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Model Based Model Based MultiscaleMultiscale SensingSensing
Xiangming Kong, William J. Kaiser and Gregory J. Pottie
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• Multiscale Sensing: Combining hierarchy of sensor data sources with varying deployment density and sensing modes
• Problem: Achieve the high fidelity of exhaustive sensing by engaging multiple levels of sparse sensing
• Application: Determine spatiotemporal characteristics of sunlight field under forest canopy
• Motivation for Model Based Approach:

– Direct fusing of measurements at multiple levels enhances performance, but improvement benefit is limited
– Models directly extract phenomena behavior
– Communication and computation rate requirements constrained to most important data 
– New information can be directly incorporated by updating models
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• Information Levels
– Context: weather condition and environment
– High level information: camera provides global measurement with low 

accuracy and high spatial resolution
– Low level information: PAR sensor provides local measurement (low 

spatial resolution) with high accuracy
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• Three-phase Information Processing
– Model learning phase

• Apply dense sampling in different small areas to learn the possible incident light distributions and 
reflectivity distributions

• Build a set of incident light distribution and reflectivity models
– Decompose sunlight into 3 components

Direct beam, sky diffused light and leaf diffused light
– Obtain distribution model of sky diffused light and leaf diffused light from measured data
– Obtain distribution models of direct beam from measured and simulated field

• Combine the two to build a set of reflected light distribution models
– Model selection phase

• Compare the reflected light distribution model measured by the camera with the set of models
• Select a few models from the model set that are closest to the measured model
• Use static PAR sensor measurement to pick one most probable model

– Model validation and updating phase
• Verify the PAR sensor measurement matches the selected incident light distribution model
• Update the model set if the measured incident light distribution model is substantially different from any 

available model in the model set
• Bound the minimum number of PAR sensors to fulfill the model selection and validation task

• Image Processing
– Segment the field image into feature clusters
– Partition the field based on pixel features and connectivity

• Interactive Information Processing
– Simulate the field with parameters based on prior 

knowledge and global condition
– Refine the simulation parameter with information from 

static sensor measurements
– Update models by assimilating new simulation results, 

static sensor measurements and reconstructed field 
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