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ABSTRACT OF THE THESIS

Inspecting Generalization of Reinforced Learners:

The HALMA Benchmark

by

Xiaojian Ma

Master of Science in Computer Science

University of California, Los Angeles, 2020

Professor Song-Chun Zhu, Chair

Humans learn compositional and causal abstraction, i.e., knowledge, in response to the

structure of naturalistic tasks. When presented with a problem-solving task involving some

objects, toddlers would first interact with these objects to reckon what they are and what

can be done with them. Leveraging these concepts, they could understand the internal struc-

ture of this task, without seeing all of the problem instances. Remarkably, they further build

cognitively executable strategies to rapidly solve novel problems. To empower a learning

agent with similar capability, we argue there shall be three levels of generalization in how

an agent represents its knowledge: perceptual, conceptual, and algorithmic. In this work,

we devise the very first systematic benchmark that offers joint evaluation covering all three

levels. This benchmark is centered around a novel task domain, HALMA, for visual concept

development and rapid problem solving. We conduct extensive experiments on reinforce-

ment learning agents with various inductive biases and carefully report their proficiency and

weakness.
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CHAPTER 1

Introduction

Learning to generalize across varied environments and task is arguably the central quest for

modern intelligent agents. Recently, researchers with different disciplines including AI, cog-

nitive science, psychology and neuroscience have been approaching to a general consent that

the emergence of genearlizeble concepts organized by proper language-like processing mech-

anisms seems to be the key [GFP19, MBN10, MHR20, Gri20, GB20]. While the evolution

of human intelligence also suggests that these architectures should not be merely hand-

crafted. Rather, some boostraping with scarce supervision and innately specified predisposi-

tions would primarily capture the dynamics [Kar94, AGP15, Cho86]. Therefore, the essential

question is: What is the proper machinery to learn these generalizable concepts from scarce

supervisions? By scarce supervision, we mean the way to provide supervision is akin to how

you teach Ada; one only provides sparse and indirect feedback without direct rules or dense

annotations. By generalizable concepts, we emphasize more than the competence of memo-

rization and interpolation; the learned representation ought to appropriately extrapolate and

generalize in out-of-distribution scenarios. Such a superb generalization capability is often

regarded as one of the celebrated signatures of human intelligence [LST15, Mar18, LB18]; it

is attributed to rich compositional and casual structures in human mind [FP88].

Inspired by these observations, in this work, we quest for a computational framework

to learn abstract concepts emerged in challenging and interactive problem-solving tasks,

with a humanlike generalization capability: The learned abstract knowledge should be easily

transferred to out-of-distribution scenarios.
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The general context of interactive problem solving poses extra challenges over classic

settings of concept learning; instead of merely emerging concepts, it further demands the

learning agent to leverage such emerged concepts for decision-making and planning. Ada,

after understanding semantics and affordance in Halma, can effortlessly perceive and parse

novel scenarios [ZGF20]. Yet, she would still struggle in strategically playing the game as

she needs to decide among multiple affordable moves. In essence, the central question is:

If conceptual knowledge can generalize as such, what meta-benefits does it offer on solving

unseen problems [SZW96]?

The classic decision-making account of these meta-benefits would be: Leveraging knowl-

edge, we can develop cognitively executable strategies with high planning [San08] and explo-

ration efficiency [KLC98]; these strategies facilitate us to solve problems rapidly in unseen

scenarios. They are what we call the algorithms or heuristics of this task.

Taking a step further, [WKK18, GMG19] hypothesize that modern reinforcement learn-

ing agents, incentivized by these meta-benefits, have already discovered such algorithms.

However, to date, their argument is still speculative since these agents have not been evalu-

ated in tasks with rich internal structures yet limited exposure [LUT17, KSM17]. A diagnosis

benchmark for generalization capability is thus in demand to bridge communities of concept

development and decision-making.

The main contribution of this work is a Halma-inspired competence benchmark: Humanlike

Abstraction Learning Meets Affordance (HALMA). We rigorously devise HALMA with three

levels of generalization in visual concept development and rapid problem solving; see details

in Section 2.1. HALMA is unique in its minimum yet complete concept spaces, a miniature

of compositional and causal structures in human knowledge. It dynamically generates test

problems to informatively evaluate learning agents’ capability in out-of-distribution scenar-

ios under limited exposure. We conduct extensive experiments with reinforcement learning

agents to benchmark proficiency and weakness.
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1.1 Related Work

Recently, there emerges a burst-out of benchmarks for diagnosing a set of clearly defined

competencies of AI systems, which we draw inspiration from and sincerely honor. In a word,

HALMA differentiates from all of them in its holistic evaluation towards all three levels of

generalization.

Readers may be curious about the relation between HALMA and conventional navigation

tasks such as [MPV17]. We hope we have made it clear the difference between HALMA and

them in 3.1 of main text: In these navigation tasks, there is only one maze, and new problem

instances are simply new combinations of initial and goal states. Hence, rapid problem solving

only requires agents to memorize the whole maze, whereas in HALMA the only shared

structure between problem instances is the concept space. Going beyond memorization,

HALMA requires two extra cognitive abilities—understanding and reasoning. We also notice

that in another embodied navigation task, the Habitat challenge [SKM19], agents are indeed

evaluated in completely unseen environments, under the protocol of which [WKM20] has

achieved close-to-optimal performance with large-scale training. However, without a clearly

specified concept space, the evaluation in Habitat is akin to the Random Split in HALMA

under the setup of max opt len=1. The reason why we emphasize max opt len is that the

very idea of affordance is only interesting if the action/option space is large enough and

highly structured. Otherwise, when max opt len=1, agents with memory or attention do

generalize well in both Random Split and our Dynamic Test; see detailed results in 4.3.2.

Perhaps the notion of affordance seems a bit abstract in HALMA and can be more intuitive

in visual semantic navigation and control [YWF19, CLS20]. We hope our work can inspire

the future development of benchmarks for these topics.

Compositional Language and Elementary Visual Reasoning (CLEVR) [JHM17] is one of

the earliest datasets that diagnose models’ visual reasoning abilities. High-level reasoning

skills required in CLEVR include counting, comparing, logical inference, and memory. The

3



same set of skills are also required in HALMA, but without the guidance of language. Ac-

counting for a similar purpose, [BMN19] propose a minimalist alternative, Spatial Queries On

Object Pairs (SQOOP). While relations in SQOOP are only spatial, benchmarks inspired

by Raven’s Progressive Matrices (RPM) are proposed towards abstract visual reasoning

[BHS18, ZGJ19], in which the capacity of sequential decision making is not required. In

sum, all prior works listed in this paragraph are discriminative tasks. Different from them,

the generative nature of interactive problem solving in HALMA is akin to human exploration

in the open-ended world.

As for planning and reinforcement learning, Box-World and StarCraft II minigames

[VEB17] in [ZRS19] are tasks that also require relational concept learning; the concepts

within, however, are mostly spatial.

In contrast, the concept space in HALMA is abstract and complex. The mapping from

the visual space to the semantic space is non-trivial to learn, which requires agents’ under-

standing of the temporal grammar and the causal structure. Moreover, HALMA is a partially

observable domain that requires dedicated efforts for exploration.

The closest one that is also inherently generative, compositional, and abstract is the

Simplified version of the CommAI Navigation (SCAN) [LB18], an instruction following task.

Essentially, SCAN is seq2seq translation, with little uncertainty or variation in primitives.

Hence, it does not test agents’ perceptual generalization or algorithmic generalziation. In

contrast, HALMA is a task for visual concept development and rapid problem solving. Agents

need to understand concepts from visuomotor experience and make smart decisions to acquire

utility.

4



CHAPTER 2

Background

2.1 Three-level Generalization

Our motivations might seem, prima facie, bold. To convince readers and support our

optimism, we summarize some recent progress in this section. In particular, we provide a

taxonomy of three levels of generalization on a competency basis. Indeed, generalization

is a multifaceted phenomenon. Previous evaluations for generalization were predominantly

defined in a statistical sense, following the classical paradigm of train-evaluation-test random

split [CKH19] while ignoring internal structures. However, we argue this classical paradigm

should not be the only objective approach wherein agents can or should generalize beyond

their experience [BHS18], especially if our goal is to construct humanlike general-purpose

problem-solving agents [LUT17].

Perceptual Generalization Perceptual generalization characterizes agents’ capability

to represent unseen perceptual signals, e.g ., appearance or geometry in vision. In his seminal

book, Vision, [Mar82] describes the process of vision as constructing a set of representations,

parsing visual sensory data into descriptions. Such descriptions provide conceptual primitives

[Car09] for agents’ understanding of the environment, boosting the efficacy of downstream

cognitive activities (e.g ., memory, learning, and reasoning). Learning an object-oriented rep-

resentation of independent generative factors without supervision is thus believed to be a

crucial precursor for the development of humanlike artificial intelligence. Although unsuper-

vised disentanglement and segmentation [EHW16, HMP17] resurged years ago, it is only till

[LBL19] did we realize the importance of evaluation on their generalization. More recently,
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[BMW19], [GKK19], and [LWP20] evaluate their disentanglement/segmentation models out-

side of training regimes, especially on unseen combinations of visual attributes and numbers

of objects.

Although a hypothetically perfect semantic description can truthfully represent the prim-

itive concept of “what it is,” it could only contribute partially to achieving the understanding

of “what can be done with it” [MLB08, ZZZ15]. Humanlike agents should equip with such

task-oriented abstraction, affordance, supported by compelling evidences in the field of de-

velopmental psychology; for instance, 18 to 24-month-old infants can distinguish bootstrapped

concepts [Qui60], such as “a walkable step is not a cliff” [KA13].

At a computational level, given a task specified by a Markov decision process, irrelevant

features should be abstracted out [LWL06, FPP11, KAC20]. Representation learned in this

way bootstraps conceptual content. Recently, disentanglement as such has demonstrated

efficacy [GKB19, WHA18] and elementary perceptual generalizability [ZMC20].

Conceptual Generalization While perceptual generalization closely interweaves with

vision and control, conceptual generalization resides completely in cognition, assuming the

readiness of all primitive concepts and some bootstrapped ones. The central challenge in

conceptual generalization1 is: How well can an agent perform in unseen scenarios given lim-

ited exposure to the underlying configurations [Gre93]? It is connected with the Language of

Thought Hypothesis [FP88, GTF08]: The productivity, systematicity, and inferential coher-

ence in languages characterize compositional and causal generalization of concepts [LST15].

How to learn representations with conceptual generalization is still an open question,

drawing increasing attention in our community. With a synthetic translation task, [LB18]

reveal the incompetence of general purpose recurrent models [Elm90, HS97, CGC14] in gen-

eralizing to (i) unseen primitives, (ii) unseen compositions, and (iii) longer sequences than

training data. Similar incompetence of relational inductive biases [BHB18] on hard composi-

1Conventionally, it is dubbed combinatorial generalization or systematic generalization. We use the term
conceptual to highlight its functional signature.
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tional extrapolation has also been exemplified in abstract visual reasoning [BHS18]. Notably,

there is also a line of research on emerging these linguistic structures from bootstrapped com-

munication [LHT18, MA18].

Algorithmic Generalization Agents’ understanding of the structured environment

should be reflected in their performance in solving novel problem instances; they ought to

build strategies upon the developed concepts, resembling cognitive control in human mind

[RNB05, BC14]. We use the term algorithmic generalization to describe such flexibility.

Specifically, for a problem domain where the internal structure contains an optimal explo-

ration strategy, algorithmic generalization requires agents to discover this optimal strategy

to explore efficiently in new problem instances. For example, in the domain of dependent

bandit problems designed by [WKT16], there is one arm whose return leaks the index of

the optimal arm. Given a new problem, agents who discovered the algorithm of this domain

would first try the leaky arm and then go straight to the optimal arm. Furthermore, as an

acid test, algorithmic generalization also measures the agent’s ability in long-term planning

in unseen problem configurations, after acquiring adequate information. Evaluation as such

has been discussed by [TWT16] and [GMG19].

Problem domains discussed above, however, still lack rich concept spaces, nor do they test

agents’ perceptual generalization, omitting the interaction among the three levels introduced

in this paper. Essentially, they are still far-off from the famous Atari game, Frostbite, which

is argued to be a testbed for humanlike problem solving [LUT17]. In this work, we introduce

a new problem domain to facilitate joint efforts towards representations with these three

levels of generalization.

2.2 Markov Decision Processes

For modeling the action decision process in our context, a standard Markov decision

process (MDP) [SB18] pS,A, r, T , µ, γq is considered, where S and A denotes the space of

feasible states and actions respectively, rps, aq Ñ R is the reward function, T ps1|s, aq and µpsq

7



represent the transition probability and initial state distribution and γ P p0, 1q is the discount

factor. A stochastic policy πpa|sq : S ˆ A Ñ r0, 1s maps state into action distribution. A

trajectory ζ is given by the sequence of state-action pairs tps0, a0q, ps1, a1q, ...u.
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CHAPTER 3

HALMA: Humanlike Abstraction Learning Meet

Affordance

3.1 The HALMA Domain
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Figure 3.1: (a) Given a visual panel with various colored MNIST digits and a hint, an autonomous
agent is tasked to reach the goal in a maze. The concept space guides the generation of the visual
panels; it consists of (b) spatial grammar, (c) temporal grammar, and (d) causal structure. (e) The
semantics and affordance of the colored MNIST digits are augmented on the corresponding maze;
the maze is not shown to the agent.

The setup of HALMA is minimal and interpretable. Instead of replicating the entire

game of Halma, we only preserve the most essential ingredients: The learning agent is cast

as one pawn, navigating around the “magical” Halma landscape by itself. To simplify the

environment without lost of generality, we build a maze in a grid-world for each scenario

(or problem henceforth), resembling a cognitive map of the agent. Distinct from vanilla grid-

world maze games, HALMA is novel in terms of our design of its observation space and
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action space. The agent perceives neither the global map nor any local patch of the global

map; instead, it is shown with a visual panel of various numbers of MNIST digits in various

color, randomly scaled and placed; see 3.1 (a). These colored digits indicate the semantics of

(i) the distance till a wall towards each direction, (ii) the distance till the nearest crossing or

T-junction towards each direction, and (iii) the distance and direction to the goal; the visual

panel only displays non-zero distances. For example, in 3.1 (a) (e), indicates the wall to

the left is 5-grid away, and indicates the nearest crossing is is 3-grid away to the left;

the visual color of red refers to the semantics of “left.” The agent will also be hinted with a

symbol from the set t , , , u at any crossing for the correct direction; see an example of

in 3.1 (a). When making a decision, the agent needs to first select a direction and then select

either a primitive action or an option composed by a sequence of primitive actions [SPS99]

with maximum length max opt len. The direction set is t , , , u. The primitive action set,

in terms of the number of moves, is t , , , u; this design of primitive numbers with a

maximum of three aligns with the doctrine of core knowledge in developmental psychology

[FC03, Deh11]. If an option is selected, consecutive hops as in Halma are simulated; all

observations from intermediate states will be skipped, and only the observation of the final

state is provided. A move would fail if a wall stops the agent, leaving the agent’s position

unchanged; failure moves bring penalties to the agent. The agent would receive a positive

reward when reaching the goal. Such a design encourages the agent to comprehend which

MNIST digit affords it to take which moves.

Essentially, HALMA is a 2D contextual navigation game, sharing the same spirit with

those in [MPV17] and [RWK18]. However, contexts in these prior works are elusive and con-

ceptually meaningless. As such, they only evaluate generalization at either the visuomotor

or algorithmic level. In stark contrast, HALMA is unique, possessing a rich, crisp, and chal-

lenging configuration space of problems, semantics, and affordance; see details in the next

subsection.
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3.2 The Concept Space of HALMA

Producing visual panels heavily relies on the concept space. The concept space of HALMA

consists of an explicit spatial grammar for visual panels, an implicit temporal grammar for

actions and options, and an underlying causal structure that specifies the intersection of

spatial and temporal grammar. For simplicity, we only introduce them verbally here; see

an illustration in 3.1. Intuitively, the spatial grammar produces all possible descriptions of

visual panels, spanning all configurations of semantics introduced in 3.1. To generate a visual

panel for a given state, we first sample an MNIST digit for each entry of its description and

then sample a random scale and position. The sampled MNIST digit is then colored on the

basis of its semantics, i.e., directions to a wall, a crossing, or a goal; see 3.1 (b) and the

legend. The temporal grammar produces all possible moves, either a single primitive action

or a composed option, regardless of the visual stimuli. For instance, a non-terminal node

: 5 can be parsed into options opt, such as : ` ` and : ` ; see 3.1 (c). Despite

of their distinction in terms of how an option is decomposed into primitive actions, these

options are equivalent in their causal effects. Specifically, these causal effects bind visual

MNIST digits with digital actions based on one of the simplest mathematical structures

in human cognition [Fla63]: xN,`{´,“,ăy; namely, natural numbers N, operations `{´,

and relations “, ă over N. For example (see also 3.1 (d)), a learning agent is expected to

understand relations between and via

‚ xS,ăy: the set of semantic generators1 with an order over it, e.g ., ă ;

‚ xA,`{´,“y: the set of affordance generators with operations and equality, e.g ., “ :

` ` “ : ` “ . . .;

‚ xA,`{´,ăy: the set of affordance generators with operations and inequality, e.g ., : `

ă , ă : ` ` ;

1For the sake of formalism, we adopt the terminology from General Pattern Theory [Gre93], wherein the
term generator refers to basic units in a configuration space. Intuitively, an object file [KTG92], is a semantic
generator. It is also a generator for configuration spaces of affordance and causality, for which actions/options
are also generators.

11



‚ xC,`{´,“y: the set of causal generators with operations and equality, e.g ., “ ` : .

3.3 Task Formulation and Evaluation

We expect agents who developed the concept space to leverage this knowledge and rapidly

solve new problems in HALMA. To this end, we formulate this rapid problem-solving task

with an objective to maximize the agent’s rewards accumulated over a few trials in a novel

problem instance:

Eζr
ÿN

i“0
γ

ři´1
j“0 lenpτjq

ÿlenpτiq´1

t“0
γtRpsτi,t, aτi,tqs. (3.1)

Specifically, an agent’s experience in each problem instance is dubbed an episode ζ [WKT16],

which terminates when a maximum number of steps L is reached or a maximum number

of trials N have been accomplished. A trial τ proceeds with actions aτ,t, spanning multiple

steps t; it starts from an initial state s0 and terminates when the agent reaches the goal sg

(thus accomplished), or when it consumes the maximum number of steps H (thus failed).

The agent is respawned to the initial state when a trial terminates. It is awarded Rpsg, ¨q

if the trial is accomplished. The cumulative reward in one episode is the sum of temporally

γ decayed accomplishments. When one episode terminates, the agent is presented with the

next problem.

Under this task formulation, learning agents should be evaluated against oracle solutions,

analogous to ground-truth annotations in supervised learning; recall that the oracle agent has

complete understanding of the concept space and the problem domain. Since HALMA is a

partially observable domain, its oracle behavior consists of two aspects: optimal exploration

and optimal planning. As introduced in 3.2, problems are generated by adding deceptive

branches to optimal paths. Hence, the optimal exploration strategy is to stop at each crossing

to obtain the hint from the visual panel. Intuitively, the agent should understand “when two

digits with the same color are exhibited in the visual panel, the lesser one indicates the

crossing, and I should stop there for hint” based on the concept of xS,ăyY xA,`{´,ăy. An

oracle agent would sacrifice the first trial to explore; note that the cost is still low as it would

12



explore along the optimal path with the guidance of hints, avoiding all deceptive branches.

Afterwards, the oracle agent should retrieve its experience and merges consecutive moves

towards the same direction to form the optimal plan. Take the maze example shown in 3.1

(e); during exploration, the agent sees a and a in the visual panel and takes an option

: ` to obtain a hint , which guides it to keep moving left : until the wall. Then

in the second trial, the agent should exploit xA,`{´,“y Y xC,`{´,“y via : ` ` .

With this oracle agent, we can have evaluation metrics normalized across different problems.

Instead of directly calculating the ratio of 3.1 between proposed agents and the oracle agent,

which involves strong non-linearity, we carefully decompose it into three metrics with more

intuitive measures:

‚ Ratio of invalid moves ρa “ Eζr#invalid moves
ř

i lenpτiq
s for semantics and affordance understanding;

‚ Success rate of goal reaching ρg “ Eζr 1N
ř

i δpsτi,´1 “ sgqs for leveraging concepts to

explore;

‚ Efficiency in exploration and planning ρp “ Eζr 1N
ř

i
lenpτ‹q

lenpτiq
s for algorithmic understanding.

3.4 Generalization Test

One of our key contributions in HALMA is a novel paradigm to test agents’ capability in

all three levels of generalization, which extends the classical paradigm of statistical learning.

Our training set consists of 100 mazes2 along with their visual panels. Different from the

classic paradigm, the evaluation of agent’s performance in HALMA would emphasize on

the explicit extrapolation test, which should be conducted in the held-out compositional and

relational configurations; such design echoes recent trend in evaluating agent’s generalization

capability [BMW19, LB18, ZRS19]. Compared to these prior domains, HALMA is unique as

it is a partially observable and interactive problem-solving task, wherein an agent is tasked

to autonomously learn the immense concept space and form the abstract knowledge. Hence,

2This design reflects our thesis argument, i.e., agents shall generalize their understanding from limited
exposure to the concept space. An ablation study on the volume of training set can be found in 4.3.1.
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simply holding off a pre-selected, fixed subset of conceptual configurations would impose

severe restrictions on problem generators. For instance, if we would like to allow agents to

see a , they must be able to see a by simply moving : from where they see . In

other words, if we managed to strictly withhold from agents, they would not see any red

digits larger than 3 in this interactive problem solving task. Therefore, an ex post evaluation

protocol that dynamically generates tests is more desirable.

In this paper, we propose an ingenious solution: Instead of aimlessly generating a large

test set of random cases, we devise an algorithm to proactively generate tailored tests in

accord to what the agent might have learned; this design would produce a definitive and

much more informative evaluation of agent’s competence. The intuition is simple: When a

teacher finds a student consistently make right decisions during training, wherein the student

only needs to understand ă and “ ` : , the teacher may quiz the student on

vs and vs . To implement this protocol in HALMA, we first store agents’ experi-

ence during training as their external memory MEM. We then construct a representation to

emulate agents’ knowledge bases (KB) for xS,ăy and xA,`{´,“y Y xC,`{´,“y: KBS tracks

the agent’s understood configurations on semantics, and KBA_C tracks the agent’s understood

configurations on affordance and causality. Here, we assume that (i) valid decisions3 in expe-

rience were made upon understanding inequality configurations, and (ii) agents understand

configurations involving equality and operations in experienced transitions. With these KBs,

we dynamically generate test problems with novel configurations, wherein agents should like-

wise act appropriately if they understood not only seen configurations but their underlying

concepts.

Tests in HALMA are on the competence basis: Conceptual generalization is built upon

perceptual generalization, with the algorithmic generalization resides on top. Tests for per-

ceptual generalization are backed by the spatial grammar, including unseen MNIST images

3Note that some decisions may come from random exploration. We introduce a threshold on the visitation
count to filter them out.
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and unseen compositions of visual attributes, i.e., shape and color. Tests for conceptual

generalization are based on the concept of xN,`{´,,“,ăy, consisting of novel equality and

inequality configurations. Results of these two tests are manifested in algorithmic general-

ization. Specifically, agents could only pass all of these tests by making right exploration

decisions based on relations of novel digit pairs xd1, d2|typey, where type refers to various

directions. Inappropriate exploration may cause agent to miss hints at crossings or to be

trapped in dead-ends, resulting in failures of the tests. Moreover, these novel digit pairs also

test the agents’ understanding of the temporal grammar, requiring agents to make proper

exploitation decisions by merging novel consecutive actions/options into a greater option.

Since conceptual generalization connects the other two, all three levels of generaliza-

tion are covered when test problems are dynamically generated with novel configurations in

xN,`{´,“,ăy. Recall that the generation mechanism of a problem is to first generate an

unseen configuration of optimal path and then add deceptive branches; the latter is pivotal

for a test problem since it involves generating novel digit pairs xd1, d2|typey. By design, the

lesser digit within a pair should indicate the distance to the nearest crossing, and the greater

the distance to the wall. Hence, agents could be tested by these novel digit pairs, queried

based on the agent’s KBs. We categorize the problems into:

‚ Semantic Test (ST): KBST “ pxd1, d2|typey R KBSq^ pDxxd1, d2|xy P KBSq, i.e., testing visual

panels differentiated from KBS in terms of color, shape, or other MNIST digits.

‚ Affordance Test (AfT): KBAfT “ p@xxd1, d2|xy R KBSq^ppDxd1, d2|xy P KBA_Cq_pd1 “ opt1 P

KBA_C^d2 “ opt2 P KBA_Cqq, i.e., testing inequalities inferred from equalities in KBA_C. opt

denotes actions or options.

‚ Analogy Test (AnT): KBAnT “ p@xxd1, d3|xy R KBST_AfTq^pDtxd1, d2|xy, xd2, d3|xyu Ă KBST_AfTq^

pDtxd11, d
1
2|xy, xd

1
2, d

1
3|xy, xd

1
1, d

1
3|xyu Ă KBST_AfTq, i.e., testing inequalities inferred from the

transitivity of ă. KBST_AfT “ KBST Y KBAfT.
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CHAPTER 4

Benchmarking RL Agents with HALMA

4.1 A Collection of RL Learner

The motivating questions of our experiments are: (i) Do model-free agents, exploiting

generic inductive biases, develop concepts that generalize in a way, akin to human knowledge?

(ii) If there are indeed certain meta-benefits induced by these architectural priors towards

problem solving, are they achievable with only limited exposure to the concept space? As it

is logistically challenging to experiment with all existing models, a representative subset is

culled for benchmark: model-free reinforcement learning agents [WKT16, ZRS19] with gated

memory mechanism [HS97], self-attention mechanism [VSP17], or both. Notably, [WKT16]

argued that when an RNN agent is fed with previous actions and rewards, its LSTM module

would emulate an inner reinforcement learning algorithm; the agent is thus learning to rein-

forcement learn. They demonstrated that the learned exploration strategy is more efficient

than a near-optimal model-free exploration algorithm. [ZRS19] argued that by exploiting

stacked attention modules, Transformer agents can conduct iterated reasoning with seen

relational units and generalize to unseen scenarios.

We provide a summary, along with some other hyperparemeters of all the considered RL

learners, in 4.1. The overall model architecture of the agent is then delineated in 4.1 and 4.2.
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Table 4.1: Architectural parameters of evaluated agents

Agent Architecture

Shared
Nonlinearity ReLU

MLP Agent
Encoder MLP with hidden units [128, 128].
Decoder None

LSTM Agent
Encoder MLP with hidden units [128, 128].
Decoder LSTM with layer normalization [BKH16] and

hidden units [128].

Transformer Agent
Encoder A stack of four multi-head self-attention layers, with hidden

units [128], four heads and layer normalization, followed by a
maximum pooing layer. Parameters are shared across all the
attention layers [ZRS19].

Decoder MLP with hidden units [128, 128].

Transformer+LSTM Agent
Encoder Identical to Transformer Agent.
Decoder MLP with hidden units [128, 128], followed by LSTM

with layer normalization [BKH16] and hidden units [128].

CNN Agent
Encoder CNN with kernel parameters [(3, 32, 6, 4), (32, 64, 6, 4),

(64, 128, 7, 1)] (number of input filters, number of output
filters, kernel size, and stride size by ordering).

Decoder MLP with hidden units [128].

CNN+Transformer Agent
Encoder CNN with kernel parameters [(3, 32, 4, 4, 0), (32, 64, 4, 4, 0),

(64, 128, 3, 2, 1)] (number of input filters, number of output
filters, kernel size, stride size, and padding size by ordering);
resized to 4ˆ 4 slots, concatenated with positional
embedding; followed by the encoder of Transformer Agent.

Decoder Identical to Transformer Agent.

SPACE Agent
Encoder We adopt the original setup of SPACE [LWP20] for the

image encoder and the what encoder. We concatenate
latent vectors for the shape (Zwhat) and the presence
(Zwhere) of each object. In sum, there are 8ˆ 8 object slots.
They are then fed to the encoder of Transformer Agent.

Decoder Identical to Transformer Agent.
17
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Figure 4.1: Architecture of the actor model, where T is equal to max opt len.
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Figure 4.2: Architecture of the critic model, where T is equal to max opt len.

4.2 Experiment 1: Generalization Tests

By our evaluation protocol, however, these prior models did not demonstrate conclusive

evidence to support all three levels of generalization proposed in this paper; hence, the

precise level of generalization is obscure. Crucially, neither of them evaluated the learned

agents under limited exposure to a complex concept space as in HALMA.

Table 4.3 shows the full list of agents used in our experiments. All agents are trained with

an off-the-shelf reinforcement learning method, TD3 [FHM18]; detailed hyper-parameters

defers to 4.2. All agents’ policies converged at the end of training.

To decouple the evaluation of conceptual generalization from perceptual generalization,

we first conduct experiments with symbolic one-hot observations, which can be regarded as

the ground-truth representation of perception. All agents show relatively high invalid action

ratio ρa in tests of random split, indicating their understanding of affordance is brittle

even with the ground-truth semantics. Under this precondition, we find that all agents can

18



Table 4.2: Hyper-parameters of TD3

Hyper-parameters Value
Optimizer Adam [KB14]
Learning rate for actor 1e-4
Batch size 128
ε of Adam 1e-8
Discounting factor 0.95
Initial ε for ε-greedy 0.1
Ending ε for ε-greedy 0.95
Decay steps for ε-greedy 100,000
Policy update delay 5
Target update rate 0.995
Replay buffer size 10,000

still perform relatively well in terms of goal-reaching ρg and efficiency ρp in random splits.

However, when transferred to our generalization tests, MLP agents exhibits a significant

degradation. Agents with LSTM modules, on the contrary, can somehow maintain or even

surpass their ρg and ρp in training problems. One possible explanation to their high ρg is:

With a memory mechanism, they learn to recover from dead-ends even if they missed the

hints at crossings. Even though they also have higher ρp than MLP agents, consistent with the

findings reported by [WKT16], this measure is still disconcertingly low. Such low performance

implies that agents do not understand the concept space well, especially in terms of the

temporal grammar. Transformer agents do perform better than MLP agents in generalization

tests, but not as good as LSTM agents. In particular, even though [ZRS19] argued that

Transformer agents as such may learn to plan, their lower ρp in HALMA task implies the

opposite, at least under partial observation without a memory mechanism. Combining the

benefits from the attention and the memory mechanisms, TRAN+LSTM agents outperform

others in almost all generalization tests on both ρg and ρp. Another interesting phenomenon

is: By removing the constraint of limited exposure (e.g ., we increase the training volume to

10ˆ), all agents, no matter what inductive biases are encoded, achieve around 80% measured

by ρg, and those with LSTM modules have ρp at around 45%; see details in Section 4.3.1.

Since no state-of-the-art agents could pass the test on ρp, we summarize the results of
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symbolic experiments as: In the spectrum of model-based vs model-free, emerged strategies

still reside on the model-free side of the oracle agent. Significant efforts are needed to devise

agents capable of humanlike conceptual and algorithmic generalization.

Under visual observation, however, all agents fail the generalization test when simply con-

nected with a convolutional module, even in the easiest setup (max opt len=1). Assuming

CNNs do not offer sufficient priors to induce an object-oriented, independently disentangled

representation, we pretrain a state-of-the-art multi-object segmentation and disentanglement

model, SPACE [LWP20], with all visual panels in the training set. The converged model ex-

hibits remarkable generalization in reconstruction, segmentation, and detection, consistent

with the results reported by [LWP20]. One would expect that, by connecting the encoder of

this powerful pretrained visual module with an RL agent using a Transformer module for the

object-oriented encoding, the model would have a superb performance. Counter-intuitively,

our results show that SPACE agents perform worse than CNN+TRAN agents even under

random split. A further investigation reveals that the latent space of object slots fails to

disentangle shapes or colors (e.g ., vs ), even though they can be substantially distin-

guished and reconstructed by the strongly nonlinear decoder. This explanation also accounts

for SPACE agents’ high invalid action ratio in test problems (ρa “ 58.38˘1.20). In principle,

they misunderstand affordance because they fail to recognize “what it is” in the first place.

Taking together, we argue that HALMA does extend the evaluation paradigm of perceptual

generalization, posing new challenges to the community of unsupervised disentanglement.
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Table 4.3: Examples and results of generalization tests (- indicates no problem is dynamically
generated)

Test Type & Examples
Models & Results

SYMBOLIC (max opt len=5) VISUAL (max opt len=1)

% MLP LSTM TRAN TRAN+LSTM CNN+MLP CNN+TRAN SPACE

T Training problems
ρa Ó 5.22˘4.11 12.12˘2.14 14.57˘6.77 13.05˘3.09 14.39˘7.22 10.29˘2.61 16.45˘2.65

ρg Ò 99.23˘0.63 57.22˘3.07 93.85˘1.26 72.33˘5.79 75.76˘4.77 58.33˘4.19 16.33˘0.94

ρp Ò 71.67˘1.73 50.91˘3.54 67.89˘0.63 63.97˘5.84 63.77˘2.68 35.31˘3.00 12.02˘1.17

R
T Random split

ρa Ó 37.02˘1.52 23.91˘2.10 34.85˘4.45 37.69˘2.90 86.70˘2.30 56.91˘7.92 58.38˘1.20

ρg Ò 51.00˘2.21 57.78˘3.49 82.82˘0.96 54.00˘2.94 7.58˘0.43 14.00˘4.24 3.67˘0.47

ρp Ò 54.91˘2.85 45.15˘1.46 58.07˘1.01 40.13˘2.52 5.09˘1.17 8.33˘1.96 2.66˘0.19

S
T

x , , , y P MEM, ρg Ò 55.00˘7.07 50.00˘8.16 41.67˘8.50 66.67˘13.12 0.00˘0.00 0.00˘0.00 0.00˘0.00

test x , , , y R MEM. ρp Ò 19.90˘2.18 24.02˘7.20 16.34˘3.90 35.74˘5.85 0.00˘0.00 0.00˘0.00 0.00˘0.00

ă P KBS, ρg Ò 25.00˘8.16 63.33˘6.24 43.33˘6.23 78.33˘2.36 0.00˘0.00 0.00˘0.00 0.00˘0.00

test x , y R KBS. ρp Ò 7.37˘2.33 26.31˘2.34 12.22˘1.83 34.79˘4.25 0.00˘0.00 0.00˘0.00 0.00˘0.00

A
fT

“ ` : P KBA_C, ρg Ò 41.67˘2.36 60.00˘10.80 36.67˘8.50 58.33˘10.27 0.00˘0.00 0.00˘0.00 0.00˘0.00

test x , y R KBS. ρp Ò 15.10˘0.35 28.91˘7.62 14.01˘3.75 27.11˘2.12 0.00˘0.00 0.00˘0.00 0.00˘0.00

t “ : ` , “ : u ρg Ò 31.67˘8.50 45.00˘10.80 43.33˘6.24 71.67˘6.24 0.00˘0.00 0.00˘0.00 0.00˘0.00

Ă KBA_C, test x , y R KBS. ρp Ò 11.68˘3.34 17.15˘5.82 17.86˘3.02 35.40˘3.71 0.00˘0.00 0.00˘0.00 0.00˘0.00

“ ` : P KBA_C, ρg Ò 6.67˘2.36 100.00˘0.00 25.00˘0.00 - 0.00˘0.00 0.00˘0.00 0.00˘0.00

test x , y R KBS. ρp Ò 1.48˘0.52 51.86˘0.18 5.83˘0.24 - 0.00˘0.00 0.00˘0.00 0.00˘0.00

t “ : ` , “ : u ρg Ò 0.00˘0.00 86.67˘9.43 50.00˘0.00 - 0.00˘0.00 0.00˘0.00 0.00˘0.00

Ă KBA_C, test x , y R KBS. ρp Ò 0.00˘0.00 29.89˘2.18 10.00˘0.00 - 0.00˘0.00 0.00˘0.00 0.00˘0.00

A
n
T

t ă , ă , ă , ρg Ò 35.00˘7.07 48.33˘4.71 41.67˘2.36 41.67˘13.12 0.00˘0.00 - 0.00˘0.00

ă , ă u Ă KBST_AfT, ρp Ò 12.19˘1.84 21.84˘0.53 14.45˘1.66 22.03˘6.64 0.00˘0.00 - 0.00˘0.00

test x , y R KBST_AfT.

4.3 Experiment 2: Ablation Studies

4.3.1 Ablation on the Volume of Training Set

The thesis argument of our work is that humanlike agents shall generalize their under-

standing under limited exposure to the underlying concept spaces. To further investigate

how the degree of exposure would affect agents performance in HALMA, we first conduct an

ablations study with different numbers of training mazes. Specifically, we experiment with

four setups of the maze quantity for agents to explore during training: 100, 300, 500, 1000

(results of 100 training mazes are reused from the main experiment as it is our default

setting). Here we only evaluate agents with symbolic input: MLP agents, LSTM agents,

Transformer agents and Transformer+LSTM agents. We report the three measures ρa, ρg

and ρp with all the testing protocols (training problems, problems from random split in the

problem space and dynamically-generated testing problems) in Fig. 4.3. Note that measures

in dynamically-generated tests are merged across subtests for better comparison.

The results read that, all agents could gain a performance boost with increased exposure
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Figure 4.3: Ablation study of different number of training mazes.

during training. Specifically, there is a significant promotion for the metric of goal reaching

rate ρg in the challenging dynamic testing (from 30-60% to 80%). More interestingly, starting

from 300 training mazes, the distinction between different inductive biases vanishes. While

the efficiency ratio ρp could also benefit from increased exposure, it reaches only around 50%

at best. As for the ratio of invalid moves ρa, even though it reaches around 10% in random

split for stateless agent when trained with 1000 mazes, no clear trend can be detected in

dynamic testing overall, which may suggest agents’ limitation in understanding affordance

with the temporal grammar or under the long-tail distribution of digits.
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4.3.2 Ablation on the Maximum Option Length

Our design to include the notion of option challenges agents’ understanding in the tem-

poral grammar and the causal structure. To further illustrate the difficulty of this specific

challenge, we also perform an ablation study on three setups of maximum option length

max opt len. In general, agents’ performance degrades on all metrics with max opt len in-

creases. In particular, the ratio of invalid moves ρa increases and the efficiency ratio ρp

drops significantly since max opt len=3 in dynamic testing, suggesting that agents all have

hard time understanding either the temporal grammar or the causal structure of HALMA.

These results validate our argument that significant efforts are still in need for humanlike

abstraction learning. Therefore, we choose to make the length of 5 as our default setting in

the main paper so as to make HALMA a more challenging territory.
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Figure 4.4: Ablation study of different max opt len (symbolic observations).
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Figure 4.5: Ablation study of different max opt len (visual observations).
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CHAPTER 5

Conclusive Remarks

In spite of its synthetic nature, we believe HALMA is an impeccable testbed for rapid problem

solving that resembles real-world ones. The dedicated design of its internal state facilitates

in-depth and comprehensive analyses on agents’ capacity in concept development, abstract

reasoning, and meta learning that are otherwise impossible with existing problem-solving

tasks. Agents can only pass the dynamically generated generalization tests if they possess

adequate capacity to understand the abstract structure of this task and build a powerful

solver upon this understanding. Our experiments demonstrate the inefficacy of model-free

reinforcement learning agents in generalizing their understanding, even when incorporated

with generic inductive biases. Towards this end, we would like to invite colleagues across the

machine learning community to join our challenge.
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