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Abstract

Genetic intratumoral heterogeneity is a natural consequence of imperfect DNA replication. Any 

two randomly selected cells, whether normal or cancerous, are therefore genetically different. We 

re-analyzed the extent of genetic heterogeneity within untreated cancers with particular regard to 

its clinical relevance. We found that homogeneity of predicted functional mutations in driver genes 

was the rule rather than the exception. In primary tumors with multiple samples, 97% of driver 

gene mutations in 38 patients were homogeneous. Moreover, among metastases from the same 
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primary tumor, 100% of driver mutations in 17 patients were homogeneous. With a single biopsy 

of a primary tumor in 14 patients, the likelihood of missing a functional driver gene mutation that 

was present in all metastases was 2.6%. Furthermore, all functional driver gene mutations detected 

in the primary tumor were present among all metastases. Last, we found that individual metastatic 

lesions responded concordantly to targeted therapies in 91% of 44 patients. These data indicate 

that the cells within the primary tumors that gave rise to metastases are genetically homogeneous 

with respect to functional driver gene mutations and suggest that future efforts to develop 

combination therapies have the potential to be curative.

Introduction

Cancer is an evolutionary process spanning multiple decades. During the expansion of cell 

populations, intratumoral heterogeneity (ITH) arises as a natural consequence of imperfect 

DNA replication1–4. Whenever a cell divides, a few mutations across the whole genome are 

acquired. In a tumor comprised of billions of cells, every conceivable point mutation is 

expected to be present in at least a few cells. At the genetic level, not only is every cancer 

type different, but also every tumor of the same type and every cell of the same tumor are 

different. This extensive heterogeneity has been considered a major barrier to drug 

development and long-term disease control5–10. However, the success (even if short-lived) of 

several forms of targeted therapies suggests that intratumoral heterogeneity does not 

preclude initial therapeutic response. For example, in patients with metastases – who 

represent the majority of patients treated with therapeutic agents – it would be difficult to 

observe an objective response if some metastatic lesions did not harbor the targeted driver 

gene mutation in the vast majority of their cells. How can the successful responses to 

targeted therapies be reconciled with the intratumoral heterogeneity that has been observed 

in next generation sequencing studies?

Here we re-evaluate sequencing data in the literature with particular regard to the clinical 

significance of intratumoral heterogeneity. As a result of the different forms of tumor 

heterogeneity and the recent focus on subclonal heterogeneity, some discrepancies have 

arisen between the interpretations of observed heterogeneity and its clinical implications2,11. 

Other discrepancies arise from loose distinctions between functional driver gene mutations 

and passenger mutations because not every mutation within a bona fide driver gene actually 

drives tumorigenesis2,12–14. When these factors are taken into account, the sequencing data 

are in harmony with clinical experience. Homogeneity of true driver gene mutations emerges 

as the rule rather than the exception in treatment-naïve cancers.

Driver gene mutations and their role in tumor evolution

Before we begin with a quantitative description of tumor heterogeneity at the genetic level, 

we review some of the basic principles underlying the genetic determinants of cancer. Solid 

tumors typically require alterations of three driver genes to convert a normal cell to a cancer 

cell2,15–20. This number can vary among cancer types and individual patients. Each of these 

alterations promotes tumorigenesis by providing a selective growth advantage to the cells 

within their microenvironment. In other words, driver gene mutations result in an increase in 
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cell division or a decrease in cell death, resulting in a net cell gain overall. Relatively small 

changes in the cell birth rate, b, or in the death rate, d, can dramatically alter the net growth 

rate, given by r = b − d21–26. For example, assume a tumor grows exponentially with a 

volume doubling time of 150 days27. The growth rate is then r = ln(2)/150 ≈ 0.5% per day. If 

the cells within the tumor divide every 4 days28,29, then b = 1/4 = 0.25 per day and the death 

rate is d = b − r = 0.245 per day according to the above given formula. Suppose a driver gene 

mutation then occurs in one cell of this tumor. A driver gene mutation causes an increase in 

the birth rate of on average 0.4%21, though some driver gene mutations can confer much 

stronger or weaker selective advantages30,31. A typical new birth rate is then b′ = b(1 

+ 0.004) = 0.251 per day. If the death rate is unchanged, then the new growth rate of this cell 

is r′ = b′ − d = 0.6% per day. The new mutation therefore increases the net growth rate by 

20% per day (= 0.6%/0.5%). The number of these mutated cells will then double every ≈ 
120 days (= ln(2)/0.006) as opposed to 150 days of the cells without this additional driver 

gene mutation. Over many months to years, this difference is sufficient for cells with driver 

gene mutations to progressively outgrow the cells without this new mutation in the 

tumor21,32–35.

Driver genes can be classified into well-defined signaling pathways and their effects depend 

on the tissue origin of the cells. A few dozens of driver genes are recurrently mutated across 

many cancer types. Most driver genes are recurrently mutated only in a few tissues and 

cancer types. Functional consequences of mutated driver genes complement each other, 

resulting in patterns of co-occurrence and mutual exclusivity among driver gene 

mutations36,37. In the case of oncogenes, a single missense mutation generally represents the 

genetic alteration responsible for activating it. In the case of tumor suppressor genes, 

inactivation typically requires two separate mutations. One of these mutations is usually 

intragenic (producing a stop codon, for example), while the other is often a large deletion 

that inactivates the other allele38,39. It is important to note that driver genes (e.g., NOTCH1 
or CDH1) can act as oncogenes in one cancer type but as tumor suppressor genes in other 

cancer types2,40, reflecting the different signaling circuitries that define organogenesis.

The first driver gene mutation allows the formation of a small clonal expansion, creating a 

benign lesion17,41,42. These lesions typically grow to a size of a few million cells and are 

usually undetectable clinically. The second driver gene mutation results in a second wave of 

clonal local expansion, often leading to a clinically detectable, though still benign, 

tumor19,43–45. The third mutation endows the tumor cell not only with a further selective 

growth advantage but also with the ability to expand its environment by invading through the 

basement membrane19,45, thereby defining malignancy (a.k.a. cancer). Advanced tumors 

typically contain frequent gains and losses of focal genomic regions, chromosome-arms, and 

whole chromosomes39,46–48. Depending on the cancer type, whole-genome duplication 

(WGD) occurs in 10–80% of cancers which could lead to subsequent chromosomal 

alterations38,49. To date, it has been impossible to determine whether the rate of 

chromosome gains and losses (chromosome instability) increases during tumor progression. 

However, a new approach employing organoids should make this possible in the future50. 

Despite intense efforts, no genetic alterations have been identified that unambiguously 

endow the cell with the ability to metastasize51. The process of metastasis seems stochastic; 
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once a cancer has developed (i.e., acquired invasive growth capability), it may only be a 

matter of time before a cell invades a vessel and seeds a distant metastasis13.

Driver gene mutations are “clonal” if they are present in virtually all cells of the cancer. 

Clonal mutations are also called “truncal” because they are in the trunk of the tumor 

evolutionary tree. Subclonal mutations represent those that are present in only a subset of the 

cancer’s cells. Subclonal mutations are sometimes described as “branched” because they 

occur on a branch of the tree when the evolutionary trajectory of the tumor can be assessed. 

Though three driver gene mutations appear to be sufficient for the development of a 

malignant solid tumor, more than three driver genes can be observed in cancers, because the 

evolutionary process of tumors never stops. These additional mutations can be clonal, but are 

more likely to be subclonal compared to the first three mutations driving the disease.

Heterogeneity among driver gene mutations in benign tumors and expanded clones occurs 

frequently18–20,45,52–54. However, this heterogeneity can essentially be erased in the primary 

tumor by a mutation that endows a strong growth advantage (e.g., the third mutation in the 

chain resulting in the advent of malignancy). In the parlance of population genetics, such a 

mutation results in a clonal sweep: the vast majority of the cells within the cancer descend 

from this mutant cell, which outcompeted other clones in the developing tumor (Fig. 1).

Relatively few mutations result in a gain-of-function or loss-of-function of a driver gene to 

confer a selective growth advantage. These driver gene mutations are functional because 

they increase the rate of cell division or decrease the rate of cell death. Just because a 

mutation occurs in a driver gene does not mean that it drives tumorigenesis. Mutations in 

driver genes that are not functional should be considered passenger mutations because of 

their effectively neutral consequences on selection13,23,40,55. With sufficiently deep 

sequencing, essentially every possible point mutation in every gene will be observed. Many 

candidate driver gene lists already contain more than 1000 genes, and driver gene mutations 

are becoming increasingly likely to be false-positives. Each mutation in a driver gene needs 

to be carefully assessed before functional consequences should be indicated. In this review, 

we have attempted to rigorously distinguish mutations that are likely to be functional from 

those that are not.

A final and often unappreciated point about genetic heterogeneity is that it is not confined to 

tumors. Any two randomly selected normal cells from a healthy adult contain hundreds to 

thousands of genetic alterations that distinguish the two cells3,48,56–60. One can precisely 

quantify heterogeneity and evolutionary relationships through various metrics such as the 

Simpson index, the Shannon index, or the Jaccard similarity index26,61–66. Applied to 

normal cells and cancer cells, these metrics reveal that cancer cells are more similar to each 

other than normal cells are to each other. For example, the fraction of distinct genetic 

alterations between any two random cancer cells from a single cancer is much smaller than 

between any two random normal cells from a normal organ56,64. The reduced heterogeneity 

in cancer cells is a consequence of the clonal sweeps described above, wiping out all prior 

heterogeneity among the other clones (Fig. 1). Viewed in such a quantitative context and in 

comparison to normal cells, the extent of intratumoral genetic heterogeneity does not emerge 

as a distinctive feature of cancer. Nevertheless and independent of the degree of 
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heterogeneity, the key questions addressed in this review remain the same: in which 

situations is genetic heterogeneity clinically important and why?

Forms of tumor heterogeneity

Genetic differences between cancers of two patients, each with a different tumor type 

(intertype heterogeneity) are well-known (e.g., mutations present in prostate cancer vs. in 

pancreatic cancer). Even cancers of the same type in two different individuals are genetically 

very different and may share very few or no somatic mutations (intratype heterogeneity). 

These differences are the basis for precision medicine: patients are treated with drugs that 

target the genetic alterations that are present in their particular tumor. This contrasts with 

conventional chemotherapeutics, in which all patients with a given tumor type are treated 

identically. Perhaps the epitome of personalized medicine is illustrated by the “tumor type-

agnostic” approval of immune checkpoint inhibitors for cancers67. The drug pembrolizumab 

is now recommended for treatment of patients whose tumors are mismatch repair deficient, 

regardless of the tumor type. A similar tumor type-agnostic indication for patients with 

tumors bearing TRK mutations was recently approved68.

This review focuses on three forms of heterogeneity that affect the same cancer in a single 

induvidual2,69. Intraprimary heterogeneity refers to the genetic heterogeneity between two 

cells of the same primary tumor; intermetastatic heterogeneity refers to the genetic 

heterogeneity between the cells that seed distant metastasis, and intrametastatic 
heterogeneity refers to the genetic heterogeneity between two cells of the same metastasis 

(Fig. 2).

Intraprimary heterogeneity

Intraprimary heterogeneity can directly affect patient outcomes only when the primary 

tumor cannot be excised. As depicted in Fig. 3, in ~57% of all newly diagnosed cancers in 

the US, the primary tumor is surgically resectable. For selected common solid cancers 

(representing 81% of all new cancer cases in the US), ~70% of primary tumors are 

surgically resectable and intraprimary heterogeneity is clinically irrelevant70. Nonetheless, 

intraprimary heterogeneity can sometimes provide important prognostic 

information61,66,71,72. Moreover, when the primary tumor cannot be completely resected, 

such as is nearly always the case in glioblastomas, intraprimary heterogeneity among driver 

genes can limit the response to therapies that target such driver genes. Such driver 

heterogeneity explains, for example, why agents that target the EGFR variant translocation 

have not achieved notable clinical success; not all cells within most glioblastomas contain 

this translocation73.

Intraprimary heterogeneity can be assessed through multi-region or single cell sequencing of 

primary tumors. Several studies of this sort have revealed driver gene mutations present only 

in a subset of the evaluated regions of some tumors74–81. Some of this heterogeneity can be 

explained by sequencing noise, low neoplastic cell content, or low sequencing depth in 

individual samples81–84. For example, if the depth of sequencing for a specific genomic 

position is only n = 10 reads, and the neoplastic content of the tumor DNA used for 
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sequencing is 50%, then the probability of completely missing that mutation (k = 0) when it 

occurs in 100% of the cancer cells is 
n
k

⋅ f k ⋅ 1 − f n − k = 5.6% (assuming that one of two 

alleles in the tumor cells is mutated, f = 0.5/2). The probability of missing at least one of 

three such mutations is 1 − 1 − ∑k = 0
1 n

k
⋅ f k ⋅ 1 − f n − k 3

= 57% if it is assumed that the 

mutation needs to be observed twice (k < 2) to ensure that it is real rather than an artifact of 

sequencing. Multi-sample analysis accentuates this problem because the probability that 

sequencing depth or neoplastic cell content is low in at least one sample strongly increases 

with the number of analyzed samples23. Most sequencing data analysis methods have been 

optimized for single-sample analysis, and few methods have been described to minimize 

artifacts in the context of multi-sample analysis82,85. Some of the newer methods to control 

for multi-sample analysis artifacts have been applied to the sequencing data described in this 

study (Supplementary Methods S1).

Minimal functional consequences of subclonal driver gene mutations

Intraprimary heterogeneity is conferred by subclonal mutations. But are the subclonal 

mutations that occur in driver genes functional? As noted above, just because a mutation 

occurs in a driver gene does not mean that the particular mutation actually drives 

tumorigenesis. To address this question, we reanalyzed data from 38 untreated primary 

epithelial tumors derived from six cancer types in which multi-region sequencing had been 

performed (13 ovarian86, 10 colorectal23,79,87,88, 9 breast78, 4 pancreatic64, 1 gastric89, and 

1 endometrial cancer13). In each region, we classified mutations as present if their “present 

probability” was at least 80% according to the Bayesian inference model of Treeomics82 

(Supplementary Methods S1). Mutations were classified as absent if their “absent 

probability” was at least 80%. Mutations that were present in at least one sample but not in 

all samples were classified as subclonal. Ambiguous mutations that did not reach these 

presence or absence probability thresholds in all samples of a patient were excluded from the 

analysis to minimize effects of low sequencing depth or low neoplastic cell content. We 

thereby identified 19 subclonal, non-synonymous mutations within the 299 driver genes 

listed in the TCGA consensus list40 (Supplementary Table S1; Fig. 4a). The number of 

subclonal mutations was considerably less than the number of clonal mutations (19 

subclonal vs. 143 clonal in the same 38 cancers).

To determine whether these 19 subclonal mutations were likely to be functional, we pooled 

information from various databases and used bioinformatic methods to create a two-phase 

algorithm, called LiFD (Likely Functional Driver; Supplementary Methods S1). In the first 

phase of LiFD, mutations that are annotated in OncoKB90, the catalog of validated 

oncogenic mutations (CGI, Cancer Genome Interpreter12), known cancer hotspots91, or 

present at least 4 times in COSMIC92 (Catalogue of Somatic Mutations in Cancer) were 

predicted to be functional. If a mutation was not annotated as functional in the first phase, 

we used CHASMplus14,93, FATHMM94, CanDrA95, CGI12, and VEP96 to predict the 

functional consequences of this mutation in the second phase of LiFD. If the majority of the 

methods that produced a result predicted functionality, we classified the mutation as likely 

functional (Supplementary Methods S1; Supplementary Fig. S1). This method was lenient in 

Reiter et al. Page 6

Nat Rev Cancer. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that it allowed mutations scored as significant as judged by only a subset of tools to be 

considered functional in LiFD.

Through LiFD, we found that clonal mutations in putative driver genes were significantly 

more likely to have functional consequences than subclonal driver gene mutations in the 

same tumors (Fig. 4a; Supplementary Table S1). Only two (11%) of the 19 subclonal 

mutations compared to 77 (54%) of the 143 clonal mutations were predicted to be functional 

(P < 0.001, two-sided Fisher’s exact test; Fig. 4a). The two likely functional subclonal driver 

gene mutations occurred in PTEN in the same patient, one in each of two regions of the 

cancer. When evaluated at the individual tumor level, 97% (37/38) of the tumors evaluated 

had no functional subclonal driver gene mutations (Fig. 4). On average, we found 2.1 likely 

functional driver gene mutations per primary tumor.

Survival analysis of patients with subclonal driver gene mutations

Another clinically important question is whether patients whose tumors have subclonal 

mutations in driver genes and are thus heterogeneous with respect to driver gene mutations 

have a worse prognosis than patients without such heterogeneity61,71,76,97–99. To address 

this question, we reanalyzed data from 100 early-stage non-small-cell lung cancers where 62 

subjects were reported to have at least one subclonal driver gene mutation72 (either point 

mutation or short insertion or deletion). We did not find a statistically significant difference 

in disease-free survival between patients that exhibited subclonal driver gene mutations (n = 

62) and those that did not (n = 38) based on the originally reported heterogeneity and driver 

classification (Fig. 5a). When the heterogeneity classification and the driver gene mutation 

classification described above were used (Supplementary Methods S1), the number of 

cancers harboring subclonal driver gene mutations decreased from 62 to 32. Nevertheless, no 

significant difference in patient outcomes was observed (Fig. 5b). Though it would be 

reasonable to expect that tumors that had acquired additional driver gene mutations would be 

more aggressive, allowing escape from host control and conferring worse survival, this was 

not the case. We again found that clonal mutations in driver genes were significantly more 

likely to be functional than subclonal ones although the high mutation rate in lung cancers 

complicates the driver functionality prediction (33% vs 20%, P < 0.001, two-sided Fisher’s 

exact test).

Single biopsies generally provide adequate information for precision medicine

Intraprimary tumor heterogeneity also informs the number of biopsies required for choosing 

the optimal targeted therapies for metastatic lesions. For example, if only a single region of a 

primary tumor is biopsied, what would be the probability of selecting a functional (and 

perhaps targetable) driver gene mutation that was not present in all metastases? Conversely, 

what would be the probability of missing a functional driver gene mutation that was present 

in all metastases if only a single biopsy were used for sequencing analysis? To address these 

questions, we reanalyzed data from 14 treatment-naïve subjects in whom at least one sample 

of the primary tumor and at least two distinct metastases were sequenced13. First, any 

detected functional driver gene mutations present in a primary tumor biopsy were also 

present among all metastases of that patient. Second, we found that the proportion of 

functional driver gene mutations present in all metastases but missing from a primary tumor 
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biopsy was on average 2.6% (Supplementary Methods S1; Supplementary Table S2). These 

data support the conclusion that in most patients, a single biopsy of a primary tumor 

captures the information necessary for therapeutic choices about the treatment of extant or 

presumptive metastases. Because untreated samples of the primary tumor and of multiple 

metastases are rarely available, these analysis results are based on a relatively small cohort, 

representing only five cancer types. Further research will be required to determine the 

clinical scenarios in which multiple rather than single biopsies are advantageous. For 

example, when lesions are multi-focal, such as in the esophagus, evaluation of biopsies from 

several sites clearly provides useful information66,71,72,100.

Intermetastatic heterogeneity

Intermetastatic heterogeneity is the most important form of heterogeneity for patients with 

primary tumors that can be completely excised2,13,101. Intermetastatic heterogeneity of 

driver gene mutations determines whether all lesions have the capacity to respond to a given 

targeted therapeutic agent. If even a single lesion lacks the driver gene mutation being 

targeted, and therefore continues to grow following the initiation of therapy, it is much less 

likely that an objective response will be observed than if all lesions harbor the mutation102.

Most studies of intratumoral heterogeneity have focused on primary tumors although 

metastases are responsible for most cancer-related deaths. Moreover, intermetastatic 

heterogeneity provides a uniquely informative view of intraprimary heterogeneity. If 

intraprimary heterogeneity were important for treatment response of metastatic disease, 

some metastases would be derived from the subclones in the primary tumor that define this 

heterogeneity. In prior studies addressing this issue, patients have often been treated with 

toxic or mutagenic agents which complicate the interpretation of mutations observed in 

metastases. We therefore surveyed the literature for patients in which at least two distant 

treatment-naïve metastases underwent genome/exome-wide sequencing13. Across all cancer 

types, and among tens of thousands of patients in whom genome-wide sequencing was 

performed, only 17 subjects were found to fulfill these requirements13,64,79,89,103–107 (6 

pancreatic, 4 endometrial, 3 colorectal, 2 breast, 1 gastric, 1 prostate cancer; Supplementary 

Methods S1). Using the LiFD classification framework, we found that 65% (44/68) of all 

clonal non-synonymous mutations in driver genes were predicted to be functional while no 

(0/14) subclonal mutations were predicted to be functional (Fig. 4b; Supplementary Table 

S3). Hence, all of the predicted functional driver gene mutations were present in all 

metastatic lesions of individual patients (Fig. 4c). The fraction of subclonal driver gene 

mutations predicted to be functional (0%) was not significantly different from the fraction of 

clonal or subclonal passenger gene mutations predicted to be functional (4.1% and 6.6%, 

respectively). We repeated this functional analysis with a more expansive driver gene list and 

obtained similar results (Supplementary Fig. S2, Supplementary Methods S1).

For previously treated metastases, varying degrees of intermetastatic heterogeneity of driver 

gene mutations have been reported within and across cancer types64,74,101,108–112. This is 

not unexpected because therapies create selective bottlenecks that unmask additional 

mutations. Which of these additional mutations in driver or passenger genes actively 

contribute to progression and resistance is often unclear, particularly when no functional 
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analysis was performed. Moreover, the selective bottleneck enforced by a therapeutic agent 

can be very different from the selective bottlenecks operating during cancer initiation and 

progression: a potent driver mutation of cancer initiation may not contribute to resistance 

and a potent resistance mutation may not drive carcinogenesis. Some of the additionally 

observed driver gene mutations can be explained by their role in conferring resistance. For 

example, KRAS mutations following treatment with EGFR inhibitors, loss of PTEN 
following treatment with PIK3CA inhibitors, or FGFR2 mutations following treatment of 

cholangiocarcinoma patients with FGFR inhibitors6,9,27,113–117. The mutations that confer 

resistance to targeted agents such as these are lesion-specific, and can differ considerably 

among the metastases of a single patient. This type of intrametastatic heterogeneity is very 

important for selecting second line therapies. However, it is typically not relevant for 

selecting the initial therapies for newly diagnosed patients because it is usually only present 

in a tiny fraction of metastatic cells prior to therapy8,23.

Clinical correlates of intermetastatic heterogeneity

The success of targeted therapies for most cancers is dependent on the homogeneity of the 

targeted driver gene mutations among metastases. At present, all targeted therapies are based 

on oncogene alterations. Tumor suppressor gene alterations cannot yet be targeted by drugs 

because there is currently no way to restore the function of an inactivated protein. The 

conclusions described above, based on genome-wide sequencing of metastatic lesions in 

untreated patients, are strongly supported by sequencing studies of individual oncogenes in 

metastases from the same patients. For example, it has been shown that mutations in KRAS, 

NRAS, BRAF, and PIK3CA are nearly always concordant across all metastatic lesions in 

colorectal cancer patients118,119. The same EGFR mutations are similarly almost always 

found in all metastatic lesions in lung adenocarcinoma patients120, and the same BRAF and 

NRAS mutations are found in metastatic lesions of patients with melanomas121,122.

Perhaps most importantly, are the actual responses observed in patients treated with targeted 

therapies consistent with the predicted homogeneity among driver genes emphasized in this 

review? Very few published studies provide detailed data on the response of individual 

lesions to targeted therapies. In general, most studies report only the data required to meet 

RECIST criteria for response, i.e., whether the sum of the diameters of all measured lesions 

decreases or increases102. An objective response is reported if the sum of those diameters 

decreases by more than 30%, and tumor progression is reported if the sum increases by more 

than 20%. However, we gathered data from two clinical trials that more directly addressed 

the question considered here as a proof of concept, i.e., if one metastatic lesion responds to a 

targeted therapy, do all index metastatic lesions respond too, or do some lesions continue to 

grow?

In the first of the two trials, 33 patients with melanoma and at least 2 index lesions were 

treated with targeted therapy123,124 (dabrafenib, trametinib, GSK2141795). All patients had 

a V600E mutation in BRAF in their primary tumors. Of these 33 patients, a decrease of 

≥30% in diameter of at least one index lesion was observed in 27 patients (Fig. 6a; 

Supplementary Table 4). We then determined how often one of the other index lesions in 

these 27 patients grew during the initial treatment period, generally 8 to 16 weeks and prior 
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to the emergence of resistance. We found that in 23 of the 27 patients, none of the other 

index lesions grew by ≥10% (representative examples in Fig. 6b).

In the second trial, 11 patients with metastatic thyroid cancers were treated with pazopanib 
(VEGFR/PDGFR/RAF inhibitor) and trametinib (MEK inhibitor)125. Of these 11 patients, a 

decrease of ≥30% in diameter of at least one index lesion was observed in 8 patients (Fig. 

6c; Supplementary Table 5). In all 8 patients, none of the other index lesions grew by ≥10% 

during the first 6 months after the start of therapy or until end of treatment (whichever 

occurred first).

The conclusions from both trials are thereby similar. When an objective tumor response 

from a targeted therapy is observed in one metastatic lesion, it is common (89% of 35 

patients) for all lesions in that patient to respond to the therapy. If we include cases where no 

lesion achieved an objective response, similar responses (regression, growth, or no stable 

diameters) of all index lesions were observed in 91% (40/44) of the patients. Note that this 

does not mean that all index lesions respond in an identical fashion. In some cases, all 

lesions regressed to the same extent (Fig. 6b). In other cases, the timing and degree of 

response varied. The timing and degree of the response is dependent on a host of factors 

other than the presence of the targeted driver gene mutation in the metastatic lesion. In 

particular, the timing and extent of a response depends on the vascularity in each tumor 

because this determines the dose actually delivered to the lesion. The microenvironment can 

also impact drug delivery and local immunity might play a role126. Moreover, the degree of 

a response depends on the number of cells in the lesion that contain a mutation that can 

confer resistance (intrametastatic heterogeneity). These additional factors are currently 

beyond the control of the oncologist. But unless all metastatic lesions contain the targeted 

mutation, a targeted therapy will usually not be very useful. Fortunately, these clinical 

results confirm the above noted sequencing studies which demonstrated in all 17 patients 

evaluated (and in all 67 distinct metastases from those patients), if one metastasis contained 

a predicted functional driver gene mutation, all the other metastases of the same patient 

contained the identical mutation.

Intrametastatic heterogeneity

Intrametastatic heterogeneity does not impact the initial response to therapy but is 

responsible for disease recurrence after a response6,8,9,115. Such recurrences result from 

mutations present in a small fraction of the cells within each metastasis prior to treatment; 

the larger the lesion, the more likely that such resistant cells exist8. Thus, treatment of 

relatively early metastatic states – with conventional chemotherapeutic agents, with targeted 

agents, or with immunotherapeutic drugs – are much more likely to be successful than 

treatment of bulky metastatic disease. Although we did not formally analyze intrametastatic 

heterogeneity here, a recent study of 2,520 metastases in which deep whole genome 

sequencing was performed showed that 96% of all driver gene point mutations were 

clonal38. Similarly, 95% of driver gene mutations were shared among the metastatic lesions 

of individual patients in a study of 100 clear-cell renal cell carcinoma patients127.
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Conclusions

The results described above lead to several important conclusions. First, tumors are 

heterogeneous, but the term “heterogeneity” needs to be used with caution and nuance, as 

normal cells are heterogeneous too. We show that the extent of intraprimary heterogeneity of 

functional driver gene mutations is relatively small (mean of 2% per patient; Fig. 4c). We 

point out that unless the primary tumor cannot be excised, the extent of this heterogeneity is 

of little clinical consequence. More importantly from an oncologist’s viewpoint, the extent 

of heterogeneity of functional driver gene mutations among metastases of the same patient is 

minimal (Fig. 4c). Moreover, the sequencing data amassed in the literature is highly 

concordant with clinical experience (Fig. 6).

Multi-region sequencing enables a more refined inference of the genealogy of tumors, 

offering key insights into the nature of the tumorigenic process128,129. For example, such 

sequencing has allowed investigators to determine the time course of tumorigenesis, which 

is now generally acknowledged to take decades19,29,39,130 (a result also consistent with 

clinical experience). A particularly informative example of this principle was recently 

published: the first genetic alteration in kidney cancers occurs during early adulthood, 

decades prior to the onset of malignancy131. The growth of a primary tumor and its 

subclonal diversification occur much after the first genetic alterations, typically a few years 

to a decade before diagnosis39,131. Multi-region sequencing is also critical to evaluate the 

potential of targeted therapies to be effective in cancers that cannot be surgically excised in 

their entirety, such as brain tumors, or to forecast the future evolutionary trajectory of a 

tumor23,24,61,132 (Fig. 3). But for tumors that can be completely excised, sequencing of a 

single region from the primary tumor is generally adequate to find the clonal mutations 

susceptible to targeted therapies (Fig. 4; Supplementary Table S2).

Our study has several limitations. One of them is that our analyses of heterogeneity was 

limited to intragenic mutations (single base substitutions and small insertions and deletions). 

Other types of genetic alterations, as well as epigenetic alterations, undoubtedly play a role 

in tumorigenesis. For example, copy number alterations occur nearly ubiquitously in cancers 

and can confer selective advantages133. Unfortunately, the target genes selected for by such 

copy number alterations are notoriously difficult to identify71,133–137. With dramatic 

changes in copy numbers (such as occurs with true amplifications in ERBB2 or EGFR), the 

target gene can be identified. In the much more usual case of small changes in copy number 

(2 to 3-fold imbalances), it is unknown whether such copy number changes reflect a single 

underlying culprit gene, the combined effect of many genes131,133,135, or simply represent 

passenger alterations arising as a result of chromosomal instability39,49,138. Mutations in 

non-coding regions of the genome also play a role in certain cancers. However, except for 

mutations in the TERT promoter, individual non-coding mutations that drive tumorigenesis 

are rarely recurrent139. Moreover, similar to copy number changes, it is currently very 

challenging to determine whether a given non-coding mutation is functional; tools like those 

used here are not yet available for predicting the effects on tumorigenesis of non-coding 

mutations. The same challenges apply to the thousands of epigenetic changes that occur in 

every cancer. Unless these changes occur in the ~300 well-documented driver genes2,40, it is 

currently unfeasible to reliably discern which of them are likely to drive tumorigenesis, i.e., 
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to cause a selective growth advantage in the actual human tumor microenvironment in which 

they occurred. Another limitation involves the difficulty of identifying functional genetic 

mutations. The LiFD classification framework combines the evidence of various databases 

and algorithms to minimize false-positives and false-negatives but is still only predictive 

rather than definitive. Finally, these studies of untreated cancers with numerously sampled 

primary tumors and metastases by necessity involved only a small number of cases. As 

sequencing becomes routine in clinical and research studies, we expect it will be possible to 

extend our type of evaluation to many other cancer cases.

The results reviewed here provide optimism for future targeted combination therapies. If 

intermetastatic heterogeneity in driver genes was routinely found, there would be little hope 

of achieving meaningful responses in most patients. We find that such heterogeneity is rare 

(Fig. 4), and this is compatible with the clinical success of targeted therapies in patients with 

metastatic disease (Fig. 6). Though these targeted therapies are not curative because of 

evolving resistance within metastases (intrametastatic heterogeneity), there is no theoretical 

reason why combinations of targeted therapies could not be curative9. Indeed, it has been 

shown that treatment of metastases with just two drugs for which no single alteration can 

confer cross-resistance should, in theory, cure most cancers8. These results apply not only to 

those driver gene mutations that are currently targeted but also to future targeted therapies – 

so such cures appear to be possible and eminently worthy of further pursuit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Clonal sweeps give rise to driver gene mutation homogeneity.
Subclonal cells containing different driver genes emerge over time. Subclones of cells with 

different driver gene mutations are colored yellow, orange, red, or green. a | Driver gene 

mutation heterogeneity in a small lesion. b | Lesion grows with the expansion of both the 

yellow and the red subclones. Some subclones may progress, others remain stable or regress. 

c | The red subclone sweeps through the lesion and eradicates the preexisting driver gene 

heterogeneity harbored by the yellow subclone. New driver gene mutations in another 

subclone (green) may be acquired during the growth of the lesion.

Reiter et al. Page 19

Nat Rev Cancer. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: Three forms of heterogeneity within a single patient.
Subclonal cells containing different driver genes emerge over time. Subclones of cells with 

different driver gene mutations are colored yellow, orange, or green. a | Intraprimary 

heterogeneity: Subclones containing different driver gene mutations expand in parallel. b | 

Intermetastatic heterogeneity: Cells with different driver gene mutations disseminate and 

colonize distant sites, leading to driver gene heterogeneity among the founding cells of 

different metastases. c | Intrametastatic heterogeneity: Mutations in the founding cells of a 

metastasis clonally expand so that they are present in all cells of the metastasis. However, 

additional driver gene mutations can be acquired during the growth process of the metastatic 

lesion. Whether intrametastatic heterogeneity can arise from the dissemination of new clones 

from one metastatic lesion to another is the subject of ongoing research80,140,141.
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Fig. 3: Majority of primary tumors are surgically resectable at the time of diagnosis.
a | Estimated incidence of selected solid cancers in the United States in 201870. *Solid 

cancer types with more than 10,000 estimated new cases per year were selected. Selected 

cancer types represent approximately 81% of all new cancer cases in the US. Hematological 

cancers, cancer types with less than 10,000 estimated new cases per year, and cancers for 

which surgery is not routinely recommended (i.e. small-cell lung cancers), or for which the 

primary tumor often cannot be completely resected (i.e. glioblastoma) were excluded. b | 

Fraction of resectable primary tumors across cancer types in the US. Approximately 70% 

(984,506/1,400,960) of newly diagnosed cases of these solid cancer types (panel a) and 

approximately 57% (984,506/1,735,350) of all newly diagnosed cancer cases are resectable.
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Fig. 4: Intratumoral heterogeneity in untreated primary tumors and among metastases.
Intraprimary heterogeneity analysis based on 96 samples from 38 subjects (13 ovarian86, 10 

colorectal23,79,87,88, 9 breast78, 4 pancreatic64, 1 gastric89, and 1 endometrial cancers13; 

Supplementary Methods S1). Intermetastatic heterogeneity analysis based on 67 metastases 

samples of 17 subjects (6 pancreatic64, 4 endometrial13,104, 3 colorectal79, 2 breast103, 1 

gastric89, 1 prostate105 cancers). a | Driver gene mutations present in all samples from a 

single primary tumor were more frequently predicted to be functional than those present in 

only a subset of the samples from a primary tumor (54% vs. 11%, P < 0.001). The fraction 

of subclonal functional driver gene mutations (11%) was not significantly different from the 

fraction of clonal or subclonal functional passenger gene mutations in the same tumor (3.3% 

and 2.3%). b | Mutations in driver genes that were present among all metastases samples of a 

subject were more frequently predicted to be functional than those present only in a subset 

of metastases samples (65% vs. 0%, P < 0.001). The fraction of subclonal functional driver 

gene mutations (0%) was not significantly different from the fraction of clonal and subclonal 

functional passenger gene mutations in the same samples (4.1% and 6.6%). c | On average 

69% and 66% of the mutations per patient were clonal (homogeneous) among primary 

tumor samples and among metastases, respectively. Mutations in putative driver genes were 

significantly more homogeneous among primary tumor samples (90%, P < 0.001) and 

among metastases (84%, P < 0.0048) than mutations in all genes (sum of passenger genes 

and driver genes). Likely functional driver gene mutations were even more homogeneous 

among primary tumor samples (98%, P < 0.0042) and among metastases (100%, P < 0.0018) 

than other categories of mutations. Two-sided Fisher’s exact tests were used in panels a and 

b. Two-sided Wilcoxon rank-sum tests were used in panel c. Thick black bars denote 90% 

confidence interval. Numbers in brackets denote number of variants in each group. ** P < 

0.01; *** P < 0.001.
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Fig. 5: Subclonal driver gene mutations did not lead to worse patient outcomes in patients with 
non-small-cell lung carcinomas.
Analysis based on data of Jamal et al.72. a | No statistically significant difference in disease-

free survival between patients that harbored subclonal driver mutations (n = 62) and those 

that did not harbor any subclonal driver gene mutations (n = 38), according to the originally 

provided driver and heterogeneity classification. Shaded areas denote 90% confidence 

interval. The hazard ratio of subjects with subclonal driver gene mutations was 0.51 (95% 

CI: 0.24 − 1.1; P = 0.088, likelihood ratio test). b | When the LiFD algorithm for identifying 

functional driver gene mutations was applied, the number of patients that harbored subclonal 

driver gene mutations was 32 and the number of patients that did not harbor any functional 

driver gene mutations was 68. No statistically significant difference in disease-free survival 

between patients that harbored subclonal functional driver gene mutations and those that did 

not harbor subclonal functional driver gene mutations was observed. The hazard ratio of 

subjects with subclonal functional driver gene mutations was 1.4 (95% CI: 0.61 − 3.0; P = 

0.46, likelihood ratio test). In panel b, a different heterogeneity classification was performed 

than in panel a (Supplementary Methods S1).
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Fig. 6: Lesions of individual patients respond similarly to targeted therapy.
Patients are represented by humanoid cartoons. Circles within the humanoids represent 

responding, stable, or growing lesions (green, blue, and red, respectively). A lesion was 

considered to respond if it shrank by at least 30% in diameter; a lesion was considered to 

grow if its diameter increased by at least 10%; and a lesion was considered to be stable if it 

did not grow by at least 10% or shrink by at least 30%. a | At least one lesion responded in 

27 of 33 melanoma patients123,124. In 23 patients (gray humanoids), no lesion grew. In four 

patients (yellow humanoids), one of the lesions grew while the others responded, i.e., a 

heterogeneous response was observed. In six patients (red humanoids), no lesion responded. 

b | Examples of different types of responses to targeted therapy. All lesions responded in 

patient M37. One lesion responded less well than three other lesions in patient M40. None of 

the lesions responded in patient M29. One lesion responded, two lesions remained stable, 

and a fourth lesion grew in patient M08. c | At least on lesion responded in 8 of 11 thyroid 

cancer patients125. In eight patients (gray humanoids), no lesions grew. In three patients (red 

humanoids), no lesion responded. Additional information about these patients’ responses are 

provided in (Supplementary Tables S4–S5). In 91% (40/44) of the patients analyzed (with 

melanomas or thyroid cancers), all lesions responded similarly to targeted therapy.
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