det

(
1

ni
Ω̂−1
ε,λ1:2

+ Ω̂−1
b,λ3

)
+
(cn
2

+ p
)
log(m), (5.18)

will be considered. Thus, we only need to separately select the pair of (λ1, λ2) and λ3

that minimizes the criterion in BICStage1(λ1, λ2) and BICStage2(λ3). The minimization of

BICStage1(λ1, λ2) and BICStage2(λ3) with respect to λ1, λ2, and λ3 is achieved by a grid

search, which will reduce the computational expense by using BIC(λ1, λ2, λ3) in (5.16).

The complete algorithm is summarized in Algorithm 3. In our PCP-GVAR algorithm in

Algorithm 3, λ1, λ2 and λ3 are the candidate tuning parameters of λ1, λ2 and λ3, which

control the sparsity of β, Ωε and Ωb, respectively. In practice, these candidate tuning

parameters are typically set using a 10x resolution with a sequence of evenly-spaced x’s.

The implementation of the PCP-GVAR algorithm is built on two R packages: MRCE and

flare. The flare package is used for updating Ω̂ε and Ω̂b with the CLIME method,

while the update of β̂ is implemented with the MRCE package.
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Algorithm 3 Projection and Correct Pooling for Graphical VAR Model (PCP-GVAR)

Require: λ1, λ2, λ3 and {Yij : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}.
Ensure: β̂λ∗1:2 , Ω̂ε,λ∗1:2

and Ω̂b,λ∗3
1: Create the design matrix X by lagging the response
2: Remove random effect by within-group centering and obtain Ỹ and X̃
3: for λ1 ∈ λ1 do
4: for λ2 ∈ λ2 do
5: repeat
6: Update Ω̂ε with (5.10) by the CLIME method in Cai et al. [20]

7: Update β̂ with (5.11) using Algorithm 1 in Rothman et al. [15]
8: until convergence
9: Compute and record BICStage1(λ1, λ2) in (5.17)
10: end for
11: end for
12: Re-estimate β̂λ∗1:2 and Ω̂ε,λ∗1:2

in Stage 1, where λ∗1:2 = argminλ1,λ2 BICStage1(λ1, λ2)
13: for λ3 ∈ λ3 do
14: Compute Ω̂b,λ3 with (5.14), where β̂ = β̂λ∗1:2 in Šb
15: Compute and record BICStage2(λ3) in (5.18)
16: end for
17: Re-estimate Ω̂b,λ∗3

in Stage 2, where λ∗3 = argminλ3 BICStage2(λ3)
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Chapter 6

Numerical Study for Graphical VAR

Model with Repeated Measurements

6.1 General Setting

In this chapter, we evaluate the numeric performance of our proposed estimators β̂

(for the fixed-effect coefficient matrix β), Ω̂ε (for the within-subject precision matrix Ωε)

and Ω̂b (for the between-subject covariance Ωb), and compare with the corresponding

estimators obtained with the pooled and individual LASSO (PIL-GVAR) estimation

procedure in Epskamp et al. [45]. The PIL-GVAR algorithm has the similar two-stage

structure as our proposed PCP-GVAR algorithm. However, there are several differences

between these two algorithms. Firstly, when estimating Ωε in Stage 1, the efficient

column-wise CLIME method is employed in our PCP-GVAR algorithm, while the Glasso

method is applied for the estimation of Ωε in the PIL-GVAR method. Secondly, even

though both algorithms use BIC to select the tuning parameters, our BIC in (5.17) is

derived exactly from the group-centered data, while the BIC in Stage 1 in the PIL-GVAR

algorithm ignores the fact that the data are group-centered. Thirdly, we first obtain a
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bias corrected sample estimate for Ωb, i.e., Šb in (5.15) and use it as the plug-in for

the CLIME method in the second stage of our PCP-GVAR framework. However, the

PIL-GVAR algorithm solves the following minization problem,

Ω̂ = argminΩ tr
{
ŠΩ
}
− log detΩ + λ3∥Ω∥1,

via the Glasso algorithm, in which Š in (5.15) is wrongly treated as the sample estimate

of the between-subject covariance matrix Σb.

In our simulation study, we generate observations Yij from model (1.12). We follow

Rothman et al. [15] to consider the following setting for the fixed-effect coefficient matrix

β,

β = U ∗H ∗ L,

where ∗ represents the matrix element-wise product, the entries of U are drawn indepen-

dently from N (0, 1/p), the entries of H follow i.i.d. Bernoulli distribution with success

probability s1 = 0.7, and L has rows that are either all one or all zero, which are deter-

mined by p i.i.d. Bernoulli draws with success probability s2 = 0.8. H and L control

the entry-wise and column-wise sparsity of β, correspondingly. Two different precision

matrix structures are considered for Ωε and Ωb.

Model 5 Covariance matrices corresponding to an ar(1) series: set (Σ0
b)j,k = ce ·0.5|j−k|

and (Σ0
ε)j,k = 0.6|j−k|.

The AR(1) structure of covariances in Model 5 results in two tri-diagonal sparse precision
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matrices. Generally, if a generic matrix Σ has an AR(1) structure, i.e., Σj,k = ρ|j−k|, then

Σ−1 =
1

1− ρ2



1 −ρ 0 · · · 0

−ρ 1 + ρ2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . 1 + ρ2 −ρ

0 · · · 0 −ρ 1


.

Model 6 Random sparse precision matrices: set Ωε = Cε + δεI and Ωb = Cb + δbI,

where each off-diagonal entry in Cε and Cb is generated independently and equals 0.5 with

probability 0.1 or 0 with probability 0.9. δε and δb are chosen such that the conditional

number (the ratio of maximal and minimal singular values of a matrix) is equal to p.

We note that the same precision structures in Model 6 had been used in Rothman et al.

[6] and Cai et al. [20].

To evaluate the performance of the estimators, we measure the estimation perfor-

mance by Frobenius norm,

F -error =
∥∥∥Q̂−Q0

∥∥∥
F
,

where Q̂ is an estimate of the a generic parameter matrix Q0. Besides the F -error, we

also compute the mean squared error (MSE) of Q̂, and decompose the MSE into the bias

and variance terms. The sparsity recognition performance is examined by true positive

rate (TPR) and false positive rate (FPR). TPR is also termed sensitivity. Recall the
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TPR in (4.1) and FPR in (4.2) defined in Chapter 4,

TPR(Q̂, Q0) =
#{(i, j) : Q̂i,j ̸= 0 and Q0

i,j ̸= 0}
#{(i, j) : Q0

i,j ̸= 0}
,

FPR(Q̂, Q0) =
#{(i, j) : Q̂i,j ̸= 0 and Q0

i,j = 0}
#{(i, j) : Q0

i,j = 0}
.

We also calculated the F1-score,

F1-score(Q̂, Q
0) =

2TP

2TP + 2FP + 2FN
,

where TP = #{(i, j) : Q̂i,j ̸= 0 and Q0
i,j ̸= 0}, FP = #{(i, j) : Q̂i,j ̸= 0 and Q0

i,j = 0}

and FN = #{(i, j) : Q̂i,j = 0 and Q0
i,j ̸= 0}. The F1-score unifies the precision and

sensitivity of a classification problem by the harmonic mean, which penalizes extreme

values of precision and sensitivity (Hicks et al. [73]).

6.2 Simulation Study

We consider Model 5 and Model 6 under the simulation setting in Section 6.1. In

each setting, we let m = 100 and ni = 10 for i = 1, . . . ,m and consider p = 20 and

p = 40. Let ce = 1 in Model 5. In our implementation, we set λ1,λ2,λ3 = 10x, where

x = {−2, . . . , log10(0.5)}. Table 6.1 shows the average metrics over 100 replications,

and Table 6.2 summarizes the MSE and its decomposition for all the estimators. The

estimators of β and Ωε obtained from the PCP-GVAR algorithm tend to have larger

estimation errors, which can potentially result from the larger biases inherent in our

estimator as observed in Table 6.2. Nevertheless, our proposed estimator of Ωε yields

superior selection performance. For all models with different p, the F1-scores uniformly

approximate 0.8. In the context of the estimation of the between-subject precision matrix
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Table 6.1: Comparison of the two sets of estimators for Model 5 and 6.

p = 20 p = 40
PCP-GVAR PIL-GVAR PCP-GVAR PIL-GVAR

Model 1

β

F -error 0.7222 (0.0496) 0.6449 (0.0465) 1.4442 (0.0595) 1.3493 (0.0600)
TPR 0.9300 (0.0165) 0.9325 (0.0153) 0.8208 (0.0174) 0.8294 (0.0164)
FPR 0.3744 (0.0544) 0.3781 (0.0544) 0.3436 (0.0362) 0.3626 (0.0323)
F1-score 0.8114 (0.0152) 0.8114 (0.0154) 0.7849 (0.0068) 0.7843 (0.0072)

Ωε

F -error 1.0219 (0.1473) 1.1326 (0.1505) 1.9779 (0.1925) 2.0595 (0.2071)
TPR 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
FPR 0.0827 (0.0331) 0.2098 (0.0449) 0.0450 (0.0154) 0.1197 (0.0190)
F1-score 0.8088 (0.0620) 0.6220 (0.0525) 0.7841 (0.0571) 0.5736 (0.0396)

Ωb

F -error 2.8493 (0.3485) 3.1528 (0.3125) 5.0350 (0.3178) 5.4812 (0.2985)
TPR 0.9969 (0.0099) 1.0000 (0.0000) 0.9917 (0.0129) 0.9988 (0.0043)
FPR 0.1464 (0.0572) 0.2244 (0.0545) 0.0549 (0.0163) 0.0965 (0.0265)
F1-score 0.7062 (0.0792) 0.6073 (0.0585) 0.7441 (0.0563) 0.6286 (0.0637)

Model 2

β

F -error 0.6528 (0.0451) 0.6141 (0.0404) 1.4523 (0.0712) 1.3913 (0.0610)
TPR 0.9230 (0.0188) 0.9269 (0.0169) 0.8158 (0.0204) 0.8305 (0.0173)
FPR 0.3666 (0.0566) 0.3839 (0.0581) 0.3034 (0.0343) 0.3418 (0.0373)
F1-score 0.8104 (0.0156) 0.8066 (0.0163) 0.7940 (0.0084) 0.7911 (0.0084)

Ωε

F -error 0.9447 (0.1499) 0.8097 (0.0944) 2.6871 (0.2544) 1.9891 (0.1607)
TPR 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
FPR 0.0740 (0.0440) 0.1137 (0.0325) 0.0694 (0.0167) 0.1461 (0.0218)
F1-score 0.8122 (0.0913) 0.7287 (0.0565) 0.8044 (0.0365) 0.6856 (0.0360)

Ωb

F -error 2.8887 (0.2933) 3.2684 (0.2348) 7.3452 (0.5002) 7.4941 (0.2656)
TPR 0.9503 (0.0419) 0.9619 (0.0340) 0.6801 (0.0797) 0.2779 (0.0658)
FPR 0.1751 (0.0706) 0.2218 (0.0687) 0.0768 (0.0304) 0.1126 (0.0325)
F1-score 0.6722 (0.0767) 0.6226 (0.0634) 0.6046 (0.0327) 0.5948 (0.0311)
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Table 6.2: Mean squared error, bias and variance of the two sets of estimators for
Model 5 and 6

PCP-GVAR PIL-GVAR
β Ωε Ωb β Ωε Ωb

Model 1

p = 20
MSE 0.00131 0.00266 0.02060 0.00104 0.00326 0.02509
Bias2 0.00099 0.00164 0.01405 0.00071 0.00240 0.02238
Variance 0.00032 0.00102 0.00655 0.00033 0.00086 0.00271

p = 40
MSE 0.00120 0.00019 0.01009 0.00087 0.00015 0.01721
Bias2 0.00104 0.00015 0.00968 0.00069 0.00012 0.01711
Variance 0.00016 0.00005 0.00041 0.00018 0.00003 0.00010

Model 2

p = 20
MSE 0.00107 0.00229 0.02108 0.00095 0.00166 0.02684
Bias2 0.00074 0.00097 0.01662 0.00061 0.00126 0.02518
Variance 0.00033 0.00132 0.00446 0.00034 0.00044 0.00166

p = 40
MSE 0.00118 0.00933 0.01756 0.00080 0.00870 0.02451
Bias2 0.00101 0.00928 0.01708 0.00062 0.00868 0.02443
Variance 0.00017 0.00005 0.00048 0.00018 0.00002 0.00007

Ωb, the estimators Ω̂b based on our method surpasses those obtained from the PIL-GVAR

in both estimation and selection performance, which indicates the success of the bias

correction in Š.

Note that, when ni = n for i = 1, . . . ,m, Šb in (5.15) will be simplified to

1

m

m∑
i=1

(
Ȳi· − β̂Tx̄i·

)(
Ȳi· − β̂Tx̄i·

)T

︸ ︷︷ ︸
Š

− 1

n
Σ̂ε.

We want to evaluate the effect of Σ̂ε/n with a more accurate Š. Therefore, we consider

Model 5 with m = 500 and ni = 5 for i = 1, . . . ,m, and let p = 20 and p = 60. And

we also set ce ∈ {1, 2, 3}. By doing so, we generate settings where the strength of the

error term Σ̂ε/n varies. We summarize the MSE in Table 6.3 and the average metrics

over 100 replicates in Table 6.4. The simulation results are similar to the results in Table

6.1 and Table 6.2. As m increases, our estimator Ω̂ε tends to be more conservative in
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Table 6.3: Mean squared error, bias, and variance of the two sets of estimators for
Model 5 with varying ce.

PCP-GVAR PIL-GVAR
β Ωε Ωb β Ωε Ωb

p = 20

ce = 1
MSE 0.00198 0.00094 0.01501 0.00153 0.00083 0.02602
Bias2 0.00180 0.00046 0.01354 0.00135 0.00034 0.02542
Variance 0.00018 0.00048 0.00147 0.00018 0.00050 0.00006

ce = 2
MSE 0.00216 0.00024 0.01716 0.00173 0.00021 0.03696
Bias2 0.00196 0.00012 0.01509 0.00153 0.00009 0.03645
Variance 0.00020 0.00012 0.00207 0.00020 0.00012 0.00051

ce = 3
MSE 0.00222 0.00013 0.01955 0.00183 0.00010 0.04646
Bias2 0.00202 0.00008 0.01703 0.00163 0.00004 0.04606
Variance 0.00020 0.00006 0.00252 0.00020 0.00006 0.00039

p = 60

ce = 1
MSE 0.00112 0.00090 0.00836 0.00100 0.00088 0.01276
Bias2 0.00096 0.00068 0.00803 0.00085 0.00074 0.01261
Variance 0.00016 0.00022 0.00033 0.00015 0.00015 0.00015

ce = 2
MSE 0.00122 0.00022 0.01050 0.00111 0.00021 0.01713
Bias2 0.00105 0.00017 0.01011 0.00095 0.00017 0.01700
Variance 0.00017 0.00005 0.00039 0.00016 0.00004 0.00012

ce = 3
MSE 0.00129 0.00011 0.01238 0.00119 0.00010 0.02069
Bias2 0.00113 0.00009 0.01194 0.00103 0.00008 0.02059
Variance 0.00017 0.00002 0.00043 0.00016 0.00002 0.00010

78



Numerical Study for Graphical VAR Model with Repeated Measurements Chapter 6

selecting true fixed-effect coefficients, whose false positive rates are all above 0.5. These

high FPRs may contribute to the large biases in Ω̂ε. A better tuning parameter selection

method is desirable to reduce the false positive rate and bias in the estimates of β.

As shown in both Table 6.3 and Table 6.1, our proposed Ω̂b are more consistent in the

estimation error compared with the between-subject precision estimator obtained from

the PIL-GVAR algorithm. As ce increases from 1 to 3, the MSEs of our between-subject

precision estimators increase by 30% and 48% for p = 20 and p = 60, respectively.

However, the MSEs of the between-subject precision estimators based on the PIL-GVAR

algorithm increase by 79% and 62% for p = 20 and p = 60, respectively.

6.3 A Real Data Example with Clinical Measure-

ments Collected from Hemodialysis Patients

We apply our proposed methods to estimate the fixed-effect coefficients, within-

subject and between-subject precision structures with several clinical variables gathered

from patients undergoing hemodialysis. While employing the identical dataset intro-

duced in Chapter 4, we opt for a distinct set of clinical variables. For homogeneity,

we exclusively consider patients who have never received a positive COVID-19 diagnosis

via polymerase chain reaction testing and who have survived beyond the second year of

observation. We use the measurements in the second year to avoid large fluctuations

in the first year of dialysis. The robust monthly measurements are generated by calcu-

lating their medians for each of the 1074 patients. Finally, we have a balanced dataset

in which all patients have 12 monthly consecutive records. Hypertension is common in

hemodialysis patients, which also serves as a major prognostic factor for cardiovascular

disease (Inrig et al. [74] and Schillaci and Pucci [75]). The risk of cardiovascular disease,
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Table 6.4: Comparison of the two sets of estimators for Model 5 with varying ce.

p = 20 p = 60
PCP-GVAR PIL-GVAR PCP-GVAR PIL-GVAR

Model 1: ce = 1

β

F -error 0.8902 (0.0254) 0.7819 (0.0210) 2.0053 (0.0515) 1.8929 (0.0600)
TPR 0.9548 (0.0138) 0.9440 (0.0140) 0.8828 (0.0131) 0.8416 (0.0127)
FPR 0.5553 (0.0555) 0.4347 (0.0424) 0.5053 (0.0383) 0.3411 (0.0253)
F1-score 0.7661 (0.0152) 0.7982 (0.0125) 0.8023 (0.0043) 0.8186 (0.0036)

Ωε

F -error 0.6040 (0.1074) 0.5731 (0.0705) 1.7772 (0.2737) 1.7795 (0.1379)
TPR 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
FPR 0.0799 (0.0223) 0.3234 (0.0587) 0.0354 (0.0236) 0.1204 (0.0193)
F1-score 0.8117 (0.0441) 0.5157 (0.0442) 0.7631 (0.1060) 0.4669 (0.0406)

Ωb

F -error 2.4425 (0.1945) 3.2233 (0.1330) 5.4816 (0.2254) 6.7754 (0.1478)
TPR 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
FPR 0.2743 (0.0603) 0.3101 (0.0388) 0.0784 (0.0149) 0.1241 (0.0222)
F1-score 0.5582 (0.0559) 0.5242 (0.0313) 0.5742 (0.0478) 0.4601 (0.0438)

Model 1: ce = 2

β

F -error 0.9289 (0.0202) 0.8320 (0.0194) 2.0960 (0.0506) 1.9955 (0.0528)
TPR 0.9519 (0.0151) 0.9411 (0.0164) 0.8783 (0.0125) 0.8333 (0.0127)
FPR 0.5575 (0.0610) 0.4398 (0.0713) 0.5040 (0.0325) 0.3407 (0.0220)
F1-score 0.7640 (0.0160) 0.7954 (0.0191) 0.8002 (0.0035) 0.8139 (0.0036)

Ωε

F -error 0.3063 (0.0458) 0.0294 (0.0334) 0.8802 (0.1059) 0.8706 (0.0589)
TPR 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
FPR 0.0988 (0.0323) 0.3209 (0.0637) 0.0335 (0.0169) 0.1276 (0.0196)
F1-score 0.7783 (0.0560) 0.5184 (0.0484) 0.7657 (0.0816) 0.4524 (0.0390)

Ωb

F -error 2.6121 (0.2036) 3.8421 (0.1564) 6.1396 (0.3058) 7.8506 (0.1604)
TPR 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
FPR 0.3331 (0.0964) 0.3380 (0.0556) 0.0834 (0.0181) 0.1484 (0.0277)
F1-score 0.5144 (0.0732) 0.5039 (0.0382) 0.5604 (0.0570) 0.4171 (0.0462)

Model 1: ce = 3

β

F -error 0.9429 (0.0249) 0.8556 (0.0201) 2.1586 (0.0345) 2.0706 (0.0596)
TPR 0.9475 (0.0133) 0.9396 (0.0152) 0.8705 (0.0121) 0.8251 (0.0138)
FPR 0.5470 (0.0576) 0.4452 (0.0542) 0.4874 (0.0351) 0.3299 (0.0273)
F1-score 0.7649 (0.0138) 0.7926 (0.0142) 0.7997 (0.0041) 0.8118 (0.0037)

Ωε

F -error 0.2294 (0.0374) 0.1945 (0.0229) 0.6352 (0.0535) 0.5906 (0.0504)
TPR 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
FPR 0.0871 (0.0326) 0.3187 (0.0521) 0.0260 (0.0082) 0.1336 (0.0173)
F1-score 0.8001 (0.0603) 0.5185 (0.0385) 0.8031 (0.0502) 0.4398 (0.0277)

Ωb

F -error 2.7859 (0.2436) 4.3089 (0.1260) 6.6692 (0.2924) 8.6299 (0.1341)
TPR 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
FPR 0.3554 (0.1079) 0.3522 (0.0492) 0.0840 (0.0204) 0.1621 (0.0258)
F1-score 0.4995 (0.0759) 0.4930 (0.0350) 0.5594 (0.0590) 0.3945 (0.0389)

80



Numerical Study for Graphical VAR Model with Repeated Measurements Chapter 6

such as, arterial stiffness, is reflected by the absolute blood pressure values (Schillaci

and Pucci[75] and Li et al. [76]). To understand the dynamic relationship among blood

pressures for hemodialysis patients, we focus on the relationships among interdialytic

weight gain and blood pressure, and consider the following six variables: idwg (interdia-

lytic weight gain, kg), ufv (ultrafiltration volume, L), pre sbp (predialysis systolic blood

pressure, mmHg), post sbp (postdialysis systolic blood pressure, mmHg), pre dbp (pre-

dialysis diastolic blood pressure, mmHg), post dbp (postdialysis diastolic blood pressure,

mmHg). The ufv has the same definition as in Chapter 4.

We are interested in recovering the temporal graph (β), contemporaneous graph

(Ωε) and between-patients graph (Ωε). In these three graphs, the nodes represent the

random variables of interest. In the temporal graph, a directed edge connecting two nodes

signifies Granger-causality, whereas an undirected edge present in the contemporaneous

graph and between-patients graph represents the conditional correlation between the

nodes. Prior to applying our method to the repeated clinical measurements obtained from

these 1074 patients, we first standardize the data. And the regularization parameters

are chosen by minimizing BICStage1(λ1, λ2) in (5.17) and BICStage2(λ3) in (5.18), where

λ1, λ2, λ3 ∈ {0.01, . . . , 0.3} on the logarithmic scale.

Figure 6.1 presents estimates of the temporal graph (top left panel), within-subject

(top right panel), and between-subject (bottom left panel) correlations. Based on these

graphs, we can see all the blood pressure measurements are connected to each other with

both directed and undirected edges. Moreover, idwg and ufv are also connected by an

edge in these three graphs. However, the relationships between blood pressures and idwg

or ufv are different among these three graphs. We observe that idwg only negatively

Granger-causes two postdialysis blood pressures, while ufv negatively Granger-causes all

blood pressures except the predialysis systolic blood pressure. In both the contempo-

raneous graph and between-patients graph, idwg are only connected to post sbp. In
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ufv

idwgpre_sbp

post_sbp

pre_dbp post_dbp

(a) Temporal Graph (β)

ufv

idwgpre_sbp

post_sbp

pre_dbp post_dbp

(b) Contemporaneous Graph (Ωε)

ufv

idwgpre_sbp

post_sbp

pre_dbp post_dbp

(c) Between−patients Graph (Ωb)

Figure 6.1: Temporal (top left) graph, within-subject (top right) and between-subject
(bottom left) precision graphs obtained from the PCP-GVAR Algorithm 3 based on
monthly measurements from 1074 hemodialysis patients. The blue edges correspond
to the positive relationships, while the red edges represent the negative relationships.
The width of an edge corresponds to the strength of the relationships.

the between-patients graph, ufv has a more complicated relationship among blood pres-

sures, while it is only related to predialysis systolic blood pressure in the contemporaneous

graph.
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Chapter 7

Future Studies

7.1 Construction of a New BIC for Graphical VAR

Model

As indicated by the simulation study in Section 6, our proposed PCP-GVAR method

tends to recover the temporal graph β in an anti-conservative manner with a high false

positive rate. Hence, we will construct a novel BIC for the selection of tuning parameters

in Stage 1.

One possible modification is to add an extra penalty term in our current first-stage

BIC in (5.17). For example, Foygel and Drton [77] propose an extended Bayesian infor-

mation criterion (BIC) for Gaussian graphical models. We propose a potential BIC as

follows,

BICnew(λ1, λ2, γ) = BICStage1(λ1, λ2) + 4γbn log(p), (7.1)

where γ ∈ [0, 1] has the Bayesian interpretation in Chen and Chen [78]. Positive γ leads

to stronger penalization in β and could reduce the false positive rate. However, the new
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BIC in (7.1) introduces a new hyper-parameter, which may increase the computational

burden for finding a suitable γ.

7.2 New Implementation Algorithm for Graphical

VAR Model

Tuning the parameters in Stage 1 is computationally expensive. We will consider

reconstructing the estimation procedure in Stage 1. Recall the minimization problem in

(5.7),

min
β,Ωε≻0

tr
{
(Ỹ − X̃β)T(Ỹ − X̃β)Ωε

}
− (N −m) log detΩε + λ1∥β∥1 + λ2∥Ωε∥1.

As described in Section 5.2.1, solving (5.7) requires iteratively updating β with Ωε held

fixed and vice versa. This alternating update can be time-consuming in high-dimensional

settings (Molstad [79]). It would be plausible to estimate β, Ωε, and Ωb with three

separate but sequential sub-optimization problems. For example, we could construct the

following multivariate square-root Lasso optimization problem (Molstad [79] and Van de

Geer and Stucky [80]),

min
β,Σ

1/2
ε ≻0

tr

{
1

N −m
(Ỹ − X̃β)T(Ỹ − X̃β)Σ−1/2

ε

}
+ tr

(
Σ1/2
ε

)
+ 2λ̃1∥β∥1, (7.2)

where λ̃1 is the tuning parameter and controls the sparsity of β. The optimization

problem in (7.2) will give us a reliable estimator for β. With a precise estimate of β, we

can obtain an estimate for Σε, which we can use as the plug-in for Sε(β0) in (5.10) when

estimating Ωε in the following step. Therefore, we can replace the minimization problem

in (5.7) with two separate sequential optimization problems.
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