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ABSTRACT OF THE DISSERTATION

Atomistic Modeling of Amorphous Materials

by

Sarah I. Allec

Doctor of Philosophy, Graduate Program in Materials Science & Engineering
University of California, Riverside, September 2020

Dr. Peter Alexander Greaney, Chairperson

Amorphous (non-crystalline) materials offer new capabilities and applications relative to

their corresponding crystalline phases due to their novel and tunable material properties,

including but not limited to larger surface area, wider substrate compatibility, stronger cor-

rosion resistance, and lower temperature processing than their crystal counterparts. How-

ever, even the most advanced experimental techniques (e.g., in situ NMR [1, 2] and “inverse”

approaches such as Reverse Monte Carlo (RMC) modeling of diffraction data [3, 4, 5]) can-

not directly measure the bulk atomic structure of such complex, non-crystalline materials.

This, coupled with the lack of a structural theory of amorphous materials, has limited our

understanding about the structure-property relationships required for the optimization of

realistic devices. In this thesis, we compare and combine several atomistic modeling tech-

niques for generating accurate and general structures of amorphous systems, both solid and

liquid. We develop several metrics for measuring efficiency of configuration space sampling

to guide and standardize the computational study of amorphous materials, and use these

to differentiate between different samples of amorphous structures. Lastly, we use these

structures to help elucidate structure-property relationships in these systems. In amor-
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phous metal oxides, we characterize the types of coordination defects in amorphous metal

oxide systems and subsequently identify potential electron and hole traps in their electronic

structures. In a liquid system, water-in-salt electrolytes, we evaluate how the hydrogen

bonding network and ion coordination shells change with composition, and how these are

directly correlated to battery performance.
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Chapter 1

Introduction

Amorphous (non-crystalline) materials offer new capabilities and applications rel-

ative to their corresponding crystalline phases due to their novel and tunable material

properties, including but not limited to larger surface area, wider substrate compatibility,

stronger corrosion resistance, and lower temperature processing than their crystal counter-

parts. However, even the most advanced experimental techniques (e.g., in situ NMR [1, 2]

and “inverse” approaches such as Reverse Monte Carlo (RMC) modeling of diffraction data

[3, 4, 5]) cannot directly measure the bulk atomic structure of such complex, non-crystalline

materials. This, coupled with the lack of a structural theory of amorphous materials, has

limited our understanding about the structure-property relationships required for the opti-

mization of realistic devices.

In this thesis, we compare and combine several atomistic modeling techniques for

generating accurate and general structures of amorphous systems, both solid and liquid. We

develop several metrics for measuring efficiency of configuration space sampling to guide and

standardize the computational study of amorphous materials, and use these to determine
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what constitutes a “good” amorphous structure. Having identified the most representative

structures for each system, we compute various material properties, including glass tran-

sition temperatures and density of states, to elucidate the structure-property relationships

in these systems and guide experimental synthesis and design. We have found that the

level of theory (classical or ab initio) as well as the particular details of the simulation

(e.g. quench rate) severely bias the final amorphous structure, necessitating the generation

of a diverse set of amorphous structures in order to properly describe structure-property

relationships of these complex systems. This proves to be particularly important for the

identification of electron and hole traps in amorphous metal oxide systems, as the density

of traps in realistic systems is low relative to the system sizes accessible in simulations. In

particular, we i) discover a possible deep trap in amorphous indium oxide which has not

been previously identified in the literature and ii) possible traps in amorphous vanadium

oxide which cannot be categorized as deep, but are electronic structure outliers, which we

coin topographic traps.

In the remainder of this introduction, we give a definition of amorphous materi-

als (i.e. what it means for a system to be amorphous), describe some ways that order is

quantified, both experimentally and theoretically, and provide some background informa-

tion on the systems and methods covered in this thesis. In chapter 2, we give a detailed

description of the various simulation methods employed, followed by a presentation of the

metrics we have developed to measure efficiency of configuration space sampling in chapter

3. In chapter 4, we present our results on two amorphous metal oxide systems, amorphous

indium (III) oxide (a-In2O3) and amorphous vanadium (V) oxide a-V2O5, and in chapter

5, we present our results on a liquid system, zinc chloride water-in-salt electrolytes. Finally,
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in chapter 6, we conclude with a summary of our findings, including a comparison of the

different modeling techniques evaluated in this thesis and a guide to generating accurate

amorphous structures entirely in silico.

1.1 Properties of Amorphous Materials

In order to properly model noncrystalline materials, we need to be able to dis-

tinguish between crystalline and amorphous phases of a given material. The fundamental

difference between periodic materials, which encompasses single crystal, polycrystals, and

quasicrystals, and amorphous materials is that amorphous materials lack both rotational

symmetry and translational symmetry (periodicity), examples of which include liquids and

glasses. Single crystals are both ordered (rotationally symmetric) and periodic over all

distances, while polycrystals are ordered and periodic over smaller distances (i.e. within a

grain) and quasicrystals are ordered but not periodic. Amorphous materials display short-

range order and medium-range order to an extent, but no long-range order or periodicity.

A comparison of these types of materials is given in Table 1.1.

Whether a material is periodic, ordered, both, or neither dictates how easily we can

determine its atomic structure. For a perfect crystal, which is both periodic and symmetric,

Ordered Periodic

Single crystals Yes Yes
Polycrystals Yes Locally
Quasicrystals Yes No

Amorphous materials No No

Table 1.1: Order and periodicity in crystalline and amorphous materials
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we can identify a pattern (a symmetry) M that is repeated in three dimensions:

~ratom = M(~r0, atom) + u · ~a+ v ·~b+ w · ~c, (1.1)

for some starting motif M and lattice vectors ~a, ~b, and ~c. For polycrystals, equation 1.1

holds true within each grain of the material. On the other hand, for quasicrystals, we can

identify patterns M , but such patterns are not repeated periodically. Lastly for amorphous

materials, we can neither identify such patterns M nor predict the atomic positions by any

relationship like equation 1.1 (c.f. Figure 1.1). Such a lack of periodicity means that we

cannot reduce the atomic structure to a finite unit cell, i.e. materials that lack periodicity

(quasicrystals and amorphous materials) have infinite unit cells. Because atomic simulations

require that the atomic coordinates fit in a finite simulation box, it is impossible to simulate

a realistic non-periodic material. However, in addition to the challenges of modeling an

extremely large unit cell, amorphous materials also do not display rotational symmetry,

as the coordination of a given atom varies from site to site due to an excessive amount of

coordination defects.

However, this lack of long-range order does not mean that amorphous materials

are completely disordered. In fact, all amorphous materials exhibit short-range order, a

regular, predictable atomic arrangement over distances of one or two atoms. We can think

of short-range order as the first coordination shell of an atom, defined by the number Nj

of nearest-neighbor atoms of type j (each with connectivity αj) within some bond distance

rij of an atom i. For example, in the ideal crystal structure of silicon, every atom is

tetrahedrally coordinated, while in the amorphous phase, there is a range of predominantly

3-, 4-, and 5-coordinated atoms. Thus, the atomic structure of amorphous materials is not

4



Figure 1.1: Supercells of crystalline silicon (left) and amorphous silicon (right).

random but rather excessively disordered or defective. These parameters of short-range

order also define a coordination polyhedron, which links together with other polyhedra to

build the entire structure. As we will see in the next sections, while amorphous materials

retain individual polyhedra, the network of polyhedra is distorted such that there is no

longer any long-range order.

These two types of order can be probed (to an extent) with experimental techniques

based on how atoms scatter radiation in the material: Long-range order manifests itself in

sharp diffraction peaks and short-range order in radial distribution functions. In terms of

diffraction, amorphous solids and liquids exhibit smooth structure factors, as opposed to the

sharper, more well-defined peaks of crystalline structure factors. As the radial distribution

function is related to the structure factor by a Fourier transform, we can examine the radial

distribution functions to see these differences. Looking at Figure 1.2, which displays the

radial distibution functions of crystalline and amorphous indium oxide, we see the retention
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of short-range order at lower r values and the loss of long-range order as r increases. Because

of this, the traditional wave theory used for determining the atomic structure by inverting

the diffraction peaks of crystalline materials is insufficient for such structure factors. Thus,

computational modelling plays a huge role in the determination of the atomic structure of

amorphous materials and the discovery of resulting structure-property relationships.

Figure 1.2: The radial distribution functions g(r) of crystalline c-In2O3 (black) and amor-
phous a-In2O3 (blue).

In general, there are two paradigms for determining the atomic structure of amor-

phous materials computationally: the “simulation paradigm” and the “information paradigm”.
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As the name implies, the simulation paradigm employs some type of computer simulation,

usually molecular dynamics (MD) or Monte Carlo (MC), with suitable interatomic poten-

tials. On the other hand, the “information paradigm” seeks to invert experimental diffrac-

tion data via Reverse Monte Carlo (RMC) without any interatomic potential, i.e. purely

with “information” from the diffraction data. Historically, these two paradigms operated

independently of each other, each with its own drawbacks: In general, RMC models tend

to be maximally disordered and chemically unrealistic, while MD and MC simulations are

limited by size scale and time-scale limitations, imperfect interatomic potentials, and a

physically unrealistic amorphization process. More recently, approaches bridging the two

have been developed [6, 7, 8, 9, 10, 11, 12, 13, 14], with ab initio force-enhanced atomic

refinement (AIFEAR) [15] leading the way to a more general framework for the inversion

of diffraction data.

Nonetheless, an accurate and efficient purely computational approach still offers

several advantages, particularly the speed and low cost of in silico experiments relative to

physical experiments. In this thesis, we address the challenge of atomic structure prediction

faced in the modelling of two subcategories of amorphous materials: i) amorphous solids

and ii) liquids.

1.1.1 Amorphous Metal Oxides

Traditionally, the study of amorphous solids has primarily been restricted to the

study of glasses - materials that exhibit a glass transition temperature. The most com-

mon glasses are either metallic (e.g. bulk metallic glasses) or covalently-bonded structures

(e.g. silicate), which exhibit different types of packing and consequently different properties
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relative to each other. In general, metallic glasses are well-described by the dense ran-

dom packing of hard spheres, while covalent glasses have sparsely packed, strongly bound

network structures.

These two categories of glasses represent two extremes of amorphous solids. In

this thesis, we will concern ourselves with an intermediate of these two extremes: amor-

phous metal oxides (a-MOs). This family of amorphous solids has widespread applications

in batteries, supercapacitors, electronics, conducting films, multilayered transistors, elec-

trochromic displays, and nonvolatile memories [16, 17, 18]. Such a wide variety of applica-

tions of (a-MOs) is due to the diversity of this family of materials, whose properties can be

tuned by changing the metal cation, as well as the level of disorder.

The basic building blocks of (a-TMOs) are M-Ox polyhedra, where M is a transi-

tion metal, O is oxygen, and x denotes the number of oxygen atoms coordinated to a single

M atom. The polyhedra are interconnected through different types of sharing configurations

known as edge-sharing, corner-sharing, and face-sharing configurations, based on the num-

ber of shared oxygen atoms. In general, corner-sharing polyhedra (one shared oxygen) are

the most stable because the distance between the metal cations is largest. The next stable

are edge-sharing polyhedra (two shared oxygens), and the least stable are face-sharing poly-

hedra (three shared oxygens), which are virtually nonexistent in ionic structures. Examples

of corner-sharing and edge-sharing polyhedra are shown in Figure 1.3 for In2O3.
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Figure 1.3: Polyhedra network of c-In2O3.

Identification of Electron & Hole traps

The motivation of this research is the use of vanadium pentoxide (V2O5) as a sur-

face electron acceptor in diamond field-effect transistors (FETs) to effectively dope diamond

via surface transfer doping [19]. Optimization of these devices depends on being able to

tune the electron traps in the V2O5 layer. A trap is any location in a solid that can restrict

(immobilize) an electron or hole carrier, requiring a significant amount of energy to remove

the carrier from the trap. A trap occurs either at a chemical impurity or at an imperfection
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in the crystal lattice. Because amorphous materials contain an excessive number of defects,

they can contain a large number of possible traps.

The contributions of this thesis toward this goal are i) the generation of a variety

of amorphous V2O5 (a-V2O5) structures and ii) the identification of possible traps in these

samples. Because the atomic structure of (a-V2O5) is not well-studied, we first validate

our computational procedure by generating structures of a well-studied amorphous oxide,

indium oxide (a-In2O3). Thus, in this thesis, we exclusively focus on two amorphous oxides,

a-V2O5 and a-In2O3.

1.1.2 Water-in-Salt Electrolytes

Another broad family of amorphous materials are liquids, which only display short-

range order and exhibit lower connectivity between atoms/molecules than solids. They are

also characterized by higher molecular motion than solids. In this thesis, we focus on

one liquid system, water-in-salt electrolytes (WiSE). Electrolyte composition has direct

impact on the safety, sustainability, and performance of batteries. Organic electrolytes

exhibit excellent performance but are plagued by safety concerns due to their flammability

and toxicity. On the other hand, aqueous electrolytes are a safe alternative but have low

energy densities due to the narrow electrochemical stability window of water. The recent

discovery of highly concentrated aqueous electrolytes, WiSE, extended the voltage window of

aqueuous electrolytes and enabled the development of the first reversible Zn-metal batteries.

These batteries are safer, more sustainable alternatives to lithium-ion batteries, particularly

for energy storage on the grid and electric vehicles.

The mechanism underlying the enhanced performance of WiSE arises from the
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short-range order around the cations of the salt: In such highly concentrated solutions,

all water molecules are a part of ion solvation shells, leaving no ”free” water molecules to

participate in parasitic reactions that degrade the electrodes. However, the chemistry of

such highly concentrated solutions are outside of the realm of basic solubility rules, hindering

the optimization of the battery electrochemistry such that the cell voltage, cyclability, and

reversibility remain below industry standards. Interestingly, Wang et al. recently discovered

that use of a bi-salt WiSE, consisting of a lithium salt and a zinc salt, drastically improves

the performance of Zn-metal batteries. However, the interplay between the concentrations

of the two salts is not well understood. Here, we use ab initio molecular dynamics to

correlate the local water environments in these systems directly to measures of battery

performance.

1.1.3 Overview of Methods

We generated the various atomic structures of each amorphous metal oxide non-

empirically using ab initio and classical liquid-quench molecular dynamics (LQMD) simu-

lations. In particular, we developed neural network interatomic potentials (NNP) fit to the

ab initio LQMD data, which were subsequently used in classical LQMD in order to access

larger system sizes and longer simulation times. The use of NNPs allowed us to generate

more general models while retaining (to a degree) the accuracy of DFT. The flow of the

computational framework is shown in Figure 1.4.

As WiSE are liquids, LQMD is not an applicable method for structure generation.

In this case, we utilized a packing optimization strategy of the molecular components that
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Figure 1.4: Computational framework utilized in this thesis.

balances the short-range interactions between the molecules in the system. Each system was

packed into a box consistent with the experimental densities of these systems. An example

of such a system is shown in Figure 1.5.

Figure 1.5: ZnCl2 water-in-salt electrolytes (WiSE) studied in this thesis. Chlorine atoms
are shown in green, zinc atoms in gray, oxygen atoms in read, and hydrogen atoms in white.

12



Chapter 2

Methods

The basis of all the simulations in this thesis is ab initio molecular dynamics

(AIMD). One of the biggest challenges in simulating amorphous systems is the generation

of the atomic structure (i.e. the xyz -coordinates for every atom in the system). As discussed

in the previous chapter, there is no overarching model of the atomic structure for amorphous

materials like there is for crystalline materials. Because of this, we have to perform some

modeling “tricks” with AIMD in order to effectively search the configuration space of these

systems: liquid-quench MD for the amorphous TMOs and metadynamics for the water-in-

salt electrolytes. We start with an overview of AIMD.

2.1 Ab Initio Molecular Dynamics

Molecular dynamics (MD) is a general term that describes any simulation method

that evolves a system of particles in time according to Newton’s second law, ~F = m~a. From

MD simulations, we can compute equilibrium thermodynamic and transport properties.
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The “particles” in an MD simulation can be proteins, molecules, or atoms, depending on

the desired resolution and computational limitations of the problem at hand. For the

entirety of this thesis, we will only concern ourselves with atomistic MD, i.e. the particles

are individual atoms. In this case, we can think of MD as a computational microscope of

atomic resolution.

One of the caveats of molecular dynamics is the choice of interatomic potential,

which provides the forces on all of the atoms (i.e. the ~F in ~F = m~a). In traditional classical

MD, the interatomic potential is parametrized either from experimental data or from more

accurate simulations; either way, the potential is restricted to the domain of systems on

which it is parametrized. To put this more succinctly, parametrized potentials are not

transferable or universal. Nonetheless, for well-parametrized potentials, classical MD can

be transformative and illuminating for a variety of problems, particularly in biology, and

its computational efficiency is unprecedented in atomistic modeling.

Nonetheless, traditional interatomic potentials cannot treat problems that are very

sensitive to changes in the electronic charge distribution over the system. This is particularly

challenging for the generation of amorphous structures, which involves a significant degree

of bond breaking/forming, and for systems that involve hydrogen bonding, which require

an accurate description of polar molecules. In these cases, ab initio MD (AIMD) is ideal, as

the forces are computed on-the-fly from the electronic structure and the electronic charge

distribution is re-computed at each timestep. Of course, this increase in accuracy comes

with severe limitations in system size and timescale; we will discuss how we compensate or

overcome these challenges later in the text.

While it may seem like a stretch to describe material properties simply from the
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movement of electrons and nuclei, at a fundamental level, that is all materials are: collections

of electrons and nuclei. It is often helpful to keep the following conceptual equation in mind:

materials = electrons + nuclei. (2.1)

Within the framework of AIMD, there are two levels of theory for the two types of particles

in equation 2.1: classical mechanics for the nuclei and quantum mechanics for the electrons.

Because nuclei and electrons typically move on different timescales, the motion of the nuclei

and the motion of the electrons are decoupled, according to the Born-Oppenheimer approx-

imation [20]. The equation of motion for the nuclei is Newton’s second law and the equation

of motion for the electrons is the time-independent Schrödinger equation. We proceed first

with the treatment of the nuclei (section 2.1.1) and subsequently with that of the electrons

(section 2.1.2). Treating the atoms classically is justified for most a wide range of systems,

as quantum effects for nuclei only become significant for light atoms or for molecules with

vibrational frequencies greater than kBT .

2.1.1 Molecular Dynamics

The general idea behind molecular dynamics (MD) simulations shares many simi-

larities with real experiments, where we prepare a sample of a material, take measurements

of the properties of this sample, and then average these measurements over some period

of time. In an MD simulation, our sample is a model system consisting of M atoms, for

which we numerically solve the classical equation of motion, Newton’s second law, until the

property of interest has equilibrated. For such a system consisting of M atoms, this is given
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by

MIRI = FI (2.2)

for each atom, with RI and MI the position and mass of the Ith atom, respectively. The

force on each atom is derived from some potential energy function U :

FI = − ∂U

∂RI
. (2.3)

In the case of AIMD, U is derived from the electron density obtained via density functional

theory, as described at the end of the next section. Ideally, we would like to consider the

contributions to FI due to all neighbors of atom I; however, practically, we only consider

interactions within some cutoff distance rc of each atom.

From the derived atomic forces, we evolve the system in time according to the

Verlet algorithm: At every timestep ∆t, we move the atoms according to

Rj+1
I = 2Rj

I −Rj−1
I +

Fj
I

MI
∆t2 +O(∆t4) (2.4)

where j indexes time and Rj
I denotes the position of atom I at timestep j. We can simi-

larly compute the trajectories of the velocities v with the same form as equation 2.4. Initial

velocities for each atom are randomly assigned according to the desired initial tempera-

ture of the system at the beginning of the simulation, utilizing the following definition of

instantaneous temperature:

kBT (t) =
M∑
I=1

MIv
2
α,I(t)

Nf
, (2.5)

where vα,I(t) is the α component of the velocity of atom I at time t and Nf = 3M − 3 is

the number of degrees of freedom in the system (here, we use t to denote time instead of j

for indexing to avoid clutter of superscripts).
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The main task of MD is to compute the expectation value of an arbitrary operator

〈A〉:

〈A〉 =

∫
dRdPA(R,P)e−βE(R,P)∫

dRdPe−βE(R,P)
, (2.6)

with Boltzmann distribution e−βE(R,P). The energy of the system is given by

E(R,P) =
M∑
I=1

P2
I

2MI
+ U(R), (2.7)

where the first term denotes the nuclear kinetic energy and the second term is the potential

energy.

Solving the high-dimensional integrals of equation 2.6 is often impractical and

inefficient for large, complex systems. Thankfully, under the ergodic hypothesis, we can

equivalently compute the temporal average. Armed with the trajectories R(t) and momenta

P(t), we can compute the thermal average of A as

〈A〉 = lim
τ→∞

1

τ

∫
dtA(R(t),P(t)) (2.8)

From equation 2.8, it is obvious that we must be able to express the property of interest

as a function of the positions and momenta of the atoms in the system. The connection

between MD and thermodynamics is given by the equipartition theorem:

〈1

2

M∑
I

M2
I Ṙ2

I

〉
=

3

2
NkBT (2.9)

In practice, we must ensure that the length scale and time scale of our systems are appro-

priate for the property to be computed. For example, only processes with relaxation times

much less than the total simulation time and with characteristic correlation lengths much

less than the simulation box can be reliably computed with MD. This is a significant chal-

lenge for AIMD, thus requiring some creativity in computing many properties, leading to
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the aforementioned “tricks” that can help accelerate the search of (or enhance the sampling

of) configuration space.

The Potential Energy Surface

The potential energy surface (PES) is a convenient conceptual tool used in the

analysis of MD trajectories, particularly for understanding structural stability and reaction

dynamics. In general, the PES is a multi-dimensional real-valued function of some set of

internal coordinates that yields the potential energy of the system. For our purposes, the

internal coordinates are the positions of all the atoms in the system, i.e., the PES is given

by U(R) in equation 2.3, where R denotes the coordinates of all the nuclei, for all relevant

values of R.

Of primary importance are the stationary points of the PES, where the gradients

of U with respect to all atomic coordinates are zero:

∇U(RI) = 0, (2.10)

for all I nuclei. In particular, minima correspond to stable structures (e.g. reactants and

products) and first-order saddle points (where U is a maximum in one direction and a

minimum in all other directions) correspond to transition states.

As one could easily imagine, once a system has arrived in a local minimum of the

PES, it tends to stay there, as a typically large amount of energy must be supplied for the

system to escape a valley. For systems where the atomic structures or reaction pathways of

interest are approximately known a priori, this generally does not present an issue, as the

starting structure(s) for AIMD will be close to the stationary state/pathway of interest or

can be directed to it via some sort of biasing technique. However, for amorphous systems, we
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generally do not have an accurate picture of the atomic structure a priori. Simple geometry

relaxation or MD equilibration will only lead us to the nearest local minimum, which may

not be representative of the real structure. Thus, efficient and accurate sampling of the

PES is of critical importance for atomic structure determination of amorphous structures.

2.1.2 Density Functional Theory

We now transition to our calculation of the electron density of our system, from

which we obtain the potential energy function U utilized to evolve the nuclei as in equation

2.3. Density functional theory (DFT), or the “ab initio” in AIMD, is the electronic structure

method of choice for AIMD. In essence, within the framework of AIMD, we perform a DFT

calculation at each timestep and move the atoms according to the forces generated by the

converged electronic density. As previously mentioned, the equation of motion of concern

here is the time-independent Schrödinger equation for the electrons:

Ĥelψel = Eelψel. (2.11)

Ĥel is the quantum mechanical Hamiltonian operator and ψel is the wave function for all of

the electrons in the system. What we need to “find” in this equation is ψel, as the behavior

of quantum particles is given by their wave function. As equation 2.11 is an eigenvalue

problem, the set of all Eel is the spectrum of Ĥel with corresponding eigenvectors ψel. The

lowest-energy eigenstate is the ground state of the system, ψground.

For many-electron systems in the absence of any external potentials, we know the

kinetic and potential energy terms that make up Ĥ:(
−
∑
i

∇2
i

2
+
∑
i

Vn(ri) +
1

2

∑
i 6=j

1

|ri − rj |

)
ψ = Eψ, (2.12)
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where i runs over all electrons in the system and we have dropped the subscript for E

and ψ. The first term on the left-hand side of the equation is the kinetic energy of the

electrons, the second term is the electron-nuclear Coulomb attraction, and the third term

is the electron-electron Coulomb repulsion.

If we knew the exact mathematical forms of each term in Ĥ and of ψ, a single

diagonalization would provide us with the exact ground state wave function. Unfortunately,

we do not know the analytical forms of either for many-electron systems, and solving for the

exact forms numerically is infeasible, even with modern supercomputers. One restriction

on ψ is the Pauli exclusion principle: two fermions cannot occupy the same quantum state

simultaneously, thus ψ must be antisymmetric: if we exchange the positions and spin of

any two electrons, ψ must change signs. This is taken care of by using a Slater determinant

for ψ built from single-particle electronic wavefunctions. For example, for a simple two-

electron system, where the wavefunction for the first electron is φ1 and the wavefunction

for the second electron is φ2, the total electronic wavefunction ψ in the form of a Slater

determinant is

ψ(r1, r2) =
1√
2

∣∣∣∣∣∣∣∣
φ1(r1) φ2(r2)

φ2(r1) φ1(r2)

∣∣∣∣∣∣∣∣ (2.13)

It is straightforward to show that upon swapping r1 and r2, the sign of ψ changes.

Much of the difficulty in the Hamiltonian comes from the electron-electron repul-

sion, which couples all of the electrons to each other - i.e. the behavior of each electron

depends on the behavior of all the other electrons simultaneously. To alleviate this difficulty,

we proceed with two approximations: i) First, we neglect entirely the Coulomb repulsion,

which will give a set of decoupled Schrödinger equations for each electron and ii) then we re-
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incorporate the presence of other electrons through a classical, mean-field approach. These

approximations produce a set of N decoupled single-electron wave functions, a great simpli-

fication from the original 3N -dimensional many-body Schrödinger equation. The resulting

single-electron wave functions are then used to build up the Slater determinant for the total

wave function ψ.

Independent Electrons Approximation

The first approximation is to remove the Coulomb repulsion from equation 2.12:

(
−
∑
i

∇2
i

2
+
∑
i

Vn(ri)

)
= Eψ. (2.14)

In essence, the electrons have become blind to each other and no longer interact. We now

introduce the single-particle Hamiltonian Ĥ0:

Ĥ0(r) = −1

2
∇2 + Vn(r). (2.15)

With this notation, equation 2.14 becomes

∑
i

Ĥ0(ri)ψ = Eψ. (2.16)

Recall that ψ is given by the Slater determinant of the single-electron wave functions φi.

We can easily determine the set of φi as the solutions of the single-electron Schrödinger

equations:

Ĥ0φi = εiφi (2.17)

The set of N decoupled equations given by 2.17 is much easier to solve than the coupled

system of equation 2.12. Furthermore, within this approximation, we can easily write the
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electron density as

n(r) =

Nocc∑
i

|φi(r)|2, (2.18)

where the sum is over all occupied states. However, the approximation of entirely non-

interacting electrons is abhorrently physically unrealistic. In the next section, we show how

we can keep this single-particle description, but take into account the Coulomb repulsion

in a mean-field way.

Mean-Field Approximation

Classical electrostatics tells us that a distribution of electronic charge n(r) will

generate an electrostatic potential Φ(r) according to Poisson’s equation:

∇2Φ(r) = 4πn(r) (2.19)

Electrons in the presence of this potential have a potential energy VH(r) = −Φ(r), called

the Hartree potential. The formal solution for VH is

VH(r) =

∫
dr′

n(r′)

|r− r′|
(2.20)

Modeling the presence of other electrons as an effective charge distribution, every elec-

tron in our system experiences the Hartree potential. We then improve our single-particle

description given by equation 2.17 by adding VH:[
− 1

2
∇2 + Vn(r) + VH(r)

]
φi(r) = εiφi(r) (2.21)

The Self-Consistent Kohn-Sham Equations

Equation 2.21 only takes into account a classical electron-electron interaction, the

Hartree potential, which as we should expect, is not sufficiently accurate for describing
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quantum particles such as electrons. Here, we briefly show how writing the energy as a

functional of the electron density produces another potential term, the exchange-correlation

(XC) potential. This is the last piece we need to complete the DFT-description of the

electrons.

We can obtain the total electronic energy E according to

E = 〈ψ|Ĥ|ψ〉 =

∫
dr1...drNψ

∗(r1...rN )Ĥψ(r1...rN ), (2.22)

with Ĥ the same as in equation 2.12. Because Ĥ is independent of the choice of material,

any change in E must be associated with a change in ψ, or in other words, E is a functional

of ψ (E = F [ψ]). This result is generally true for for any quantum state. However, for

the ground state in particular, we also have that the energy Eground is a functional of the

electron density n(r):

Eground = F [n(r)] (2.23)

This was discovered by Hohenberg and Kohn in 1964 and is known as the first Hohenberg-

Kohn theorem [21]. This observation is particularly significant because all we need to

determine the total energy of the ground state is the electron density n, which depends

only on three variables, as opposed to the 3N -dimensional many-body wavefunction ψ.

We can write the ground state energy functional as

Eground[n] = 〈ψ|
∑
i

Vn(ri)|ψ〉+ 〈ψ|T̂ + Ŵ |ψ〉

=

∫
drn(r)Vn(r) + 〈ψ| ˆT [n] + ˆW [n]|ψ〉 ,

(2.24)

where we have used the symbolic notation

T̂ = −
∑
i

1

2
∇2
i , Ŵ =

1

2

∑
i 6=j

1

|ri − rj |
(2.25)
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for the kinetic energy and electron-electron repulsion, respectively. While we know the

explicit dependence of the first term on the density n (see the second line of equation 2.24),

we do not know the dependence of T̂ and Ŵ on n. In order to keep the simplicity of

the independent electrons approximation while accounting for quantum electron-electron

interactions, Kohn and Sham [22] proposed to split the implicit terms into the kinetic

energy and Hartree energy of independent electrons, and an extra term that accounts for

the difference between the independent electron approximation and equation 2.24:

EKS[n] =

∫
drn(r)Vn(r)−

∑
i

∫
drφ∗i (r)

∇2

2
φi(r)+

1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
+Exc[n]. (2.26)

The first three terms of equation 2.26 correspond to the terms in the mean-field approxi-

mation with independent electrons (equation 2.21), and the last term, called the exchange-

correlation energy, contains everything left out of the classical description of the electron-

electron interaction.

Lastly, to obtain the total energy of the ground state Eground, we use the result

that the ground state density nground minimizes the energy functional of equation 2.26 [21].

Such a minimization leads to a set of equations for the single-electron wavefunctions φi,

from which the density is constructed according to equation 2.18:

[
− 1

2
∇2
i + Vn(r) + VH(r) + Vxc(r)

]
φi(r) = εiφi(r) (2.27)

The set of equations given by equation 2.27 are known as the Kohn-Sham equations and

form the basis of DFT calculations. If we knew the exact form of the exchange-correlation

energy Exc[n], the solutions of 2.27 would give the exact ground-state energy and electron

density. Unfortunately, the exact mathematical form of this functional is unknown and must

be approximated. For the purposes of this thesis, we use the general gradient approximation
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(GGA) to Exc[n] of Perdew, Burke, and Ernzerhof, the details of which can be found in

reference [23].

In practice, the equations given by 2.27 must be solved self-consistently in an

iterative fashion, as the total potential Vtot = Vn(r)+VH(r)+Vxc(r) depends on the electron

density n, which is a function of the unknown φi. This is achieved by initializing n to some

reasonable guess, such as the superposition of the densities of the individual atoms, and then

iteratively solving for the φi until the density given by these solutions and the density used

to solve for these solutions are within some error tolerance. Thus, within the framework

of DFT at a given level of approximation (by choice of exchange-correlation functional and

basis set size), one can systematically improve n to whatever level of accuracy is desirable

or feasible with respect to computational cost.

Atomic forces

We now bridge the gap between the electron density and the motion of the atoms

by defining the atomic forces in terms of the electron density n(r). Under the Born-

Oppenheimer approximation, we separated the motion of the nuclei and electrons, which

amounts to separating the total wavefunction Ψ(r1, ..., rN ,R1, ...,RM ) into a wavefunction

for the electrons ψel(r1, ..., rN ) and a wavefunction for the nuclei χnuc(R1, ...,RM ):

Ψ(r1, ..., rN ,R1, ...,RM ) = ψel(r1, ..., rN )χnuc(R1, ...,RM ) (2.28)

Without going into details, this separation enables us to write the complete time-independent

Schrödinger equation as

Eelψelχnuc +

[
−
∑
I

∇2
I

2MI
+

1

2

∑
I 6=J

ZIZJ
|RI −RJ |

]
ψelχnuc = Etotψelχnuc, (2.29)
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Multiplying both sides of equation 2.29, we obtain a many-body Schrödinger equation for

the nuclei in the effective potential of the electrons:[
−
∑
I

∇2
I

2MI
+

1

2

∑
I 6=J

ZIZJ
|RI −RJ |

+ Eel

]
χnuc = Etotχnuc. (2.30)

Upon inspection of equation 2.30, we see that the total potential energy function for the

nuclei is given by:

U(R1, ...,RM ) =
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

+ Eel(R1, ...,RM ), (2.31)

where we explicitly write Eel as a function of the nuclear coordinates as a reminder that

R1, ...,RM enter into the electronic Schrödinger equation as parameters.

To summarize, in AIMD, we start with an initial set of nuclear coordinates RI ,

for which we compute Eel from the solution of the Kohn-Sham equations of 2.27. We can

then construct the potential energy function U for the nuclei by adding to Eel the nuclear-

nuclear repulsion, as in equation . Finally, we update the positions of the atoms using the

forces from equation 2.3 and solve for Eel for these new nuclear coordinates. This process is

repeated for some number of timesteps, over which thermal averages are computed according

to equation 2.8.

2.1.3 Liquid-Quench Molecular Dynamics

Liquid-quench molecular dynamics (LQMD) is a computational method for gen-

erating the atomic structure of amorphous solids by performing subsequent MD (classical

or ab initio) simulations that mimic experiments. LQMD has been successfully applied to

amorphous silicon, amorphous carbon, and various amorphous oxides, to give some exam-

ples. Meant to model the general deposition process of amorphous solids, the system is first
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melted at an extremely high temperature (well-above the melting temperature) in order

to erase the crystal structure and then subsequently quenched (rapidly cooled) to a low

temperature. A schematic for LQMD is shown in Figure 2.1. The validity of LQMD comes

Figure 2.1: Workflow of liquid-quench molecular dynamics (LQMD)

from the notion of a thermal spike: localized melting produced by the bombardment of ions

during deposition, as depicted in Figure 2.2. A single impacting ion temporarily melts tens

to hundreds of atoms near the impact site, forming a quasiliquid that rapidly cools to a solid

structure. This is analagous to the quench step of LQMD. Furthermore, it has been demon-

strated that the cooling time for thermal spikes is on the order of subpicoseconds (e.g. 10−1

picoseconds) for 100 eV ions, which is a reasonable timescale for classical MD. However, for

AIMD, we have to settle for unrealistically fast quench rates. This, coupled with the severe

limitations on system size for AIMD, greatly restricts the accuracy of amorphous structures

generated by ab initio LQMD. In an effort to overcome this limitation while retaining the

intricacy of ab initio interatomic potentials, we developed a neural network interatomic

potential (NNP) using ab initio LQMD data to be used in classical LQMD and other types

of simulations. This procedure is described in the following section.
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Figure 2.2: Depiction of a thermal spike (blue) due to ion bombardment. The temperature
of the melted region is approximately the melting temperature of the material and is much
higher than the temperature of the surrounding substrate.

2.2 Neural Network Interatomic Potential

The O(N3) scaling with respect to system size N of DFT limits both the quench

rate and the simulation cell size of ab initio LQMD to 10-100 K/ps and a few hundred atoms,

respectively - both of which are unrealistic for accurately modelling amorphous systems.

On the other hand, the construction of classical interatomic potentials requires extensive

experience in potential development and a deep understanding of the system at hand. Fur-

thermore, these potentials often do no capture the effects of intricate quantum interactions,

which are particularly important for modelling amorphous materials and liquids.

A recent development for bridging the gap between the more accurate but less

efficient AIMD and the less accurate but more efficient classical MD involves the application

of machine learning (ML) to potential development. When trained with AIMD data, an

ML potential can reproduce the ab initio potential energy surface (PES) at a much lower
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computational cost. Another advantage of ML potentials is they do not have any prefixed

functional form, giving them a flexibility to fit a variety of PES shapes. The two most

common ML potentials are the Gaussian approximation potential (GAP) [24, 25, 26] and the

neural network potential (NNP) [27, 28, 29]. While both exhibit the aforementioned benefits

of ML potentials, GAP is more computationally demanding and is less widely applied

than NNP. NNPs have been applied to a wide variety of phenomena, including surface

reactions [30, 31], diffusion in the amorphous phase [32], phase changes [33], amorphous

alloys [34], and various multi-component systems [35, 36]. In this thesis, we developed NNPs

using a high-dimensional neural network [29] with atom-centered symmetry functions [37]

as descriptors, as applied in the SIMPLE-NN Python module [38].

2.2.1 Theory

The fundamental idea behind NNPs is that the total energy can be written as the

sum of the individual atomic energies. Early NNPs were applied to molecular adsorption

on surfaces and thus used input features such as distance from the surface and angle with

respect to the surface normal and the lateral coordinate [39]. However, using these features

more generally is infeasible, as the number of degrees of freedom increases rapidly with

increasing system size. Hobday et al. extended this idea but used the parameters related to

the local bonding environment as the input to the network and fit to a many-body potential

[40].

The general form of a neural network is shown in Figure 2.4. The network consists

of an input layer, multiple hidden layers, and an output layer. The input layer corresponds
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Figure 2.3: Artificial neural network.

to the training data set from AIMD and the output layer corresponds to the potential

energy (one output node) in our case. Each layer is composed of nodes (circles), which are

connected by synapses (lines). A synapse carries the output value from one node to the

input of a node in the next layer. The input XL+1
j to a given node is a weighted sum of all

the nodes in the previous layer:

XL+1
j =

∑
i

wiX
L
i + bL. (2.32)

Here, L denotes the layer number, thus XL+1
j is the jth node in the L+ 1th layer, wi is the

weight for the ith node, bL is the bias for the Lth layer, and the sum is over all the nodes in

the previous layer L. At each node, XL+1
j is transformed by some differentiable non-linear

activation function φ. In this work, we use the sigmoid function, given by

φ(XL+1
j ) =

1

1 + exp(XL+1
j )

. (2.33)
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Thus the output of the jth node in the L+ 1th layer is

XL+1,out
j = φ(

∑
i

wiX
L
i + bL). (2.34)

XL+1,out
j is then input to the next layer as one of the Xi in equation 2.32. The training of

a neural network refers to the optimization of the weights wi in this equation.

Atom-Centered Symmetry Functions

An NNP is essentially a regression of the relationship between atomic configu-

rations (nuclear coordinates) and the total energy. Because the total energy is invariant

under rotation and translation of the system, as well as permutations of atoms of the same

element, we first must transform the atomic coordinates before inputting into the neural

network. In the formulation used here, we use the symmetry function descriptors developed

by Behler and Parrinello with one radial and two angular components [37]:

Gradial
i =

∑
j

eη(Rs−Rij)
2 · fc(Rij), (2.35)

Gangular,1
i = 21−ξ

∑
j,k 6=j

(1 + λ cos θijk)
ξ · e−η(R

2
ij+R

2
ik+R

2
jk) · fc(Rij) · fc(Rik) · fc(Rjk), (2.36)

Gangular,2
i = 21−ξ

∑
j,k 6=j

(1 + λ cos θijk)
ξ · e−η(R

2
ij+R

2
ik) · fc(Rij) · fc(Rik), (2.37)

where i is the index of the central atom, j and k the indices of neighboring atoms, Rij the

distance between atom i and atom j, and θijk the angle formed by atoms i, j, and k. The

parameters η and Rs specify the width and center of the Gaussian functions, respectively,

and ξ and λ change the shape of the angular symmetry functions. The function fc is a
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cutoff function with radius Rc:

fc(Rij) =


1
2 cos(π

Rij
Rc

) + 1
2 if Rij ≤ Rc

0 if Rij > Rc

. (2.38)

This function restricts the symmetry functions 2.35, 2.36, and 2.37 to a radius Rc around

each atom. A set of symmetry functions with different values of (η,Rs, ξ, λ) constitutes a

vector Gi(Ri) that defines the local environment around the ith atom. The set {Gi} of

such vectors for all atoms in the system constitutes the input of the neural network.

The quality and generalizability of the network are governed by its complexity

(number of hidden nodes and synapses between layers) and by the quality and size of the

training data set. Practically, both of these are limited by computational resources. We

discuss both of these issues in the following section.

Atomic Neural Network

The structure of the neural network consists of an atomic neural network (ANN)

for each chemical species in the system, where the same ANN is used for every atom of the

same chemical species. As shown in Figure, each ANN takes in the descriptor vector Gi of

its corresponding atom i and outputs the atomic energy.

The target loss function Γ to be minimized is given by:

Γ =
1

K

K∑
i=1

(
EDFT
i − ENNP

i

Mi

)2

+
µ

3
∑K

i Ni

K∑
i=1

Ni∑
j=1

|FDFT
ij − FNNP

ij |2

= RMSE(energy)2 +
µ

3
RMSE(force)2

(2.39)

Here, K is the total number of structures in the training set, Ni is the number of atoms

in the ith structure, and E
DFT(NNP)
i , F

DFT(NNP)
ij is the total energy, atomic force of the
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Figure 2.4: Atomic neural network

jth atom from DFT (NNP), respectively. The scaling parameter µ controls the relative

importance between the energy error and the force error.

2.2.2 NNP Development

There are three main stages of NNP development: i) database construction, ii)

NNP training, and iii) NNP validation.

Database construction

In order for the NNP to properly fit the ab initio PES, we must include a suf-

ficient amount of relevant and distinct atomic configurations. Depending on the problem

at hand, this can mean including configurations of different phases (e.g. liquid, crystalline

solid, amorphous solid, etc.), of different geometries (e.g. bulk, slab, cluster, structures

with defects), and/or of different chemistries (e.g. varying concentrations). To ensure

proper sampling of the thermodynamics of each configuration type, an AIMD simulation

is performed for each configuration. For example, a reasonable database for carbon could
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consist of AIMD simulations for each of the following: bulk diamond, various diamond slabs,

graphite, graphene, and amorphous carbon.

The inputs (or features) for the NNP are the xyz -coordinates of configurations

sampled from the various AIMD runs, and the output of the NNP is the AIMD potential

energy for each sample. Therefore, it is important that the AIMD simulations used as

the training set are sufficiently accurate. In this work, all of the AIMD training data was

produced using the projector-augmented wave (PAW) pseudopotentials as implemented in

the Vienna Ab initio Simulation Package (VASP) [41, 42]. Specific details about each

simulation will be given in their corresponding chapters.

NNP validation

There are two ways by which one should validate a developed NNP. First, we need

to confirm that our NNP accurately describes the training data, i.e. it reproduces the ab

initio PES for configurations in the training data. This is achieved by running the same

simulations used in the training data with the NNP, and then comparing the potential

energies given by the NNP to DFT. Secondly, and more importantly, we need to check

that the NNP has not overfit the training set and can reasonably describe the PES of new

configurations not in the training set. This is achieved by running longer simulations or

simulations with larger simulation boxes than included in the training data.

For comparing the NNP PES to the ab initio PES, we choose the root mean square

error (RMSE) as our measure of accuracy:

RMSE =

√∑n
i=1(E

NNP
i − EDFTi )2

n
, (2.40)

where i denotes a sample configuration and ENNPi , EDFTi the NNP, DFT potential energy
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for sample i. Additionally, to confirm the stability of the NNP outside of the training

data, we monitor how the RMSE changes with simulation time. If necessary, the NNP is

re-trained adaptively by including configurations from the NNP simulation for which the

RMSE is large.
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Chapter 3

Analysis

In this chapter, we give details about the two metrics, the pair distribution function

and the polyhedra network, used to measure and describe order in the various phases of

the metal oxides and aqueous electrolytes studied in this thesis. Each of these analyses was

coded in Python, the codes of which are presented in the Appendix.

3.1 Pair Distribution Function

The first tool we will use to characterize our amorphous structures is the pair

distribution function g(r). The pair distribution function gives the distribution of distances

between pairs of atoms in a given system and provides some insight into the extent of

short- and medium-range order of a material. For example, crystalline materials tend to

have narrower distributions of distances between bonded atom types, i.e. all bond distances

between two atom types are very close to some average bond length. This order arises

in the pair distribution function as sharp peaks, with each peak corresponding to distinct

36



coordination shells around a given atom type. In less ordered materials, such as amorphous

materials, the distribution of distances broadens, i.e. there is more variety in the bond

distances between two atoms types.

The pair distribution function g(r) is defined as the radial number density of atoms,

ρ(r), normalized by the average density ρ0:

g(r) =
ρ(r)

ρ0
(3.1)

with the radial density given by

ρ(r) =
2

N

N∑
i=1

N∑
j=i+1

f(r, rij , σ) (3.2)

and the average density by

ρ0 =
N

V
. (3.3)

In equations 3.2 and 3.3, N is the number of atoms in the system and V is the volume of

the simulation box. The sum for ρ(r) is performed over all atom pairs in the system, and

rij is the shortest distance between the ith and jth atoms, taking into account periodic

boundary conditions. The function f(r, rij , σ) in equation 3.2 is a Gaussian of width σ that

is used to smear each atom’s contribution to ρ(r):

f(r, rij , σ) =
1

4π3/2r2ijσ
e−
(
r−rij
σ

)2
(3.4)

In ordered structures, we observe distinct peaks in g(r), which can be used to

determine bond lengths, coordination numbers, and the degree of order. Bond lengths are

given by the r-value at which the maximum of the peaks occurs, and coordination numbers

can be derived from the area under the peak:
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Nα−β =

∫ rmin

0
4πr2ρ0g(r)dr, (3.5)

where α and β denote the two atom types for which the coordination number is being

computed, rmin is the r-value of the first minimum (valley) in g, and ρ0 is the average

density given by equation 3.3. Lastly, the degree of order is given by the sharpness of

the peaks, where peaks occurring at distances of one to two bond lengths depict short-

range order (typically up to 4 − 6 Å) and distances of three to four bond lengths depict

medium-range order (typically up to 8− 10 Å).

3.2 Polyhedra network

As previously mentioned, the presence of structural vacancies in the first shell of

In leads to two different types of linking in the polyhedra network of c-In2O3, edge-sharing

(2 shared O atoms) and corner-sharing (1 shared O atom). There is another possible type

of linking, face-sharing (3 shared O atoms), that is not present in c-In2O3, as it has the

shortest In-In distance and thus tends to be less stable than the other types of linking.

While only edge-sharing and corner-sharing polyhedra have been identified previously in

the literature on a-In2O3, we expand our analysis to include face-sharing polyhedra and

find the presence of a few such linkings in our a-In2O3 structure. We also investigate the

connection between our discovery of face-sharing polyhedra and the bound oxygen pairs

discussed in the previous section.

To quantify the polyhedra network, we compute i) the number of each type of

polyhedra and ii) the distribution of In-In distances for each type of polyhedra in c-In2O3
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and a-In2O3. To calculate the number of each type of polyhedra around a given In atom,

we use the following algorithm:

1. Identify all O atoms in the first shell of central In atom. This amounts to

finding all O atoms within some cutoff distance, taken to be the r-value of the first

minimum in the In-O g(r) (see Figure).

Algorithm 1 First Shell

for i = 1...NO do . Iterate over all O atoms

if dist(Incentral,Oi) < rOcut then . Check if O atom is within cutoff.

first shell.append(Oi) . Add O atom to first shell of Incentral.

2. Identify all In atoms in the second and third shells of central In atom. This

amounts to finding all In atoms within some cutoff distance, taken to be the r-value

of the second minimum in the In-In g(r) (see Figure).

Algorithm 2 Second & Third Shells

for i = 1...NIn do . Iterate over all In atoms

if Ini 6= Incentral then . Do not compute distance between Incentral and itself.

if dist(Incentral, Ini) < rIncut then . Check if In atom is within cutoff.

outer shells.append(Oi) . Add In atom to outer shells of Incentral.

3. Identify how many O atoms are shared between the central In atom and

every In atom in its second and third shells. This is done by iterating through

the In atoms identified in 2 and finding the intersection of the first shell O atoms of

the central In atom and the first shell O atoms of every other In atom.

4. If the size of the intersection is 1, meaning there is 1 shared O atom
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between two given In atoms, the count for corner-sharing polyhedra is

increased by 1. Likewise, if the size of the intersection is 2 (3), the count for edge-

sharing (face-sharing) polyhedra is increased by 1.

Algorithm 3 Polyhedra

for i = 1...Nouter do . Iterate over all In atoms in 2nd and 3rd shells.

shared O = first shell(Incentral).intersect(first shell(Ini)) . Find shared O atoms

if shared O.size == 1 then . Determine polyhedra type and increment.

corner += 1

else if shared O.size == 2 then

edge += 1

else if shared O.size > 2 then

face += 1

In crystalline materials, there is typically a narrow range for the number of each

type of polyhedra around a given central atom. However, as the order in the material

decreases, this range widens, giving a distribution of each polyhedra type around a central

atom. Thus, we can measure disorder in terms of the distortion of this network, i.e. the

variation of the number of corner-, edge-, and face-sharing polyhedra around the values

corresponding to the crystal structure.
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Chapter 4

Amorphous Metal Oxides

Metal oxides (MOs) are the most abundant materials in the Earth’s crust and

exhibit many desirable electronic and mechanical properties, making them important ma-

terials for future electronics in terms of sustainability and performance. In comparison to

crystalline silicon and other III-V semiconductors, MOs exhibit excellent carrier mobili-

ties (even in the amorphous state), mechanical stress tolerance, compatibility with diverse

substrates, room-temperature processing, and high optical transparency. Transition metal

oxides (TMOs) are particularly interesting, displaying a broad range of structures and

properties owing to the various types of metal-oxygen bonding: Due to the unique nature

of d -electrons in the valence shell, bonding in TMOs can range from ionic to highly cova-

lent or metallic. For example, RuO2 and ReO3 display metallic properties, while BaTiO3

is highly insulating, and others have properties that are highly tunable via temperature,

pressure, and composition. While not discussed in this thesis, the exciting discovery of

high-temperature superconductivity in cuprates underscores the significance of TMOs.

This chapter focuses exclusively on two binary MOs: Indium (III) oxide (In2O3)
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and vanadium (V) oxide (V2O5). For both systems, we first present our results on structures

generated from ab initio liquid-quench molecular dynamics (LQMD). Ab initio simulations

are ideal for accurately capturing the structural complexities of amorphous systems, but

are limited in system size and timescale because of the computational cost associated with

quantum-mechanical simulations. These limitations are particularly restrictive for gener-

ating amorphous structures from LQMD because i) theoretical amorphous systems have

infinitely large unit cells and the sizes feasible for DFT (up to a few hundred atoms) are not

representative of a real amorphous structure, thus severely constraining the system, and ii)

the quench times achievable in DFT are unrealistically fast ( 1014 K/s). To help bridge

the gap between the quantum-mechanical accuracy of DFT and the efficiency of classical

MD, we used our ab initio MD (AIMD) to train a neural network interatomic potential

(NNP) that was subsequently used in classical LQMD simulations of larger system sizes

and timescales. We then utilize the metrics defined in Chapter 2 to compare the structures

obtained from ab initio LQMD to those obtained from classical MD. We then computed

various material properties, including glass transition temperatures and electronic density

of states, to elucidate structure-property relationships.

4.1 Computational Details

All ab initio molecular dynamics (AIMD) and density functional theory (DFT)

calculations were performed using the projector-augmented wave (PAW) pseudopotentials

as implemented in the Vienna Ab initio Simulation Package (VASP) [41, 42] with the PBE

exchange-correlation functional [23]. For the AIMD calculations, we utilized an energy
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cutoff of 400 eV and a timestep of 0.5 fs, and k -point sampling was restricted to the Γ point

only. For static DFT calculations, we increased the energy cutoff to 520 eV and used a

Monkhorst-Pack grid of 4x4x4 k -points. The conventional 80 atom unit cell for In2O3 and

a 56 atom supercell of V2O5 was used in all AIMD and DFT calculations.

The liquid-quench AIMD simulations were performed as follows. In order to prop-

erly melt the structure, we first added 0.5 Å of vacuum spacing in every direction to the

simulation box and peformed a 10 ps NVT simulation at 3000 K for In2O3 (Tmelt = 2183

K) and at 2000 K for V2O5 (Tmelt = 963 K). We subsequently performed a quench to 100 K

in the NPT ensemble to allow the system’s density to adjust from the constrained density

of the melt. We quenched the system at a cooling rate of 200 K/ps for a total simulation

time of 14.5 ps. Finally, we equilibrated the system for 6 ps in the NVT ensemble. The

final structure of this equilibration run was used in subsequent static DFT calculations of

the electronic properties of a-In2O3 and a-V2O5.

All classical MD simulations were performed using the Large-scale Atomic/Molec-

ular Massively Parallel Simulator (LAMMPS) [43]. For In2O3, a neural network potential

trained with the Python module SIMPLE-NN [38] as described in the methods section

was utilized, and for V2O5, a ReaxFF potential [44] designed to model bond breaking and

chemical reactions was used. The liquid-quench MD simulations were performed as follows.

4.2 Indium oxide

Indium (III) oxide (In2O3) is a wide-bandgap (3.6-3.75 eV) semiconductor [45, 46]

with a single-crystal mobility of 160 cm2 · V−1 · s−1 [47] and high (90%) transparency in
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the visible region [48]. It forms the basis of most transparent conducting oxides (TCOs)

and enabled the first fully transparent thin-film transistor (TFT). Initial applications of

TCOs primarily employed the crystalline phase of the semiconductor; however, recently

there has been an increasing shift toward use of the amorphous phase. This is primarily

due to a simpler deposition process and the ability to scale to larger dimensions than their

crystalline counterparts. In particular, amorphous materials can be deposited at lower

temperatures, expanding the types of substrates that can be used, and are isotropic and lack

grain boundaries, allowing them to be uniformly deposited over large areas. Consequently,

30-40% of flat panel displays now utilize an amorphous TCO. Amorphous materials also

often tend to be more pliable, making them desirable for use in flexible electronics.

Astonishingly, these advantages can be realized without loss to conductivity or

transparency when optimized. This is attributable to the nature of the conduction bands

of indium. Due to the large spherically symmetric orbitals characterizing the conduction

bands, there is a high degree of wave function overlap, electron delocalization, and electron

mobility, regardless of the microstructure. Because the structure and properties of both

crystalline indium oxide (c-In2O3) and amorphous indium oxide (a-In2O3) are well-studied

in the literature, experimentally and theoretically, we first present In2O3 as a prototype for

validating our computational framework for producing representative structures for amor-

phous MOs.

4.2.1 Ab initio LQMD

In2O3 can exist in two phases: a cubic (bixbyite) structure and a rhombohedral

(corundum) structure. Most In2O3-based TCOs exhibit the cubic structure, as the rhom-
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bohedral phase is produced at high temperatures and pressures. Because of this, here we

only concern ourselves with the bixbyite phase (space group Ia3, number 206). The bixbyite

structure (shown in Figure 4.1) is a fluorite-type structure with one-quarter of the anions

missing, where the oxygen atoms are octahedrally coordinated around indium with indium

cations surrounded by six oxygen atoms (c-NIn-O = 6) and two structural vacancies. As

shown in Figure 4.2, these six oxygen atoms form an octahedron around each indium atom,

which forms the building block of the c-In2O3 structure. This is the first coordination shell

around indium.

Figure 4.1: Bixbyite structure of In2O3. d-site In atoms are shown in lavender, b-site In
atoms in blue, and O atoms in red.
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There are two different configurations for the two structural vacancies around

indium: b-sites, where the structural vacancies are along the body diagonal, and d -sites,

where the structural vacancies are along a face diagonal. In the ideal crystal structure, 25%

of indium atoms are in b-sites and 75% are in d -sites. Because of the presence of structural

vacancies, the InO6 octahedra can link together in two ways: either by sharing one oxygen

atom and one structural vacancy, thus being joined by corners of the two octahedra, or by

sharing two oxygen atoms, thus being joined by edges of the two octahedra. Each indium

atom participates in 6 edge-sharing polyhedra, with an average In-In distance of 3.34 Å,

and in 6 corner-sharing polyhedra, with an average In-In distance of 3.83 Å(see Figure 4.3).

These form the second and third shells of indium, respectively.

Figure 4.2: Building block of c-In2O3.

In Figure 4.4, we plot total energy versus time for each step of the ab initio LQMD

process, showing the energy for an MD simulation of c-In2O3 for reference at the top left.

We see that there is a sharp increase in energy during the melting process of c-In2O3, which
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Figure 4.3: Polyhedra network of c-In2O3

is very likely due to the instantaneous increase in temperature and initial expansion, as we

added 0.5 Åof spacing in every direction of the simulation box to allow for proper melting.

During the quenching simulation, we observe a steady decrease in energy with time, as

expected for a stepwise decrease in temperature over time. Lastly, we see that a-In2O3

equilibrates quickly after the quenching.

We next examine the extent of short- and medium-range order in each phase of

In2O3 via the pair distribution function. In Figure 4.6, we show the total g(r) for c-In2O3,

melt-In2O3, and a-In2O3. In c-In2O3, we observe distinct, sharp peaks up to 7 Å, indicative

of the short- and medium-range order of a crystal. Upon melting, we observe a complete

loss of medium-range order and some retention of short-range order, demonstrated by a

smoothing of all peaks above 3 Åand by a broadening of the first peak. Lastly, upon

quenching and equilibration, g(r) for a-In2O3 re-gains short-range order and medium-range

order to a lesser extent, as exhibited by an increase in sharpness of the first peak relative

to the melt and by a noticeable presence of the second and third peaks, as well as a small
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Figure 4.4: Total energy for each simulation of LQMD.

distinguishable peak above 4 Å.

Next, we examine more closely the g(r) for each interaction in each phase of In2O3.

In Figure 4.6, we show g(r) for each pair of elements (In-O, O-O, In-In) in c-In2O3. The

first peak corresponds to the first shell of O around In, with the peak occurring at an r-value

of 2.21 Å, the average In-O bond length in c-In2O3. We also point out the first two peaks

in the In-In g(r), which correspond to the second and third shells of In, at r-values of 3.41

Åand 3.91 Å, respectively. Next, we plot g(r) for a-In2O3 in Figure 4.7. We first notice the
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Figure 4.5: Pair distribution functions g(r) for c-In2O3, melt-In2O3, and a-In2O3

retention of the first In-O peak and a broadening of all peaks above 3 Å, which is indicative

of a short-range order (up to the first shell of In) and of a loss of medium-range order. We

also notice that we no longer observe two In-In peaks in the 3-4 Årange, making it difficult

to distinguish between a second and third shell of indium. Interestingly, we also observe a

new, small peak in the O-O g(r) at 1.5 Å. To investigate the origin of this peak, we next

examine the g(r) for melt-In2O3 in Figure 4.8. As expected for a liquid, we observe a larger

broadening of all peaks, as well as a reduction in peak height, even for the first In-O peak.
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Figure 4.6: Pair distribution functions g(r) for c-In2O3

We also again observe a small peak in the O-O g(r) that is not present in c-In2O3 and, to

the best of our knowledge, has not been observed in the literature. However, recently, such

a peak was found in simulations of amorphous alumina [49] and was attributed to bound

O-O pairs, which were found to serve as hole traps. As such bound O-O pairs have also been

observed in amorphous silica, and In, Al, and Si are close to each other in the periodic table,

it is very likely that such pairs exist in many amorphous metal oxides that contain group 5-6

metals. Nonetheless, in the case of amorphous alumina, ab initio LQMD did not produce

such an artifact in the O-O g(r), while another simulation method, stochastic quenching,

50



Figure 4.7: Pair distribution functions g(r) for a-In2O3

was able to. The authors claim that LQMD is incapable of capturing such subtleties, while

stochastic quenching is, as it should produce maximally amorphous structures, which is not

guaranteed in LQMD.

To uncover why our ab initio LQMD simulations were able to produce such bound

oxygens in a-In2O3 while other such simulation studies have not, we plot the O-O g(r) for

melt-In2O3 in Figure 4.9 for three simulation conditions - NVT with vacuum spacing, NVT

without vacuum spacing, and NPT - as the bound O-O peak first occurs in the melting
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Figure 4.8: Pair distribution functions g(r) for melt-In2O3

simulation. From the figure, we see that the bound O-O peak is sharpest in the NVT with

vacuum spacing simulation, which is the simulation we used for subsequent quenching and

equilibration to produce a-In2O3. We note that in the literature, most ab initio LQMD

simulations are done in the NVT ensemble with the density of the crystal. Not allowing

for thermal expansion during the melting process seems to prohibit diffusion so that such

bound O-O pairs cannot form.

In addition to general trends, we can also obtain coordination numbers and bond
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Figure 4.9: O-O g(r) for melt-In2O3

lengths from each of the pair distribution functions discussed. In Table 4.1, we provide the

coordination numbers and bond lengths of c-In2O3, melt-In2O3, and a-In2O3. This will be

investigated in future research. As expected, upon melting, the In-O coordination number

NIn-O and bond length RIn-O decreases from 6 to 5 and from 2.2 to 2.15, respectively.

However, in a-In2O3, both of these values increase to values close to those of c-In2O3, while

we expected these values to be lower than the crystalline values, which has been observed

in the literature. We suspect that the presence of the bound O2 in our simulations, which
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NIn-O RIn-O (Å) RIn-In (Å) RIn-In* (Å)

c-In2O3 6.0 2.21 3.41 3.91
melt-In2O3 5.0 2.15 3.56 NA

a-In2O3 5.8 2.2 3.44 NA

Table 4.1: Coordination number and bond lengths in c-In2O3, melt-In2O3, and a-In2O3.

has not been found in the literature for a-In2O3, could play a role in our observation of

higher coordination numbers and bond lengths in a-In2O3.

Figure 4.10: Average number of each type of polyhedra (ncorner, nedge, and nface) in c-
In2O3, melt-In2O3, and a-In2O3.
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We next examine the distortion of the polyhedra network in melt-In2O3 and a-

In2O3 for further insight into our novel a-In2O3 structure. We recall that in c-In2O3,

the polyhedra network consists of exactly 6 corner-sharing and 6 edge-sharing polyhedra

around each In atom. We observe in Figure 4.10 that on average melt-In2O3 exhibits less

edge-sharing polyhedra than the crystal, and a-In2O3 both more corner-sharing polyhedra

and less edge-sharing polyhedra than the crystal. However, as shown in Figure 4.11, melt-

In2O3 and a-In2O3 exhibit a distribution of corner-sharing and edge-sharing polyhedra

around these averages, unlike the crystal. On the x -axis of this figure, we display the

possible numbers of polyhedra around a single In atom, and on the y-axis we show the

frequency, with the black dotted line showing the value of 6 corresponding to the crystal.

In both systems, we observe a shift toward higher values of corner-sharing polyhedra and

toward lower values of edge-sharing polyhedra. The wide gap between the two in melt-

In2O3 explains the decrease in coordination number around each In atom, as corner-sharing

polyhedra share only one O atom with each other and edge-sharing polyhedra share two O

atoms. This decrease in coordination number further explains the decrease in In-O bond

length observed in melt-In2O3. In addition, the increased overlap between the corner-

sharing and edge-sharing polyhedra upon amorphization shown on the right of Figure 4.11

explains the return to coordination numbers and bond lengths close to those of c-In2O3.

We next examine the presence of under- and over-coordinated defects in a-In2O3

in Figure 4.12 and explicitly show the relationship between coordination and polyhedra

type (edge- or corner-sharing). With undercoordinated (NIn-O < 6) sites shown in yellow,

overcoordinated (NIn-O > 6) shown in blue, and octahedrally coordinated sites (NIn-O = 6)
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Figure 4.11: Distribution of corner-sharing and edge-sharing polyhedra in melt-In2O3 left
and a-In2O3 right.

shown in green. We clearly see that increasing coordination (going from yellow to green to

blue) is negatively correlated with number of corner-sharing polyhedra, as shown in the left

plot, and is positively correlated with number of edge-sharing polyhedra, as shown in the

right plot. We also observe that in our ab initio LQMD-produced a-In2O3, the majority

of In atoms are octahedrally coordinated, with many more undercoordinated sites than

overcoordinated sites. We will investigate the relationship between the coordination defects

in a-In2O3 and the existence of bound O2 pairs in future research.

Lastly, because the bound O2 pair in amorphous alumina was identified as a hole

trap, we investigate the possibility of such a pair serving as an electron or hole trap in

a-In2O3. In Figure 4.13, we show the electronic density of states (DOS) for c-In2O3 (top)

and a-In2O3 (bottom) projected onto In and O atoms, as well as the bound O2 pair found

in a-In2O3. It is clear that the O2 pair is the main contributor to the state that arises in the

gap near the valence band of a-In2O3. However, due to the size and timescale limitations of

our ab initio LQMD simulations, we must examine the DOS for other samples of a-In2O3
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Figure 4.12: Number of corner-sharing polyhedra (left) and edge-sharing polyhedra (right)
around each In atom in a-In2O3. We see that undercoordinated In atoms tend to have more
corner-sharing polyhedra and less edge-sharing polyhedra than overcoordinated In atoms.

in order to get a general, representative idea of the DOS for a real a-In2O3 system before

we can identify the bound O2 as a trap.

4.2.2 NNP LQMD

Next, we evaluate our classical LQMD results using a neural network potential

(NNP) trained with the ab initio LQMD results described in the previous section. In Figures

4.14 - 4.16, we plot the total g(r) for c-In2O3, melt-In2O3, and a-In2O3 from LAMMPS

using the NNP, with the DFT g(r) shown for comparison and observe exceptional matching

between the classical LQMD and the ab initio LQMD. These simulations were ran with the

same starting configurations as the DFT simulations, and the systems evolved according to
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Figure 4.13: Projected density of states onto the bound O2 pair, all other O atoms, and all
In atoms for c-In2O3 (top) and a-In2O3 (bottom)

the same ensemble conditions.

Next, we use the NNP to generate new amorphous structures and compare their

electronic structures to the VASP a-In2O3 structure discussed in the previous section. To

generate these structures, we used the melted structure from VASP and quench the system

at different quench rates. In Figure 4.17, we show the g(r) for each of these a-In2O3 systems,

verifying that we have obtained different structures.

Lastly, we examine the HOMO and LUMO energies of samples from each a-In2O3
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Figure 4.14: g(r) for c-In2O3 from LAMMPS NNP simulations, with VASP g(r) shown for
comparison.

simulation to identify potential traps in these different samples. In Figure 4.18, we plot the

distance of the HOMO and LUMO energies from the Fermi energy and observe variance

from the average in a few cases. The VASP-generated sample corresponds to structure 11

in this plot, for which we observe an outlier in the LUMO distance. This seems to confirm

our suspicion that this structure contains a trap, namely the bound O2 pair discussed in

the previous section. However, further analysis is necessary to validate this trap, as well as

the other outliers in this plot as traps.
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Figure 4.15: g(r) for melt-In2O3 from LAMMPS NNP simulations, with VASP g(r) shown
for comparison.
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Figure 4.16: g(r) for a-In2O3 from LAMMPS NNP simulations, with VASP g(r) shown for
comparison.
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Figure 4.17: g(r) for a-In2O3 from LAMMPS NNP simulations of different quench rates,
with VASP g(r) shown for comparison.
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Figure 4.18: The distance of the HOMO and LUMO energies from the Fermi energy as an
indicator of electron/hole traps.
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4.3 Vanadium oxide

Vanadium (V) oxide (or vanadium pentoxide), V2O5 is a multi-functional mate-

rial that has found widespread applications in fields such as catalysis, energy storage, and

biomedical devices. Electronically, V2O5 undergoes a fast and reversible transition from a

semiconductor to a metal phase near 530 K, drawing appeal for its use in thermally acti-

vated electrical and optical switching devices [50]. With regard to energy storage, its layered

structure (see Figure 4.19) makes it especially desirable for devices requiring ion intercala-

tion. Amorphous V2O5 in particular has a shorter diffusion path and higher capacity than

crystalline V2O5, drawing attention for use in lithium-ion batteries and in electrochemical

energy storage (EES) devices.

In this work, we focus on the use of amorphous V2O5 as a surface electron acceptor

for the surface transfer doping of diamond in field-effect transistors (FETs). Diamond is

of interest for use in high-power electronic devices, but is limited by various fabriaction

challenges, particularly mature doping techniques. Due to the high electron affinity of

V2O5, it has been shown to be effect in doping diamond through the trapping of electrons.

In an effort to accelerate the optimization of these devices, here we follow similar steps as

in the previous section to identify potential electron traps.

4.3.1 Ab initio LQMD

Unlike In2O3, the crystal structure of V2O5 is layered, as shown in Figure 4.19. The

building block of c-V2O5 is a VO5 square pyramid, displayed in Figure 4.20, corresponding

to the first shell of V. Thus, as we see in Figure 4.21, the c-V2O5 structure consists of layers
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Figure 4.19: Crystal structure of crystalline V2O5.

of pairs of VO5 pyramids.

Figure 4.20: Building block of c-V2O5, shown as a ball-stick structure left and as a poly-
hedron (square pyramid) right.

Similarly to c-In2O3, the second and third shells correspond to edge- and corner-

sharing polyhedra, respectively, with 2 V atoms in the second shell and 3 V atoms in the

third shell.

In Figure 4.23, we plot total energy versus time for each step of the ab initio

LQMD process, showing the energy for an MD simulation of c-V2O5 for reference at the

top left. We see that there is a sharp increase in energy during the melting process of
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Figure 4.21: Polyhedra network of c-V2O5

Figure 4.22: Polyhedra network of c-V2O5.

c-V2O5, which is very likely due to the instantaneous increase in temperature and initial

expansion, as we added 0.5 Åof spacing in every direction of the simulation box to allow for

proper melting. During the quenching simulation, we observe a steady decrease in energy

with time, as expected for a stepwise decrease in temperature over time. Lastly, we see that

a-V2O5 equilibrates quickly after the quenching.

Next, we plot the pair distribution functions g(r) for c-V2O5, melt-V2O5, and
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Figure 4.23: Total energy for each simulation of LQMD.

a-V2O5 in Figure 4.24. As expected, upon melting, we observe a large reduction in short-

range order and a complete loss of medium-range order (above 3 Å.) Upon quenching and

equilibration, the g(r) of a-V2O5 regains short- and medium-range order, but the short-

range order is very different from that of the crystal. In Figure 4.25, we show that the first

two peaks of the c-V2O5 g(r) correspond to the first shell of V-O (the VO5 pyramid). We

do not observe such double peaks in the g(r) of a-V2O5.

In fact, in the a-V2O5 g(r), we observe a transformation of all double peaks in the
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Figure 4.24: Pair distribution functions g(r) for c-V2O5, melt-V2O5, and a-V2O5

crystal to broader single peaks. In addition, as shown in Table 4.2, we observe a significatn

reduction in V-O coordination number, from 5 in c-V2O5 to 4 in a-V2O5. The presence

of such a large number of coordination defects is also confirmed by the existence of only

corner-sharing polyhedra in a-V2O5.

Such an undercoordinated system can possibly host a large number of traps; how-

ever, there is nothing obvious in the structure that we can quickly identify as a trap as

we could for In2O3. To generate more samples of a-V2O5, we utilize the ReaxFF poten-
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Figure 4.25: Pair distribution functions g(r) for c-V2O5

tial to run a series of classical LQMD simulations as we did for In2O3. We sample these

simulations and in Figure 4.27 show the distance of the HOMO and LUMO energies from

the Fermi energy. We observe a wide range in these distances comparable to kbT , signaling

that outliers in these systems could serve as potential traps. However, further analysis is

necessary.
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Figure 4.26: Pair distribution functions g(r) for a-V2O5

NV-O RV-O (Å) RV-V (Å) RV-V* (Å)

c-V2O5 5.0 1.61, 1.88 3.15 3.56
melt-V2O5 4.2 1.74 3.4 NA

a-V2O5 4.2 1.78 3.44 4.22

Table 4.2: Coordination number and bond lengths in c-V2O5, melt-V2O5, and a-V2O5.
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Figure 4.27: The distance of the HOMO and LUMO energies from the Fermi energy as an
indicator of electron/hole traps.
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4.4 Summary

In this chapter, we generated amorphous structures for two amorphous metal ox-

ides, indium oxide and vanadium oxide, using both ab initio MD and classical MD. In both

systems, we were able to confirm the loss of long-range order and decrease in medium-range

order characteristic of amorphous systems and identified the types of coordination defects

in these systems. Lastly, we identified potential traps by analyzing outliers in distance of

the frontier orbitals from the Fermi energy of these systems.
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Chapter 5

Water-in-Salt Electrolytes

The majority of our digital devices are now powered by lithium-ion batteries, a

type of rechargeable battery that relies on oxidation reactions involving Li ions at the

electrodes for charging and discharging. However, concerns surrounding their cost, safety,

and environmental impact limits their use in electric vehicles and electrical energy storage

(EES) on the grid. Most of these concerns stem from the use of non-aqueous electrolytes

needed to withstand the high voltages of the battery electrochemistry [51], which contain

flammable and reactive ester-based solvents [52], as well as a toxic and thermally unstable

salt (LiPF6) [53].

Among aqueous batteries, Zn batteries display the highest energy densities and

are inherently safe, inexpensive, and sustainable. Unlike non-aqueous electrolytes, aqueous

electrolytes are non-flammable; however, they are limited by the electrochemical stability

window of water (1.23 V), which limits the operating voltage of the battery. In addition, the

hydrogen evolution reaction (HER) results in parasitic reactions at the electrodes, causing

deterioration and hindering reversibility. However, the recently discovered advantages of
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super concentrated aqueous electrolytes, water-in-salt electrolytes (WiSE), have enabled

unprecedented reversibility and performance in Zn-metal batteries, sparking a surge of

interest in WiSE-based batteries for EES applications.

The motivation for this research is the experimentally observed stabilization of

water in zinc chloride (ZnCl2) WiSE upon addition of lithium chloride (LiCl), as demon-

strated by the blue shift of water frequencies in the Raman spectra upon addition of LiCl

shown in Figure 5.1. Interestingly, the efficiency of the battery is increased upon addition

of 5 m LiCl, but decreases upon any further addition of LiCl, signaling the existence of an

intricate interplay between the concentrations of each salt in the electrolyte. To shed light

on the underlying mechanism of this synergistic effect, here we examine the effect of LiCl

concentration on i) the hydrogen bonding network and ii) the coordination shell of the Zn

cation in ZnCl2 WiSE.

Figure 5.1: Raman spectra for bi-salt ZnCl2/LiCl WiSE of varying concentrations and pure
water in the high frequency region.
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5.1 Hydrogen bonding network

In Figure 5.2, we plot the O-H pair distribution function g(r) for the ZnCl2 WiSE

(30 m ZnCl2) and the ZnCl2 WiSE upon addition of 5 m LiCl and 10 m Li Cl. Upon

examination of the first peak, we observe that the OH bond lengths ROH in 30 m ZnCl2

and 30 m ZnCl2 + 5 m LiCl are the same - R0
OH = R5

OH = 0.995 Å, where the superscript

denotes the concentration of Li Cl. However, addition of 10 m LiCl shifts the OH bond

length to R10
OH = 1.01 Å, which is close to the OH bond length in ice. However, as Figure 5.1

shows, the stability of water increases with increasing LiCl concentration, which could imply

a reduction in OH bond length. To reconcile our computational results with the Raman

spectra, we first note the increase in peak width in the Raman spectra upon addition of

LiCl, implying that there is an increasing variety of OH bond lengths upon addition of

LiCl. This is shown in Figure 5.3, where we plot ROH for each water molecule in each

concentration of simulated ZnCl2/LiCl WiSE.

Next, we examine the second peak of the O-H g(r), which corresponds to hydrogen

bonds between water molecules. In the 30 m ZnCl2 WiSE, we observe a peak at RHbond =

1.54 Å, where the subscript Hbond signifies the hydrogen bond between water molecules.

Upon addition of 5 m LiCl and 10 m LiCl, we observe decreases in this value to 1.46 and

1.42 Å, respectively. If we average RHbond and ROH , we obtain 1.27 Å for the 30 m

ZnCl2 WiSE and values of 1.23 and 1.21 Å upon addition of 5 m LiCl and 10 m Li Cl,

respectively. Therefore, in the Raman spectrum, the single peak observed in the Raman

spectra of the WiSE may be an average of the first two peaks in the g(r), explaining the
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Figure 5.2: O-H pair distribution functions g(r) for bi-salt ZnCl2/LiCl WiSE of varying
concentrations.

overall observed blue shift of the peaks in both 30 m ZnCl2 + 5 m LiCl and 30 m ZnCl2

+ 10 m LiCl. Furthermore, counting up the number of water molecules contributing to

the second peak of the O-H g(r), we observe that upon addition of 5 m LiCl, the number

of water molecules participating in hydrogen bonds with other water molecules decreases,

from an average of 17.7 during the simulation of 30 m ZnCl2 to 16.4 in 30 m ZnCl2 + 5

m LiCl. However, upon addition of 10 m LiCl, this number increases to 19.1. Therefore,

the hydrogen bonding network seems to play the biggest role in the interplay between LiCl

concentraion and ZnCl2, the nature of which may not be directly observable from Raman
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Figure 5.3: The average OH bond length in each water molecule of bi-salt ZnCl2/LiCl WiSE
of varying concentrations.

spectra.

Lastly, in Figure we validate our simulation results by comparing the power spec-

trum of the OH bonds in our 30 m ZnCl2 + 10 m LiCl simulation to the corresponding

curve (purple) in the Raman spectrum. As expected, we observe a range of frequencies

which is correlated to the OH bond length, where shorter bonds exhibit higher frequencies.
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Figure 5.4: Power spectrum derived from the velocity autocorrelation function of the OH
bonds in each water molecule of simulated 30 m ZnCl2 + 10 m LiCl. We sort the OH bonds
by length from shortest bond lengths to longest bond lengths.

5.2 Cation coordination shells

We next examine the effects of the hydrogen bonding network on the coordination

of water to Zn and to Li, starting with Zn. In Figure 5.5, We first observe a decrease in

ZnO bond length, RZnO, upon addition of LiCl from 2.05 Å to 2.02 Å to 2.01 Å in 30 m

ZnCl2, 30 m ZnCl2 + 5 m LiCl, and 30 m ZnCl2 + 10 m LiCl, respectively.

Counting up the number of water molecules coordinated to each Zn atom, we

observe that upon addition of 5 m LiCl, the number of water molecules coordinated to Zn
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Figure 5.5: Zn-O pair distribution functions g(r) for bi-salt ZnCl2/LiCl WiSE of varying
concentrations.

atoms decreases to 26, while uppon addition of 10 m LiCl, the number of water molecules

coordinated to Zn atoms increases to 29. This is confirmed upon examination of Li-O g(r),

shown in Figure 5.6, where we observe a very large decrease in the first peak, indicative of

a reduction in coordination number of O to Li.
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Figure 5.6: Li-O pair distribution functions g(r) for bi-salt ZnCl2/LiCl WiSE of varying
concentrations.

5.3 Summary

In conclusion, we observe a delicate interplay in the hydrogen bonding network

and the cation coordination shells of bi-salt ZnCl2/LiCl WiSE that validates experimental

Raman spectra of these systems. More importantly, we help elucidate the mechanism un-

derlying the initial increase in efficiency upon addition of 5 m LiCl and subsequent decrease

in efficiency upon addition of 10 m LiCl. Specifically, we observe that initially, addition of

LiCl reduces the number of water molecules participating in hydrogen bonding with other
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water molecules, while maintaining the stability of the OH water bond. However, increasing

LiCl concentration beyond 10 m LiCl increases the number of water molecules participating

in the hydrogen bonding network, accompanied by an increase in OH bond length, possibly

leading to instability. Furthermore, the number of water molecules participating in the

hydrogen bonding network is correlated with the fraction of water molecules coordinating

Zn atoms. As Zn is more electronegative than Li, we expect that charge transfer between

Zn and coordinating waters is directly related to the observed experimental results, where

30 m ZnCl2 + 5 m LiCl strikes the correct balance for reducing charge transfer between Zn

and water.
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Chapter 6

Conclusions

Elucidating the structure-property relationships in amorphous systems is extremely

difficult, due to the lack of accurate experimental techniques and a consistent model of their

atomic structure. However, in this thesis, we have demonstrated that computational mod-

eling plays a crucial role in not only rationalizing experiment, but also guiding them. In

particular, we have successfully generated atomic structure models of two novel amorphous

systems, amorphous metal oxides and water-in-salt electrolytes, and validated our results

with experiments when available. We also demonstrated the importance of generating a

variety of different samples of amorphous structures for a single system, as the timescales

and system sizes feasible in simulations biases the final amorphous structure.
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Appendix A

Code for pair distribution function

import numpy as np

from ase import atoms

from ase.io import read

class GofR():

''' This is a class for computing the pair distribution function of a

given↪→

structure.

args:

traj = (ASE atoms object) trajectory/structure

'''

def __init__( self, traj ):
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self.traj = traj

self.elements = self.traj[0].get_chemical_symbols()

self.species = list(set(self.elements))

self.spec_indices = {}

for s in self.species:

self.spec_indices[s] = [i for i,v in enumerate(self.elements)

if v == s]↪→

self.N = 0

def volume( self, LCC ):

''' Computes the volume of the simulation box

from the matrix of lattice vectors.

args:

LCC = (3x3 array) lattice vector matrix [a,b,c]

returns:

V = (scalar) the volume of the simulation box'''

return np.dot(LCC[0],np.cross(LCC[1],LCC[2]))

def rho_0( self, N, V ):
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''' Computes the average density, rho_0,

from number of atoms, N, and the volume, V,

of the computational system.

args:

N = (scalar) number of atoms in simulation box

V = (scalar) volume of simulation box

returns:

rho_0 = (scalar) the average density'''

return N/V

def r_ij( self, LCC, positions, indices1, indices2 ):

''' Computes r_ij for a given timestep

args:

LCC = (3x3 array) lattice vector matrix [a,b,c]

positions = (n_atoms x 3 array) array of atomic coordinates

returns:

r_ij = (array) array of the shortest distances (across

periodic boundaries) of all pairs of atoms'''
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r = positions

if indices1 != None and indices2 != None:

v_ij = [ np.abs(np.subtract(r[j], r[i])) for i in indices1 for

j in indices2 if j != i ]↪→

else:

n_atoms = len(positions) # number of atoms

v_ij = [ np.abs(np.subtract(r[j], r[i])) for i in

range(n_atoms) for j in range(i+1, n_atoms) ]↪→

LCC_inv = np.linalg.inv(LCC) # inverse of lattice vec matrix

vp_ij = [ np.mod( ( np.dot(LCC_inv,v) + 0.5), 1 ) - 0.5 for v in

v_ij ]↪→

vp_ij = [ np.matmul( LCC, vp) for vp in vp_ij ]

r_ij = np.linalg.norm(vp_ij,axis = 1)

return r_ij

def f( self, r_grid, r_ij, sigma ):

''' Computes f, the atomic contributions to the radial density.
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args:

r_grid = (1D array) the grid over which the Gaussian is computed

r_ij = (array) the shortest distance(s) between the

ith and jth atoms, accounting for PBC

sigma = (scalar) width of Gaussian

returns:

f = (array) the atomic contribution(s) to the radial density'''

pi_3_2 = np.power( np.sqrt(np.pi), 3)

a = 1 / ( 4 * pi_3_2 * sigma * np.square(r_ij) )

b = - 1 / (sigma * sigma)

return [a[i]*np.exp(b*(r_grid-r)**2) for i,r in enumerate(r_ij)]

def rho( self, cell, positions, ngrid, sigma, indices1=None,

indices2=None ):↪→

''' Computes rho, the radial density, as a function of r.

args:

N = (scalar) number of atoms in simulation box
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r_grid = (1D array) the grid over which the Gaussian is

computed↪→

r_ij = (array) the shortest distance(s) between the

ith and jth atoms, accounting for PBC

sigma = (scalar) width of Gaussian

returns:

[r, rho], where

r = (array) the grid over which the Gaussian is computed

rho = (array) the radial density as a function of r'''

curr_r_ij = self.r_ij(cell,positions,indices1,indices2)

r_grid = np.linspace(0.5,8.0,ngrid)

if indices1 == None or indices2 == None:

return [r_grid, np.divide( 2*np.sum( self.f(r_grid, curr_r_ij,

sigma), axis = 0 ), self.N )]↪→

else:

N1 = len(indices1)

N2 = len(indices2)

return [r_grid, np.divide( self.N*np.sum( self.f(r_grid,

curr_r_ij, sigma), axis = 0 ), (N1*N2) )]↪→
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def little_g( self, step, sigma=0.15, ngrid = 100, el1=None, el2=None

):↪→

''' Computes R(r), the radial distribution function, and

g(r), the pair distribution function.

args:

sigma = (scalar) width of Gaussian

returns:

[r, g], where

r = (array) the grid over which the Gaussian is computed

g = (array) the pair distribution function for all element

types↪→

R = (array) the radial distribution function for all element

types'''↪→

positions = self.traj[step].get_positions()

cell = self.traj[step].get_cell()

self.N = len( positions )

V = self.volume(cell)
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if el1 != None and el2 != None:

indices1 = self.spec_indices[el1]

indices2 = self.spec_indices[el2]

pair = el1+"-"+el2

coeff = self.N / (len(indices1)*len(indices2))

rho_r = self.rho(cell,positions,ngrid,sigma,indices1,indices2)

else:

coeff = self.N

rho_r = self.rho(cell,positions,ngrid,sigma)

r = rho_r[0]

g = rho_r[1]/self.rho_0(self.N,V)

return np.transpose([r, g])

95



Appendix B

Code for polyhedra network

from ase.io import read

import numpy as np

import pandas as pd

flatten = lambda l: [item for sublist in l for item in sublist]

class Polyhedra():

''' This is a class for computing the polyhedra network of

a material. The methods in this class provide the number of

each type of polyhedra and the average distance between them.

args:

traj = (ASE atoms object) trajectory/structure
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'''

def __init__(self, traj):

self.traj = traj

self.elements = self.traj[0].get_chemical_symbols()

self.species = list(set(self.elements))

self.spec_indices = {}

for s in self.species:

self.spec_indices[s] = [i for i,v in enumerate(self.elements)

if v == s]↪→

def get_shell(self,step, el1, el2, cutoff1, cutoff2):

indices1 = self.spec_indices[el1] #indices for the central element

indices2 = self.spec_indices[el2] #indices for the coordinating

element↪→

r = self.traj[step].get_positions()

LCC = self.traj[step].get_cell()

n_atoms = len(r) # number of atoms

LCC_inv = np.linalg.inv(LCC) # inverse of lattice vec matrix

ij = [ [i] + [j] for i in indices1 for j in indices2 ]

v_ij = [ [np.abs(np.subtract(r[j], r[i]))] for i in indices1 for j

in indices2 ]↪→
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vp_ij = [ np.mod( ( np.dot(LCC_inv,np.transpose(v)) + 0.5), 1 ) -

0.5 for v in v_ij ]↪→

vp_ij = [ np.matmul( LCC, vp) for vp in vp_ij ]

r_ij = np.linalg.norm(vp_ij,axis = 1)

sorted_indices=np.argsort(np.array(r_ij), axis=None)

r_ij=np.sort(r_ij,axis=None)

shell_indices = pd.DataFrame([ ij[sorted_indices[i]] for i,d in

enumerate(r_ij) if d >= cutoff1 and d <= cutoff2 ],↪→

columns = ['col1','col2'])

shell_distances = [ d for d in r_ij if d > cutoff1 and d < cutoff2

]↪→

shell_indices = shell_indices.groupby('col1')['col2'].apply(list)

return [shell_indices, shell_distances]

def get_polyhedra(self,step,el1,el2,cutoff1,cutoff2,cutoff3):

''' Computes the number of each type of polyhedra (corner-, edge-,

and face-sharing)↪→

for each atom of type el1.

args:

98



step = (scalar) timestep to compute polyhedra for

el1 = (string) element type (e.g. "In") for which to compute

polyhedra↪→

el2 = (string) element type (e.g. "O") in first coord. shell of

el1↪→

cutoff1 = (scalar) lower cutoff distance for first shell (usually

0.0)↪→

cutoff2 = (scalar) upper cutoff distance for first shell (can be

obtained as first minimum↪→

in el1-el2 g(r))

cutoff3 = (scalar) upper cutoff for computing polyhedra - e.g.

for In2O3, corresponds↪→

to the largest distance in the third shell around In

(can be obtained as second↪→

minimum in el1-el1 g(r))'''

# first step is to get first shell of el

first_shell = self.get_shell(step, el1, el2, cutoff1, cutoff2)[0]

in_shells = self.get_shell(step, el1, el1, cutoff2, cutoff3)[0]

n_el1 = len(self.spec_indices[el1])

corner = np.zeros( n_el1 )
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edge = np.zeros( n_el1 )

face = np.zeros( n_el1 )

# loop through each In atom

for i in range(n_el1):

O_atoms = first_shell[i]

for j in in_shells[i]:

shared_O_atoms = [ v for v in O_atoms if v in

first_shell[j] ]↪→

if len(shared_O_atoms) == 1:

corner[i] += 1

if len(shared_O_atoms) == 2:

edge[i] += 1

if len(shared_O_atoms) == 3:

face[i] += 1

return [corner, edge, face]
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