
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Projected-search methods for box-constrained optimization

Permalink
https://escholarship.org/uc/item/99277951

Author
Ferry, Michael William

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/99277951
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Projected-Search Methods for Box-Constrained Optimization

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Michael William Ferry

Committee in charge:

Professor Philip E. Gill, Chair
Professor Randolph E. Bank
Professor Thomas R. Bewley
Professor Robert R. Bitmead
Professor Michael J. Holst

2011

Copyright

Michael William Ferry, 2011

All rights reserved.

The dissertation of Michael William Ferry is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Chair

University of California, San Diego

2011

iii

DEDICATION

To Lisa

iv

EPIGRAPH

An inconvenience is only an adventure wrongly considered;

an adventure is an inconvenience rightly considered.

G. K. Chesterton

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita and Publications . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Contributions of this thesis 5

Chapter 2 Line-Search Methods for Unconstrained Optimization 8
2.1 Newton’s method . 8
2.2 Quasi-Newton methods 9

2.2.1 Solving the quasi-Newton equation 11
2.2.2 Limited-memory variants 12

2.3 Line searches . 12
2.3.1 Armijo line search 13
2.3.2 Wolfe line search 15

2.4 Reduced-Hessian methods 20
2.4.1 A quasi-Newton implementation 23
2.4.2 Reinitialization 26
2.4.3 Lingering . 27
2.4.4 Limited-memory variants 28
2.4.5 Other reduced-Hessian methods 32

Chapter 3 Active-Set Methods for Box-Constrained Optimization 35
3.1 Definitions . 36
3.2 Gradient-projection methods 39

3.2.1 Algorithm L-BFGS-B 42
3.3 Projected-search methods 43

vi

3.3.1 Solving the quasi-Newton equation 46
3.3.2 Line searches for projected-search methods 50

Chapter 4 Line Searches on Piecewise-Differentiable Functions 51
4.1 Differentiable functions: the Wolfe step 52
4.2 Piecewise-differentiable functions: the quasi-Wolfe step . 54

4.2.1 Convergence results 60
4.3 Practical considerations 62

4.3.1 Current implementation 64
4.4 A variant of Algorithm L-BFGS-B 65

Chapter 5 Reduced-Hessian Methods for Box-Constrained Optimization . 66
5.1 Converting to a projected-search method 69
5.2 Simple implementation of a projected-search RH algorithm 72
5.3 Updating the working set 75

5.3.1 Removing a constraint from the working set . . . 76
5.3.2 Adding a constraint to the working set 84
5.3.3 Dealing with rank reduction 92

5.4 RH-B algorithms . 95
5.5 Convergence results . 97
5.6 Future work . 97

Chapter 6 Numerical Results . 99
6.1 Test problem selection 101
6.2 Explanation of Results 106

6.2.1 Performance Profiling 107
6.3 Numerical Results . 108

6.3.1 Reinitialization 108
6.3.2 RH-B methods in MATLAB 113
6.3.3 Known bugs and issues 119
6.3.4 Competitive algorithms 124

Bibliography . 132

vii

LIST OF FIGURES

Figure 2.1: Armijo condition . 14
Figure 2.2: Weak-Wolfe conditions . 16
Figure 2.3: Strong-Wolfe conditions . 17

Figure 4.1: No guarantee to update approximate Hessian 61

Figure 6.1: Performance profile for RH-B methods in Matlab (time) . . . 117
Figure 6.2: Performance profile for RH-B methods in Matlab (nfg) 118
Figure 6.3: Performance profile for implicit implementations of LRHB (nfg) 123
Figure 6.4: Performance profile for competitive solvers (time) 128
Figure 6.5: Performance profile for competitive solvers (nfg) 129
Figure 6.6: Performance profile for competitive solvers on full set (time) . . 130
Figure 6.7: Performance profile for competitive solvers on full set (nfg) . . . 131

viii

LIST OF TABLES

Table 6.1: RH-B algorithms . 101
Table 6.2: Full test set (problems 1–37) . 103
Table 6.3: Full test set (problems 38–74) 104
Table 6.4: Full test set (problems 75–111) 105
Table 6.5: Effects of reinitialization (Problems 1–37) 110
Table 6.6: Effects of reinitialization (Problems 38–74) 111
Table 6.7: Effects of reinitialization (Problems 75–111) 112
Table 6.8: RH-B methods in Matlab (Sum Total) 113
Table 6.9: RH-B methods in Matlab (Problems 1–37) 114
Table 6.10: RH-B methods in Matlab (Problems 38–74) 115
Table 6.11: RH-B methods in Matlab (Problems 75–111) 116
Table 6.12: Implicit implementations of LRHB (Problems 1–37) 120
Table 6.13: Implicit implementations of LRHB (Problems 38–74) 121
Table 6.14: Implicit implementations of LRHB (Problems 75–111) 122
Table 6.15: Comparison of competitive algorithms (Sum Total) 124
Table 6.16: Comparison of competitive algorithms (Problems 1–37) 125
Table 6.17: Comparison of competitive algorithms (Problems 38–74) 126
Table 6.18: Comparison of competitive algorithms (Problems 75–111) 127

ix

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my wife Lisa for her unwavering

support and dedication throughout this whole process. Though they may not see

this for a long time, I also want to thank my two sons, William and Thomas, for

never failing to put a smile on my face at the end of a long day.

I owe a debt of gratitude to my advisor, Philip Gill, for pointing me in the

right direction with my research, for supporting me as a Research Assistant for

several quarters, and for helping me to always catch the errant split infinitive.

I wish to express my thanks, too, to the rest of my committee: Randy

Bank, Mike Holst, Tom Bewley, and Bob Bitmead. Thank you for your time

and your helpful comments and advice. A special thanks goes to Tom Bewley,

David Zhang, Joe Cessna, Chris Colburn, Robert Krohn, and Paul Belitz in the

Engineering department for the opportunity to collaborate together on a number

of projects.

Last but not least, I wish to thank my mom and dad. Simply put, I would

not be here today without their help.

x

VITA

2003 B. A., Mathematics and Philosophy, Summa cum Laude.
University of San Francisco, San Francisco

2003-2005 Middle- and High-School Mathematics Teacher.
Saint Monica Academy, Pasadena

2005-2010 Teaching Assistant. Department of Mathematics,
University of California, San Diego

2007 M. A., Mathematics. University of California, San Diego

2009 C. Phil., Mathematics. University of California, San Diego

2009-2010 Associate Instructor. Department of Mathematics,
University of California, San Diego

2011 Ph. D., Mathematics, University of California, San Diego

xi

ABSTRACT OF THE DISSERTATION

Projected-Search Methods for Box-Constrained Optimization

by

Michael William Ferry

Doctor of Philosophy in Mathematics

University of California, San Diego, 2011

Professor Philip E. Gill, Chair

Many algorithms used in unconstrained minimization are line-search meth-

ods. Given an initial point x and function f : Rn → R to be minimized, a line-

search method repeatedly solves two subproblems: the first calculates a search

direction p; the second performs a line search on the function φ(α) = f(x + αp).

Then, αp is added to x and the process is repeated until a solution is located.

Quasi-Newton methods are often used to calculate the search direction. A

quasi-Newton method creates a quadratic model of f at x and defines the search

direction p such that x+ p is the minimizer of the model. After each iteration the

model is updated to more closely resemble f near x.

Line searches seek to satisfy conditions that ensure the convergence of the

sequence of iterates. One step that decreases f “sufficiently” is called an Armijo

xii

step. A Wolfe step satisfies stronger conditions that impose bounds on φ′(α).

Quasi-Newton methods perform significantly better when using Wolfe steps.

Recently Gill and Leonard proposed the reduced Hessian (RH) method,

which is a new quasi-Newton method for unconstrained optimization. This method

exploits key structures in the quadratic model so that the dimension of the search

space is reduced.

Placing box constraints x leads to more complex problems. One method

for solving such problems is the projected-search method. This method performs

an unconstrained minimization on a changing subset of the variables and projects

points that violate the constraints back into the feasible region while performing

the line search. To date, projected line-search methods have been restricted to

using an Armijo-like line search.

By modifying the line-search conditions, we create a new projected line

search that uses a Wolfe-like step. This line search retains many of the benefits of

a Wolfe line search for the unconstrained case.

Projected-search methods and RH methods share a similar structure in

solving for the search direction. We exploit this similarity and merge the two ideas

to create a class of RH methods for box-constrained optimization. When combined

with the new line search, this new family of algorithms minimizes problems in less

than 74% of the time taken by the leading comparable alternative on a collection

of standard test problems.

xiii

Chapter 1

Introduction

1.1 Overview

An unconstrained minimization problem may be written in the form,

min
x∈Rn

f(x),

where f : Rn → R. Because maximization can be achieved by minimizing −f ,

only minimization methods need to be considered. All unconstrained optimization

methods discussed in this dissertation are line-search methods unless otherwise

noted. Given an initial point x and a continuously-differentiable function f to

be minimized, a line-search method repeatedly solves two subproblems: the first

calculates a search direction p ∈ Rn; the second performs a line search on the

univariate function φ(α) = f(x + αp) to compute a step length α. Once α and p

have been found, αp is added to x and the process is repeated until a solution is

located.

In this dissertation, we also consider box-constrained minimization prob-

lems, which can be expressed in the form,

min
x∈F

f(x),

with F = {x ∈ Rn : l ≤ x ≤ u}, where l and u are the constant lower- and upper-

bounds for the problem, and ≤ is defined component-wise. A point x is called

feasible if x ∈ F. Most box-constrained optimization methods proposed in this

1

2

dissertation (and all methods proposed in Chapter 5) are projected-search methods.

They differ from line-search methods primarily in how the second subproblem is

posed: instead of performing a line search on the differentiable function φ(α), they

perform a line search on the piecewise-differentiable function ψ(α) = f(P (x+αp)),

where P (x) is defined to be the closest feasible point to x. A line search of this

type may be referred to as a projected line search.

Solving a box-constrained minimization problem can be thought of as solv-

ing two subproblems. The first subproblem seeks to identify the optimal active

set. Once the optimal active set is identified, the second subproblem seeks to find

the unconstrained minimizer of f on the set of “free” variables whose indices are

not in the active set. In practice, it is not possible to know when the optimal

active set is obtained, but many theoretical convergence results show that the

active set is identified after a finite number of iterations. Thus, once the active

set is identified, the asymptotic convergence rate of the problem is determined by

the unconstrained method chosen in the second subproblem. For practical reasons,

projected-search methods do not work with the active set. Instead, they work with

a working set, which is a subset of the active set that approximates it. In most

convergence results, once the active set is identified, the working set is identical to

the active set.

If lim
k→∞

xk = x∗, then the sequence {xk} is said to converge to x∗ with

Q-order at least p if there exists µ ≥ 0 and N ≥ 0 so that, for all k ≥ N ,

‖xk+1 − x∗‖ ≤ µ‖xk − x∗‖p,

with p ≥ 1. For the cases p = 1 and p = 2, the rate of convergence is said to be at

least Q-linear and Q-quadratic, respectively.

The sequence {xk} is said to converge to x∗ with Q-superorder at least p if,

for all µ > 0, there exists N ≥ 0 so that, for all k ≥ N ,

‖xk+1 − x∗‖ ≤ µ‖xk − x∗‖p,

with p ≥ 1. When p = 1, the rate of convergence is said to be at least Q-superlinear.

When p = 2, the rate of convergence is said to be at least Q-quadratic.

3

All methods discussed in this dissertation are model-based methods. That

is, given x, they compute a search direction p so that x+pminimizes some quadratic

model of f at x. All functions are assumed to be twice-differentiable unless other-

wise noted. With the exception of Newton’s method, no methods considered here

use ∇2f , the second derivative of f , to compute p.

One important model-based method is the quasi-Newton method. During

iteration k, a quasi-Newton method calculates pk so that xk + pk minimizes the

quadratic model

qk(x) = fk + gT
k (x− xk) +

1

2
(x− xk)

THk(x− xk),

where fk = f(xk), gk = g(xk) = ∇f(xk), and Hk (the approximate Hessian) is a

positive-definite, symmetric matrix that, in some fashion, approximates ∇2f(xk).

The search direction pk, called a quasi-Newton direction, can be obtained by solving

Hkpk = −gk.

The approximate Hessian Hk can be defined in many ways. One of the most

widely-used definitions computes Hk+1 from Hk and is called the BFGS update.

Given Hk, the BFGS update defines Hk+1 as:

Hk+1 = Hk +
1

γT
k δk

γkγ
T
k −

1

δT
k Hkδk

(Hkδk)(Hkδk)
T ,

where

γk = gk+1 − gk and δk = xk+1 − xk.

A quasi-Newton method that uses the BFGS update is often referred to as a

BFGS method. Throughout this dissertation, all BFGS methods are defined so

that H0 = σI, where σ > 0 and I is the identity matrix of order n. One of the

most important characteristics of the BFGS update is that the following equation

holds:

δT
k Hk+1δk = γT

k δk.

In other words, the approximate curvature, γT
k δk, gets installed as the actual cur-

vature in the new quadratic model qk+1. Because of this, if γT
k δk ≤ 0, then Hk+1

4

is not positive definite. To ensure that Hk always remains positive definite, the

BFGS update is applied only when the approximate curvature is positive.

In Section 2.4, we describe a relatively new quasi-Newton method, called

a reduced-Hessian (RH) method, first proposed by Gill and Leonard [GL01]. By

taking advantage of an implicit structure contained in quasi-Newton methods, an

RH method is able to calculate the search direction from a much smaller search

space. It is possible to implement several techniques that can make the method

more efficient. The first technique, called lingering, is used to force the search

direction p to be taken from a smaller subspace. This allows p to be obtained from

a smaller system of equations. The second technique, called reinitialization, allows

the method to change the curvature of the model qk in a certain subspace based

on improved estimates each iteration.

Additionally, RH methods can be implemented using a limited-memory

framework, which stores information about only the most recent m steps. When

expressed as a limited-memory algorithm, an RH method can be implemented as

an implicit method, which stores and updates one of the relevant matrix factors

implicitly, or as an explicit method, which stores and updates the matrix explicitly.

An implicit method requires fewer computations per iteration but is only effective

when m . 6. These techniques are described more fully in Sections 2.4.2–2.4.4.

The two most commonly-used line searches used in an unconstrained line-

search method are the Armijo and the Wolfe line searches. An Armijo line search

seeks to ensure that the next iterate reduces the function sufficiently relative to

the directional derivative of f at xk in direction pk. A step that satisfies this

condition is called an Armijo step. A Wolfe line search seeks to enforce conditions

on f ′ as well as the Armijo condition, in order to guarantee that the BFGS update

can be safely applied. Such steps are called Wolfe steps. Wolfe line searches are

appropriate only for differentiable functions. Thus, all projected-search methods

to date use an Armijo (or Armijo-like) line search.

In Chapter 3, we review the history of several types methods for box-

constrained optimization. One of the most successful algorithms for such problems,

first proposed by Byrd, Lu, Nocedal and Zhu [BLNZ95], is Algorithm L-BFGS-B,

5

which incorporates several strategies used in unconstrained and box-constrained

optimization. One of the strengths of Algorithm L-BFGS-B is that it uses a Wolfe

line search, which makes it more efficient than comparable algorithms in practice.

1.2 Contributions of this thesis

Because projected-search methods perform a projected line search along the

piecewise-differentiable univariate function ψ(α) = P (x+αp), it is not appropriate

to employ a Wolfe line search. In Chapter 4, we introduce a new line search, called

a quasi-Wolfe line search, that can be used in a projected-search method.

A quasi-Wolfe line search behaves almost identically to a Wolfe line search,

except that a step is deemed acceptable (called a quasi-Wolfe step) under a wider

range of conditions. Relaxed conditions are defined that take into consideration

steps where the function is not differentiable.

We provide the theory and some of the corresponding proofs that drive a

Wolfe line search. Next, we prove similar results for the quasi-Wolfe line search to

show that it is a well-defined algorithm. After identifying the practical considera-

tions needed for converting a Wolfe line search into a quasi-Wolfe line search, we

describe details of the implementation.

A quasi-Wolfe line search does not retain all the theoretical benefits of a

Wolfe line search. If a quasi-Newton line-search method for unconstrained op-

timization is used and, during some iteration, a Wolfe step is taken, it can be

shown that the update to the approximate Hessian is positive definite (assum-

ing the initial approximate Hessian is positive definite). On the other hand, if a

quasi-Newton projected-search method for box-constrained optimization is used

and, during some iteration, a quasi-Wolfe step is taken, the update to the approx-

imate Hessian can no longer be guaranteed to be positive definite. In practice, the

update is rarely skipped. When an algorithm using a quasi-Wolfe line search was

tested on a large number of problems, the update to the approximate Hessian had

to be skipped in less than half of one percent of the cases when a quasi-Wolfe step

was found.

6

If a quasi-Wolfe step is found, the undesirable behavior described in the

preceding paragraph is only possible if the piecewise-linear path x(α) = P (x+αp)

has changed direction for some α between zero and the quasi-Wolfe step. If it

can be shown that a projected-search method identifies the active set after a finite

number of iterations, then this behavior does not affect the long-term convergence

rate in a negative way. Further, a quasi-Wolfe line search behaves like a Wolfe line

search once the active set stabilizes.

In addition, we propose a modification of Algorithm L-BFGS-B, called Al-

gorithm LBFGSB-M (for modified), that incorporates a quasi-Wolfe line search.

Because we use the underlying code from L-BFGS-B to create the quasi-Wolfe line

search, it allows us to compare it directly to L-BFGS-B to test the effectiveness of

the new line search.

In Chapter 5, we propose a new class of projected-search methods, called

RH-B methods, that generalize RH methods to box-constrained optimization. RH-

B methods take advantage of structure common to both projected-search and

reduced-Hessian methods to create a new way to solve for a search direction. For

efficiency, most of the matrix factorizations used by RH-B method are updated

when the working set is changed. A large amount of Chapter 5 is devoted to the

linear algebra that describes these updates. We also describe the considerations

to be made when converting a reduced-Hessian method into a projected-search

method.

Due to the way factors in RH-B methods are updated, almost all RH-B

methods are built on a limited-memory framework. Because of this, these RH-B

methods can be implemented as implicit or explicit methods. All RH-B methods

can implement lingering and reinitialization. The most effective RH-B method, as

measured by the numerical results in Chapter 6, is Algorithm LRHB. Algorithm

LRHB is a limited-memory RH-B method that does not implement lingering and

implements reinitialization if the dimension of the problem is large enough.

Based on work done by Bertsekas [Ber82], it can be shown that under

suitable circumstances and with small modifications, RH-B methods identify the

active set in a finite number of iterations and, consequently, converge at a Q-

7

superlinear rate.

In addition to new limited-memory-based methods, we propose a simplified

RH-B algorithm, Algorithm RHSB, which is a projected-search method built on a

full-memory framework. The main feature of Algorithm RHSB is that it restarts

each time the working set changes, to avoid having to update certain matrix fac-

torizations. Although inefficient in many ways, if the active set is identified in

a finite number of iterations, it shares the same asymptotic convergence rates as

Algorithm LRHB.

All RH-B methods are implemented in Matlab, and all but RHSB are

implemented in Fortran 90. Algorithms L-BFGS-B and LBFGSB-M are imple-

mented in Fortran 77 and called with C++ wrappers. Finally, all testing is done in

Matlab. Any algorithms that are not implemented directly as Matlab m-files

are called using a Matlab mex interface.

In Chapter 6, we identify a large set of box-constrained optimization test

problems. Through our numerical results, we support the view that reinitialization

is beneficial on problems with many variables but often detrimental on problems

with few variables. We also compared several RH-B implementations and explain

the strengths and weaknesses of each method. Finally, we tested the Fortran imple-

mentation of LRHB against L-BFGS-B and LBFGSB-M. Based on the numerical

results, we show that LBFGSB-M outperformed L-BFGS-B and that LRHB sig-

nificantly outperformed LBFGSB-M (see Table 6.1 on page 101 for a list of RH-B

algorithms and their descriptions). Comparing the time taken to solve each test

problem and summing over all the problems for which all three algorithms con-

verged, Algorithm LRHB took less than 74% of the time that Algorithm L-BFGS-B

took.

Chapter 2

Line-Search Methods for

Unconstrained Optimization

All methods discussed in Chapter 2 work by zero-finding on g(x). That is,

they seek x∗ so that

g(x∗) = 0.

Points that satisfy this condition are called critical points or stationary points. If

f is convex, then x∗ is a global minimizer of f . If ∇2f(x∗) is positive definite,

then x∗ is an isolated local minimizer1 of f . If x∗ is a local minimizer of f and

∇2f exists at x∗, then ∇2f(x∗) must be positive semi-definite. With the exception

of Newton’s method, none of the methods discussed in this chapter make use of

second-derivative information about f . Consequently, it is not possible to identify

minimizers of f with these methods. Instead, such methods can only identify

stationary points of f .

2.1 Newton’s method

Newton’s method, also known the Newton-Raphson method, is a model-

based method that, given a point xk and a twice-differentiable function f with

∇2f(xk) positive definite, computes a search direction pk so that xk + pk is the

1A point x∗ is an isolated local minimizer if there is a neighborhood N of x∗ such that x∗ is
the only local minimizer in N .

8

9

unique minimizer of the quadratic model

qN
k (x) = fk + gT

k (x− xk) +
1

2
(x− xk)

T∇2f(xk)(x− xk).

Since ∇2f(xk) is positive definite, pk must satisfy the system

∇2f(xk)pk = −gk, (2.1)

since

pk = argmin
p

qN
k (xk + p) ⇐⇒ ∇qN

k (xk + pk) = 0 ⇐⇒ gk +∇2f(xk)pk = 0.

If ∇2f(xk) is not positive definite but equation (2.1) is still solvable, xk + pk is

merely a stationary point of qN
k (x). A search direction pk obtained from equation

(2.1) is called a Newton direction.

The following result establishes the convergence properties of Newton’s

method.

Theorem 2.1.1. Let f : Rn → R be a twice-continuously differentiable function

defined in an open set D. Assume g(x∗) = 0 for some x∗ ∈ D and that ∇2f(x∗) is

nonsingular. Then there exists an open set S so that, for any x0 ∈ S, the iterates

generated by Newton’s method are well defined, remain in S, and converge to x∗

Q-superlinearly. If, in addition, ∇2f is Lipschitz continuous at x∗, then the rate

of convergence is Q-quadratic.

Proof. See Morè and Sorensen [MS84]

2.2 Quasi-Newton methods

For many functions f , ∇2f(x) is unavailable: it may not exist or it may

not be practical to compute. In this case it is possible to use the method of

steepest descent (also known as the gradient descent method), which uses the

search direction

pk = −gk.

Unfortunately, given appropriate conditions, the rate of convergence is only Q-

linear.

10

A more suitable method, first described by Davidon [Dav59], is the quasi-

Newton method, which, as the name suggests, shares several important features

with Newton’s method. Like Newton’s method, a quasi-Newton method minimizes

a function by forming a quadratic approximation of f at x, moving toward the

minimizer of the model and repeating. During iteration k at xk, a quasi-Newton

method minimizes the quadratic model

qk(x) = fk + gT
k (x− xk) +

1

2
(x− xk)

THk(x− xk), (2.2)

where Hk, called an approximate Hessian, is a positive-definite n×n matrix that—

in some sense—approximates ∇2f(xk). If Hk is positive definite, then xk + pk

uniquely minimizes qk(x) where pk satisfies

Hkpk = −gk. (2.3)

A search direction pk that satisfies this equation is called a quasi-Newton direction.

The basic premise used to calculate Hk in all quasi-Newton methods is

that some initial H0 is defined—usually a multiple of the identity matrix—and

each successive approximate Hessian is a low-rank update to the previous one.

The most widely-used update is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

update. Given Hk, the BFGS update defines Hk+1 as:

Hk+1 = Hk +
1

γT
k δk

γkγ
T
k −

1

δT
k Hkδk

(Hkδk)(Hkδk)
T , (2.4)

where

γk = gk+1 − gk, and δk = xk+1 − xk.

Throughout this dissertation, we assume that H0 = σI, with σ > 0, when dis-

cussing BFGS updates. Note that p0 will always be a positive multiple of the

gradient descent step, with equality when σ = 1. A quasi-Newton method that

uses a BFGS update is often called a BFGS method.

If f is twice-continuously differentiable, the approximate curvature γT
k δk is

the first-order approximation of δT
k∇2f(xk)δk since

g(xk + δk)− g(xk) = ∇2f(xk)δk +

∫ 1

0

(∇2f(xk + ξδk)−∇2f(xk))δk dξ.

The BFGS update is designed to satisfy a number of criteria:

11

• If Hk is symmetric, Hk+1 is symmetric,

• If Hk is positive definite and γT
k δk > 0, Hk+1 is positive definite,

• δT
k Hk+1δk = γT

k δk.

The third criterion is responsible for incorporating curvature information from the

underlying problem into the approximate Hessian. The approximate curvature

γT
k δk is said to be installed in Hk+1; that is, the approximate curvature of f(x) at

xk in direction δk is the exact curvature of the quadratic model qk+1(x) in direction

δk.

One consequence of this is that, if γT
k δk ≤ 0 and Hk+1 is obtained from

(2.4), then δT
k Hk+1δk ≤ 0 and Hk+1 is not positive definite. To avoid this, Hk+1 is

only updated using (2.4) if γT
k δk > ε, where ε is some positive tolerance close to 0.

If γT
k δk ≤ ε, Hk+1 is defined to be Hk.

Although quasi-Newton methods converge Q-superlinearly given appropri-

ate conditions, skipping the approximate Hessian update with any sort of regularity

degrades performance significantly. In the worst case, when all updates are rejected

and Hk = σIn for all k, a quasi-Newton method would perform comparably to a

gradient-descent method.

2.2.1 Solving the quasi-Newton equation

There are several widely-used methods to calculate pk from (2.3) without

the need to invert an n× n matrix at each step. One direct method, based on the

Sherman-Morrison-Woodbury formula, stores and updates H−1
k instead of Hk. An-

other approach uses an iterative method, such as the conjugate-gradient method,

to minimize a related problem.

Because Hk is a positive-definite, symmetric matrix, pk can also be com-

puted using a Cholesky factorization of Hk. If Mk is a square upper-triangular

matrix such that MT
k Mk = Hk, then pk can be obtained using one forward solve

and one backward solve:

Mkpk = qk where qk satisfies MT
k qk = −gk.

12

Each forward or backward solve takes O(n2) operations, instead of the O(n3) op-

erations required to solve (2.3).

It is prohibitively expensive to compute the Cholesky factorMk from scratch

each iteration. Fortunately, the recursive relation (2.4) defines a similar relation-

ship between Mk+1 and Mk, which makes this a viable method. The exact update

is covered in more detail later in this chapter. It is worth noting that using a

Cholesky factor is not the most efficient method for solving for pk under normal

circumstances. However, using a Cholesky factorization can provide substantial

benefits, as will be demonstrated in Section 2.4.

2.2.2 Limited-memory variants

When n, the dimension of the problem, is large, storing and using Hk can

become prohibitively expensive. One solution involves storing and using informa-

tion not from all steps computed so far, but from only the last m steps. Such

a method is called a limited-memory method. These variants are discussed more

fully in Sections 3.4.4 and in Chapter 5.

2.3 Line searches

Line-search methods can be summed up as methods that repeatedly solve

two subproblems: given xk, the first calculates a search direction pk; the second

performs a line search on the function

φk(α) = f(xk + αpk) (2.5)

with α ≥ 0 to compute a step length αk. Once αk and pk have been found, the next

iterate is defined to be xk+1 = xk+αkpk and the process is repeated until a solution

is found. This section is concerned with the second subproblem. Throughout this

section, iteration subscripts are suppressed when x and p are fixed throughout the

length of a discussion and used if discussing values from more than one iteration

with respect to the main optimization routine. When iteration subscripts are

suppressed, the symbol ᾱ is used to denote the output of a line search.

13

Performing a line search lessens the negative consequences when pk is a poor

step. This might happen, for instance, when pk is a gradient descent step or when

it is a Newton or quasi-Newton step and the model that xk + pk minimizes does

not adequately approximate f near xk. It is usually not feasible to find the global

minimizer of φk(α), so line search algorithms seek to satisfy other conditions that

ensure the convergence of the sequence {xk}. When pk is a quasi-Newton step, for

example, one desirable property is that αk should be 1 as often as possible in order

to take advantage of the convergence properties near a solution. In contrast, when

pk is obtained from a conjugate-gradient method, the line search should be more

accurate in order to compensate for poor scaling in the search direction.

2.3.1 Armijo line search

One desirable property is that any accepted step should satisfy the inequal-

ity

φ(α) < φ(0).

This is not a strong enough condition to make a viable algorithm, however, so this

condition is usually replaced with a stronger one, often called the Armijo condition:

φ(α) ≤ φ(0) + cAαφ
′(0), (2.6)

or

f(x+ αp) ≤ f(x) + cAαg
Tp,

where 0 < cA <
1
2
.

14

φ(α)

α

Figure 2.1: Armijo condition

If ᾱ satisfies this equation for α, then it is said to sufficiently decrease the

function and is called an Armijo step. The Armijo condition ensures that progress

does not stall when step lengths are not decreasing to zero.

One widely-used algorithm that uses the Armijo condition as its termination

criterion is the backtracking Armijo line search, often referred to as a backtracking

line search or an Armijo line search. Such a line search algorithm starts with

an initial step length, usually α = 1, and decreases it toward 0 until (2.6) is

satisfied. In a simple implementation, this is often done by contracting α by a

constant factor, usually 1
2
. Assuming p is a descent direction and f is continuously

differentiable, a backtracking line search is guaranteed to terminate after a finite

number of iterations.

The following algorithm is an example of a simplified backtracking Armijo

line search.

15

Algorithm 2.1 Simplified backtracking Armijo line search

choose cA ∈ (0, 1
2
), σ ∈ (0, 1)

α← 1

while f(x+ αp) > f(x) + cAαg
Tp

α← σα

end

return α

Because the step length α goes to zero, it is possible for a backtracking line

search not to make reasonable progress in reducing f(x).

There is a more important problem that can occur when using an Armijo

line search with a quasi-Newton method, as was hinted at in the previous section.

To illustrate the problem, a few observations are needed first. Given an Armijo

step αk > 0, the newly-obtained approximate curvature can be written as

γT
k δk = (gk+1 − gk)

T (αkpk) = αk(g
T
k+1pk − gT

k pk) = αk(φ
′
k(αk)− φ′k(0)).

Therefore, for all α > 0:

γT
k δk > 0 ⇐⇒ φ′k(α) > φ′k(0).

Recall from the previous section that the approximate Hessian is only updated

when γT
k δk > 0. Since the Armijo condition does not put any conditions on φ′k(α),

it is possible (depending on the underlying function) that the newly obtained ap-

proximate curvature is nonpositive frequently. If the approximate Hessian cannot

be updated regularly, performance can be poor.

2.3.2 Wolfe line search

To ensure that the approximate Hessian is updated as frequently as possible,

another set of conditions— first described by Wolfe [Wol69]—are usually used with

a quasi-Newton method. A step α is said to be a weak-Wolfe step if it satisfies the

weak Wolfe conditions:

φ′(α) ≥ cWφ
′(0) and α is an Armijo step, (2.7)

16

where cW ∈ (cA, 1).

φ(α)

α

Figure 2.2: Weak-Wolfe conditions

Similarly, a step α is said to be a strong-Wolfe step—or simply a Wolfe

step—if it satisfies the strong Wolfe conditions:

|φ′(α)| ≤ cW |φ′(0)| and α is an Armijo step, (2.8)

where cW ∈ (cA, 1) as before.

17

φ(α)

α

Figure 2.3: Strong-Wolfe conditions

Note that, by definition, a strong-Wolfe step is also a weak-Wolfe step. For

the remainder of this dissertation, cA is taken to be 10−4.

If αk is a weak-Wolfe step, it must hold that

φ′k(αk) ≥ cWφ
′
k(0) =⇒ φ′k(α) > φ′k(0) =⇒ γT

k δk > 0,

as φ′k(0) < 0. Therefore, if αk satisfies the weak-Wolfe conditions, the approximate

Hessian Hk can be updated.

Although a weak-Wolfe line search is enough to guarantee that H remains

positive definite (assuming a weak-Wolfe step can be found), a strong-Wolfe line

search places an upper bound on φ′(α), which has the effect of forcing ᾱ to be

near a critical point of φ(α). When using a Wolfe line search with a quasi-Newton

method, a typical value of cW is .9; in contrast, cW is typically .1 when using a

conjugate-gradient method. Roughly speaking, a value of cW closer to 1 results in

a “looser” or more approximate solution and a value closer to 0 gives a “tighter”

or more accurate answer with respect to closeness to a critical point of φ(α). All

line-search methods that use a Wolfe line search in this dissertation use a strong-

Wolfe line search, though there is no reason a weak-Wolfe line search could not be

18

used instead.

There are two related propositions that drive a Wolfe line search. The first

is:

Proposition 2.3.1. Let {αi} be a strictly monotonically increasing sequence where

α0 = 0, and let φ : R→ R be a continuously differentiable function. If it exists, let

j be the smallest index where at least one of the following conditions (collectively

called stage-one conditions) is true:

1. αj is a Wolfe step, or

2. αj is not an Armijo step, or

3. φ(αj) ≥ φ(αj−1), or

4. φ′(αj) ≥ 0.

If such a j exists, then there exists a Wolfe step α∗ ∈ [αj−1, αj].

The proof is considered in Chapter 4. Note that the converse is not true: it

is possible, for instance, that none of the stage-one conditions are satisfied for j = 1,

but for there to be a Wolfe step in the interval [0, α1]. The second proposition is:

Proposition 2.3.2. Let I be an interval whose endpoints are αl and αu (αl not

necessarily less than αu) and let φ : R → R be a continuously differentiable func-

tion. Assume αl and αu satisfy all of the following conditions (collectively called

stage-two conditions):

1. αl is an Armijo step, and

2. φ(αl) ≤ φ(αu) if αu is an Armijo step, and

3. φ′(αl)(αu − αl) < 0.

Then there exists a Wolfe step α∗ ∈ I.

From a geometric point of view, condition (3) is equivalent to saying that

the vector (αu − αl) is a descent direction of φ at αl.

19

A typical Wolfe line search is a two-stage process. The notation and struc-

ture used here borrows heavily from Nocedal and Wright [NW99]. Assuming the

initial step α1 is not a Wolfe step—here subscripts will refer to iterations within

the first stage of the line search algorithm and α0 = 0 by definition—pick succes-

sively larger step lengths, α2, α3, . . . , αj−1, αj, αj+1, . . . , αjmax = αmax until one of

the stage-one conditions is satisfied.

By proposition (2.3.1), if the first stage-one condition is satisfied during

iteration j, then the interval [αj−1, αj] must contain a Wolfe step. At this point,

the line search algorithm moves on to the second stage (or terminates successfully

if condition (1) is satisfied).

If, after a finite number of iterations, the algorithm reaches αjmax = αmax

and none of the conditions have been satisfied, it terminates with the Armijo step

that gave the lowest function evaluation. An Armijo step can always be found,

since not satisfying the conditions at j implies αj is an Armijo step.

Assuming the first stage finds an interval that contains a Wolfe step, the

first-stage function passes the endpoints αj−1 and αj to the second-stage function,

which labels them αl and αu such that the stage-two conditions hold. Next, the

second-stage function interpolates the endpoints to calculate a best-guess step in

the interval, αnew. The second-stage function recursively calls itself using αnew and

an existing endpoint, labeling them so that the stage-two conditions hold again.

This is repeated until αnew is a Wolfe step or until the function has called itself a

set number of times. In practice, it rarely takes more than 1 or 2 interpolations to

find a Wolfe step.

A practical implementation of a Wolfe line search is very complex. There

are many ways to interpolate to obtain a new point in the second stage. Finite

precision usually forces some sort of safeguarding during interpolation and gives

rise to a whole host of issues, including how to handle cases when the function or

step length are changing by a value near or less than machine precision. See Moré

and Thuente [MT94] for a more detailed account.

A simplified Wolfe line search might be implemented in the following way.

20

Algorithm 2.2 Simplified Wolfe line search

choose cA ∈ (0, 1), cW ∈ (cA, 1), αmax

α← 1, αold ← 0

while α is not a Wolfe step

if α is not an Armijo step or φ(α) ≥ φ(αold)

α← StageTwo(αold,α); break

if φ′(α) ≥ 0

α← StageTwo(α,αold); break

αold ← α

increase α towards αmax

end

return α

function StageTwo(αl,αu)

choose αnew in interval defined by αl and αu using interpolation

if αnew is a Wolfe step

return αnew

if αnew is not an Armijo step or φ(αnew) ≥ φ(αl)

return StageTwo(αl,αnew)

if φ′(αnew)(αu − αl) < 0

return StageTwo(αnew,αu)

otherwise

return StageTwo(αnew,αl)

end function

2.4 Reduced-Hessian methods

This section is meant to provide a brief summary of the work done by Gill

and Leonard [GL01, GL03] on a family of optimization methods called reduced-

Hessian methods (definition provided below). A more thorough account can be

found in the original papers and Leonard’s dissertation, Reduced Hessian Quasi-

21

Newton Methods for Optimization [Leo95].

Let Gk denote span(g0, g1, . . . , gk), called the gradient subspace, and let G⊥k
be the orthogonal complement of Gk in Rn. Let the column space of a µ1 × µ2

matrix M be denoted by col(M) so that

col(M) = {Mx : x ∈ Rµ2}.

Fenelon [Fen81] proves the following important result.

Lemma 2.4.1. Consider the BFGS method applied to a general nonlinear function.

If H0 = σI with σ > 0, then pk ∈ Gk for all k. Further, if z ∈ Gk and w ∈ G⊥k ,

then Hkz ∈ Gk and Hkw = σw.

To simplify notation and provide better readability, iteration subscripts are

suppressed for the remainder of the chapter except where otherwise noted. One

exception that is made is for initial quantities. Initial quantities, i.e., quantities

defined for iteration 0, are denoted with a 0 subscript. Bars above quantities are

used to denote fully-updated values with respect to the current iteration. Sub-

scripts are most commonly used instead to denote intermediate updates within an

iteration.

Let B be a matrix whose columns form a basis for G and let Z be the

orthonormal factor of the QR decomposition B = ZT , where T is a nonsingular,

upper-triangular matrix, so that col(B) = col(Z). Let W be a matrix whose

orthonormal columns span G⊥ and let Q =
(
Z W

)
. Then, solving the system

Hp = −g

is equivalent to solving the system

(QTHQ)QTp = −QTg,

for p.

If H0 = σI, then by the lemma above,

QTHQ =

(
ZTHZ ZTHW

W THZ W THW

)
=

(
ZTHZ 0

0 σIn−r

)
,

22

and

QTg =

(
ZTg

0

)
,

where r = dim(G), and In−r is the identity matrix of order n − r. The matrix

ZTHZ is called a reduced Hessian and ZTg is a reduced gradient.

Since p ∈ G, it must hold that p = ZZTp, since ZZTp is the projection of

p onto col(Z) = G. Therefore, the quasi-Newton step p can be calculated as

p = Zq, where q satisfies ZTHZq = −ZTg. (2.9)

Lemma 2.4.1 can be used to describe a quasi-Newton method from a geo-

metric point of view. The quadratic model used in a quasi-Newton method builds

up curvature information about a sequence of expanding gradient subspaces and

fixes the curvature as σ in any direction orthogonal to the current gradient sub-

space. Since p ∈ G, the algorithm can explicitly restrict the search direction to

be in the column space of Z (or B), which is effectively what equation (2.9) does.

From a practical point of view, it means that p can be obtained by solving a linear

system of r variables instead of n. Methods that exploit this structure and solve

p using (2.9) are known as reduced-Hessian (RH) methods. Also included in this

description are algorithms that solve (2.9) for other choices of Z, which is more

fully discussed later in the section.

As with regular quasi-Newton step calculations, p can be obtained in a

variety of ways. Some of the more common ways are to store and update

• the inverse reduced Hessian,

• the vector pairs representing updates to an initial approximate Hessian that

are used in conjunction with the Sherman-Morrison-Woodbury formula,

• or an upper-triangular Cholesky factor R where

RTR = ZTHZ. (2.10)

When storing R, p can be obtained using one forward- and one backward-solve.

All methods described in the remainder of this chapter use a Cholesky factor to

calculate p.

23

2.4.1 A quasi-Newton implementation

In order to express a typical quasi-Newton method as a reduced-Hessian

method, search direction p is obtained from equation (2.9) instead of (2.3). Using

Cholesky factor R (2.10), p can be calculated using two triangular systems. In

particular, p = Zq where

Rq = d

and

RTd = −ZTg.

Since Z and R can change after each iteration, an effective algorithm needs to be

able to update these two quantities in order to avoid having to orthogonalize B or

to factor R from scratch at each step.

Note that H is not stored explicitly but can be reconstructed from Z and

R as

H = QQTHQQT

=
(
Z W

)(ZTHZ 0

0 σIn−r

)(
ZT

W T

)
= ZZTHZZT + σWW T

= ZRTRZT + σ(In − ZZT). (2.11)

Updates to many quantities depends on whether ḡ ∈ G. If ḡ ∈ G, the

gradient ḡ is said to be rejected, otherwise it is said to be accepted. In exact

arithmetic, ḡ is rejected if ρ̄ := ‖(I − ZZT)ḡ‖ = 0.

The basis matrix B can be defined iteratively in the following way. Let

B0 = g0. Then, given B, let

B̄ =

B if ḡ ∈ G(
B ḡ

)
otherwise.

Other definitions for B are considered later in the chapter.

24

Similarly, let Z0 = g0/‖g0‖ and

Z̄ =

Z if ρ̄ = 0(
Z z̄

)
otherwise,

where z̄ satisfies ρ̄z̄ = (I−ZZT)ḡ and ‖z̄‖2 = 1. Often some form of reorthogonal-

ization is employed to prevent problems from round-off errors. It is worth noting

that all the components of Z̄T ḡ—the reduced gradient used in the next iteration—

are computed when updating Z. To capitalize on this, the intermediate quantity

w = ZT ḡ is stored. Thus,

w̄ = Z̄T ḡ =

w
ρ̄

 if ḡ is accepted,

w if ḡ is rejected.

Since R is dependent on Z and H, it may have to be updated twice per

iteration: once if the gradient ḡ is accepted and again when the BFGS update is

applied to the Cholesky factor.

The first update to R, denoted R1, is applied only when ḡ is accepted. The

Cholesky factor R1 must satisfy

RT
1R1 = Z̄THZ̄ =

(
ZTHZ ZTHz̄

z̄THZ z̄THz̄

)
=

(
ZTHZ 0

0 σ

)
.

Therefore,

R1 =

(
R 0

0
√
σ

)
,

if ḡ is accepted. If ḡ is rejected, R1 = R.

Recall that the BFGS update to obtain H̄ is

H̄ = H +
1

γT δ
γγT − 1

δTHδ
(Hδ)(Hδ)T ,

where δ = x̄− x and γ = ḡ − g. Let

s = Z̄T δ and y = Z̄Tγ,

25

and let R2 = R1 + w1w
T
2 so that

RT
2R2 = (R1 + w1w

T
2)T (R1 + w1w

T
2) = Z̄T H̄Z̄, (2.12)

where

w1 =
1

‖R1s‖
R1s and w2 =

1√
yT s

y −RT
1w1.

Note that w1 and w2 have no relation to the reduced vector w = ZT ḡ. Since R2 is

not upper triangular, R̄ is defined to be the Cholesky factor of RT
2R2.

One important note, which has a significant impact on the algorithms in

Chapter 5, is that equation (2.12) only holds if δ = Z̄Z̄T δ, i.e., δ ∈ col(Z̄). Since

δ = x̄− x = αp and p ∈ col(Z̄), equation (2.12) holds.

To prevent having to compute matrix-vector products with Z from scratch,

when possible, intermediate values are stored and updated. These values include:

q = ZTp, w = ZT ḡ, and v = ZTg. We will make use of the same variable

descriptions in the sections and chapters that follow except where otherwise noted.

A basic implementation of a reduced-Hessian quasi-Newton method is

shown below.

26

Algorithm 2.3 Algorithm RH

Choose σ > 0 and x

g ← ∇f(x)

Z ← g/‖g‖, R←
√
σ, v ← ‖g‖

while not converged

d← −R−Tv

q ← R−1d

p← Zq

Compute Wolfe step α

x← x+ αp, g ← ∇f(x)

w ← ZTg

Update Z, R, w, v, q based on whether gradient is accepted

s← αq, y ← u− v
Apply BFGS update to R if yT s > 0

v ← w

end

2.4.2 Reinitialization

For some problems, particularly when ∇2f(x∗) is ill-conditioned, using a

BFGS method with H0 = σI often results in poor convergence [GL01]. To combat

this, many algorithms implement some sort of Hessian scaling. One major advan-

tage to using a reduced-Hessian method with a Cholesky factorization is that σ,

which represents the curvature in G⊥, is made explicit.

Given a vector z ∈ G and equation (2.11), the approximate curvature in

direction z is

zTHz = (ZT z)TRTR(ZT z). (2.13)

The second term in the right-hand-side of (2.11) vanishes since z ∈ G. Likewise,

if w ∈ G⊥, then

wTHkw = σwTw. (2.14)

If a better estimate exists for the curvature information in G⊥, denoted as

σ̄, the approximate Hessian can be rescaled easily when computing the first partial

27

update to R, R1. The new first partial update becomes

R1 =

(
R 0

0
√
σ̄

)
,

if ḡ is accepted. If ḡ is rejected, R1 = R.

This process is called reinitialization, since it reinitializes the curvature of

the quadratic model in G⊥ to σ̄. Provided that σ̄ > 0 and that RTR is positive

definite, then RT
1R1 and H are positive definite, too.

As with other rescaling techniques, a reduced-Hessian algorithm with reini-

tialization will not produce the same iterates as a standard quasi-Newton method

in exact arithmetic. Equations (2.13) and (2.14) imply that reinitializing affects

curvature in all of G⊥, but leaves the already-computed curvature in G unchanged.

Gill and Leonard present several suggested values for σ̄. We use the same

value they use in their numerical tests [GL03], namely,

σ̄ =
γTγ

γT δ
.

One important factor in determining whether to use the technique of reini-

tialization is the dimension of the problem. Shanno and Phua [SP78] observe that

using such a technique improves performance when n is large but results in mixed

performance when n is small.

For more information about alternative choices for σ̄ and more about reini-

tialization, see Gill and Leonard [GL01, GL03].

2.4.3 Lingering

The following lemma, proved by Gill and Leonard [GL01], motivates a tech-

nique known as “lingering”. Throughout Section 2.4.3, subscripts are used to

denote iterations.

Lemma 2.4.2. Suppose that the BFGS method with an exact line search is applied

to a strictly convex quadratic function f(x). If H0 = σI, then at the start of

iteration k,

28

(a) xk minimizes f(x) on the linear manifold M(Gk), with

M(Gk) = {x0 + z : z ∈ Gk},

(b) the curvature of the quadratic model is exact on the k-dimensional subspace

Gk−1. Thus, zTHkz = zT∇2f(x)z for all z ∈ Gk−1.

If f(x) is a strictly convex quadratic function, thenM(Gk−1) ⊂M(Gk), and

moving from xk to xk+1 can be thought of as “stepping onto” the larger manifold

M(Gk) from the smaller manifoldM(Gk−1).

This idea can be extended to the case when f(x) is a nonlinear function

and the gradient gk 6∈ Gk−1. In this case,M(Gk−1) ⊂M(Gk), and xk+1 also moves

onto the larger manifold M(Gk). Unlike in the quadratic case, it is unlikely that

xk+1 minimizes f(x) on the manifoldM(Gk).

On the other hand, if gk ∈ Gk−1, thenM(Gk−1) =M(Gk) and moving from

xk to xk+1 can be thought of as continuing to minimize on the same manifold.

Thus, the manifold over which a BFGS method minimizes a function only expands

when new gradients are accepted, i.e., when new gradients are not in the current

gradient subspace.

Gill and Leonard use this observation to propose a new algorithm. The

algorithm is driven by one main idea: let iterates remain—or “linger”—on a man-

ifold so long as a good reduction in f(x) is being achieved, even if new gradients

are accepted. Once f(x) is no longer being reduced by a satisfactory amount, the

manifold is allowed to expand by one dimension and the process is repeated.

A more thorough discussion of lingering and its implementation in an RH

method can be found in Gill and Leonard [GL01]. Although lingering can be added

to any proposed algorithm in Chapter 5, its contributions are minimal in creating

a more effective algorithm.

2.4.4 Limited-memory variants

Like full-memory quasi-Newton methods, full-memory reduced-Hessian

methods are effective only on problems with relatively few variables, due to stor-

age and computational requirements. Since the reduced-Hessian matrix grows to

29

dimension n × n after enough iterations, working with this matrix can become

infeasible if n is large enough. One solution to this problem is to implement a

limited-memory variant that can be applied to all RH algorithms.

Instead of storing Z as an orthonormal matrix whose columns span all of

G, the number of columns of Z is restricted to be at most m. The most straight-

forward approach is to let the orthonormal columns of Z correspond to the m

most-recent accepted gradients. This approach tends to result in poor conver-

gence. Several papers [GL03, Sie94] suggest that poor performance is caused by

the fact that discarding the oldest gradient from the basis removes the property of

finite termination on a quadratic.

Since the subspace generated by search directions is the same as the sub-

space generated by gradients when using a quasi-Newton method with the BFGS

update, Siegel [Sie94] and Gill and Leonard [GL03] suggest taking the columns of

B to be search directions instead of gradients. A new orthonormal matrix Z and

triangular matrix T are defined from the QR factorization B = ZT . Discarding

the oldest search direction to maintain at most m columns in Z (or B) preserves

the finite termination property described above.

Implementing a limited-memory RH algorithm requires that the triangular

factor T be stored, as well as either B or Z. Computationally, less work needs

to be done when B and T are stored [GL03]. An algorithm is called an implicit

method if B and T are stored, since Z is only computed implicitly. An algorithm

is called an explicit method if Z and T are stored. Although less work is done

per iteration when using an implicit method, it is not practical to reorthgonalize

new columns being added to Z. As a consequence, m should be relatively small (6

or less) when using an implicit method. An explicit method is more appropriate

when m is larger. The focus of the next subsection is on implicit methods, but

more information can be found about both methods in Gill and Leonard [GL03].

Limited-memory variations exist for all RH methods described previously

in this section. A prefix “L-” or “L” will be used on any RH method to describe the

limited-memory variant, e.g., Algorithm L-RHR is the limited-memory equivalent

to Algorithm RHR. While it is possible to have a limited-memory RH algorithm

30

with lingering, in practice it is not a useful combination. To more fully describe

how a limited-memory RH method is implemented, the remainder of the chapter

is used to address the additional practical steps necessary to create Algorithm

L-RHR from Algorithm RHR using an implicit method.

When transitioning from a full-memory to a limited-memory algorithm,

much of an RH algorithm remains the same except in several key areas: (i) storing

T ; (ii) potentially accessing Z implicitly; (iii) forming B from search directions

instead of gradients; and (iv) dropping columns from B when necessary.

Forming a basis of search directions

The only way that Z and B gain new columns is when a new gradient, ḡ,

is accepted. Since the next search direction p̄ is unavailable when ḡ is computed,

ḡ is appended to B temporarily until p̄ can be “swapped in” near the beginning of

the next iteration. Let B1 denote the basis matrix after ḡ is accepted, i.e.,

B1 =
(
B ḡ

)
.

Then, after p̄ is computed near the beginning of the next iteration, the final basis

matrix is given by

B̄ =
(
B p̄

)
.

Updates to obtain B1 and B̄ necessitate similar updates to T . Namely,

T1 =

(
T w

0 ρ̄

)
,

and

T̄ =

((
T

0

)
q̄

)
.

where w = ZT ḡ, ρ̄ = ‖(I −ZZT)ḡ‖2, and q̄ = Z̄T p̄. These updates to B and T are

well-defined, since p̄T ḡ 6= 0 [GL03, Leo95]. If ḡ is rejected, then B̄ = B1 = B and

T̄ = T1 = T .

Given that B1 = Z1T1 and B̄ = Z̄T̄ , then Z1 = Z̄. This is important

because p̄ should be calculated using a value identical to Z̄. Since Z1 = Z̄, no

additional updates to the Cholesky factor R are needed beyond the ones already

required for the full-memory RH method.

31

Discarding the oldest search direction from the basis matrix

Since the columns of B are linearly independent, rank(B) can be used to

denote the number of columns in B. The same holds true for Z. If gradient ḡ is

accepted and rank(B1) > m, then a limited-memory RH method drops the first

column from B1. If rank(B1) > m, and p0 is the first column of B1, then B2 is

defined to be the n×m matrix that satisfies the equation

B1 =
(
p0 B2

)
.

If ḡ is rejected or rank(B1) ≤ m, then B2 = B1. Otherwise, computing B2 requires

that T2, Z2, R2, and any reduced vector (such as w2 = ZT
2 ḡ) be calculated, where

Z2 and T2 are QR factors of B2, and R2 is the Cholesky factor of ZT
2 HZ2. For

more information about how these quantities are updated, see Section 5.3.3, which

describes updates for a broader class of problems.

An example of how the basis matrix is updated is given here. Using iteration

subscripts for the gradients, consider the case where the current iteration is k =

m − 1 and all gradients computed have been accepted. When adding the next

gradient, gm, the basis matrix is updated in the following way.

B =
(
p0 p1 · · · pm−1

)
,

B1 =
(
p0 p1 · · · pm−1 gm

)
,

B2 =
(
p1 · · · pm−1 gm

)
,

B̄ =
(
p1 · · · pm−1 pm

)
.

Note that, if gi is rejected for some i ∈ [1,m], then rank(B1) ≤ m, and B = B1 =

B2 = B̄.

A limited-memory, implicit implementation of a reduced-Hessian quasi-

Newton method with reinitialization is shown below.

32

Algorithm 2.4 Algorithm LRHR

Choose m, σ > 0 and x

g ← ∇f(x)

B ← g, T ← ‖g‖, R←
√
σ, v ← ‖g‖

while not converged

d← −R−Tv

q ← R−1d

p← B(T−1q)

if last gradient was accepted,

Swap last column of B with p and update T

Compute Wolfe step α

x← x+ αp, g ← ∇f(x)

w ← ZTg

Update B, T , R, w, v, q based on whether gradient is accepted

s← αq, y ← u− v
Apply BFGS update to R if yT s > 0

Compute new σ and reinitialize R

if rank(B) > m,

Drop oldest basis vector in B and update T , R, and w

v ← w

end

2.4.5 Other reduced-Hessian methods

If mk is defined to be the affine model f(xk) + gT
k (x − xk), then, given xk

and pk, the Armijo condition expressed in terms of α,

f(xk + αpk) ≤ f(xk) + cAαg
T
k pk,

can be expressed in the more general form,

f(xk)− f(xk + dk) ≥ η(mk(xk)−mk(xk + dk)), (2.15)

where dk = αpk is a function of α and 0 ≤ η = cA ≤ 1
2
.

33

Thus, a quasi-Newton line-search method can be viewed in a more general

way. Given an iterate xk, a direction pk is obtained as the solution to unconstrained

optimization problem

argmin
p∈Rn

gT
k p+

1

2
pTHkp,

where Hk is a positive-definite symmetric approximate Hessian. Then, a sequence

of step lengths are tested (starting with a step length of one) using condition (2.15)

and αk is chosen to be the first step that satisfies the condition. Finally, the next

iterate is defined to be xk+1 = xk + dk = xk + αkpk.

In contrast to a quasi-Newton line-search method, a quasi-Newton trust-

region method obtains the step to the next iterate, dk, from the constrained opti-

mization problem,

argmin
d∈Rn

gT
k d+

1

2
dTHkd such that ‖d‖ ≤ δk, (2.16)

where Hk is an approximate Hessian (not necessarily positive-definite) and δk,

called the trust-region radius, is chosen to be small enough so that dk satisfies

condition (2.15). In this case, mk(x) can be defined more generally as some affine

or quadratic model that approximates f at xk. δk+1 is initially estimated by δk and

can grow if f is reduced significantly compared to what the model mk predicted.

Informally speaking, a line-search method first computes the direction to

travel along, then decides how far away to step based on the reduction in f . On

the other hand, a trust-region method decides how far away from the iterate it is

willing to travel, and only then decides the direction—which can be recalculated

with a smaller trust-region radius if f is not reduced sufficiently. Because the

subproblem is a nonconvex constrained optimization problem, it is significantly

harder to solve than the corresponding line-search method subproblem to obtain

the next iterate. A thorough discussion on trust-region methods can be found in

Conn, Gould and Toint [CGT00]

Trust-region methods are introduced here only to point out that recent

work has been done by Wang and Yuan [WY06] that bring a reduced-Hessian

framework to the quasi-Newton trust-region subproblem (2.16). They do this, in

part, by extending the theory to allow for a non-positive-definite Hk. Because they

34

are able to use a reduced-Hessian method, they are able to implement lingering

and reinitialization, as well.

Chapter 3

Active-Set Methods for

Box-Constrained Optimization

While unconstrained optimization routines are an important and widely-

used class of algorithms, many optimization problems require some sort of restric-

tion on the variables. The simplest type is box-constrained optimization. Problems

of this type have the form

min
x
f(x) such that l ≤ x ≤ u, (3.1)

where x, l, u ∈ Rn, l ≤ x ≤ u is defined componentwise, and components of l and

u may be negative or positive infinity, respectively, to signify no lower or upper

bound on that component of x. All algorithms discussed in this chapter assume

that f is continuously differentiable. None of the algorithms use second-derivative

information about f to minimize it, although some authors require conditions on

∇2f when discussing convergence results. For this reason, the methods outlined

in this chapter are most effective when computing ∇2f is not practical or possible.

If ∇2f is readily accessible, a method more like Newton’s method for the box-

constrained case is likely more appropriate than the methods described here.

35

36

3.1 Definitions

In order to discuss optimization algorithms for box-constrained optimiza-

tion, several definitions are needed. A point x is feasible if it satisfies l ≤ x ≤ u.

The set of all feasible points, called the feasible set, is denoted by F, where

F = {x ∈ Rn : l ≤ x ≤ u}. (3.2)

The active set at x is defined to be

A(x) = {i : xi = li or xi = ui}.

Given a feasible point x and its gradient g = ∇f(x), the lower working set at x is

defined to be

L(x) = {i : xi = li and gi > 0},

and the upper working set at x is

U(x) = {i : xi = ui and gi < 0}.

Given L(x) and U(x), the working set at x is defined to be

W(x) = L(x) ∪ U(x).

Given an indexing set I, the complement of I is defined to be

Ic = {1, 2, . . . , n} \ I.

The set Wc(x) will sometimes be referred to as the free set, denoted by F(x). For

brevity, we define

Ik = I(xk), I∗ = I(x∗), I∗ = I(x∗),

where I(x) is usually A(x) or W(x), and x∗ and x∗ are defined later.

Let P (x) = P (x, l, u) be the closest point in F to x, so that P (x) is the

unique solution to

argmin
y∈F

‖x− y‖2.

37

Then P (x) is called the projected point of x with respect to F. Given the definition

of F, P (x) can be defined componentwise as

[P (x)]i =

li if xi < li,

ui if xi > ui,

xi otherwise.

Given l and u, the projected direction of p at x is defined to be Px(p), where

Px(p) is defined componentwise as

[Px(p)]i =

0 if xi = li and pi < 0,

0 if xi = ui and pi > 0,

pi otherwise.

Given x and p, p is said to be a feasible direction at x if p = Px(p). The set of all

feasible directions at x is denoted by

Px = {p ∈ Rn : p = Px(p)}.

In a like manner, we define PI(p) to be the projected direction of p with

respect to I, where PI(p) is defined componentwise as

[PI(p)]i =

0 if i ∈ I

pi if i 6∈ I.

Direction p is said to be a feasible direction with respect to I if p = PI(p). The set

of all feasible directions with respect to I is denoted by

PI = {p ∈ Rn : p = PI(p)}.

For example, given any feasible point x and direction p ∈ PA(x), x + p is on the

same “face” as x; i.e., A(x) ⊆ A(x+ p).

Given an index set I ⊆ {1, 2, . . . , n} and a symmetric n×n matrix M with

elements Mi,j, matrix M is said to be diagonal with respect to I if

Mij = 0 for all i ∈ I, j ∈ {1, 2, . . . , n}, and j 6= i.

38

All methods discussed in this chapter make use of projected paths. To that

end, the projected path at x in direction p is defined to be

x(α) = P (x+ αp). (3.3)

Note that x(α) is a piecewise linear path. Due to the iterative nature of the

algorithms discussed in this chapter, we define

xk(α) = P (xk + αpk).

Recall definition (2.5) on page 12, which defines φ(α) = f(x + αp). In a

like manner, we define

ψ(α) = f(x(α)), (3.4)

and

ψk(α) = f(xk(α)). (3.5)

As f is a continuous and differentiable function, and x(α) is a piecewise linear

path, ψ(α) and ψk(α) are continuous, piecewise-differentiable functions.

Given an algorithm that generates a sequence of iterates {x0, x1, x2, . . .}
(referred to as {xk} hereafter) from an initial feasible point x0, let x∗ denote a

limit point of {xk}. The first-order necessary conditions for optimality at x can be

written as

gTp ≥ 0 for all p ∈ Px

or componentwise as

gi = 0 if i 6∈ A∗, gi ≤ 0 if xi = li, gi ≥ 0 if xi = ui,

for all i ∈ {1, . . . , n}, where g = g(x).

A point that satisfies the above conditions is called a stationary point and

is denoted by the symbol x∗. Note that, since no knowledge of ∇2f is assumed, a

stationary point is considered a solution. If x∗ is a stationary point, it is said to

satisfy the strict complementarity property if, for each component i ∈ {1, 2, . . . , n},
exactly one of the conditions

g∗i = 0 or i ∈ A∗

holds, where g∗ = g(x∗). If, for some i, g∗i = 0 and i ∈ A∗, the point x∗ is called

degenerate.

39

3.2 Gradient-projection methods

In its simplest form, a gradient-projection method is an extension of the

steepest-descent method to box-constrained optimization. Most early published

results and algorithms are for the specific case where l = 0 and u is a vector whose

components are all positive infinity. Extending convergence results to the general

box-constrained case for such algorithms is not done here but is straightforward.

Several papers discuss algorithms where the feasible region is a general convex set.

Given the scope of this chapter, such regions are simplified and represented as F
in this chapter.

Proposed independently by Goldstein [Gol64] and Levitin and Polyak

[LP66], the general formula used to obtain a sequence of converging iterates is

xk+1 = P (xk + αkpk) = xk(αk), where x0 ∈ F. (3.6)

The algorithms proposed in both papers [Gol64, LP66] define step pk = −gk,

require g(x) to be Lipschitz continuous with Lipschitz constant λ, and define αk

such that

ε ≤ αk ≤
2

λ
(1− ε)

holds, where 0 < ε < 1. Given these conditions, Goldstein, Levitin and Polyak

show that any limit point x∗ of {xk} is a stationary point.

To avoid the problematic condition of needing a Lipschitz constant, Mc-

Cormick [McC69] defines pk = −gk but takes αk to be a global minimizer of

min
α>0

ψk(α),

where ψk(α) is defined by (3.5). Given a continuously differentiable f , McCormick

proves that any limit point of {xk} is a stationary point. Although this algorithm

does not require a Lipschitz constant, performing an exact minimization at every

iteration to obtain αk renders the algorithm impractical.

The first practical projected-gradient method, proposed by Bertsekas

[Ber76], selects αk by using a backtracking Armijo-like line search and sets pk =

−gk. Given 0 < cA <
1
2
, αk must satisfy

ψk(α) < ψk(0) + cAg
T
k (x(α)− xk). (3.7)

40

When there are no constraints, condition (3.7) is identical to the Armijo condition,

φk(α) < φk(0) + cAφ
′
k(0)α

where

φk(α) = f(xk + αpk). (3.8)

Bertsekas shows that if f is continuously differentiable, {xk} is a sequence of points

generated by (3.6) where αk satisfies (3.7), and pk = −gk, then any limit point x∗

of {xk} is a stationary point. Bertsekas also proves the following result.

Theorem 3.2.1. Let x∗ be an isolated nondegenerate local minimizer of f . Assume

f is twice continuously differentiable on the feasible portion of some neighborhood

near x∗, and

µ1p
Tp ≤ pT∇2f(x∗)p ≤ µ2p

Tp

for some µ1, µ2 > 0 and for all p ∈ PA∗. Let {xk} be a sequence generated by (3.6)

where pk = −gk and αk satisfies (3.7). Then there exists δ > 0 such that, if for

some j, ‖x∗ − xj‖2 < δ, then {xk} converges to x∗ and Ai = A∗ for all i > j.

Because the active set at x∗ is identified after a finite number of iterations

given suitable conditions, Bertsekas observes that all subsequent iterations can be

viewed as an unconstrained minimization on a subset of the variables, i.e.,

min
x
f(x) such that components xi remain fixed, where i ∈ A∗.

To take advantage of this finite identification property, Bertsekas suggests switch-

ing to a superlinear convergent unconstrained algorithm such as a Newton or quasi-

Newton method when the active set stabilizes. Bertsekas [Ber82] also proves that

some algorithms using search directions other than pk = −gk identify the active

set at x∗ in finite number of iterations (see Section 3.3).

Calamai and Moré [CM87] generalize the sufficient conditions for an algo-

rithm to possess the finite identification property using projected gradients. Given

a feasible point x, we define the projected gradient at x to be

gF (x) = −Px(−g(x))

41

and

gF,k = gF (xk) = −Pxk
(−gk).

(The definition presented here for gF (x) is the negative of the projected gradient

given in Calamai and Moré.) They observe that x∗ is a stationary point if and

only if gF (x∗) = 0. Further, they prove the following result.

Theorem 3.2.2. Let f : Rn → R be continuously differentiable on F and let {xk}
be an arbitrary sequence in F that converges to x∗. If {‖gF,k‖} converges to zero

and x∗ is nondegenerate then Ak = A∗ for all k sufficiently large.

The significance of this theorem is that any algorithm that drives ‖gF,k‖ to

zero identifies A∗ in a finite number of iterations, provided x∗ is nondegenerate.

Calamai and Moré also prove that the working set W∗ is identified in a finite

number of iterations as well. This has ramifications for projected-search methods,

which are described in the next section.

In addition to their work on identifying A∗ andW∗, Calamai and Moré pro-

pose a variant of the projected-gradient method: the negative projected gradient

is only used as a search direction during iterations k, with

k ∈ K = {k0, k1, k2, . . .} ⊆ {0, 1, 2, . . .},

for some K. When the projected-gradient method is not used to calculate xk+1,

xk+1 is chosen so that xk+1 ∈ F and f(xk+1) ≤ f(xk). One possible method

for computing xk+1 is to perform an unconstrained minimization on f where the

components xi are fixed, with i ∈ Ak and project the result into F.

Calamai and Moré prove that, if |K| =∞, then

lim
i→∞
‖gF,ki

‖ = 0.

Additionally, ifAk ⊆ Ak+1 for all k ∈ Kc and {xk} is bounded, thenA∗ is identified

in a finite number of iterations.

Moré and Toraldo [MT91] also present a two-phase algorithm for box-

constrained quadratic minimization that exploits the finite identification property.

During the first phase, xk+1 is obtained from (3.6) with pk = −gk and αk taken

42

from an Armijo-like line search. If Ak+1 = Ak or the step fails to make reasonable

progress in reducing f , the algorithm switches to phase two. Phase two iteratively

solves for xk+1 using (3.6) with pk defined as a conjugate-gradient direction (taken

from the unconstrained optimization problem where the components of x corre-

sponding to elements ofAc(xk) are fixed) and αk satisfies the Armijo-like condition.

Phase two continues until a solution is found or until Wk 6= Ak. If Wk 6= Ak, the

algorithm switches back to the first phase.

Moré and Toraldo prove that if f is a strictly convex, quadratic function,

then the iterates {xk} generated by the algorithm converge to a minimizer x∗. If x∗

is nondegenerate, then the algorithm terminates at x∗ in a finite number of steps.

3.2.1 Algorithm L-BFGS-B

The most well-known and often-used algorithm to date that solves equation

(3.2) when ∇2f(x) does not exist or is not practical to compute is L-BFGS-B

[BLNZ95]. Algorithm L-BFGS-B is a limited-memory variation of a projected-

gradient method. The algorithm is best explained by running through a typical

iteration, which is detailed below.

Given xk ∈ F, perform an exact line search on qk(P (xk − αgk)), where

qk(x) is the quadratic (2.2) (page 10) defined with the quasi-Newton approximate

Hessian (2.4). Define xc, called the generalized Cauchy point, to be the first local

minimizer along the path P (xk−αgk). Although qk(P (xk−αgk)) is only piecewise

differentiable with respect to α, it is piecewise quadratic, which allows L-BFGS-B

to find xc in O(n) operations.

Next, compute the minimizer of qk(x) while keeping components of x fixed

that correspond to elements of A(xc). Byrd et al. outline three different ways to

solve this system. One uses a conjugate-gradient method and the other two—a

primal method and a dual method—store and update the inverse approximate

limited-memory Hessian using the Sherman-Morrison-Woodbury formula. The

default option is the primal method, which appears to be the most competitive

of the three based on numerical results in Byrd et al. The numerical results in

Chapter 6 use the default primal method.

43

After obtaining the minimizer in the previous step, L-BFGS-B backtracks

toward xc (if necessary) until it obtains a feasible point, which is labeled x̄k+1.

Next, it forms the search direction pk = x̄k+1−xk and performs a Wolfe line search

along pk to compute xk+1. In order to ensure that xk+1 is a feasible point, αmax = 1

when performing the line search.

Although Algorithm L-BFGS-B is a very competitive algorithm, Byrd et

al. do not give any convergence results.

3.3 Projected-search methods

For the sake of categorization, any method that repeatedly uses the nega-

tive gradient as a search direction during some portion of the method is called a

projected-gradient method. On the other hand, a projected-search method calcu-

lates xk+1 from (3.6) but, in general, does not use pk = −gk.

The first practical projected-search method was proposed by Bertsekas

[Ber76, Ber82]. All search directions calculated using a projected-search method

can be written in the form

pk = −Dkgk, (3.9)

where Dk is a positive-definite symmetric matrix that is diagonal with respect to

a set of indices. (Recall that a symmetric matrix M of dimension n is said to be

diagonal with respect to set I if Mij = 0 for all i ∈ I, j ∈ {1, 2, . . . , n}, and j 6= i.)

Berksekas establishes a number of important convergence results for projected-

search methods; however, all original results are proved for the feasible region

{x : x ≥ 0}. To better preserve the flow of the chapter, Bertsekas’ propositions

are described for the more general case, F = {x : l ≤ x ≤ u}.
To establish that projected-search methods are well-defined, Bertsekas

proves the following proposition [Ber82].

Proposition 3.3.1. Let x ∈ F, and let D be a positive-definite symmetric matrix

that is diagonal with respect to W(x). Define

x(α) = P (x+ αp) = P (x− αDg(x)).

44

1. The vector x is a stationary point if and only if

x = x(α) for all α ≥ 0.

2. If x is not a stationary point, there exists a scalar α > 0 such that

f(x(α)) < f(x) for all α ∈ (0, α].

As x = x(α) for all α ≥ 0 if and only if Px(p) = 0, the proposition guaran-

tees that at every iteration, any projected-search algorithm will either terminate

successfully or be able to find a path along which f decreases. It should be noted

that the second condition is equivalent to guaranteeing that Px(p) is a descent

direction if Px(p) 6= 0. Bertsekas also proves that, under suitable conditions, all

limit points x∗ of {xk} generated by (3.6) and (3.9) are stationary points.

In order to discuss Bertsekas’ other results, we define the expanded working

set at x, which we denote as E(x) or Ek = E(xk), to be

E(x) = {i : li ≤ xi ≤ li + ε(x), gi > 0} ∪ {i : ui − ε(x) ≤ xi ≤ ui, gi < 0}, (3.10)

where ε(x) > 0 for all x. Bertsekas defines ε(xk) to be

ε(xk) = εk = min{ε, ‖P (xk −Mgk)− xk‖2},

where ε > 0 is a scalar constant and M is a constant positive-definite diagonal

matrix (such as the identity matrix). In practice, all proposed algorithms imple-

mented in Chapter 5 use the standard working set,W(x). We introduce expanded

working sets solely because Bertsekas makes use of them in his convergence results.

Complementing the expanded working set E(x), Bertsekas also makes use

of another Armijo-like line search that, given a current point x and direction p,

seeks a scalar α such that

ψ(α) ≤ ψ(0) + cAg(x)
T (PEc(x)(p) + PE(x)(x(α)− x))α. (3.11)

If E(x) is replaced by W(x), this Armijo-like condition simplifies to

ψ(α) < ψ(0) + cAψ
′(0)α, (3.12)

45

where ψ′(0) = g(x)TPx(p). This simplified Armijo-like condition differs from (3.7)

and (3.11) in that the right-hand side of (3.12) is linear with respect to α.

The following result, originally proved by Bertsekas [Ber82], is stated with

stronger assumptions than is necessary for the sake of brevity.

Proposition 3.3.2. Let x∗ be a nondegenerate local minimizer of problem (3.1)

such that, for some δ > 0, f is twice continuously differentiable in the open neigh-

borhood S = {x : ‖x − x∗‖ < δ} and the eigenvalues of ∇2f(x) are uniformly

bounded above and away from zero for all x ∈ S. Let the eigenvalues of Dk be

uniformly bounded above and away from zero for all k ∈ {0, 1, . . .}. Additionally,

assume that

[Dk]ii ≥ λ for all k ∈ {0, 1, . . .} and i ∈ Ek.

for some scalar λ.

Then there exists a scalar δ > 0 such that if {xk} is a sequence generated

by (3.6) and (3.9) and for some index N ,

‖xN − x∗‖ ≤ δ,

then {xk} converges to x∗ and

Ek = Ak = A∗

for all k > N .

The significance of this proposition is that, like many gradient-projection

methods, given suitable conditions, a projected-search method identifies the active

set at the solution after a finite number of iterations. As before, this means that

the convergence rate of a projected-search method is the same as the corresponding

unconstrained optimization method—in this case, determined by the choice of Dk.

If f is strictly convex, one such choice for Dk, Bertsekas [Ber82] observes,

is to choose Dk so that D−1
k is given elementwise as

[D−1
k]i,j =

0 if i 6= j and either i ∈ Ek or j ∈ Ek,

[∇2f(x)]i,j otherwise.

46

In this case, after the optimal active set is found, the algorithm is effectively the

same as using Newton’s method on the components of x that do not correspond to

A∗ while the other components are fixed. Given conditions similar to the first part

of the previous proposition, it can be shown that {xk} converges to x∗ and that the

rate of convergence is superlinear—or quadratic if g(x) is Lipschitz continuous in a

neighborhood of x∗. Additionally, if f is quadratic, then problem (3.1) is solved in

a finite number of iterations. Bertsekas also suggests a similar choice of Dk based

on a quasi-Newton method.

Ni and Yuan [NY97] propose a quasi-Newton projected-search method that

is similar in structure to Bertsekas’ method [Ber82] but that uses a different defini-

tion of the expanded working set by choosing a different function ε(x). Addition-

ally, the algorithm calculates pk by using a reduced inverse approximate Hessian

in place of solving (3.9)—see below for how this is done. The algorithm also differs

from Bertsekas’ in that it uses the Armijo-like condition (3.12), even though it

does not use a standard working set. Ni and Yuan also prove that, given suitable

conditions, every limit point of {xk} is a stationary point.

3.3.1 Solving the quasi-Newton equation

Using the working set

As mentioned above, it is possible to chooseDk so that, after a finite number

of iterations, a projected-search method is essentially using an unconstrained quasi-

Newton method on the components of x that are not in the expanded working

set. To illustrate how this works in practice, for simplicity, we use the regular

working set W(x) (and its complement, the free set, F(x)) instead of E(x). To

simplify notation, all iteration subscripts are suppressed for the remainder of this

chapter. Given a feasible point x ∈ Rn, assume without loss of generality that,

if |F(x)| = |Wc(x)| = w, then the first w indices are in F(x). That is, let

W(x) = {nw, nw + 1, . . . , n− 1, n}, where nw = n− w + 1.

Define M = D−1 so that (3.9) is equivalent to solving

Mp = −g (3.13)

47

for p. Matrices M and D can be expressed in block-diagonal form as

M =

(
MF

MW

)
=

MF

µnw

. . .

µn

 ,

and

D =

(
DF

DW

)
=

DF

δnw

. . .

δn

 ,

where MF and DF are w × w positive-definite matrices, µi, δi ∈ R and µi > 0,

δi > 0, i ∈ {nw, . . . , n}. Note that MF = D−1
F and µiδi = 1 for i ∈ {nw, . . . , n}.

The vectors p and g are partitioned in the same fashion so that

p =

(
pF

pW

)
and g =

(
gF

gW

)
.

Given the block-diagonal structure of M , it holds that

Mp = −g ⇐⇒

(
MF

MW

)(
pF

pW

)
=

(
−gF
−gW

)
⇐⇒ MFpF = −gF and MWpW = −gW .

Since MW is diagonal, p can be calculated by solving the smaller system

MFpF = −gF , (3.14)

for pF and setting

pW = −M−1
W gW =

−gnw/µnw

...

−gn/µn

 ,

where gi is the ith component of g.

Since µi > 0 for i ∈ {nw, . . . , n}, the signs of the components of pW are

the same as the signs of the components of gW . The definition of W implies that

48

the last n − w components of P (x + αp) are the last n − w components of x for

all α > 0. Put another way, the last n − w components of Px(p) are zero. Since

α1 ≥ α2 ≥ 0 implies A(x(α1)) ⊇ A(x(α2)), choosing p to be of the form

p =

(
pF

0

)
, (3.15)

yields the same result as choosing

p =

(
pF

pW

)
.

Solving

Mp = −gF

for p (recall gF = −Px(−g)) yields a search direction of the form (3.15).

In general, when Wc(x) 6= {1, . . . , w}, p is still calculated by solving a

reduced system. Let Π be an n×w matrix whose columns are taken from the set

{ei : i ∈ F(x)} and where ei is the ith column of an identity matrix of order n.

Then

MF = ΠTMΠ, pF = ΠTp, gF = ΠTg = ΠTgF , (3.16)

where p ∈ col(Π) is obtained from (3.14), so that

p = ΠΠTp = ΠpF .

The right-hand sides of (3.16) are strictly formal: for example, in practice, the

reduced matrix ΠTMΠ is obtained by “deleting” all the rows and columns of M

that correspond to elements ofW . Similarly, p is easily formed by “scattering” the

components of pF into the components of a n-length zero vector that correspond to

elements of F(x). For example, if n = 5, F(x) = {1, 3, 4}, and pF =
(
1 9 2.3

)
,

then p =
(
1 0 9 2.3 0

)
.

Using an expanded working set

To describe the case where an expanded working set is used, we use the

same matrix and vector partitions as above, except that all occurrences of W are

49

now labeled E . The free set F(x) refers to the complement of E(x) in the remainder

of this subsection, and without loss of generality, for the sake of partitioning, it is

assumed that F(x) = {1, 2, . . . , w}.
When using an expanded working set, pE can be set to be something other

than the zero vector, in which case,

p = ΠpF + ΓpE ,

where Γ is an n× (n− w) matrix whose columns are taken from the set {ei : i ∈
E(x)}. For example, if E(x) = {2, 5}, pE =

(
−.02 .03

)
, and n, F(x), and pF are

as above, then p =
(
1 −.02 9 2.3 .03

)
.

The diagonal elements of ME can be chosen to be arbitrary positive real

numbers. For example, matrix ME can be chosen so that xi +pi steps to either li or

ui, where i ∈ E , orME can be chosen as the identity matrix of order n−w. In effect,

p is still obtained by solving the smaller system involving pF described above, but

components of pE are not necessarily zero. Importantly, if index i ∈ E(x), then it

must be the case that i ∈ E(P (x+ αp)) for all α > 0, since sign(pi) = sign(−gi).

Implications

Up to this point, the matrices M and D = M−1 have been left unspecified.

To create a quasi-Newton method for box-constrained optimization, we choose M

so that

MF = ΠTMΠ = ΠTHΠ,

where H is an approximate Hessian matrix. Since the working set (or expanded

working set) may change frequently, algorithms generally store H (or a limited-

memory equivalent) and not the reduced approximate Hessian ΠTHΠ.

Since p is chosen so that ΠΠTp = Px(p) = p and since

Hp = −gF =⇒ ΠTHΠΠTp = −ΠTg,

calculating a quasi-Newton step p using a projected-search method has the same

effect as setting

p = Πq where q solves (ΠTHΠ)q = −ΠTg. (3.17)

50

Parentheses are not necessary here, but are used to suggest the key components

of the equation. Geometrically, the search direction p obtained from (3.17) can be

viewed as the solution to

argmin
p∈PE

q(x+ p).

or

argmin
p∈PW

q(x+ p).

where q(x) is the quadratic model of f defined at x with Hessian H. In other

words, x + p minimizes the quadratic model q(x) on the “face” defined by E (or

W).

3.3.2 Line searches for projected-search methods

One advantage that Algorithm L-BFGS-B has over current projected-search

methods is its use of a Wolfe line search. If the Wolfe conditions are satisfied,

then the current approximate Hessian can be updated with the BFGS update and

remain positive definite. In contrast, if only the Armijo condition is satisfied,

it may or may not be possible to update the approximate Hessian while staying

positive definite, which can lead to poor convergence rates.

Because a projected-search method performs a line search along a piece-

wise linear path, the univariate function ψ(α) = f(x(α)) is only piecewise differen-

tiable. Unfortunately, since a Wolfe line search requires a differentiable function,

all projected-search methods currently use an Armijo-like line search.

Chapter 4

Line Searches on

Piecewise-Differentiable Functions

Recall definition (2.6) (Chapter 2, page 13) that a step α is an Armijo step

if it satisfies

φ(α) ≤ φ(0) + cAφ
′(0)α,

where φ(α) = f(x+ αp) (2.5). Similarly, a strong Wolfe step (2.8) α is an Armijo

step that satisfies

|φ′(α)| ≤ cW |φ′(0)|.

Since projected-search methods perform a line search on the piecewise-

differentiable function ψ(α) = f(x(α)) = f(P (x + αp)), it is not possible for

such methods to use a Wolfe line search. Instead, all projected-search methods to

date use an Armijo or Armijo-like line search. Although these methods can add

and drop indices in the working set rapidly without needing to reevaluate f , they

can suffer from poor convergence rates when the search direction is obtained by

using a quasi-Newton method. This is due to the fact that using an Armijo or

Armijo-like step does not guarantee that the approximate Hessian can be updated

while staying positive definite.

On the other hand, while L-BFGS-B employs a Wolfe line search, it is

hindered by an artificial cap on the maximum step it can take in order to enforce

feasibility. This means that if a Wolfe line search cannot find a Wolfe step in the

51

52

first interval, it cannot test successively larger intervals to find an appropriate step.

In this chapter, we define a new step type, called a quasi-Wolfe step, and a

corresponding line search that is meant to keep advantages from both approaches

listed above while minimizing their downsides. In Section 4.1, we provide a more

detailed account of the theory behind a Wolfe line search. In Section 4.2, we

discuss the theory involved with a quasi-Wolfe line search. Section 4.3 focuses on

implementation issues and Section 4.4 presents an algorithm that uses the new line

search.

4.1 Differentiable functions: the Wolfe step

The key principle that drives a Wolfe line search is that it is possible, when

certain conditions are met, to know when an interval contains a Wolfe step. In

addition to the propositions laid out below, which borrow from Morè and Thuente

[MT94], more information can be found in Wolfe [Wol72] and Nocedal and Wright

[NW99].

Recall, from Chapter 2, the proposition that drives the first stage of a Wolfe

line search, which we now prove.

Proposition 2.3.1. Let {αi} be a strictly monotonically increasing sequence with

α0 = 0, and let φ : R→ R be a continuously differentiable function. If it exists, let

j be the smallest index where at least one of the following conditions (collectively

called stage-one conditions) is true:

1. αj is a Wolfe step, or

2. αj is not an Armijo step, or

3. φ(αj) ≥ φ(αj−1), or

4. φ′(αj) ≥ 0.

If such a j exists, then there exists a Wolfe step α∗ ∈ [αj−1, αj].

53

Proof. For convenience, given cA, define the linear function used in the Armijo test

to be

θ(α) = φ(0) + cAφ
′(0)α,

and define

ω(α) = φ(α)− θ(α).

Then

ω′(α) = φ′(α)− cAφ′(0).

Observe that if j > 1, αj−1 satisfies none of the conditions (1)–(4), otherwise stage

one would have terminated already. This implies that

φ′(αj−1) < 0

by (4), and hence

φ′(αj−1) < cWφ
′(0)

by (1). If j = 1, φ′(αj−1) = φ′(0) < cWφ
′(0), thus

φ′(αj−1) ≤ cWφ
′(0) (4.1)

for all j ≥ 1. Note that ω(αj−1) ≤ 0.

These introductory results are used in the following proofs for each of the

four cases.

Case 1: If (1) is true, the proposition is true trivially.

Case 2: If (2) is true, then ω(αj) > 0. Define

αm = sup{α ∈ [αj−1, αj] : ω(α) ≤ 0 for all β ∈ [αj−1, α]}.

By inequality (4.1), ω′(αj−1) < 0, thus αj−1 < αm < αj and ω(αm) = 0. Since

f is differentiable, ω(αj−1) ≤ ω(αm) and ω′(αj−1) < 0, then, by the mean-value

theorem, there exists α∗ ∈ [αj−1, αm] such that ω′(α∗) = 0. Then

cWφ
′(0) < cAφ

′(0) = φ′(α∗) < 0,

and α∗ is a Wolfe step.

54

Case 3: If (3) is true and (2) is false, then without loss of generality, assume

φ(α) ≤ θ(α) for all α ∈ [αj−1, αj]. (If, for some α ∈ [αj−1, αj], α is not an Armijo

step, use the preceding argument with α in place of αj.) Since φ(αj−1) ≤ φ(αj)

and φ′(αj−1) < 0, there exists a step α∗ ∈ [αj−1, αj] such that φ′(α∗) = 0. Since

ω(α∗) ≤ 0, α∗ is a Wolfe step.

Case 4: If (4) is true and (2) is false, assume without loss of generality that

φ(α) ≤ θ(α) for all α ∈ [αj−1, αj], as in the previous case. Since φ′(αj−1) < 0 and

φ′(αj) ≥ 0, the continuity of φ′ implies that there exists α∗ ∈ [αj−1, αj] such that

φ′(α∗) = 0. Since ω(α∗) ≤ 0, α∗ is a Wolfe step.

The proof for Proposition 2.3.2 (page 18) uses exactly the same arguments.

4.2 Piecewise-differentiable functions: the quasi-

Wolfe step

Performing a line search on the univariate function

ψ(α) = f(x(α)) = f(P (x+ αp)),

instead of

φ(α) = f(x+ αp),

is a substantially more difficult task, since ψ is only piecewise differentiable, with

a finite number of jump discontinuities in the derivative. Since the proposition

established in the previous section uses the mean-value theorem and requires the

underlying function to be differentiable, it is not possible to guarantee a Wolfe step

using said conditions. To compensate for the loss of differentiability, we introduce

a new step type, defined below.

We define the right derivative of function ψ at α to be

ψ′+(α) = lim
β→α+

ψ′(β),

55

and the left derivative of function ψ at α to be

ψ′−(α) = lim
β→α−

ψ′(β).

The following lemmas, used in proposition below, are stated here without

proof.

Lemma 4.2.1. Let a, b ∈ R such that 0 ≤ a < b, and assume that f is a

univariate, continuous, piecewise-differentiable function with a finite number of

jump discontinuities in the derivative.

f ′+(a) ≤ 0 and f(a) ≤ f(b),

then there exists a point x ∈ [a, b] such that

f ′−(x) ≤ 0 ≤ f ′+(x),

with equality throughout if f ′(x) exists.

Lemma 4.2.2. Let a, b ∈ R such that 0 ≤ a < b and assume that f is a uni-

variate, continuous, piecewise-differentiable function with a finite number of jump

discontinuities in the derivative. If f ′+(a) ≤ 0 and f ′−(b) ≥ 0 then there exists a

point x ∈ [a, b] such that

f ′−(x) ≤ 0 ≤ f ′+(x),

with equality throughout if f ′(x) exists.

A step α is called a quasi-Wolfe step if it is an Armijo step and satisfies at

least one of the following conditions:

1. |ψ′−(α)| ≤ cW |ψ′+(0)|;

2. |ψ′+(α)| ≤ cW |ψ′+(0)|;

3. ψ′(α) does not exist and ψ′−(α) ≤ 0 ≤ ψ′+(α).

A quasi-weak-Wolfe step can be defined in a similar manner by modifying the first

two conditions. We construct a new line search by using the framework from the

differentiable case.

56

Proposition 4.2.1. Let {αi} be a strictly monotonically increasing sequence with

α0 = 0, and let ψ : R→ R be a continuous piecewise-differentiable function whose

derivative has a finite number of jump discontinuities. If it exists, let j be the

smallest index where at least one of the following “stage-one” conditions is true:

1. αj is a quasi-Wolfe step, or

2. αj is not an Armijo step, or

3. ψ(αj) ≥ ψ(αj−1), or

4. ψ′−(αj) ≥ 0.

If such a j exists, then there exists a quasi-Wolfe step α∗ ∈ [αj−1, αj].

Proof. Given cA, define

θ(α) = ψ(0) + cAψ
′
+(0)α,

and

ω(α) = ψ(α)− θ(α).

Then

ω′(α) = ψ′(α)− cAψ′(0).

Observe that if j > 1, αj−1 satisfies none of the conditions (1)–(4), otherwise stage

one would have terminated already. This implies that

ψ′−(αj−1) < 0

by (4). If ψ′(αj−1) exists, then ψ′+(αj−1) = ψ′−(αj−1) < 0 and

ψ′+(αj−1) < cWψ
′
+(0)

by (1). If ψ′(αj−1) does not exist, then (1) implies ψ′+(αj−1) < 0, which, in turn,

implies

ψ′+(αj−1) < cWψ
′
+(0),

which also follows from (1). If j = 1, ψ′+(αj−1) = ψ′+(0) < cWψ
′
+(0), thus

ψ′+(αj−1) ≤ cWψ
′
+(0), (4.2)

57

for all j ≥ 1. As in the differentiable case, ω(αj−1) ≤ 0.

These introductory results are used in the following proofs for each of the

four cases.

Case 1: The proposition is true trivially if (1) is true.

Case 2: If (2) is true, then ω(αj) > 0. Define

αm = sup{α ∈ [αj−1, αj] : ω(α) ≤ 0 for all β ∈ [αj−1, α]}.

By inequality (4.2), ω′+(αj−1) < 0, thus αj−1 < αm < αj and ω(αm) = 0. Since

ω(αj−1) ≤ ω(αm) and ω′+(αj−1) < 0, by Lemma 4.2.1, there exists α∗ ∈ [αj−1, αm]

such that

ω′−(α∗) ≤ 0 ≤ ω′+(α∗).

This implies that

ψ′−(α∗) ≤ cAψ
′
+(0) ≤ ψ′+(α∗).

By the definition of αm, α∗ is an Armijo step. Observe that ψ′−(α∗) < 0. Therefore,

if ψ′+(α∗) ≥ 0, α∗ must be a quasi-Wolfe step. On the other hand, if ψ′+(α∗) < 0,

then

cWψ
′
+(0) < cAψ

′
+(0) ≤ ψ′+(α∗) < 0,

and α∗ is a quasi-Wolfe step.

Case 3: If (3) is true and (2) is false, then without loss of generality, assume

ψ(α) ≤ θ(α) for all α ∈ [αj−1, αj]. Since ψ(αj−1) ≤ ψ(αj) and ψ′+(αj−1) ≤ 0, there

exists an Armijo step α∗ ∈ [αj−1, αj] such that

ψ′−(α∗) ≤ 0 ≤ ψ′+(α∗),

by Lemma 4.2.1. If ψ′−(α∗) = 0 or ψ′+(α∗) = 0, α∗ is a quasi-Wolfe step. Otherwise,

ψ′−(α∗) < 0 < ψ′+(α∗), which also implies that α∗ is a quasi-Wolfe step.

Case 4: Finally, consider the case where (4) is true and (2) is false. Assume

without loss of generality that ψ(α) ≤ θ(α) for all α ∈ [αj−1, αj]. By Lemma 4.2.2,

there exists an Armijo step α∗ ∈ [αj−1, αj] such that

ψ′−(α∗) ≤ 0 ≤ ψ′+(α∗).

Thus, by the exact same argument in the preceding paragraph, α∗ is a quasi-Wolfe

step.

58

Proposition 4.2.2. Let I be an interval whose endpoints are αl and αu and let

ψ : R→ R be a continuous, piecewise-differentiable function whose derivative has

a finite number of jump discontinuities. Assume αl and αu (αl 6= αu) satisfy the

following conditions:

1. αl is an Armijo step, and

2. ψ(αl) ≤ ψ(αu) if αu is an Armijo step, and

3. ψ′+(αl) < 0 if αl < αu or ψ′−(αl) > 0 if αl > αu.

Then there exists a quasi-Wolfe step α∗ ∈ I.

59

Proof. The proof is similar to that of Proposition 4.2.1.

A simplified example of a quasi-Wolfe line search is almost identical to the

one presented in Chapter 2.

Algorithm 4.1 Simplified quasi-Wolfe line search

choose cA ∈ (0, 1), cW ∈ (cA, 1), αmax

α← 1, αold ← 0

while α is not a quasi-Wolfe step

if α is not an Armijo step or ψ(α) ≥ ψ(αold)

α← StageTwo(αold,α); break

if ψ′+(α) ≥ 0

α← StageTwo(α,αold); break

αold ← α

increase α towards αmax

end

return α

function StageTwo(αl,αu)

choose αnew in interval defined by αl and αu using interpolation

if αnew is a quasi-Wolfe step

return αnew

if αnew is not an Armijo step or ψ(αnew) ≥ ψ(αl)

return StageTwo(αl,αnew)

if ψ′+(αnew)(αu − αl) < 0

return StageTwo(αnew,αu)

otherwise

return StageTwo(αnew,αl)

end function

60

4.2.1 Convergence results

Speaking in terms of exact arithmetic, if a quasi-Wolfe line search termi-

nates prematurely during the first stage by reaching αmax without locating an

interval that contains a quasi-Wolfe step, all of the steps computed so far are

Armijo steps. Also, if all the components of u and l are finite, then there exists a

step, αJ , such that ψ′(α) = 0, for all α ≥ αJ .

A quasi-Wolfe line search seems to perform better in practice than a Armijo-

like line search when used with a quasi-Newton method (see Chapter 6). However,

in theory, it has a downside when compared to a Wolfe line search. If the next

iterate is given by

x̄ = P (x+ ᾱp),

where ᾱ is a quasi-Wolfe step, then the approximate curvature

(g(x̄)− g(x))T (x̄− x)

need not be greater than zero. It is worth pointing out that this downside is only

possible if the path P (x + αp) changes direction for some α ∈ (0, ᾱ). If it does

change direction, ψ′+(0) and ψ′−(ᾱ) can be directional derivatives of f in a direction

other than x̄ − x. For example, using Figure 4.1, which has lower bounds x1 = 0

and x2 = 0, ψ′+(0) is a directional derivative of f in direction p1 and ψ′−(ᾱ) is a

directional derivative of f in direction p2.

61

x1 = 0

x2 = 0

x

x̄ = P (x + ᾱp)

x̄− x
p1

p2

Figure 4.1: No guarantee to update approximate Hessian

As a result, if the path changes direction for α ∈ (0, ᾱ), then it suffers from

the same theoretical downside that an Armijo line search suffers from: there is no

guarantee that the approximate Hessian can be updated. It is worth pointing out

that this downside only occurs if the

In practice, it seems to be uncommon for an algorithm using a quasi-Wolfe

line search to skip the approximate Hessian update. Using an implicit Matlab

implementation of Algorithm LRHB (5.2) (see Chapter 5), which utilizes a quasi-

Wolfe line search, on a set of 111 problems from the CUTEr test set (see Chapter

6), the update to the approximate Hessian was skipped 183 times out of a total of

32,337 iterations. Out of those 183 times, the line search successfully calculated a

quasi-Wolfe step 152 times (85 occurrences came from one problem and 31 came

from another, both problems for which LRHB did not converge). On 19 problems,

the line search successfully found a quasi-Wolfe interval but failed to find a step

62

within a user-defined number of iterations. On 9 others, a quasi-Wolfe step was

not found due to αmax being too large. On the remaining 3, no useful step was

found.

If it can be shown that an algorithm using a quasi-Wolfe line search correctly

identifies the active set at the solution in a finite number of iterations, then, after

the active set stabilizes, a quasi-Wolfe line search behaves exactly like a Wolfe

line search in that updates to the approximate Hessian are guaranteed. Under

such circumstances, and given suitable conditions, the convergence rate of a quasi-

Newton method using a quasi-Wolfe line search is Q-superlinear.

4.3 Practical considerations

There are two main issues that separate a quasi-Wolfe line search from a

Wolfe line search. Apart from these two, which are discussed below, the code used

in a Wolfe line search is almost identical to a quasi-Wolfe line search.

The first difference between a Wolfe and quasi-Wolfe line search concerns

how each calculate ψ′(α) (or φ′(α)). Recall that, for the differentiable case,

φ′(α) = (f(x+ αp))′ = g(x+ αp)Tp.

In other words, the slope of φ is related to the directional derivative of f at x+αp

in direction p. On the other hand, because ψ(α) = f(P (x+ αp)),

ψ′+(α) = f ′(P (x+ αp))TPx+αp(p) = g(x(α))TPx(α)(p).

Thus, the slope of ψ going forward from α is related to the directional derivative

of f at x(α) in the projected direction Px(α)(p).

A step α is called a cusp step if, for some component i,

(xi + αpi = li and pi < 0) or (xi + αpi = ui and pi > 0).

Note that, if ψ′(α) does not exist, then α is a cusp step. A step α is called a cusp

step with respect to i if component i satisfies the condition above.

If α is a cusp step, it is almost always the case that ψ′−(α) 6= ψ′+(α). In

order to compute ψ′−(α), the algorithm must compute the projected direction that

63

the piecewise linear path x(α) follows when approaching α from below. If this

direction is denoted by P−x(α)(p), then

P−x(α)(p) = lim
β→α−

Px(β)(p).

The projected vector P−x(α)(p) can be computed componentwise as

[P−x(α)(p)]i =

pi if α is a cusp step with respect to i,

[Px(α)(p)]i otherwise.

Therefore,

ψ′−(α) = g(x(α))TP−x(α)(p).

Given α and β, where 0 ≤ α ≤ β, it is straightforward to calculate the

number of cusp steps that occur between them. An upper bound on the number

of cusp steps is

|A(x(β))| − |A(x(α))|,

with equality if no step is a cusp step with respect to more than one index.

If c ∈ Rn is a vector defined componentwise as,

ci =

ui − xi

pi

if pi > 0,

li − xi

pi

if pi < 0,

∞ if pi = 0,

then α is a cusp step with respect to i if α = ci and the number of cusp steps in

the interval (α, β) is equal to the cardinality of the set

{α ∈ (α, β) : α = ci for some i = {1, . . . , n}}.

The second major difference between a Wolfe and quasi-Wolfe line search

concerns the issue of interpolating to find new steps in the second stage. One

approach, which makes no changes to the interpolation code in moving from a

Wolfe line search to a quasi-Wolfe one, effectively treats the function at a cusp

step as if the function was differentiable but “merely” highly nonlinear.

64

Since the function is only piecewise differentiable, methods used to inter-

polate points on a differentiable function may not be ideal. Another approach is

to use knowledge of the number of cusp steps between two points. As a simple

example, if there is exactly one cusp step between the two points, pick αnew to be

that cusp step. As the number of cusp steps in an interval increases, it becomes

more difficult to strike a balance between making effective use of the knowledge

they exist and efficiency; for example, if an interval contains 106 cusp steps, it is

not practical to jump to the middle one and repeat on each subinterval. Another

strategy for dealing with piecewise differentiable functions is to interpolate without

using first-derivative information.

4.3.1 Current implementation

The quasi-Wolfe line search algorithms as they are implemented in Matlab

and f90 are all simplistic insofar as they ignore cusps, i.e., no changes are made to

the interpolation code. As a consequence, for the sake of computational efficiency

and due to the complexity of the underlying line-search code, ψ′−(α) is substituted

with ψ′+(α) in all relevant locations. The quasi-Wolfe line search used in all new

methods proposed in Chapter 5 uses the line-search code written by Gill, Murray

and Saunders [GMS97] as a foundation.

It is theoretically possible for the quasi-Wolfe line search, as implemented,

to fail to identify a quasi-Wolfe step or an interval that contains one. This is only

possible if one of the steps computed during the first or second stage functions is a

cusp step. For reference, using the same numerical tests found in Section 4.2.1, out

of the 37,373 times the quasi-Wolfe line search evaluates the objective function,

only two of steps computed are cusp steps.

If an alternative implementation made changes to the interpolation code to

actively seek cusp steps, it is likely that such an implementation would also benefit

from computing and using ψ′−(α), even at the cost of a small amount of additional

overhead.

65

4.4 A variant of Algorithm L-BFGS-B

Although a quasi-Wolfe line search is used in all the algorithms proposed in

Chapter 5, testing the resulting algorithms against Algorithm L-BFGS-B does not

adequately demonstrate the strengths or weaknesses of a quasi-Wolfe line search

algorithm compared to the line search strategy used in L-BFGS-B. This is because

the underlying line-search codes are from two different sources. In order to make a

fair comparison, we modify Algorithm L-BFGS-B to use a quasi-Wolfe line search

based on existing line-search code in L-BFGS-B.

Recall that qk(x) is the quadratic model used by a quasi-Newton method

during iteration k to model f . A typical iteration of the new algorithm, which we

call Algorithm LBFGSB-M (for modified), takes the form:

1. Set xc to be the first minimizer of qk(P (xk − αgk)).

2. Set x′k+1 to be the minimizer of qk(x) such that [x′k+1]i = [xc]i for all i ∈ A(xc).

3. Backtrack from x′k+1 toward xc to obtain a feasible point, x̄k+1.

4. Form search direction pk = x̄k+1 − xk.

5. Perform a quasi-Wolfe line search along pk starting at xk (αmax > 1).

The only difference between Algorithm L-BFGS-B and LBFGSB-M is in

step five. For a numerical comparison between L-BFGS-B and LBFGSB-M, see

Chapter 6.

It is possible to modify L-BFGS-B further and turn it into a pure projected-

search method by using the working set instead of the active set and eliminating

all steps involving xc. For the purposes of this dissertation, this is a relatively low-

priority task, since Algorithm LBFGSB-M already serves the purpose of adequately

testing the effectiveness of using a quasi-Wolfe line search.

Chapter 5

Reduced-Hessian Methods for

Box-Constrained Optimization

Unless otherwise noted, iteration subscripts are suppressed for the entirety

of this chapter. Bars above symbols are used to denote fully updated quantities

with respect to the current iteration and subscripts are used to refer to quantities

that are only partially updated with respect to the current iteration. Many defi-

nitions found in Chapter 3 (see page 36 and following) are used extensively in this

chapter.

Given x, recall from Chapter 3 that the formal way to solve a projected-

search quasi-Newton equation is to solve

ΠTHΠq = −ΠTg (5.1)

for q, and to set p = Πq. In this case, Π is a matrix whose orthonormal columns

span the set of projected directions with respect toW(x). Since the feasible region

is defined by F = {x : l ≤ x ≤ u}, the columns of Π can be taken as the columns

of the identity matrix of order n that correspond to elements of Wc(x).

Throughout this chapter, it is assumed that the working set is used (instead

of an expanded working set) unless otherwise noted. Thus, F(x) is defined to be

the set complement ofW(x). Any of the algorithms in this chapter can be modified

to use an expanded working set, with only minimal changes needed.

Recalling that PW(x) is defined to be the set of all feasible directions with

66

67

respect to W(x), the search direction p obtained above is the unique solution to

argmin
p′

gTp′ +
1

2
p′

T
Hp′ such that p′ ∈ PW(x).

In other words, x + p is the unique minimizer of the quadratic model subject to

the constraint p = PW(x)(p). It is important to note that x+p may not be feasible.

If A(x) = W(x), the requirement on p is equivalent to saying that p must be a

feasible direction.

Further, we recall from Chapter 2 that a reduced-Hessian search direction

p is obtained by solving

Z ′
T
HZ ′q = −Z ′Tg (5.2)

for q, and setting p = Z ′q. In this case, Z ′ is a matrix whose orthonormal columns

span the gradient subspace G (or, in the case of the limited-memory variants, some

subspace of G). To simplify notation, all references to Z, B, and T in Chapter 2

are labeled Z ′, B′, and T ′, respectively, in Chapter 5. The matrix labels Z, B, and

T are reserved for the equivalent projected variants, which are defined below.

Given the identical structure in (5.1) and (5.2), it seems natural to merge

the two ideas together, i.e., to create a reduced-Hessian method that is also a

projected-search method. This is achieved by solving

ZTHZq = −ZTg (5.3)

for q, and setting p = Zq, where Z can be formally defined as the orthonormal

component of the QR decomposition of ΠΠTZ ′. Thus, the column space of Z is

the projected gradient space (or subspace) with respect to W(x), i.e.,

col(Z) = {ΠΠTp : p ∈ G}.

As was briefly mentioned in Chapter 3, in practice there is never a need to

form matrix products involving Π or ΠT . Given x ∈ Rn, a matrix or vector M

with n rows, and Π (defined by W(x)), then the reduced matrix ΠTM is formed

from the rows of M that correspond to elements of F(x). Similarly, if N is a matrix

or vector with w = |F(x)| rows, the matrix ΠN is a matrix whose k nonzero rows

68

are taken from N and correspond to elements of F(x). Finally, ΠΠTM is a matrix

whose rows are such that, for i ∈ {1, 2, . . . , n},

eT
i ΠΠ

TM =

eT
i M if i ∈ F(x)

0 if i 6∈ F(x).

In other words, ΠΠTM is formed by taking M and “zeroing out” the rows that

correspond to elements of W(x).

The formal definition of Z suggests that there are two triangular factors to

maintain: one from the QR decomposition of Z ′ and the other from Z. In practice,

only one factor is needed, which is updated when Z ′ or Π changes. Given B′, a

basis matrix whose columns are taken to be search directions or gradients, we

define the projected basis to be B = ΠΠTB′ and define Z and T with the QR

decomposition B = ZT .

There are several difficulties that must be addressed in creating a practical

algorithm that implements Z as discussed above. In particular, we must:

• consider how to modify B (or Z if using an explicit method), T , and any

quantity that is defined in terms of B or Z when the working set changes;

and

• address the potential loss of rank when “zeroing out” rows in B and Z.

There are also considerations to be made when modifying a reduced-Hessian algo-

rithm to be a projected-search method. We need to:

• project all points into the feasible region;

• use projected gradients instead of gradients in most places;

• use a line search that is capable of handling problems with box constraints;

and

• address how projected-search directions impact the BFGS update when ap-

plied to the Cholesky factor of the reduced Hessian Z̄THZ̄.

69

When the working set changes and the matrix Π̄ is different from Π, it

is desirable to update Z (either implicitly by updating B and T or explicitly)

instead of re-orthogonalizing it from scratch after zeroing or “un-zeroing” rows.

The procedure describing how to “un-zero” a row is described fully in Section 5.3.

Additionally, to avoid computing Z from scratch, T must be stored, even if an

explicit method is used. Due to the need to store T , all RH-B methods (except

methods discussed in the next section) are built on a limited-memory foundation.

Since reinitialization is extremely effective on problems where n is large, all

algorithms implement it by default when n > min(6,m), where m is the maximum

number of columns stored in B. For a full-memory implementation, reinitialization

is enabled when n > 6. In our algorithm naming convention, the postfix “R” (for

reinitialization) is used if reinitialization is enabled for all n, the postfix “r” is used

if reinitialization is never used. The absence of both letters signifies the default

behavior described above.

To describe the projected-search variants of algorithms from Chapter 2, the

suffix “-B” or just “B” (for box constraints) is appended to the end of the algo-

rithm name. For example, the projected-search equivalent of Algorithm L-RHR

is Algorithm L-RHR-B (or LRHRB). Similarly, the projected-search equivalent of

Algorithm RHL is Algorithm RHrL-B.

Section 5.1 describes some of the obstacles that must be overcome to trans-

form any reduced-Hessian method into a projected-search method. Section 5.2

outlines a simple but näıve full-memory implementation that stores only Z. From

there, Section 5.3 details the linear algebra necessary to update relevant matri-

ces when the working set changes. Section 5.4 presents several variations on the

basic reduced-Hessian projected-search method. Section 5.5 discusses convergence

results and Section 5.6 briefly discusses future work to be done.

5.1 Converting to a projected-search method

All projected-search reduced-Hessian methods share common functionality

and structure. Therefore, many of the modifications that are required to allow an

70

RH algorithm to handle box constraints are common to all new projected-search

reduced-Hessian methods. From the previous section, we recall that these universal

modifications include:

• projecting all points into the feasible region;

• using the projected gradient instead of the gradient in most places;

• using a line search capable of handling problems with box constraints; and

• accounting for the inability to install curvature for any direction outside of

col(Z̄).

Regarding the first point, the initial iterate x0 is assumed to be feasible. If

it is not, P (x0) is used in its place, provided l ≤ u. If li > ui for some component

i, the algorithm is terminated with an appropriate error indication.

Since the columns of Z should span the projected gradient space (or sub-

space) instead of the full gradient space, the projected gradient gF = ΠΠTg is

used in place of the full gradient almost everywhere. The full gradient is used

to compute the projected gradient and is added to B′ to be potentially used in

“un-zeroing” rows during a later iteration if the projected gradient is not rejected.

Because of its role in projected-search methods, any line search used must

traverse the path x(α) = P (x + αp). Since ψ(α) = f(x(α)) is only piecewise

differentiable, a regular Wolfe line search cannot be used to find the next iterate.

Instead of using Armijo-like line search, a quasi-Wolfe line search is employed. A

detailed description of a quasi-Wolfe line search is given in Chapter 4.

One difficulty in creating a projected-search RH method is discussed in

Section 2.4.1, which observes that the BFGS update to R1, the Cholesky factor of

Z̄THZ̄, is well-defined only if δ ∈ col(Z̄), where δ = x̄ − x. Unfortunately, it can

often be the case that δ 6∈ col(Z̄) when using a projected-search method, since it is

not necessary for δ to be a scalar multiple of p, nor is it necessary that p ∈ col(Z̄)

ifW(x) 6=W(x̄). One solution to this problem, and the one used here, is to install

curvature information to H in a direction that is in the column space of Z̄.

71

To discuss this solution, several terms must be defined. As in Section 2.4.1,

we define

δ = x̄− x, γ = ḡ − g, s = Z̄T δ, y = Z̄Tγ, and RT
1R1 = Z̄THZ̄.

Note that Z̄ refers to the matrix whose columns span the projected gradient sub-

space, which is not the same matrix used in Chapter 2. Instead of installing

curvature in direction δ, we install curvature in direction δ1, where

δ1 = x1 − x and x1 = x+ Z̄Z̄T (αp).

For computational efficiency, g(x1) is not computed. Instead, g1 is defined to be

the gradient of the quadratic model

qx̄(z) = f(x̄) + ḡT (z − x̄) +
1

2
(z − x̄)TH(z − x̄),

at x1. Thus,

g1 = ∇qx̄(x1) = ḡ +H(Z̄Z̄Tαp− δ).

Given g1, the following quantities are also defined.

γ1 = g1 − g = ḡ − g +H(Z̄Z̄Tαp− δ) = γ +Hδ1 −Hδ,

s1 = Z̄T δ1 = Z̄T Z̄Z̄T (αp) = Z̄T (αp),

y1 = Z̄Tγ1 = Z̄Tγ + Z̄TH(Z̄Z̄Tαp− δ) = y +RT
1R1(s1 − s).

The last equality in the last definition follows from the fact that

Z̄THδ = Z̄T Z̄RT
1R1Z̄

T δ + σZ̄T δ − σZ̄T Z̄Z̄T δ = RT
1R1s,

by implicit definition of H (2.11) (page 23). If x1 = x̄, then g1 = ḡ, s1 = s, and

y1 = y, as required.

Given y1 and s1, the BFGS update applied to R1 is

R2 = R1 + w1w
T
2 ,

where

w1 =
1

‖R1s1‖
R1s1 and w2 =

1√
yT

1 s1

y1 −RT
1w1.

72

Since R2 is not upper triangular, R3 is defined to be the triangular matrix as-

sociated with the QR factorization of R2. If reinitialization is implemented (see

Section 2.4.2), R̄ is a r × r matrix such that,

R̄ij =

[R2]ij if i 6= r or j 6= r
√
σ̄ if i = j = r,

for some σ̄. If reinitialization is not implemented, R̄ = R2.

In order to highlight the similarity of a projected-search RH method and

a standard RH method in the pseudo-code, s1 and y1 are referred to as s and y.

In the initial assignment, the quantity αq is exactly s1 and the quantity u − v is

exactly y, not y1.

5.2 Simple implementation of a projected-search

RH algorithm

One simple though inefficient way to avoid the difficulties inherent in up-

dating the various matrices when the working set changes is to “restart” the RH

algorithm every time the working set changes. Restarting a RH algorithm is equiv-

alent to resetting all the relevant matrices and vectors (i.e., Z, R, w, etc) to what-

ever values they would be if we were to call the RH algorithm anew starting with

input x. In practice it is not necessarily to call the algorithm again.

The principle for this algorithm rests on two observations. First, the initial

search direction obtained after a restart will always be a positive scalar multiple of

the direction obtained from the steepest descent method (with equality if σ = 1).

Second, we recall from Chapter 3 that a gradient-projection method identifies the

active set at a solution x∗ in a finite number of iterations under suitable conditions.

The practical consequence is that such an algorithm will behave at worst

like a gradient-projection method while constraints are being added and dropped,

but will retain a Q-superlinear convergence rate after a finite number of iterations.

Geometrically, such an algorithm can be thought of as accumulating curvature

information on a subspace of the projected gradient space until the working set

73

changes, at which point it throws away any information obtained so far and begins

the process again starting from the new iterate.

In the pseudo-code and the actual implementations, matrices can have ei-

ther zero columns or rows. Matrix multiplication and addition is well-defined

provided that the dimensions of the operands match appropriately. It is important

to note that a gradient is always accepted if the working set has changed.

74

Algorithm 5.1 Algorithm RHSB (RH-Simple-B)

Choose σ > 0 and x

x← P (x)

g ← ∇f(x)

gF ← Px(g)

Z ← gF/‖gF‖, R←
√
σ, v ← ‖gF‖

while not converged

Solve RTd = −v for d

Solve Rq = d for q

p← Zq

Compute quasi-Wolfe step α and projected direction p′

xold ← x, x← x+ αp′, g ← ∇f(x)

gF ← Px(g)

if W(x) 6=W(xold)

Z ← n× 0 dimension empty matrix

R← 0× 0 dimension empty matrix

v, q ← 0 dimension empty vectors

end

w ← ZTgF

Update Z, R, w, v, q based on whether gradient is accepted

s← αq, y ← u− v
if x− xold 6∈ col(Z)

y ← y +RTR(ZT (xold − x) + s)

end

Apply BFGS update to R if yT s > 0

if n > 6

Compute new σ for reinitialization

Replace last diagonal element of R with
√
σ

end

v ← w

end

75

In Chapter 6, Algorithm RHSL-B is implemented, that is, the lingering

version of the above algorithm. Algorithm RHSB is presented above instead of

RHSLB for the sake of simplicity. A brief summary of lingering can be found in

Section 2.4.3. A more detailed description of lingering for the unconstrained case

can be found in Gill and Leonard [GL01].

5.3 Updating the working set

The constraints in the working set can change from one iteration to the

next; and one of the strengths of projected-search methods is the ability to add

and drop many constraints between function evaluations. Changes to the working

set alter the number of nonzero rows in B. As the quantities Z, T , R, q, and v

all depend on B they must also be updated. Other matrices depend on B but are

computed after B is updated, and hence do not need to be updated. Although T is

not used in full-memory versions of RH methods for unconstrained minimization,

it must be used in the constrained case in order to properly update all other values.

For this reason, with the exception of the simple variant in the previous section,

all RH-B methods are derived from the limited-memory family of RH algorithms,

such as Algorithm L-RHR.

As with Algorithm L-RHR, all of the algorithms in this chapter can be

implemented using either an explicit or implicit method. An implicit method,

which stores B but not Z, is most often useful when m . 6. It is generally the

faster of the two methods, as it avoids computing expensive updates to Z. However,

it suffers when m is larger due to its inability to reorthogonalize gradients that are

implicitly added to Z. Conversely, an explicit method stores Z but not B. As Z

is updated much more frequently in the constrained case, an explicit method often

exhibits much slower performance than an implicit method. The exception to this

is if function calls are expensive relative to the cost of the linear algebra, and a

larger value of m reduces the number of function calls.

Throughout this section, procedures for updating Z and B are described,

but any given implementation uses only one of them at a time. Since B = ZT , it is

76

assumed that elements of Z can be computed in an implicit method and elements

of B can be computed in an explicit method, as T is stored in both cases.

It is sufficient to show how to modify the relevant matrices for two cases—

when one constraint is added and when one constraint is removed from the working

set—since all other changes to the working set are repetitions of these two actions.

In many cases, subscripts refer to the various stages of update with respect to

adding or dropping one constraint. Fully updated values will be represented with

bars above the variable name. In this context, it is important to note that the

phrase “fully updated” only refers to the specific action of adding or dropping one

constraint. Subscripts will continue to be used to refer to specific elements in a

matrix or vector, as well.

In practice, all algorithms described in the remainder of this chapter store

and use B′ and either B or Z. This is not a necessary implementation but is

done—at the expense of storing an additional mn floating point numbers—in or-

der to take advantage of already-existing optimized BLAS routines1. If memory

storage is a large concern, the algorithms may be modified to store only B′ and

perform matrix-matrix, matrix-vector, or vector-vector operations on the appro-

priate rows. If speed is a concern, it should be possible to implement BLAS-like

routines that operate on subsets of rows and that are at least as fast as their

full-row counterparts.

5.3.1 Removing a constraint from the working set

Updating B, Z, and T

When computing a search direction, the ith component of p, pi, will be zero

if i ∈ W(x) since the ith row of B, eT
i B, is also zero. If, after the next update to

the working set, i 6∈ W̄ , then the ith component of subsequent search directions are

nonzero. This is accomplished by “restoring” the ith row of B so that eT
i B̄ = eT

i B
′.

Formally, B̄ can be defined as a rank-1 update to B:

B̄ = B + eib
T where bT = eT

i B
′. (5.4)

1Basic Linear Algebra Subprograms (BLAS) is an interface to call architecture-specific opti-
mized routines that perform various linear algebra tasks.

77

The QR factors of B, Z and T , can be updated using procedures described by

Daniel, Gragg, Kaufman, and Stewart [DGKS76], which are summarized below.

From equation (5.4), B̄ can be expressed as:

B̄ = B + eib
T =

(
Z ei

)(T
bT

)
=
(
Z ei

)
GT

0G0

(
T

bT

)
, (5.5)

where G0 is a product of Givens matrices such that

G0

(
T

bT

)
=

(
T̄

0

)
,

and T̄ is a nonsingular upper-triangular matrix. Given r = dim(T),

G0 = G0,rG0,r−1 · · ·G0,2G0,1,

where G0,i is a Givens matrix (plane rotation) that operates on rows i and r + 1

of T and zeros out the ith element of row r + 1.

To illustrate this process, consider the case for r = 4. Elements denoted by

“x” describe an original value, or, after the first step, an element that is unmodified

from the last step. Elements that have been modified from the previous step

are denoted by “m” (or “0” if the present value is zero). Blank elements denote

unchanged zeros.

(
T

bT

)
=

x x x x

x x x

x x

x

x x x x

G0,1−−→

m m m m

x x x

x x

x

0 m m m

G0,2−−→

x x x x

m m m

x x

x

0 m m

G0,3−−→

x x x x

x x x

m m

x

0 m

G0,4−−→

x x x x

x x x

x x

m

0

=

(
T̄

0

)
.

78

The upper-triangular matrix T̄ is nonsingular since, due to the nature of Givens

rotations, |T̄i,i| ≥ |Ti,i| for i = 1, . . . , r and because T is nonsingular.

Once Z is postmultiplied by GT
0 and T is premultiplied by G0, Z̄ and T̄ are

obtained from (5.5):

B̄ =
(
Z ei

)
GT

0G0

(
T

bT

)
=
(
Z̄ z

)(T̄
0

)
= Z̄T̄ .

Because ZT ei = 0, the columns of
(
Z ei

)
are orthonormal. Since Givens ma-

trices and products of Givens matrices are orthonormal, the columns of Z̄ are

orthonormal as well.

In order to better describe the other updates and because all modifications

to Z and T are done in situ, it is useful to identify explicitly each of the partial

modifications to Z and T . In particular, starting with Z0 = Z, the first update

adds a column to Z0:

Z1 =
(
Z0 ei

)
. (5.6)

Next, Z1 is postmultiplied by GT
0 so that

Z2 = Z1G
T
0 . (5.7)

Finally, the last column of Z2, z, is deleted so that Z̄ (:= Z3) satisfies,

Z2 =
(
Z̄ z

)
. (5.8)

The matrices T0, T1, T2, and T̄ = T3 are defined in a similar way.

Updating q and v

The reduced column vectors q = ZTp and v = ZTg can be updated in one

of two ways. The simplest and usually least efficient way to compute q̄ and v̄ is

to compute them from scratch after Z is updated. The second method involves

updating q and v using corresponding updates to Z. As q = ZTp, (5.6) gives

q1 = ZT
1 p =

(
ZT

eT
i

)
p =

(
ZTp

pi

)
.

79

Next, (5.7) yields

q2 = ZT
2 p = G0Z

T
1 p = G0q1 = G0,rG0,r−1 · · ·G0,2G0,1q1.

Finally, from (5.8), set q̄ = q3 to be the first r components of q2 since

q2 = ZT
2 p =

(
ZT

3

zT

)
p =

(
ZT

3 p

zTp

)
=

(
q3

zTp

)
.

The update for v = ZTg is done in exactly the same way. The cost of updating q

and v versus the cost of computing from them scratch will be addressed later.

Updating the Cholesky factor of ZTHZ

As RTR = ZTHZ, one way to update R is to follow the same steps to

update Z. Because ZT ei = BT ei = 0, the definition of H (2.11) implies that

Hei = ZRTRZT ei + σ(In − ZZT)ei = σei. (5.9)

Thus, the first partial update to Z of (5.6) gives the first partial update to R as

R1 =

(
R 0

0
√
σ

)
,

since R1 satisfies

RT
1R1 =

(
RTR 0

0 σ

)
=

(
ZTHZ 0

0 σ

)
=

(
ZTHZ ZTHei

eT
i HZ eT

i Hei

)
= ZT

1 HZ1.

Equation (5.7) suggests that the next updated quantity should be R1G
T
0

since

(R1G
T
0)T (R1G

T
0) = G0R

T
1R1G

T
0 = G0Z

T
1 HZ1G

T
0 = ZT

2 HZ2.

This is an unsuitable update, however, because R1G
T
0 is not upper-triangular.

Using the same notation as above, the loss of triangularity can be seen with an

80

example, for instance, when r = 3:

R1 =

x x x

x x

x

x

GT

0,1−−→

m x x m

x x

x

m m

GT

0,2−−→

x m x m

m x m

x

x m m

GT
0,3−−→

x x m m

x m m

m m

x x m m

 = R1G
T
0 .

In general, the matrix R1G
T
0 is upper-triangular with a “row spike” in row

r+ 1. To obtain the upper-triangular update R2, the intermediate quantity R1G
T
0

is multiplied on the left by another set of Givens matrices:

R2 = G1R1G
T
0 = (G1,rG1,r−1 · · ·G1,2G1,1)R1G

T
0 ,

where G1,i is a Givens matrix that acts on rows i and r + 1 of the product

G1,i−1 · · ·G1,1R1G
T
0

to zero out the ith element in row r+1. Premultiplying R1G
T
0 by G1 preserves the

necessary identities since

RT
2R2 = (G1R1G

T
0)T (G1R1G

T
0)

= G0R
T
1G

T
1G1R1G

T
0

= G0R
T
1R1G

T
0

= G0Z
T
1 HZ1G

T
0

= ZT
2 HZ2. (5.10)

Finally, R̄ = R3 is defined as the r × r leading principal submatrix of R2:

R2 =

(
R3 a1

0 γ

)
,

81

where a1 is a vector of length r and γ is a scalar. Equation (5.10) gives(
RT

3R3 RT
3 a1

aT
1R3 aT

1 a1 + γ2

)
= RT

2R2 = ZT
2 HZ2 =

(
ZT

3 HZ3 ZT
3 Hz

zTHZ3 zTHz

)
,

and RT
3R3 = ZT

3 HZ3 as required.

Updating the Cholesky factor of BTHB

Instead of updating R directly, it is also possible to update R indirectly by

updating a Cholesky factor of BTHB. The first step is to define S = RT , so that

STS = T TRTRTT = T TZTHZT = BTHB.

Assuming S̄ can be computed such that S̄T S̄ = B̄THB̄, R̄ can be obtained by

using a triangular solver to solve the equation S̄ = R̄T̄ for R̄. If R is updated

using this method, R is transformed into S only once, before any constraints are

dropped. The Cholesky factor S is updated for each dropped constraint. Finally,

R̄ is computed only once at the very end after all relevant constraints have been

removed (and added, if the same Cholesky factor is used when adding constraints).

Computing S from R and computing R̄ from S̄ each take O(m3) operations.

Because the process to obtain the updated S̄ is different from the process

used to obtain R̄ directly, subscripts will still be used to describe partial updates

but will no longer correspond to similar stages in updating Z.

Given an initial factor S, the updated matrix S̄ must be upper-triangular

and satisfy

S̄T S̄ = (B + eib
T)TH(B + eib

T) = STS +BTHeib
T + beT

i HB + beT
i Heib

T . (5.11)

The structure of (5.11) suggests a rank-1 update to S. We define S1 to be

of the form

S1 = S + a1a
T
2 ,

where a1 and a2 are column vectors of length r. Substituting into (5.11) and

attempting to match terms yields values a1 = S−TBTHei and a2 = b. This is only

82

a partial update, however, as (5.11) gives

ST
1 S1 = STS + STS−TBTHeib

T + beT
i HBS

−1S + baT
1 a1b

T

= STS +BTHeib
T + beT

i HB + (aT
1 a1)bb

T

= S̄T S̄ + (aT
1 a1 − eT

i Hei)bb
T .

Given that Hei = σei (5.9) and BT ei = 0, the vector a1 is exactly zero:

a1 = S−TBTHei = σS−TBT ei = 0.

Since a1 = 0, S1 = S and S̄ must satisfy

S̄T S̄ = ST
1 S

T
1 + σbbT = STS + σbbT .

It is worth noting that Hei and a1 simplify in such a manner only when removing

a constraint. In general, the vector a1 can be nonzero when adding a constraint.

Next, we define

S2 =

(
S1

(
√
σ)bT

)
,

so that

ST
2 S2 =

(
ST

1 (
√
σ)b
)(S1

(
√
σ)bT

)
= ST

1 S1 + σbbT .

Finally, we define S̄ to be the r × r matrix such that(
S̄

0

)
= G2S2 = (G2,rG2,r−1 · · ·G2,2G2,1)

(
S1

(
√
σ)bT

)
,

so that G2,i is a Givens matrix that operates on rows i and r+1 of matrix S2 to zero

out the ith element of row r+1. Observe that the nonsingular and upper-triangular

matrix S̄ satisfies

S̄T S̄ =
(
S̄T 0

)(S̄
0

)
= ST

2 G
T
2G2S2 = ST

2 S2 = ST
1 S1 + σbbT ,

as required.

83

Computational costs

In order to discuss the computational efficiency of a particular algorithm,

we define a flop—for floating point operation—to be an addition, subtraction,

multiplication or division. For example, computing the expression a ∗ (b + c/d)

takes 3 flops, if a, b, c, d ∈ R.

If the number of constraints removed from the working set is denoted by

nd, then updating R, the Cholesky factor of ZTHZ, after nd constraints have

been dropped costs approximately (6r2 +19r)nd flops. On the other hand, it costs

(3r2 + 5r)nd flops to update S, the Cholesky factor of BTHB.

This does not include the conversion costs to convert from R to S and back

again. In theory, these costs can be as low as 1
3
r3 + 1

2
r2 + 1

6
r flops per conversion.

In practice, since there are no BLAS routines for forward- and backward-solves for

triangular matrices, a BLAS routine is used that performs forward- and backward-

solves on general matrices, which costs r3 flops per conversion.

Thus, the total cost to update S, including the conversion from R to S and

back again, is (3r2 + 5r)nd + 2r3 flops. One factor not considered here is that

the cost of converting from R to S and back again can be shared if S is updated

(instead of R) when constraints are added as well. This consideration turns out to

be a moot point, however, as R is almost always cheaper to update than S when

constraints are added. More information about this point can be found at the end

of Section 5.3.2.

Given the number of flops required for each method, it is straightforward

to show that the number of flops required to update R is less than the number

required to update S if and only if

nd >
2r2

3r + 14
.

As it is implemented, all RH-B algorithms update either R or S, based on whether

the above inequality is satisfied.

The same analysis can be applied to choosing the method to compute q̄

and v̄. In particular, it costs 12r2nd flops to update q and v when dropping nd

constraints. The cost to recompute q and v from scratch depends on whether an

84

implicit or explicit method is used. Using an implicit method, it costs 4nr+2r2−2r

flops to update both quantities, regardless of the number of constraints dropped.

Similarly, it costs 4nr− 2r flops using an explicit method. Because the decision to

update versus compute from scratch also depends on constraints that are added,

final comparisons are only presented at the end of Section 5.3.2.

5.3.2 Adding a constraint to the working set

Updating B, Z, and T

Adding a constraint with index i to the working set is equivalent to restrict-

ing any further movement in the ith component. Since any search direction p is in

the column space of Z, restricting movement in the ith component is accomplished

by “zeroing out” the ith row of Z or B. As with the previous case, the updated

matrix B̄ is a rank-1 update to B; i.e.,

B̄ = B + eib
T where bT = −eT

i B.

The row vector bT , which is the negative of the ith row of B, will be used throughout

this subsection and is not the same quantity used in the previous subsection.

Just like before, every other required matrix or vector modification is a direct

consequence of modifying B.

Once again T and Z are updated using a method described in Daniel, et al

[DGKS76], which is summarized below.

First, if ei 6∈ col(B), we define z to be the normalized component of ei that

is orthogonal to Z, i.e., z and ρ are defined so that

ρz = (In − ZZT)ei = ei − ZZT ei = ei − Zzi with zi = ZT ei, (5.12)

where ‖z‖ = 1 and ρ > 0. Note that zi, a column vector representing the ith

row of Z, can be obtained by solving T T zi = −b if using an implicit method. If

ei ∈ col(B) then ρ = 0 and z can be any unit vector. In this case, z is not a

normalized component of ei orthogonal to Z.

If ei ∈ col(B), then the matrix
(
B ei

)
is rank deficient and the process

for “zeroing out” row i in B will fail to the extent that the resulting updated

85

matrix will also be rank deficient. To remedy this and to make the algorithm for

“zeroing out” a row well-defined, a column is dropped from B before ei is added.

Keeping with the philosophy used in a limited-memory algorithm, the column that

is dropped is the oldest column of B that is not orthogonal to ei. If B0 is the matrix

that results from taking B and dropping such a column, then the matrix
(
B0 ei

)
has full column rank and “zeroing out” the ith row returns a matrix that also has

full column rank. The details on how to drop a column from B and how to update

the relevant matrices that depend on B can be found in Section 5.3.3.

Assuming ei 6∈ col(B) and that an explicit method is used, it is desirable

to use reorthogonalization, when applicable, on z. More information can be found

in Daniel, et al. [DGKS76].

For the remainder of this subsection, without loss of generality, it is assumed

that ei 6∈ col(B) and ρ > 0. If ei ∈ col(B), a column of B is dropped, all matrices

that depend on B are adjusted accordingly and the updates provided below are

applied to the resulting matrices. Given z from equation (5.12), matrices Z1 and

T1 are defined so that

B = ZT =
(
Z z

)(T
0

)
= Z1T1.

If the ith component of z is denoted by the scalar ζ, then the ith row of Z1 is the

row vector
(
zT

i ζ
)
. Daniel et al [DGKS76] show that ζ = ρ. Thus,

ζ2 = ρ2 = (ρz)T (ρz) = (ei − Zzi)
T (ei − Zzi) = 1− zT

i zi. (5.13)

The significance of this equation is that, for implicit methods, it allows access to

the only element of z that is needed without requiring the full vector z, which is

expensive to compute. This will be seen in the next several paragraphs.

Next, we define a product of Givens matrices

G0 = G0,1G0,2 · · ·G0,r−1G0,r

such that

eT
i Z1G

T
0 =

(
zT

i ζ
)
GT

0,rG
T
0,r−1 · · ·GT

0,2G
T
0,1 =

(
0 τ

)

86

for a scalar τ . Note that GT
0,i acts on columns i and r + 1 of the product of(
zT

i ζ
)
G0,rG0,r−1 · · ·G0,i+1

to zero out the entry in column i. As Givens rotations preserve length, it follows

that τ = ±1.

Given G0, we define Z2 = Z1G
T
0 and T2 = G0T1 so that

Z2T2 = Z1G
T
0G0T1 = Z1T1 = B. (5.14)

Finally, we set Z̄ (:= Z3) to be the first r columns of Z2 and T̄ (:= T3) to be the

first r rows of T2. Daniel et al [DGKS76] show that the last column of Z2 is τei

and the last row of T2 is −τbT , which, together with (5.14), gives

B = Z2T2 =
(
Z̄ τei

)(T̄

−τbT

)
= Z̄T̄ − τ 2eib

T = Z̄T̄ − eib
T .

Thus

Z̄T̄ = B + eib
T = B̄,

and eT
i Z̄ = 0 as required. Given ρ > 0, the columns of Z2 are orthonormal since

G0 is orthonormal, and hence the columns of Z̄ are orthonormal as required. The

matrix T̄ is upper-triangular, which is evident by considering a small example, say,

when r = 4. Using the same notation as before, the transformation from T1 to T2

is as follows:

T1 =

x x x x

x x x

x x

x

G0,4−−→

x x x x

x x x

x x

m

m

G0,3−−→

x x x x

x x x

m m

x

m m

G0,2−−→

x x x x

m m m

x x

x

m m m

G0,1−−→

m m m m

x x x

x x

x

m m m m

= T2 =

(
T̄

−τbT

)
.

87

Updating q and v

As with the previous subsection, the vectors v = ZTg and q = ZTp can be

computed from scratch once Z̄ is obtained or they can be updated based on the

partial updates to Z.

Using the definition of q and equation (5.12), we define

q1 = ZT
1 p =

(
ZT

zT

)
p =

(
ZTp

ρ−1(eT
i − eT

i ZZ
T)p

)
=

(
ZTp

ρ−1(pi − zT
i q)

)
,

where pi is the ith component of p. Next we define

q2 = ZT
2 p = G0Z

T
1 p = G0,1G0,2 · · ·G0,r−1G0,rq1,

and set q̄ = q3 to be the first r elements of vector q2 since

q2 = ZT
2 p =

(
Z̄T

τeT
i

)
p =

(
Z̄Tp

τpi

)
.

The vector v = ZTg is updated in a similar fashion.

Updating the Cholesky factor of ZTHZ

As in the case when removing constraints, it is possible to update R directly

following the same sequence used to update Z. Since ZT z = 0, the definition of H

(2.11) implies

Hz = σz.

Therefore,

R1 =

(
R 0

0
√
σ

)
,

since

RT
1R1 =

(
RTR 0

0 σ

)
=

(
ZTHZ ZTHz

zTHZ zTHz

)
= ZT

1 HZ1.

88

As before, the quantity R1G
T
0 is not upper-triangular; in fact, it will likely

have no zero elements at all. Consider an example where r = 3:

R1 =

x x x

x x

x

x

GT

0,3−−→

x x m m

x m m

m m

m m

GT

0,2−−→

x m x m

m x m

m x m

m x m

GT
0,1−−→

m x x m

m x x m

m x x m

m x x m

 = R1G
T
0

To prevent full loss of triangularity, R1G
T
0 is premultiplied by another prod-

uct of Givens matrices and the two sets of Givens rotations are applied in an in-

terlacing fashion. We define G1 = G1,rG1,r−1 · · ·G1,3G1,2, where G1,i operates on

rows i and r + 1 of the current product of matrices to zero out element r + 1 in

row i. This product of matrices is still not upper-triangular, so it is labeled as

intermediate update R1a:

R1a = [G1,2 · · · ([G1,r−1([G1,r(R1G
T
0,r)]G0,r−1)] · · ·GT

0,2)]G
T
0,1.

To see an example of how the Givens matrices are applied, consider an

example where r = 3:

R1 =

x x x

x x

x

x

GT

0,3−−→

x x m m

x m m

m m

m m

G1,3−−→

x x x x

x x x

m 0

m m

GT
0,2−−→

x m x m

m x m

x

m x m

G1,2−−→

x x x x

m m 0

x

m m m

GT

0,1−−→

m m m m

x x

x

m m m m

 = R1a.

While it is possible to zero out entry (1, r+ 1) by premultiplying by a final

Givens matrix G1,1, it is not necessary given the next update to R. Although R1a

89

satisfies

RT
1aR1a = G0R

T
1G

T
1G1R1G

T
0 = G0R

T
1R1G

T
0 = ZT

2 HZ2,

it contains a row spike in row r + 1. Therefore, we define R2 to be the product

R2 = G2R1a,

where

G2 = G2,rG2,r−1 · · ·G2,2G2,1.

The Givens matrix G2,i operates on rows i and r + 1 of the product

G2,i−1 · · ·G2,2G2,1R1a

to zero out element i in row r + 1. Note that R2 is upper-triangular and that

RT
2R2 = RT

1aG
T
2G2R1a = RT

1aR1a = ZT
2 HZ2

as required.

Finally, as in the previous case, R̄ = R3 is taken to be the r × r leading

principal submatrix of R2, since the first r elements of the last row of R3 are zero.

Updating the Cholesky factor of BTHB

As with the previous case, it is possible to update R indirectly by updating

a Cholesky factor S, where STS = BTHB. The details for converting from R to S

and from S̄ to R̄ can be found in the previous subsection on removing a constraint.

Numerical subscripts will refer to partial updates to S, but do not correspond with

partial updates to Z, given the direct dependence of S on B.

Using equation (5.11), we define the first partial update to be

S1 = S + a1a
T
2 ,

where a1 = S−TBTHei and a2 = b. Recall that b = −eT
i B when adding a con-

straint. From equation (5.11), S̄ must satisfy

ST
1 S1 = S̄T S̄ + (aT

1 a1 − eT
i Hei)bb

T .

90

The similarity to the previous case ends here. The definition of H (2.11) implies

Hei = ZRTRZT ei + σ(In − ZZT)ei = ZRTRZT ei + σ(ei − ZZT ei). (5.15)

Since B = ZT and R = ST , this equation can be used to simplify the

expression for a1:

a1 = S−TBTHei

= (SS−1)S−T (ZT)T (ZRTRZT ei + σei − σZZT ei)

= S(STS)−1T T (RTRZT ei + σZT ei − σZT ei)

= S(BTHB)−1T T (ZTHZ)(ZT ei)

= S(T TZTHZT)−1T T (ZTHZ)zi

= ST−1(ZTHZ)−1T−TT T (ZTHZ)zi

= ST−1zi.

Although S1 is defined formally, it is never computed directly, due to its

total loss of upper-triangularity. To prevent a full loss of triangularity, the two

terms composing S1 are premultiplied by a product of Givens matrices. We define

G2 = G2,1G2,2 · · ·G2,r−2G2,r−1

where G2,i is a Givens matrix that acts on elements i and i+1 of G2,i+1 · · ·G2,r−1a1

to zero out element i+ 1 so that

G2a1 = γe1

where γ = ±‖a1‖. Next, we define

S2 = G2S1 = G2S +G2a1a
T
2 = G2S + γe1a

T
2 .

The matrix S2 is upper-Hessenberg since G2S is upper-Hessenberg and γe1a
T
2 is a

matrix whose only nonzero elements are in the first row.

Next, we define

S3 = G3S2,

where

G3 = G3,1G3,2 · · ·G3,r−1,

91

and G3,i is a Givens matrix that acts on rows i and i+ 1 of the product

G3,i+1 · · ·G3,r−1S2

to zero out element (i, i+ 1). Note that S3 is upper-triangular and satisfies

ST
3 S3 = ST

1 G
T
2G

T
3G3G2S1

= ST
1 S1

= S̄T S̄ − (eT
i Hei − aT

1 a1)bb
T ,

where

eT
i Hei − aT

1 a1 = eT
i (ZZTHZZT ei + σei − σZZT ei)− eT

i ZT
−TRT

BRBT
−1ZT ei

= eT
i ZZ

THZZT ei + σ − σeT
i ZZ

T ei − eT
i ZZ

THZZT ei

= σ(1− eT
i ZZ

T ei)

= σ(1− zT
i zi)

= σζ2

> 0,

by equations (5.15) and (5.13).

Since σζ2 > 0, we define

S4 =

(
S3

(
√
σ)ζbT

)
so that S4 satisfies

ST
4 S4 = ST

3 S3 + (eT
i Hei − aT

1 a1)bb
T = S̄T S̄.

Finally, S̄ is defined as the r × r nonsingular upper-triangular matrix such

that (
S̄

0

)
= G4S4 = (G4,rG4,r−1 · · ·G4,2G4,1)

(
S3

(
√
σ)ζbT

)
,

where G4,i is a Givens matrix that operates on rows i and r + 1 of the product

G4,i−1 · · ·G4,1 to zero out the ith element of row r + 1. Observe that

S̄T S̄ =
(
S̄T 0

)(S̄
0

)
= ST

4 G
T
4G4S4 = ST

3 S3 + (σζ2)bbT ,

as required.

92

Computational costs

Recall from the end of Section 5.3.1, that a flop is defined to be an addition,

subtraction, multiplication or division.

If the number of constraints added to the working set is denoted na, then

updating R after na constraints are added requires (9r2 + 23r)na flops. On the

other hand, updating S costs (11r2 + 21r − 19)na flops, not including the cost of

converting R to S and back again. With conversion costs, the number of flops used

becomes (11r2 + 21r− 19)na + 2r3. Even without the conversion costs factored in,

it is always cheaper to update R if r ≥ 4. Further, the differences between costs

when r < 4 is almost negligible. For this reason, the update to R is always used

in all RH-B methods implemented to date.

The cost to update q and v after na constraints are added is (12r2+4r+2)na

flops. Recall that the cost to recompute q and v from scratch is 4nr + 2r2 − 2r

if an implicit method is used and 4nr − 2r if an explicit method is used. Thus,

if nd represents the number of constraints that are dropped, the number of flops

required to compute q̄ and v̄ is

12(na + nd)r
2 + 4nar + 2na.

All RH-B algorithms implemented in Matlab can compute q̄ and v̄ using either

option, depending on cost. All RH-B algorithms currently implemented in Fortran

90 recompute q and v from scratch after the working set changes.

5.3.3 Dealing with rank reduction

There are two procedures in an RH-B algorithm that remove a column

from B and update the other relevant matrices and vectors. The first procedure

removes a column from B if, after accepting a new gradient, the resulting basis

matrix has m + 1 columns, where m is the user-defined limit on the number of

columns. The second procedure drops a column from B if, when adding constraint

i to the working set, ei ∈ col(B) (see Section 5.3.2 for more information).

To simplify notation and preserve readability, the subscripts representing

partial updates to B, Z, T , R, w, q and v within a larger RH-B algorithm at the

93

time the column-dropping procedure occurs are suppressed. Instead, subscripts

and bars are used, respectively, to denote partial and final updates within the

column-dropping procedure only. Both procedures can be described by the same

matrix updates. The only difference between the two procedures is which matrices

are updated as B is changed. Both procedures track updates to B, Z, T , and R.

The first procedure also updates w, while the second procedure updates q and v.

The vectors w, q, and v all share the same structure; namely, they are all reduced

vectors of the form ZTu′, for some u′. Therefore, we need only describe how to

update a generic reduced vector, denoted u = ZTu′.

Although the first procedure always removes the first column, it is possible

that the second procedure can remove any column. Therefore, the general proce-

dure for removing a column is described in terms of removing column k, where

k ∈ {1, 2, . . . , r} with r = rank(B). The algorithm for removing a column from B

and modifying Z and T comes from Daniel, et al [DGKS76].

Let B be partitioned as

B =
(
B′ b B′′

)
,

so that the kth column of B is b. Matrices B′ and B′′ may be empty matrices with

zero columns. The partition for B defines a similar partition for T , namely,

T =
(
T ′ t T ′′

)
.

Thus, (
B′ b B′′

)
= Z

(
T ′ t T ′′

)
,

and (
B′ B′′

)
= Z

(
T ′ T ′′

)
and b = Zt.

We define B̄ =
(
B′ B′′

)
and T1 =

(
T ′ T ′′

)
, so that T1 is upper-Hessen-

berg. A composition of Givens matrices, denoted G1, is applied on the left of T1

to restore it to upper-triangularity, with

G1 = G1,k+1G1,k+2 · · ·G1,r,

94

so that G1,i is an r×r Givens matrix that works on rows i and i−1 of the product

of G1,i+1 · · ·G1,rT1 to zero out element i − 1 in row i. Let T2 = G1T1, so that T2

is an r × (r − 1) upper-triangular matrix. Finally, T̄ is defined to be the leading

(r − 1)× (r − 1) principal submatrix of T2, so that

T2 =

(
T̄

0

)
.

Since B̄ = ZT1, it holds that

B̄ = ZGT
1G1T1 = ZGT

1 T2.

Thus, Z1 is defined to be ZGT
1 = ZGT

1,rG
T
1,r−1 · · ·GT

1,k+2G
T
1,k+1. If z is the last

column of Z1, then Z̄ can be defined so that Z1 is partitioned as

Z1 =
(
Z̄ z

)
.

We observe that

B̄ = Z1T2 =
(
Z̄ z

)(T̄
0

)
= Z̄T̄ ,

as required.

The sequence of updates to R is motivated by the updates to Z. Since

ZT
1 HZ1 = G1Z

THZGT
1 = G1R

TRGT
1 = (RGT

1)T (RGT
1),

we define R1 = RGT
1 = RGT

1,rG
T
1,r−1 · · ·GT

1,k+2. Unfortunately, R1 is not upper-

triangular—in fact, it is possible that it has no zero elements. To remedy this,

another product of Givens matrices is applied on the left,

G2 = G2,rG2,r−1 · · ·G2,k+1.

The Givens matrices from G1 and G2 are applied in an interlaced fashion, with

GT
1,r being applied first so that G2,i acts on rows i and i− 1 of the current product

to zero out element i − 1 in row i. We define R2 = G2RG
T
1 . Finally, R̄ is chosen

to be the leading (r − 1)× (r − 1) principal submatrix of R2 so that

R̄T R̄ = Z̄THZ̄.

95

The sequence of updates to any of the reduced vectors, here denoted by

u = ZTu′, is also motivated by the updates to Z. The vector u1 is defined to be

u1 = ZT
1 u

′ = G1Z
Tu′ = G1u.

Finally, if υ is the last element of vector u1, then ū is defined so that u1 is parti-

tioned

u1 =

(
ū

υ

)
This gives ū = Z̄Tu′, as required.

5.4 RH-B algorithms

We have implemented a family of RH-B algorithms in Matlab and For-

tran 90. This includes quasi-Wolfe line searches in both languages as well. Both

versions are able to use the reinitialization technique and neither implement linger-

ing. As was discussed in the beginning of this chapter, by default, reinitialization is

enabled if n > min(6,m) and disabled otherwise. The Fortran 90 version only im-

plements an implicit method, though the Matlab version implements an implicit

and explicit method. In addition to the standard RH-B algorithms, Algorithm

RHSL-B (see Section 5.2) is implemented in Matlab.

All RH-B methods are based on a limited-memory framework. A full-

memory version can be done simply by setting m = n. This is not recommended,

however, unless f and g are expensive to compute relative to the cost of the linear

algebra.

A limited-memory implicit implementation of an RH-B algorithm with de-

fault reinitialization behavior is shown below.

96

Algorithm 5.2 Algorithm LRHB (implicit method)

Choose m, σ > 0 and x

x← P (x)

g ← ∇f(x)

gF ← Px(g)

B′ ← g, B ← gF , T ← ‖gF‖, R←
√
σ, v ← ‖gF‖

while not converged

d← −R−Tv

q ← R−1d

p← BT−1q

if last projected gradient was accepted,

Swap last column of B′ and B with p and update T

Compute quasi-Wolfe step α

xold ← x

x← P (x+ αp), g ← ∇f(x), gF ← Px(g)

Update B, T , R, v, q if working set changed

w ← T−TBTgF

Update B′, B, T , R, w, v, q if projected gradient is accepted

s← αq, y ← w − v
if x− xold 6∈ col(B)

y ← y +RTR((T−TBT (xold − x)) + s)

Apply BFGS update to R if yT s > 0

if n > min(6,m), compute new σ and reinitialize R

if rank(B) > m,

Drop oldest basis vector in B and update B′, T , R, and w

v ← w

end

Adaptive-memory variants

Most of the work done in any of the RH-B algorithms usually takes place

when the working set changes, especially if a large number of constraints are added

97

or dropped. Although this is not implemented yet, it would likely be advantageous

to allow m to change according to stability of the working set: whenW(x) changes

dramatically, m should be kept small to avoid excessive work and when W(x) is

more stable, m should be allowed to grow in order to speed convergence. The

parameter m could change gradually or suddenly—if m is currently large and the

working set changes dramatically, the procedure to drop columns could be called

repeatedly if r = m and we wish to reduce m by more than one. Alternatively, the

algorithm could be restarted in such a case. Although a restart may be helpful if

the algorithm wishes to drop many columns from B at once or if search directions

are poorly chosen due to an inaccurate R, restarting a RH-B method destroys all

curvature information built up within R and, hence, should be used sparingly.

5.5 Convergence results

Section 3.3.1 implies that an RH-B method can be viewed as a method that

calculates a search direction pk so that pk = −Dkgk, where Dk is a matrix that is

diagonal with respect to W(xk).

Let {x} be a sequence generated by an RH-B method that uses an expanded

working set, E(x), instead of W(x), where the Armijo condition associated with

the step α is generalized to equation (3.11) (see page 44). If the conditions in

Proposition 3.3.2 are satisfied, except that the sequence {xk} is generated as above,

and {xk} converges to x∗, then, for some N ,

E(xk) = A(xk) = A(x∗),

for all k > N .

Once the active set stabilizes, given suitable conditions, the rate of conver-

gence is Q-superlinear.

5.6 Future work

In addition to implementing an adaptive-memory variant for RH-B meth-

ods, we would like to extend the work done with RH-B methods to a class of

98

nonlinear-constrained optimization. If F is a convex feasible region where pro-

jection functions are easy to compute (i.e., an n-sphere, Cartesian products of

n-spheres and box-constraints, etc), all of the material from Chapter 5 should gen-

eralize in a fairly straightforward way. From an implementation point-of-view, the

two most-difficult aspect would likely be handling constraints that are not orthog-

onal to each other and handling constraints that are not orthogonal to columns of

an identity matrix of order n.

Chapter 6

Numerical Results

In this chapter we describe the methods used to test a variety of optimiza-

tion algorithms and the results obtained from such tests. Although the algorithms

proposed in Chapters 4 and 5 and implemented in Matlab and Fortran 90 are

competitive, there are several variants that, once implemented, should lead to even

better results. These variants include implementing an adaptive-memory method

and an intelligent way to handle near singularity in the Cholesky factor R, or the

upper-triangular factor T , e.g., restarting the algorithm when near-singularity is

detected.

There are three implementations of a quasi-Wolfe line search. The first two

are built on Fortran 90 and Matlab implementations of a Wolfe line search used

in SNOPT [GMS97], a general nonlinearly-constrained optimization method. The

third is a direct modification of the Wolfe line search used in L-BFGS-B [BLNZ95]

for use in LBFGSB-M.

There are three implementations of an RH-B method, as well. The first,

Algorithm RHSL-B (see the end of Section 5.2), is implemented in Matlab only

and is provided for the sake of completeness, and as a way to compare the number

of function calls that various RH-B methods make. The default behavior is to

enable reinitialization if n > 6 and disable it otherwise. It is not intended to

be a competitive algorithm, as many of the subroutines are not designed in a

computationally efficient way.

The second RH-B method is implemented in Fortran 90. This method is a

99

100

limited-memory variant that is not based on any prior code, though it does use the

Fortran 90 quasi-Wolfe line search described above, which is based on prior code.

The implementation does not include lingering. The default behavior is to enable

reinitialization if n > min(6,m) and disable it otherwise. Due to time constraints,

only the implicit method is implemented. Further, the method recomputes q and

v from scratch and is not able to update them as the working set changes (see

Section 5.3). This is the most competitive implementation of an RH-B algorithm,

given that it is written in Fortran 90. It is compiled using g95 using optimization

flag -O3. As all testing is done in Matlab, this implementation is called using

the mex interface.

The third RH-B method is implemented in Matlab. This method is also

a limited-memory variant that is not based on any prior code, barring the quasi-

Wolfe line search implemented in Matlab. Lingering is not implemented and

reinitialization behavior is identical to that of the Fortran 90 implementation. This

implementation includes the implicit and explicit method. When the working set

changes, it is able to update q and v or recompute them from scratch. It uses the

Matlab function “rcond” to estimate the reciprocal condition number of R and T

and restarts the algorithm if it is less than some tolerance. The number of function

calls is competitive but the time needed to solve a problem is not, because of the

inherent slowness of Matlab. Both diagnostics described in Chapter 4 (counting

the number of cusp steps and counting the times the approximate Hessian update

fails) are done using this implementation.

In addition to the RH-B method implementations, we also test Fortran 77

implementations of L-BFGS-B and LBFGSB-M (see Section 4.4). Algorithm L-

BFGS-B is written in Fortran 77 [ZBLN97], which is called from Matlab using

C++ wrappers written by Carbonetto [Car07]. Algorithm LBFGSB-M is based

directly on L-BFGS-B and uses the same wrappers by Carbonetto. Mex interfaces

for both algorithms are obtained with the command

mex -output algname *.cpp solver.f.

For convenience, Table 6.1 below summarizes the RH-B algorithms that are

discussed in Chapter 6.

101

Table 6.1: RH-B algorithms

RHSB Full-memory RH-B method (Section 5.2)
RHSLB Algorithm RHSB, but with lingering
LRHrB Limited-memory RH-B method; no reinitialization
LRHRB Limited-memory RH-B method; with reinitialization
LRHB Limited-memory RH-B method; conditional reinitialization

All tests were performed on an iMac with a 2.8 GHz Intel Core 2 Duo

processor and 4 GB of 800 MHz DDR2 RAM running Mac OS X, version 10.5.8

(32 bit). All testing was done using Matlab, version R2007b. An algorithm was

considered to have successfully solved a problem if ‖Pxk
(gk)‖∞ < 10−5 (see page

37 for the definition of Pxk
(gk)). If an algorithm reached iteration 1000 without

meeting this condition, it was terminated and was considered to have failed to

converge.

6.1 Test problem selection

All testing was done on problems taken from the CUTEr test set (see Gould,

Orban, and Toint [GOT03]). The CUTEr test set is a collection of problems that

range in constraint types, function types and number of variables. Many problems

have user-defined parameters that determine the dimension of the problem. Some

problems have a low number of variables that can be artificially increased through

the parameters and others form families that are variations on a single problem. For

this reason, the CUTEr test set does not necessarily represent a balanced collection

of problems. It is also worth noting that, with the exception of problem bleachng,

none of the problems that we tested had computationally expensive functions. For

this reason, the numerical results below include information about the number of

function calls needed, in addition to the time needed to solve the problem.

All testing was done on a set of problems that was formed from the prelim-

inary list obtained by running the command

grep ’classification .BR.-..-*-*’ *.SIF

102

within a directory containing all CUTEr problems. This provided a list of all 112

box-constrained problems that are twice-continuously differentiable. It is worth

noting that, due to the classification system, unconstrained problems were not

included in this list. The only problem that was removed from the final test set

was problem odnamur, which caused Matlab to crash when it loaded into memory.

On the remaining 111 problems, if given a choice, parameters were chosen

to give the largest number of variables. The only parameters that were not chosen

to maximize the number of variables were for the problems: chardis0, hadamals,

harkerp2, mccormck, and powellbc. On these five problems, the parameter was

chosen to give the largest number of variables such that Matlab does not crash.

Tables 6.2–6.4 list the full test set. The second column represents the

dimension of the problem. The third column represents the number of indices in

the active set at the solution, as measured by L-BFGS-B and LRHB, both using

m = 5, with the Fortran 90 LRHB implementation. If the active sets differed,

the average was taken. If only one converged, only the number taken from the

converging algorithm was used. If neither converged, the symbol “–” is displayed.

The final column describes the parameters used on the problem, if any.

103

Table 6.2: Full test set (problems 1–37)

Problem Dimension A(x∗) Parameters
3pk 30 –
allinit 4 1
antwerp 27 – n = 5000
bdexp 5000 0 n = 5000
biggsb1 5000 –
bleachng 17 13
bqp1var 1 1
bqpgabim 50 14
bqpgasim 50 10
bqpgauss 2003 –
camel6 2 0 np1 = 200
chardis0 400 0 n = 100
chebyqad 100 0 ndegen = 500
chenhark 5000 – n = 10000
cvxbqp1 10000 10000
deconvb 61 16
eg1 3 1 n = 1200, m = 100
explin 1200 1149 n = 1200, m = 100
explin2 1200 1181 n = 1200, m = 100
expquad 1200 – n = 32
hadamals 1024 63 n = 100
harkerp2 100 99
hart6 6 0
hatflda 4 0
hatfldb 4 1
hatfldc 25 0
himmelp1 2 1
hs1 2 0 n = 200
hs110 200 200
hs2 2 1
hs25 3 1
hs3 2 1
hs38 4 0
hs3mod 2 1
hs4 2 2
hs45 5 5
hs5 2 0 pt = 125, py = 125

104

Table 6.3: Full test set (problems 38–74)

Problem Dimension A(x∗) Parameters
jnlbrng1 12500 4332 pt = 125, py = 125
jnlbrng2 12500 5218 pt = 125, py = 125
jnlbrnga 12500 4556 pt = 125, py = 125
jnlbrngb 12500 –
koebhelb 3 0 n = 1000
linverse 1999 594
logros 2 0
maxlika 8 1 n = 10000
mccormck 10000 1
mdhole 2 1
minsurfo 5306 518 n = 10000
ncvxbqp1 10000 10000 n = 10000
ncvxbqp2 10000 9935 n = 10000
ncvxbqp3 10000 9853 q = 61
nobndtor 14884 2813 n = 10000
nonscomp 10000 1 px = 125, py = 125
obstclae 12500 6308 px = 125, py = 125
obstclal 12500 6310 px = 125, py = 125
obstclbl 12500 3372 px = 125, py = 125
obstclbm 12500 3371 px = 125, py = 125
obstclbu 12500 3372
oslbqp 8 7
palmer1 4 0
palmer1a 6 –
palmer1b 4 0
palmer1e 8 –
palmer2 4 0
palmer2a 6 0
palmer2b 4 0
palmer2e 8 –
palmer3 4 0
palmer3a 6 0
palmer3b 4 0
palmer3e 8 –
palmer4 4 1
palmer4a 6 0
palmer4b 4 0

105

Table 6.4: Full test set (problems 75–111)

Problem Dimension A(x∗) Parameters
palmer4e 8 –
palmer5a 8 –
palmer5b 9 –
palmer5d 8 0
palmer5e 8 –
palmer6a 6 0
palmer6e 8 –
palmer7a 6 –
palmer7e 8 –
palmer8a 6 0
palmer8e 8 – n = 5000
pentdi 5000 4998 p = 100
powellbc 200 63 n = 500
probpenl 500 0
pspdoc 4 1 n = 5000, m = 1100
qrtquad 5000 – n = 5000, m = 2500
qudlin 5000 5000 n = 100
s368 100 39 n = 5000, ln = 4500
scond1ls 5002 –
sim2bqp 2 2
simbqp 2 1 n = 1000
sineali 1000 0 k = 3
specan 9 0 q = 61
torsion1 14884 4916 q = 61
torsion2 14884 4886 q = 61
torsion3 14884 9676 q = 61
torsion4 14884 9672 q = 61
torsion5 14884 12316 q = 61
torsion6 14884 12316 q = 61
torsiona 14884 4772 q = 61
torsionb 14884 4772 q = 61
torsionc 14884 9612 q = 61
torsiond 14884 9608 q = 61
torsione 14884 12284 q = 61
torsionf 14884 12284
weeds 3 0
yfit 3 0

106

6.2 Explanation of Results

In all the full-page tables in the remainder of this chapter, the top row is

used to describe the algorithms being tested and the values of any relevant opti-

mization parameters used. To distinguish between implementations, we append

the suffix “(f)” to an algorithm name to denote the Fortran 90 RH-B (implicit)

method. We use the suffix “(m,i)” to signify an RH-B implicit method in Matlab

and “(m,e)” to signify an RH-B explicit method in Matlab.

Each algorithm has two columns associated with it. The first, represented

by the header entry “nfg,” denotes the number of calls an algorithm made to a

function to minimize it. If an algorithm failed to converge, the symbol “–” is

displayed. The second, represented by “time,” lists the number of seconds that

elapsed for the algorithm to attempt to minimize a function, whether it converged

or not. Time was measured using the Matlab commands “tic” and “toc.” The

Fortran 90 LRHB implementation stalled on three problems. On these problems,

the symbol “–” is displayed in the “time” column, instead.

Because the amount of time taken can vary from one run to another, all

algorithms were run six times per problem unless otherwise noted. The first run

was thrown away and the time listed was taken to be the average of the next five

runs. If an algorithm failed to converge during the first run (or the second run in

the case of LRHB(f), see Section 6.3.3), the time was taken to be the time for the

first or second run and no further runs were done.

If a problem name (located in the left-most column) is marked with an

asterisk, it signifies that at least two algorithms represented in that table converged

to two different solutions. If the solutions are x1 and x2, we classify them as

different if at least one of the following is true:

(a) |f1 − f2| > 10−1; or

(b) ‖x1 − x2‖ > 10−2.

If (a) is true, it suggests that x1 and x2 converged to two different local solutions.

On the other hand, if (a) is false and (b) is true, the function evaluations were

107

close but the solutions were far apart. This suggests that the problem is very “flat”

near x1 and x2.

Algorithms that failed to converge are not marked as converging to a dif-

ferent solution. Problems in which at least two algorithms converged to different

solutions are not shown in the performance profiles (see below) unless otherwise

noted.

Finally, to ensure an accurate testing environment, all algorithms that ap-

pear in the same table were tested at the same time. One side effect is that an

algorithm may be listed in more than one table with different times displayed for

each.

6.2.1 Performance Profiling

We use a method called performance profiling, developed by Dolan and Moré

[DM02], to measure the relative effectiveness of various optimization routines. The

method is designed to normalize the weight of each problem in a test set relative to

the others, and to use information from problems even where one or more routines

failed to converge, unlike using a simple sum over all (converging) problems.

Let S be a set of solvers (routines) that are used to minimize problems from

the set P . We define Sp = {s ∈ S : s successfully solves p}. Let ns be the number

of solvers and np be the number of problems. Given a problem p and solver s,

Dolan and Moré define

tp,s = computing time required to solve problem p by solver s.

We define a performance ratio to be

rp,s =

tp,s

min{tp,s : s ∈ Sp}
if s ∈ Sp

rM if s 6∈ Sp,

where the parameter rM is chosen so that,

(i) rM ≥ rp,s and (ii) rM = rp,s ⇐⇒ s 6∈ Sp.

Note that a solver s solves problem p in the shortest amount of time relative to

other solvers in S if and only if rp,s = 1.

108

Dolan and Moré define a performance profile for solver s to be

ρs(τ) =
1

np

|{p ∈ P : rp,s ≤ τ}|,

so that ρs(τ) is the probability that a performance ratio rp,s is within a factor

τ ∈ R of the best possible ratio.

A performance profile ρs(τ) satisfies a number of properties. It is a mono-

tonically-increasing function from R to the interval [0, 1] that is piecewise constant

and right continuous. The quantity ρs(1) represents the probability that s solves

p the fastest out of all solvers in Sp, if p is chosen randomly from P . The quantity

ρs(rM) is one, and the quantity

lim
τ→r−M

ρs(τ)

represents the probability that s ∈ Sp, if p is chosen randomly from the set P .

The description above is used to create a performance profile with respect

to run time (computing time). The same approach can be used to create a perfor-

mance profile with respect to the number of function calls needed by solver s to

solve problem p. This is done by defining a new performance ratio rp,s.

In order to capture behavior near τ = 1 and behavior near τ = rM , we use

a logarithmic scale along the horizontal axis. That is, we define

πs(τ) =
1

np

|{p ∈ P : log2(rp,s) ≤ τ}|.

The quantity πs(0) represents the probability that s solves p the fastest out of

all solvers in Sp, if p is chosen randomly from P . Speaking broadly, given s, the

farther the graph y = πs(τ) is to the left and up, the better the solver s is.

6.3 Numerical Results

6.3.1 Reinitialization

In this first set of tests, we verify that reinitialization tends to have a positive

influence on the effectiveness of an RH-B algorithm when n is large and a negative

109

effect when n is small. To illustrate this, we tested the Matlab-based RH-B

methods in four cases:

• An implicit method, with m = 5, without reinitialization (LRHrB),

• An implicit method, with m = 5, with reinitialization (LRHRB),

• An explicit method, with m = 20, without reinitialization (LRHrB),

• An explicit method, with m = 20, with reinitialization (LRHRB).

None of the four methods tested include the default application of reini-

tialization, i.e., reinitialize if and only if n > min(6,m). Tables 6.5–6.7 list the

number of function calls needed and time taken for each method. Problems with

4 or fewer variables are displayed in bold. No performance profiles are included

with this test.

110

Table 6.5: Effects of reinitialization (Problems 1–37)

LRHrB(m,i) LRHRB(m,i) LRHrB(m,e) LRHRB(m,e)
Problem m = 5 m = 5 m = 20 m = 20

nfg time nfg time nfg time nfg time
3pk – 1.4117 – 0.9785 – 1.7742 – 0.6955
allinit 21 0.0200 23 0.0109 21 0.0090 23 0.0110
antwerp – 1.5538 – 1.0186 – 1.5916 – 0.8044
bdexp* 15 0.0605 15 0.0560 15 0.0496 15 0.0561
biggsb1 – 4.5322 – 3.7705 – 12.1946 – 11.7265
bleachng 11 14.9053 6 8.4171 11 14.9075 6 8.4043
bqp1var 2 0.0015 2 0.0011 2 0.0011 2 0.0011
bqpgabim 55 0.0423 30 0.0248 50 0.0294 23 0.0164
bqpgasim 49 0.0402 31 0.0262 72 0.0529 27 0.0210
bqpgauss – 3.6514 – 2.6105 – 8.2290 – 7.3454
camel6 14 0.0151 15 0.0078 14 0.0064 15 0.0078
chardis0 4 0.0239 4 0.0127 4 0.0127 4 0.0126
chebyqad – 45.8167 – 5.1107 – 45.6794 – 5.9952
chenhark – 4.8145 – 3.7887 – 13.4231 – 12.7791
cvxbqp1 9 0.8653 11 0.8420 9 9.4132 9 9.1485
deconvb* 324 0.2281 113 0.1206 274 0.3152 153 0.3478
eg1 10 0.0138 10 0.0076 10 0.0049 10 0.0053
explin* 401 0.4698 271 0.4404 390 0.8744 208 0.7798
explin2 150 0.2471 87 0.2183 264 0.6124 105 0.4639
expquad 613 0.5782 524 0.7249 819 1.1172 603 1.2051
hadamals 12 0.0311 16 0.0305 10 0.0218 16 0.0303
harkerp2 17 0.0341 42 0.0515 16 0.0308 18 0.0333
hart6 40 0.0290 23 0.0156 26 0.0105 22 0.0112
hatflda 127 0.0766 98 0.0510 127 0.0644 98 0.0515
hatfldb 91 0.0499 70 0.0381 86 0.0388 76 0.0421
hatfldc 41 0.0301 24 0.0209 47 0.0249 24 0.0176
himmelp1 14 0.0134 14 0.0048 14 0.0048 14 0.0049
hs1 24 0.0202 989 0.4174 24 0.0117 1200 0.5119
hs110 2 0.0242 2 0.0141 2 0.0211 2 0.0211
hs2 27 0.0180 241 0.1023 27 0.0093 385 0.1628
hs25 1 0.0018 1 0.0003 1 0.0003 1 0.0003
hs3 9 0.0117 9 0.0031 9 0.0031 9 0.0031
hs38 47 0.0350 1151 0.5055 47 0.0243 1385 0.6126
hs3mod 10 0.0126 13 0.0046 10 0.0039 12 0.0044
hs4 2 0.0112 2 0.0011 2 0.0011 2 0.0012
hs45 4 0.0116 4 0.0016 4 0.0016 4 0.0017
hs5 8 0.0126 10 0.0055 8 0.0039 10 0.0055

111

Table 6.6: Effects of reinitialization (Problems 38–74)

LRHrB(m,i) LRHRB(m,i) LRHrB(m,e) LRHRB(m,e)
Problem m = 5 m = 5 m = 20 m = 20

nfg time nfg time nfg time nfg time
jnlbrng1 645 6.7603 401 6.4021 807 84.4593 361 112.1789
jnlbrng2 1185 10.0195 660 7.3251 1178 24.4039 589 18.1493
jnlbrnga 877 6.9602 274 2.9187 637 16.7722 275 9.6021
jnlbrngb – 15.5435 – 10.6159 – 35.4883 – 30.8003
koebhelb 225 0.1143 – 0.7186 225 0.1079 – 0.7503
linverse* 1261 7.7335 399 4.3490 1824 254.7442 399 129.8082
logros 104 0.0570 – 0.6956 104 0.0490 – 0.7040
maxlika 753 0.6425 574 0.5624 95 0.0677 228 0.1571
mccormck 47 0.3019 23 0.1752 52 0.5224 26 0.2377
mdhole 82 0.0441 278 0.1124 81 0.0355 254 0.1070
minsurfo 547 2.3634 364 2.1333 539 4.4525 306 4.2052
ncvxbqp1 7 1.5655 7 1.5560 7 15.1032 7 15.1386
ncvxbqp2* 161 2.2148 72 2.0229 282 18.9116 73 17.1342
ncvxbqp3* 253 2.2869 150 2.1247 292 16.8766 86 15.1633
nobndtor 343 3.3928 196 2.7864 295 9.3001 177 17.6827
nonscomp* 88 7.8912 29 0.8617 138 277.9882 30 202.0317
obstclae 322 4.8501 160 3.8402 263 118.0170 156 102.0850
obstclal 197 1.9479 102 1.3558 163 9.9384 102 9.5931
obstclbl 172 3.0010 115 2.6344 184 55.4091 100 51.2115
obstclbm 174 2.2900 103 2.0090 163 31.0176 96 34.6957
obstclbu 197 2.9832 110 2.0112 179 43.1151 98 41.0516
oslbqp 2 0.0109 2 0.0009 2 0.0008 2 0.0009
palmer1* 41 0.0245 37 0.0145 41 0.0160 37 0.0145
palmer1a – 1.2820 – 0.9607 74 0.0346 – 0.6903
palmer1b 42 0.0287 808 0.3658 42 0.0204 – 0.6792
palmer1e – 1.2637 – 0.9823 62 0.0344 – 0.7016
palmer2* 76 0.0376 113 0.0460 87 0.0364 110 0.0455
palmer2a – 1.2713 480 0.3914 127 0.0614 – 0.6862
palmer2b 37 0.0254 – 0.6736 37 0.0170 – 0.6762
palmer2e – 1.2515 – 0.9601 138 0.0747 – 0.6797
palmer3* 46 0.0294 49 0.0205 46 0.0211 49 0.0207
palmer3a 497 0.3438 674 0.5559 168 0.0796 – 0.6769
palmer3b 122 0.0636 315 0.1410 126 0.0572 436 0.1976
palmer3e – 1.2511 – 0.9597 128 0.0674 – 0.6868
palmer4* 180 0.0878 48 0.0208 143 0.0633 48 0.0212
palmer4a – 3.3635 598 0.4840 – 3.1611 – 0.6902
palmer4b 78 0.0427 182 0.0887 78 0.0345 329 0.1539

112

Table 6.7: Effects of reinitialization (Problems 75–111)

LRHrB(m,i) LRHRB(m,i) LRHrB(m,e) LRHRB(m,e)
Problem m = 5 m = 5 m = 20 m = 20

nfg time nfg time nfg time nfg time
palmer4e – 1.2459 – 0.9567 92 0.0497 – 0.6779
palmer5a – 1.2649 – 0.9745 – 0.7263 – 0.6594
palmer5b – 1.2759 – 0.9522 893 0.4411 – 0.6926
palmer5d 14 0.0163 1254 0.5666 14 0.0077 427 0.1963
palmer5e – 1.2760 – 0.9594 – 0.7250 – 0.7237
palmer6a 775 0.5385 936 0.7522 219 0.1076 – 0.6641
palmer6e – 1.2414 – 0.9594 97 0.0527 – 0.6865
palmer7a 17 0.0212 – 0.9174 – 0.7373 – 0.6763
palmer7e – 1.2647 – 0.9828 697 0.3438 – 0.6842
palmer8a 1245 0.8558 383 0.2872 192 0.0896 – 0.6894
palmer8e* 619 0.4428 – 0.9170 81 0.0453 – 0.6775
pentdi 4 0.0164 4 0.0076 4 0.0091 4 0.0091
powellbc* 1969 1.9130 635 0.8021 2188 2.9328 631 1.4176
probpenl 4 0.0130 4 0.0022 4 0.0022 4 0.0022
pspdoc 11 0.0147 16 0.0090 11 0.0062 16 0.0091
qrtquad – 5.5129 – 4.3805 – 13.6879 – 5.0876
qudlin* 12 0.5244 11 0.5049 12 3.4085 11 3.3559
s368* 37 0.1047 26 0.0704 48 0.1222 30 0.0877
scond1ls – 9.2143 – 5.7165 – 17.0836 – 13.9444
sim2bqp 2 0.0112 2 0.0011 2 0.0010 2 0.0011
simbqp 5 0.0133 5 0.0023 5 0.0023 5 0.0023
sineali* 137 0.1442 60 0.0812 222 0.3333 57 0.1164
specan 270 0.9062 190 0.6706 60 0.1943 82 0.2672
torsion1 253 3.1162 177 2.7509 233 38.6543 103 33.2246
torsion2 397 7.6901 211 5.4099 242 261.5487 170 243.3204
torsion3 165 2.0039 95 1.3994 132 14.1548 79 9.3448
torsion4 214 5.6693 128 4.7701 183 155.5217 91 165.7370
torsion5 88 0.8695 46 0.6307 66 1.1357 37 2.4965
torsion6 111 4.0930 65 3.5046 92 98.9366 56 85.7698
torsiona 322 4.1900 149 2.4769 176 22.3967 118 21.9066
torsionb 407 7.8278 229 6.5101 277 178.7796 222 141.8691
torsionc 154 1.9164 98 1.5249 129 9.1458 71 15.5911
torsiond 177 6.0905 127 5.2407 180 148.8514 86 158.4350
torsione 71 0.7316 41 0.5451 67 2.2188 39 2.7432
torsionf 107 4.1840 56 3.3263 87 98.2336 44 53.1282
weeds 54 0.0325 – 0.6741 54 0.0242 – 0.6630
yfit 84 0.0482 – 0.7012 84 0.0400 – 0.7051

113

6.3.2 RH-B methods in MATLAB

To give an idea of the strengths and weaknesses of the Matlab-based RH-B

methods, we tested four of them together:

• Algorithm LRHB, implicit method, m = 5,

• Algorithm LRHB, explicit method, m = 5,

• Algorithm LRHB, explicit method, m = 50,

• Algorithm RHSLB.

Summing over all problems where all solvers converged to the same solution,

we obtain the following totals using Tables 6.9–6.11 (see following pages).

Table 6.8: RH-B methods in Matlab (Sum Total)

Algorithm nfg Time (sec) Failed

LRHB(m,i), m = 5 9104 82.91 21
LRHB(m,e), m = 5 9078 472.47 21
LRHB(m,e), m = 50 6316 2423.18 21

RHSLB 12802 151.98 16

We can make several observations from Tables 6.8–6.11, and Figures 6.1–

6.2. In particular, Algorithm RHSLB and LRHB(m,i) are generally the fastest

algorithms—RHSLB looks to be faster in Figure 6.1, but most of this is due to

the higher percentage of solved cases and the use of fewer nested “for” loops that

RHSLB achieves. It is also clear that RHSLB is least efficient with respect to

function calls while LRHB (with m = 50) is the most efficient. We can also see

that using an explicit method provides only minimal gain with respect to the

number of function calls at the expense of a longer optimization time when m is

small.

114

Table 6.9: RH-B methods in Matlab (Problems 1–37)

LRHB(m,i) LRHB(m,e) LRHB(m,e) RHSLB
Problem m = 5 m = 5 m = 50

nfg time nfg time nfg time nfg time
3pk – 1.2510 – 1.0836 – 0.7041 – 0.8071
allinit 21 0.0201 21 0.0091 21 0.0091 21 0.0147
antwerp – 1.3215 – 1.0199 – 0.8019 – 0.1611
bdexp* 15 0.0632 15 0.0700 15 0.0530 17 0.0600
biggsb1 – 3.8623 – 4.8817 – 26.7136 – 78.8636
bleachng 6 8.4251 6 8.4125 6 8.4029 9 12.3311
bqp1var 2 0.0016 2 0.0011 2 0.0011 2 0.0033
bqpgabim 30 0.0350 30 0.0270 23 0.0166 29 0.0216
bqpgasim 31 0.0388 31 0.0285 27 0.0192 33 0.0254
bqpgauss – 2.6474 – 3.2819 – 14.8369 – 2.0896
camel6 14 0.0152 14 0.0064 14 0.0064 14 0.0122
chardis0 4 0.0242 4 0.0127 4 0.0126 4 0.0189
chebyqad – 5.3573 1004 4.9482 – 7.8629 776 4.2806
chenhark – 3.7726 – 5.9520 – 29.8271 – 50.0598
cvxbqp1 11 0.8540 9 8.7395 9 8.5684 5 0.0260
deconvb* 113 0.1294 113 0.1352 151 0.4680 462 0.3156
eg1 10 0.0136 10 0.0049 10 0.0049 9 0.0119
explin* 271 0.4257 239 0.5525 217 1.3044 320 0.3160
explin2 87 0.2190 75 0.3282 129 0.4512 147 0.1169
expquad 524 0.7466 662 0.9946 481 0.6225 671 0.5840
hadamals 16 0.0396 16 0.0304 16 0.0305 25 0.0432
harkerp2 42 0.0607 29 0.0513 18 0.0335 71 0.0428
hart6 23 0.0244 23 0.0165 26 0.0106 30 0.0184
hatflda 127 0.0771 127 0.0647 127 0.0646 58 0.0358
hatfldb 91 0.0504 86 0.0393 86 0.0392 55 0.0332
hatfldc 24 0.0300 24 0.0199 24 0.0161 32 0.0254
himmelp1 14 0.0135 14 0.0048 14 0.0049 14 0.0110
hs1 24 0.0203 24 0.0118 24 0.0118 24 0.0174
hs110 2 0.0245 2 0.0214 2 0.0214 2 0.0076
hs2 27 0.0181 27 0.0094 27 0.0094 27 0.0149
hs25 1 0.0018 1 0.0003 1 0.0003 1 0.0059
hs3 9 0.0118 9 0.0031 9 0.0031 9 0.0088
hs38 47 0.0351 47 0.0243 47 0.0244 47 0.0298
hs3mod 10 0.0128 10 0.0040 10 0.0040 10 0.0095
hs4 2 0.0113 2 0.0011 2 0.0012 2 0.0074
hs45 4 0.0117 4 0.0016 4 0.0017 4 0.0078
hs5 8 0.0126 8 0.0040 8 0.0040 8 0.0096

115

Table 6.10: RH-B methods in Matlab (Problems 38–74)

LRHB(m,i) LRHB(m,e) LRHB(m,e) RHSLB
Problem m = 5 m = 5 m = 50

nfg time nfg time nfg time nfg time
jnlbrng1 401 6.5789 402 34.4906 385 278.2951 – 10.9944
jnlbrng2 660 7.5114 599 8.6981 545 35.0408 879 11.1295
jnlbrnga 274 3.0307 285 5.2304 279 29.1972 841 8.4151
jnlbrngb – 11.2684 – 14.3636 – 67.0133 – 11.8498
koebhelb 225 0.1145 225 0.1081 225 0.1083 211 0.1081
linverse* 399 4.3964 413 21.9481 327 326.7529 – 2.5575
logros 104 0.0573 104 0.0492 104 0.0492 104 0.0543
maxlika 574 0.5749 794 0.8078 228 0.1581 247 0.1796
mccormck 23 0.1913 23 0.2265 26 0.2348 23 0.1734
mdhole 82 0.0441 81 0.0356 81 0.0356 82 0.0412
minsurfo 364 2.2614 392 3.0272 503 11.0020 675 39.6562
ncvxbqp1 7 1.5784 7 16.8360 7 16.8539 7 0.0379
ncvxbqp2* 72 2.0718 72 18.2701 70 19.1208 104 0.4452
ncvxbqp3* 150 2.2089 155 15.9895 73 17.1137 157 0.6845
nobndtor 196 2.9246 195 7.5756 174 39.0531 400 4.2823
nonscomp* 29 0.8938 29 22.6322 32 278.2514 45 0.2503
obstclae 160 3.8033 162 27.8334 166 347.0124 741 6.5923
obstclal 102 1.3634 102 3.9991 102 15.0837 225 1.9617
obstclbl 115 2.6517 115 23.2306 100 76.5024 502 4.0530
obstclbm 103 2.0725 103 15.9116 103 52.1298 289 2.4378
obstclbu 110 2.0808 110 15.3836 102 56.0347 360 2.9475
oslbqp 2 0.0110 2 0.0008 2 0.0009 2 0.0074
palmer1* 41 0.0246 41 0.0161 41 0.0161 41 0.0221
palmer1a – 1.2163 – 1.0556 74 0.0351 76 0.0409
palmer1b 42 0.0289 42 0.0204 42 0.0204 39 0.0241
palmer1e – 1.2357 – 1.0649 – 0.6893 223 0.1242
palmer2* 76 0.0378 87 0.0365 87 0.0365 31 0.0204
palmer2a 480 0.4023 973 0.8650 127 0.0615 128 0.0671
palmer2b 37 0.0256 37 0.0171 37 0.0171 40 0.0236
palmer2e – 1.2120 – 1.0511 – 0.6825 201 0.1085
palmer3* 46 0.0297 46 0.0213 46 0.0213 54 0.0308
palmer3a 674 0.5690 549 0.4792 168 0.0796 164 0.0852
palmer3b 122 0.0638 126 0.0574 126 0.0573 78 0.0425
palmer3e – 1.2109 – 1.0522 – 0.6876 171 0.0974
palmer4* 180 0.0877 143 0.0632 143 0.0631 54 0.0310
palmer4a 598 0.4961 687 0.5917 – 3.1710 – 0.0942
palmer4b 78 0.0428 78 0.0345 78 0.0345 79 0.0430

116

Table 6.11: RH-B methods in Matlab (Problems 75–111)

LRHB(m,i) LRHB(m,e) LRHB(m,e) RHSLB
Problem m = 5 m = 5 m = 50

nfg time nfg time nfg time nfg time
palmer4e – 1.2092 – 1.0479 – 0.6791 138 0.0802
palmer5a – 1.2254 – 1.0518 – 0.6597 – 0.1124
palmer5b – 1.2052 – 1.0463 – 0.6929 270 0.1476
palmer5d 1254 0.5784 427 0.1975 427 0.1981 22 0.0174
palmer5e – 1.2156 – 1.0576 – 0.7291 – 0.7485
palmer6a 936 0.7645 – 1.0442 219 0.1081 222 0.1143
palmer6e – 1.2132 – 1.0499 – 0.6897 166 0.0948
palmer7a – 1.2043 – 1.0473 – 0.6938 – 0.0933
palmer7e – 1.2343 – 1.0634 – 0.6752 – 0.7316
palmer8a 383 0.2973 505 0.4241 192 0.0898 117 0.0614
palmer8e – 1.2290 – 1.0609 – 0.6926 110 0.0647
pentdi 4 0.0170 4 0.0101 4 0.0100 5 0.0159
powellbc* 635 0.8152 925 1.2490 558 2.6354 – 0.1694
probpenl 4 0.0130 4 0.0022 4 0.0022 4 0.0079
pspdoc 11 0.0148 11 0.0062 11 0.0062 11 0.0118
qrtquad – 5.1077 – 6.6562 – 6.3330 – 0.8471
qudlin* 11 0.5199 11 4.0586 11 4.0553 10 0.0325
s368* 26 0.0809 26 0.0751 30 0.0843 21 0.0576
scond1ls – 6.3469 – 7.7594 – 30.9209 – 42.8666
sim2bqp 2 0.0113 2 0.0010 2 0.0011 2 0.0074
simbqp 5 0.0134 5 0.0023 5 0.0023 6 0.0082
sineali* 60 0.0948 60 0.0934 60 0.1054 83 0.1357
specan 190 0.6803 198 0.7167 82 0.2691 36 0.1262
torsion1 177 2.8578 167 10.1151 98 50.4656 365 3.8645
torsion2 211 5.5237 232 45.2581 136 511.0080 894 9.2958
torsion3 95 1.4441 95 3.9395 68 12.0678 173 1.9552
torsion4 128 4.8412 128 52.2369 88 278.2089 557 5.6152
torsion5 46 0.6579 46 1.8326 37 2.4831 79 0.9740
torsion6 65 3.5616 65 42.5975 57 103.0646 294 2.9179
torsiona 149 2.5587 149 9.2392 97 37.0632 419 5.2731
torsionb 229 6.6760 209 56.4760 189 371.6227 1134 13.0725
torsionc 98 1.5798 98 4.2102 69 17.6156 190 2.5443
torsiond 127 5.3441 131 54.2231 86 277.4768 472 5.1872
torsione 41 0.5709 41 0.8393 39 2.9091 92 1.1591
torsionf 56 3.3675 56 40.8027 45 61.4128 367 3.9654
weeds* 54 0.0328 54 0.0244 54 0.0245 8 0.0096
yfit 84 0.0484 84 0.0403 84 0.0403 84 0.0457

117

0 1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

τ

π s(τ
)

: 1
 ≤

 s
 ≤

 n
s

Performance profile on 95 problems with respect to run time

LRHB(m,i), m=5
LRHB(m,e), m=5
LRHB(m,e), m=50
RHSLB

Figure 6.1: Performance profile for RH-B methods in Matlab (time)

118

0 1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

τ

π s(τ
)

: 1
 ≤

 s
 ≤

 n
s

Performance profile on 95 problems with respect to function calls

LRHB(m,i), m=5
LRHB(m,e), m=5
LRHB(m,e), m=50
RHSLB

Figure 6.2: Performance profile for RH-B methods in Matlab (nfg)

119

6.3.3 Known bugs and issues

A known bug with the Fortran 90 RH-B implementation is that, on occa-

sion, the number of iterations and function calls needed is different for the first run

than for all subsequent runs. The small numerical rounding errors introduced into

the values of variables on the first run appear to be different than the rounding

errors on later runs, even when input is identical. Since many of the problems are

ill-conditioned near solutions, these small differences propagate and can occasion-

ally cause dramatic differences in the number of functions called or, in some cases,

even convergence before 1000 iterations. The issue seems to begin with a call to

the BLAS routine DNRM2 on this machine. It is not known at this time if the

error is machine specific. There is no variance detected in the variables on any

given problem on subsequent calls after the first call has been made.

In order to demonstrate this behavior, one run (instead of six) was made per

algorithm per problem in the following test. The first two algorithms displayed

in Tables 6.12–6.14 are the same Fortran 90 implementation of an RH-B, with

identical parameters. Although this bug influences the time it took to run each

algorithm, there is also computational overhead involved when any optimization

routine is first invoked on a new problem. The third algorithm displayed is the

corresponding Matlab implementation, also with identical parameters. The per-

formance difference between the Matlab and Fortran 90 versions can be explained

by slight differences in the underlying code as well as error propagation caused by

using inexact arithmetic. As mentioned before, the Matlab implementation is

slightly more developed than the Fortran 90 version, though this is primarily due

to time constraints. No performance profile for time is given, since it does not give

an accurate measure of actual performance under the circumstances.

Tables 6.12–6.14 and Figure 6.3 show that, although the Fortran imple-

mentation gave different results on the first two runs, they were fairly comparable

overall. The marginally higher convergence percentage that the Matlab imple-

mentation exhibited is likely due to its slightly more advanced code.

120

Table 6.12: Implicit implementations of LRHB (Problems 1–37)

LRHB(f) LRHB(f) LRHB(m,i)
Problem m = 5 m = 5 m = 5

nfg time nfg time nfg time
3pk – 0.1424 – 0.1252 – 1.2454
allinit 21 0.0061 21 0.0021 21 0.2720
antwerp – 0.1908 – 0.1824 – 1.3167
bdexp 15 0.0413 15 0.0387 15 0.3288
biggsb1 – 2.3733 – 2.3638 – 4.3782
bleachng 6 8.5763 6 8.4470 6 8.6785
bqp1var 2 0.0036 2 0.0003 2 0.1794
bqpgabim 30 0.0074 30 0.0038 30 0.3411
bqpgasim 31 0.0078 31 0.0052 31 0.3316
bqpgauss – 1.4575 – 1.4647 – 3.0363
camel6 14 0.0052 14 0.0014 14 0.2715
chardis0 4 0.0176 4 0.0125 4 0.2704
chebyqad 1018 4.1665 1021 4.1684 – 5.3287
chenhark – 2.4796 – 2.4702 – 4.2289
cvxbqp1 10 0.0420 10 0.0373 11 1.1200
deconvb 113 0.0209 113 0.0169 113 0.4418
eg1 10 0.0049 10 0.0012 10 0.2780
explin* 280 0.1466 254 0.1380 271 0.7765
explin2 87 0.0519 87 0.0497 87 0.5436
expquad – – – – 524 1.1424
hadamals 16 0.0248 16 0.0195 16 0.3276
harkerp2 26 0.0082 28 0.0049 42 0.3541
hart6 23 0.0062 23 0.0025 23 0.3029
hatflda 127 0.0157 127 0.0136 127 0.3323
hatfldb – – – – 91 0.3664
hatfldc 24 0.0065 24 0.0053 24 0.3064
himmelp1 14 0.0051 14 0.0016 14 0.2602
hs1 24 0.0061 24 0.0023 24 0.2889
hs110 1 0.0043 1 0.0006 2 0.2313
hs2 27 0.0064 27 0.0051 27 0.3182
hs25 1 0.0036 1 0.0004 1 0.0542
hs3 9 0.0048 9 0.0013 9 0.2583
hs38 47 0.0085 47 0.0047 47 0.2912
hs3mod 10 0.0052 10 0.0013 10 0.3040
hs4 2 0.0042 2 0.0003 2 0.2167
hs45 4 0.0042 4 0.0015 4 0.2198
hs5 8 0.0046 8 0.0011 8 0.2683

121

Table 6.13: Implicit implementations of LRHB (Problems 38–74)

LRHB(f) LRHB(f) LRHB(m,i)
Problem m = 5 m = 5 m = 5

nfg time nfg time nfg time
jnlbrng1 407 4.1868 423 4.3397 401 7.0459
jnlbrng2 661 6.6109 728 7.1495 660 7.9985
jnlbrnga 288 2.6931 306 2.8510 274 3.4086
jnlbrngb – 9.6333 – 9.6534 – 11.4474
koebhelb 216 0.0310 212 0.0278 225 0.3878
linverse 425 0.7674 411 0.7429 399 4.8888
logros 104 0.0136 104 0.0097 104 0.3143
maxlika 764 0.2258 591 0.1653 574 0.8962
mccormck 23 0.1521 23 0.1457 23 0.4926
mdhole 81 0.0113 81 0.0077 82 0.3438
minsurfo 365 1.6328 318 1.4006 364 2.6558
ncvxbqp1 7 0.0426 7 0.0376 7 1.8649
ncvxbqp2 72 0.3442 72 0.3407 72 2.3804
ncvxbqp3 144 0.6709 145 0.6768 150 2.5269
nobndtor 194 2.1877 194 2.1752 196 3.2249
nonscomp 29 0.1393 29 0.1347 29 1.2207
obstclae 163 1.5815 160 1.5450 160 4.1383
obstclal 102 0.9681 102 0.9691 102 1.7224
obstclbl 115 1.1110 115 1.1069 115 3.0042
obstclbm 103 0.9927 103 0.9933 103 2.4178
obstclbu 110 1.0606 110 1.0518 110 2.4336
oslbqp 2 0.0044 2 0.0003 2 0.1946
palmer1 41 0.0079 41 0.0041 41 0.2975
palmer1a – 0.1356 – 0.1282 – 1.2310
palmer1b 42 0.0085 42 0.0051 42 0.2901
palmer1e – 0.1377 – 0.1343 – 1.2602
palmer2* 72 0.0107 72 0.0069 76 0.3544
palmer2a 620 0.0718 835 0.0932 480 0.7005
palmer2b 37 0.0074 37 0.0049 37 0.2867
palmer2e – 0.1372 – 0.1280 – 1.2359
palmer3 46 0.0085 46 0.0046 46 0.3285
palmer3a 612 0.0715 – 0.1265 674 0.8696
palmer3b 129 0.0166 123 0.0118 122 0.3498
palmer3e – 0.1332 – 0.1295 – 1.2287
palmer4* 182 0.0215 180 0.0182 180 0.4052
palmer4a 503 0.0585 358 0.0399 598 0.7947
palmer4b 77 0.0113 77 0.0075 78 0.3372

122

Table 6.14: Implicit implementations of LRHB (Problems 75–111)

LRHB(f) LRHB(f) LRHB(m,i)
Problem m = 5 m = 5 m = 5

nfg time nfg time nfg time
palmer4e – 0.1330 – 0.1324 – 1.2416
palmer5a – 0.1368 – 0.1324 – 1.2446
palmer5b – 0.1279 – 0.1235 – 1.2220
palmer5d 1404 0.1516 577 0.0558 1254 0.8565
palmer5e – 0.1334 – 0.1274 – 1.2401
palmer6a – 0.1384 – 0.1281 936 1.0715
palmer6e – 0.1307 – 0.1261 – 1.2312
palmer7a – 0.1275 – 0.1273 – 1.2199
palmer7e – 0.1302 – 0.1271 – 1.2497
palmer8a* 748 0.0849 558 0.0584 383 0.6091
palmer8e – 0.1305 – 0.1311 – 1.2603
pentdi 4 0.0121 4 0.0087 4 0.2685
powellbc* 737 0.3944 773 0.4024 635 1.1399
probpenl 4 0.0050 4 0.0011 4 0.2583
pspdoc 11 0.0050 11 0.0013 11 0.2635
qrtquad – – – – – 5.2863
qudlin* 11 0.0194 11 0.0156 11 0.7888
s368 26 0.0580 26 0.0526 26 0.3908
scond1ls – 4.8679 – 4.7358 – 6.5657
sim2bqp 2 0.0041 2 0.0003 2 0.2128
simbqp 5 0.0043 5 0.0007 5 0.2597
sineali 60 0.0435 60 0.0395 60 0.3926
specan 189 0.5546 211 0.6051 190 1.0039
torsion1 167 1.9045 165 1.8756 177 3.1939
torsion2 212 2.4513 208 2.3932 211 5.9096
torsion3 95 1.0684 95 1.0636 95 1.7670
torsion4 128 1.4631 128 1.4562 128 5.2179
torsion5 46 0.4971 46 0.4923 46 0.9616
torsion6 65 0.7454 65 0.7366 65 3.9030
torsiona 151 1.8267 149 1.7983 149 2.8878
torsionb 202 2.4896 232 2.8438 229 7.0656
torsionc 98 1.1970 98 1.1910 98 1.9153
torsiond 131 1.6506 129 1.6097 127 5.7448
torsione 41 0.4912 41 0.4816 41 0.8816
torsionf 56 0.6808 56 0.6746 56 3.7592
weeds 54 0.0106 54 0.0051 54 0.3000
yfit 84 0.0121 84 0.0083 84 0.3260

123

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

.65

.7

.75

.8

τ

π s(τ
)

: 1
 ≤

 s
 ≤

 n
s

Performance profile on 105 problems with respect to function calls

LRHB(f), m=5
LRHB(f), m=5
LRHB(m,i), m=5

Figure 6.3: Performance profile for implicit implementations of LRHB (nfg)

124

6.3.4 Competitive algorithms

In order to compare how effective RH-B methods are against other algo-

rithms, we tested three, including Algorithm LBFGSB-M, which uses a quasi-Wolfe

line search:

• Algorithm LBFGSB, m = 5,

• Algorithm LBFGSB-M, m = 5,

• Algorithm LRHB, Fortran implementation, m = 5.

Summing over all problems where all solvers converged to the same solution,

we get the following totals using Tables 6.16–6.17 (see following pages).

Table 6.15: Comparison of competitive algorithms (Sum Total)

Algorithm nfg Time (sec) Failed

LBFGSB, m = 5 9002 54.83 35
LBFGSB-M, m = 5 7716 46.14 34
LRHB(f), m = 5 6999 40.57 24

Based on Table 6.15, we see that LRHB minimized the set of test problems

where all three algorithms converge in less than 74% of the time that LBFGSB

took. LRHB also needed less than 78% of the function calls that LBFGSB needed.

In addition to the two performance profiles (Figures 6.4 and 6.5) that in-

clude all problems such that all converging algorithms converged to the same so-

lution, for completeness, two performance profiles (Figures 6.6 and 6.7) are shown

that include the full test set.

It is clear from Tables 6.15–6.18 and Figures 6.4–6.7 that LRHB generally

outperformed LBFGSB and LBFGSB-M in terms of time taken, function calls

needed, and percentage of problems that were successfully solved. Using the same

tables and figures, it is clear that replacing the line search used in LBFGSB with a

quasi-Wolfe line search (as in LBFGSB-M) also resulted in increased performance

with respect to time and function calls.

125

Table 6.16: Comparison of competitive algorithms (Problems 1–37)

LBFGSB LBFGSB-M LRHB(f)
Problem m = 5 m = 5 m = 5

nfg time nfg time nfg time
3pk – 0.2129 – 0.2321 – 0.1251
allinit 19 0.0035 19 0.0032 21 0.0019
antwerp – 0.2227 – 0.2177 – 0.1813
bdexp* 15 0.0331 15 0.0340 15 0.0379
biggsb1 – 1.2690 – 1.3111 – 2.3659
bleachng – 67.8912 – 83.1788 6 8.4512
bqp1var 2 0.0003 2 0.0003 2 0.0002
bqpgabim 23 0.0046 23 0.0046 30 0.0036
bqpgasim 25 0.0048 25 0.0048 31 0.0036
bqpgauss – 1.2131 – 1.2138 – 1.4394
camel6 14 0.0024 14 0.0023 14 0.0013
chardis0* 4 0.0117 4 0.0118 4 0.0114
chebyqad – 0.0198 – 0.0149 1021 4.1788
chenhark – 1.5590 – 1.6026 – 2.4473
cvxbqp1 2 0.0069 2 0.0078 10 0.0361
deconvb* 210 0.0477 136 0.0307 113 0.0165
eg1 14 0.0024 15 0.0025 10 0.0009
explin – 0.0563 – 0.0572 254 0.1362
explin2 – 0.0254 – 0.0734 87 0.0464
expquad – 0.0073 – 0.0033 – –
hadamals 24 0.0308 26 0.0337 16 0.0191
harkerp2 31 0.0075 32 0.0078 28 0.0046
hart6 19 0.0034 19 0.0035 23 0.0023
hatflda 39 0.0065 39 0.0067 127 0.0116
hatfldb 34 0.0056 32 0.0054 – –
hatfldc 23 0.0042 23 0.0042 24 0.0026
himmelp1 12 0.0019 11 0.0017 14 0.0012
hs1 29 0.0047 29 0.0048 24 0.0022
hs110 2 0.0006 3 0.0007 1 0.0005
hs2 19 0.0030 21 0.0031 27 0.0024
hs25 1 0.0003 1 0.0002 1 0.0002
hs3 4 0.0008 5 0.0008 9 0.0008
hs38 26 0.0046 26 0.0046 47 0.0043
hs3mod 9 0.0014 13 0.0019 10 0.0009
hs4 2 0.0004 3 0.0005 2 0.0002
hs45 11 0.0016 5 0.0007 4 0.0004
hs5 8 0.0014 8 0.0014 8 0.0008

126

Table 6.17: Comparison of competitive algorithms (Problems 38–74)

LBFGSB LBFGSB-M LRHB(f)
Problem m = 5 m = 5 m = 5

nfg time nfg time nfg time
jnlbrng1 913 7.5231 641 5.2212 423 4.3701
jnlbrng2 574 4.4512 558 4.3707 728 7.1763
jnlbrnga 341 2.3823 293 2.0813 306 2.8579
jnlbrngb – 7.1282 – 7.2592 – 9.6754
koebhelb – 0.0066 – 0.0036 212 0.0262
linverse* 336 0.4593 332 0.4662 411 0.7370
logros 120 0.0199 111 0.0185 104 0.0094
maxlika – 0.3748 – 0.3792 591 0.1651
mccormck 15 0.0839 15 0.0853 23 0.1458
mdhole 85 0.0144 85 0.0143 81 0.0072
minsurfo 326 1.2027 338 1.2430 318 1.3975
ncvxbqp1 2 0.0071 3 0.0093 7 0.0369
ncvxbqp2 – 0.3645 – 0.3104 72 0.3398
ncvxbqp3 – 0.8392 – 0.7918 145 0.6724
nobndtor 225 2.0512 212 1.9370 194 2.1223
nonscomp* 51 0.1912 51 0.1944 29 0.1283
obstclae 668 4.7566 502 3.5620 160 1.5003
obstclal 162 1.0631 157 1.0486 102 0.9386
obstclbl 261 1.8963 249 1.8166 115 1.0615
obstclbm 118 0.8522 121 0.8737 103 0.9472
obstclbu 154 1.0945 151 1.0757 110 1.0093
oslbqp 2 0.0004 2 0.0004 2 0.0002
palmer1 – 0.0113 – 0.0439 41 0.0038
palmer1a – 0.2157 600 0.1070 – 0.1259
palmer1b 78 0.0138 – 0.0499 42 0.0040
palmer1e – 0.2491 – 0.2509 – 0.1303
palmer2 – 0.0131 – 0.0113 72 0.0066
palmer2a 553 0.0990 554 0.0989 835 0.0918
palmer2b 62 0.0103 60 0.0099 37 0.0034
palmer2e – 0.2278 – 0.2371 – 0.1234
palmer3 – 0.0491 – 0.0136 46 0.0043
palmer3a 760 0.1373 493 0.0885 – 0.1243
palmer3b 57 0.0095 61 0.0100 123 0.0114
palmer3e – 0.2261 – 0.2226 – 0.1258
palmer4* 25 0.0039 25 0.0039 180 0.0168
palmer4a 611 0.1107 381 0.0678 358 0.0375
palmer4b 69 0.0116 69 0.0117 77 0.0071

127

Table 6.18: Comparison of competitive algorithms (Problems 75–111)

LBFGSB LBFGSB-M LRHB(f)
Problem m = 5 m = 5 m = 5

nfg time nfg time nfg time
palmer4e – 0.2231 – 0.2219 – 0.1264
palmer5a – 0.2275 – 0.2221 – 0.1290
palmer5b – 0.2093 – 0.2090 – 0.1215
palmer5d 24 0.0039 24 0.0040 577 0.0545
palmer5e – 0.2253 – 0.2228 – 0.1254
palmer6a 985 0.1734 576 0.1009 – 0.1225
palmer6e – 0.2261 – 0.2383 – 0.1233
palmer7a – 0.2238 – 0.2203 – 0.1237
palmer7e – 0.2245 – 0.2201 – 0.1242
palmer8a* 405 0.0718 234 0.0410 558 0.0573
palmer8e – 0.2438 – 0.2139 – 0.1241
pentdi 3 0.0046 3 0.0049 4 0.0062
powellbc – 0.0147 – 0.0108 773 0.3902
probpenl 3 0.0009 3 0.0009 4 0.0009
pspdoc 11 0.0020 11 0.0020 11 0.0010
qrtquad – 2.8505 – 2.3754 – –
qudlin* 2 0.0035 3 0.0044 11 0.0142
s368* 21 0.0444 16 0.0337 26 0.0510
scond1ls – 3.6306 – 3.7331 – 4.5519
sim2bqp 2 0.0004 2 0.0004 2 0.0002
simbqp 5 0.0008 5 0.0008 5 0.0005
sineali – 0.0206 – 0.0272 60 0.0372
specan 157 0.4592 152 0.4600 211 0.6038
torsion1 198 1.6654 185 1.5611 165 1.8180
torsion2 497 4.4410 313 2.7168 208 2.3171
torsion3 76 0.5865 76 0.5957 95 1.0319
torsion4 420 3.4901 268 2.1807 128 1.4136
torsion5 40 0.2925 40 0.2984 46 0.4782
torsion6 341 2.7342 308 2.4881 65 0.7116
torsiona 203 1.9165 199 1.8759 149 1.7392
torsionb 398 3.9027 363 3.5590 232 2.7660
torsionc 89 0.7712 89 0.7825 98 1.1374
torsiond 375 3.4416 353 3.2817 129 1.5375
torsione 38 0.3079 38 0.3134 41 0.4586
torsionf 341 3.0509 264 2.3449 56 0.6479
weeds – 0.0203 47 0.0079 54 0.0049
yfit 105 0.0182 93 0.0161 84 0.0079

128

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

τ

π s(τ
)

: 1
 ≤

 s
 ≤

 n
s

Performance profile on 102 problems with respect to run time

LBFGSB, m=5
LBFGSB−M, m=5
LRHB(f), m=5

Figure 6.4: Performance profile for competitive solvers (time)

129

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.3

0.4

0.5

0.6

0.7

τ

π s(τ
)

: 1
 ≤

 s
 ≤

 n
s

Performance profile on 102 problems with respect to function calls

LBFGSB, m=5
LBFGSB−M, m=5
LRHB(f), m=5

Figure 6.5: Performance profile for competitive solvers (nfg)

130

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

τ

π s(τ
)

: 1
 ≤

 s
 ≤

 n
s

Performance profile on 111 problems with respect to run time

LBFGSB, m=5
LBFGSB−M, m=5
LRHB(f), m=5

Figure 6.6: Performance profile for competitive solvers on full set (time)

131

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

0.8

τ

π s(τ
)

: 1
 ≤

 s
 ≤

 n
s

Performance profile on 111 problems with respect to function calls

LBFGSB, m=5
LBFGSB−M, m=5
LRHB(f), m=5

Figure 6.7: Performance profile for competitive solvers on full set (nfg)

Bibliography

[Ber76] D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection
method. IEEE Trans. Automatic Control, AC-21(2):174–184, 1976.

[Ber82] D. P. Bertsekas. Projected Newton methods for optimization problems
with simple constraints. SIAM J. Control Optim., 20(2):221–246, 1982.

[BLNZ95] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm
for bound constrained optimization. SIAM J. Sci. Comput., 16:1190–
1208, 1995.

[Car07] P. Carbonetto. A Matlab interface for L-BFGS-B. Dept of Computer
Science, University of British Columbia, 2007.

[CGT00] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2000.

[CM87] P. H. Calamai and J. J. Moré. Projected gradient methods for linearly
constrained problems. Math. Program., 39:93–116, 1987.

[Dav59] W. C. Davidon. Variable metric methods for minimization, a. e. c. re-
search and development. Report ANL-5990, Argonne National Labora-
tory, Argonne, IL, 1959.

[DGKS76] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Re-
orthogonalization and stable algorithms for updating the Gram-Schmidt
QR factorization. Math. Comput., 30:772–795, 1976.

[DM02] E. D. Dolan and J. J. Moré. Benchmarking optimization software with
performance profiles. Math. Program., 91(2, Ser. A):201–213, 2002.

[Fen81] M. C. Fenelon. Preconditioned Conjugate-Gradient-Type Methods for
Large-Scale Unconstrained Optimization. PhD thesis, Department of Op-
erations Research, Stanford University, Stanford, CA, 1981.

[GL01] P. E. Gill and M. W. Leonard. Reduced-Hessian quasi-Newton methods
for unconstrained optimization. SIAM J. Optim., 12(1):209–237, 2001.

132

133

[GL03] P. E. Gill and M. W. Leonard. Limited-memory reduced-Hessian methods
for large-scale unconstrained optimization. SIAM J. Optim., 14:380–401,
2003.

[GMS97] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: an SQP algorithm
for large-scale constrained optimization. Numerical Analysis Report 97-
2, Department of Mathematics, University of California, San Diego, La
Jolla, CA, 1997.

[Gol64] A. A. Goldstein. Convex programming in Hilbert space. Bulletin of the
American Mathematical Society, 70(5):709–710, 1964.

[GOT03] N. I. M. Gould, D. Orban, and P. L. Toint. CUTEr and SifDec: A con-
strained and unconstrained testing environment, revisited. ACM Trans.
Math. Software, 29(4):373–394, 2003.

[Leo95] M. W. Leonard. Reduced Hessian Quasi-Newton Methods for Optimiza-
tion. PhD thesis, Department of Mathematics, University of California,
San Diego, 1995.

[LP66] E. S. Levitin and B. T. Polyak. Constrained minimization methods.
U.S.S.R. Comput. Math. and Math. Physics, 6(5):1–50, 1966.

[McC69] G. P. McCormick. Anti-zig-zagging by bending. Management Science,
15(5):315–320, 1969.

[MS84] J. J. Moré and D. C. Sorensen. Newton’s method. In G. H. Golub,
editor, Studies in Mathematics, Volume 24. MAA Studies in Numerical
Analysis, pages 29–82. Math. Assoc. America, Washington, DC, 1984.

[MT91] J. J. Moré and G. Toraldo. On the solution of large quadratic program-
ming problems with bound constraints. SIAM J. Optim., 1(1):93–113,
1991.

[MT94] J. J. Moré and D. J. Thuente. Line search algorithms with guaranteed
sufficient decrease. ACM Trans. Math. Software, 20(3):286–307, 1994.

[NW99] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag,
New York, 1999.

[NY97] Q. Ni and Y. Yuan. A subspace limited memory quasi-Newton algorithm
for large-scale nonlinear bound constrained optimization. Mathematics
of Computation, 66(220):1509–1520, 1997.

[Sie94] D. Siegel. Modifying the BFGS update by a new column scaling tech-
nique. Mathematical Programming, 66:45–78, 1994. Ser. A.

134

[SP78] D. F. Shanno and K. Phua. Matrix conditioning and nonlinear optimiza-
tion. Math. Program., 14:149–160, 1978.

[Wol69] P. Wolfe. Convergence conditions for ascent methods. SIAM Review,
11:226–235, 1969.

[Wol72] P. Wolfe. On the convergence of gradient methods under constraint. IBM
J. Res. Dev., 16:407–411, 1972.

[WY06] Z. Wang and Y. Yuan. A subspace implementation of quasi-newton trust
region methods for unconstrained optimization. Numerische Mathematik,
104:241–269, 2006.

[ZBLN97] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-
B: Fortran subroutines for large-scale bound-constrained optimization.
ACM Trans. Math. Software, 23(4):550–560, 1997.

