Lawrence Berkeley National Laboratory
 LBL Publications

Title

Determination of the structural phase and octahedral rotation angle in halide perovskites

Permalink
https://escholarship.org/uc/item/99540471

Journal

Applied Physics Letters, 112(7)
ISSN
0003-6951

Authors

dos Reis, Roberto
Yang, Hao
Ophus, Colin
et al.
Publication Date
2018-02-12
DOI
10.1063/1.5017537

Peer reviewed

Determination of the structural phase and octahedral rotation angle in halide perovskites

Roberto dos Reis, Hao Yang, Colin Ophus, Peter Ercius, Gregory Bizarri, Didier Perrodin, Tetiana Shalapska, Edith Bourret, Jim Ciston, and Ulrich Dahmen

Citation: Appl. Phys. Lett. 112, 071901 (2018); doi: 10.1063/1.5017537
View online: https://doi.org/10.1063/1.5017537
View Table of Contents: http://aip.scitation.org/toc/apl/112/7
Published by the American Institute of Physics

Articles you may be interested in

Exciton-phonon coupling in a CsPbBr_{3} single nanocrystal
Applied Physics Letters 112, 072104 (2018); 10.1063/1.5018413

Efficient $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Pbl}_{3}$ perovskite/fullerene planar heterojunction hybrid solar cells with oxidized $\mathrm{Ni} / \mathrm{Au} / \mathrm{Cu}$ transparent electrode
Applied Physics Letters 112, 071103 (2018); 10.1063/1.5006513
Excitonic nature of optical transitions in electroabsorption spectra of perovskite solar cells
Applied Physics Letters 112, 083902 (2018); 10.1063/1.5017943
Creation and annealing of metastable defect states in $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Pbl}_{3}$ at low temperatures
Applied Physics Letters 112, 081102 (2018); 10.1063/1.5019921
Micropillars with a controlled number of site-controlled quantum dots
Applied Physics Letters 112, 071101 (2018); 10.1063/1.5017692
Interface engineering of $\mathrm{CsPbBr}_{3} / \mathrm{TiO}_{2}$ heterostructure with enhanced optoelectronic properties for all-inorganic perovskite solar cells
Applied Physics Letters 112, 093901 (2018); 10.1063/1.5019608

Determination of the structural phase and octahedral rotation angle in halide perovskites

Roberto dos Reis, ${ }^{1, a)}$ Hao Yang, ${ }^{1, b)}$ Colin Ophus, ${ }^{1}$ Peter Ercius, ${ }^{1}$ Gregory Bizarri, ${ }^{2}$ Didier Perrodin, ${ }^{2}$ Tetiana Shalapska, ${ }^{2}$ Edith Bourret, ${ }^{2}$ Jim Ciston, ${ }^{1, c)}$ and Ulrich Dahmen ${ }^{1}$
${ }^{1}$ National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{2}$ Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 28 November 2017; accepted 9 January 2018; published online 12 February 2018)

Abstract

A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr_{3}, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal $(I 4 / \mathrm{mcm})$ structural phase of CsPbBr_{3} at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of $\mathrm{I} 4 / \mathrm{mcm}$ persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of $6.5^{\circ}\left(\pm 1.5^{\circ}\right)$. The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halidebased all-inorganic and hybrid organic-inorganic perovskites. Published by AIP Publishing. https://doi.org/10.1063/1.5017537

Recently, halide-based perovskites have drawn substantial interest as promising materials for high-efficiency solar energy harvesting due to their excellent optoelectronic properties, low-cost, and material accessibility. ${ }^{1-3}$ Various combinations of optical and electronic properties can be achieved by altering their structures, ${ }^{4-6}$ and a precise knowledge of the atomic configuration is vital for a complete understanding of the structure-property relationship. Particularly, development of Pb -halide structures, such as CsPbX_{3}, without a volatile organic compound, can provide a higher durability for photovoltaic cells. ${ }^{7}$ In addition, CsPbBr_{3} presents better mechanical stability and optoelectronic properties for applications in X - and γ-ray radiation detectors. ${ }^{8}$

Initial studies on halide perovskites CsPbX_{3} by Möller in the $1950 \mathrm{~s}^{9,10}$ described the structure of CsPbBr_{3} as a monoclinic distorted perovskite at room temperature. In single crystals, the low- and room-temperature phases have been reported to be orthorhombic ${ }^{8,11}$ evolving to tetragonal with increasing temperature and to cubic for temperatures above $130^{\circ} \mathrm{C}$. In nanostructures, the cubic structure ${ }^{12}$ has been predominant. ${ }^{13}$ Recent first principles calculations ${ }^{14}$ have shown that octahedral units in halide perovskites generally prefer inphase rotations, ${ }^{15}$ though a cubic-to-tetragonal (I4/mcm) transformation through out-of phase rotations ${ }^{15}$ has also been found. ${ }^{16,17}$ The typical yellow-orange color of CsPbBr_{3} single crystals (Fig. S1 in the supplementary material) has been attributed to an orthorhombic phase with a bandgap of $2.25 \mathrm{eV} .{ }^{8}$ However, the challenge remains in determining the

[^0]symmetry and quantifying the octahedral rotations accurately as the crystal structural phase can vary with the size and growth technique.

Most of the structural characterization studies in halide perovskites have been performed using X-ray or neutron diffraction. ${ }^{8-12,16,17}$ Unfortunately, these techniques offer a limited spatial resolution and low sensitivity to small symmetry deviations, such as the absence of center of symmetry and effects due to small atomic shifts, ${ }^{18}$ hence presenting significant challenges to precisely distinguish the mesoscale structural complexity of different phases and octahedral tilting configurations. Advances in aberration corrected (scanning) transmission electron microscopy (S)TEM over the few past decades have significantly improved the accuracy of structure determination with a sub- \AA i resolution. ${ }^{19-22}$ However, it remains difficult to characterize halide perovskites due to their high sensitivity to electron radiation damages. ${ }^{23}$ Recently, Yu et al. ${ }^{13}$ demonstrated that by reducing the electron dose, it is possible to achieve atomic resolution images of ultrathin CsPbBr_{3} nanoplates using a phase contrast imaging technique named exit-wave reconstruction.

Here, we apply electron diffraction based techniques, including convergent beam electron diffraction (CBED) and electron ptychography, to unambiguously determine the space-group and estimate the octahedral rotations of the all-inorganic halide perovskite CsPbBr_{3} under low dose conditions. CBED can uniquely determine space-group symmetries ${ }^{24}$ at the scale of few nanometers enabling probing defect-free areas within the crystal and has been applied to many different materials over the past few decades. ${ }^{25-29}$ Space group symmetry elements such as screw axes, glide
planes, and non-centrosymmetric axes can be identified by observing the presence or absence of dynamical extinction lines due to dynamical scattering effects. ${ }^{30-32}$ Moreover, high order Laue-Zone (HOLZ) reflections in CBED are sensitive to the subtle displacements of atoms along the projected beam direction and can be used to identify the symmetry departures from its ideal structural phase. ${ }^{33}$

For atomic resolution low dose imaging, we use electron ptychography, which is known for providing a quantitative measure of the phase changes of the incident coherent electron wave as it propagates through an electron transparent specimen. ${ }^{34}$ This technique offers a highly efficient phase contrast transfer function and excellent image contrast of light elements under low dose imaging conditions. ${ }^{35}$ Recent advances in the fast pixelated detector technology have allowed atomic resolution phase images to be achieved simultaneously using the incoherent Z-contrast imaging method in Highangle Annular Dark Field (HAADF) STEM, ${ }^{36,37}$ therefore providing great sensitivity for imaging both light and heavy elements.

Single crystals of CsPbBr_{3}, grown via the BridgmanStockbarger technique, were crushed to powder and dropped on ultrathin C -coated Cu grids. CBED experiments were performed using a Zeiss Libra MC200 operated at 200 kV . CBED patterns were collected using a convergence semiangle of 1.6 mrad and recorded using a Gatan 894 Ultrascan with the sample kept at liquid nitrogen (LN) temperature $(\approx 77 \mathrm{~K})$. For reconstructions, the electron diffraction patterns at each probe position were recorded at room-temperature ($\approx 300 \mathrm{~K}$) using a Gatan K2 IS direct electron detector operated at 800 frames per second installed on TEAM I, an aberration-corrected FEI Titan 80-300 operated in the STEM mode at 300 kV with a convergence semi-angle of 17.2 mrad. The camera acquisition and probe scanning were synchronized using a Gatan Digiscan and STEMx software package. The simultaneous annular dark field (ADF) image was acquired with collection angles of $40-240 \mathrm{mrad}$. The probe was scanned over 256×256 probe positions to create a $256 \times 256 \times 1920 \times 895$ four-dimensional (4D) dataset, namely, 4D-STEM. Data post processing was performed using custom scripts written in MATLAB. Multislice simulations were performed using custom MATLAB codes that follow the methods of Kirkland ${ }^{38}$ applying sixteen frozen phonon configurations. Simulated 4D-STEM datasets are composed of a mesh of 35×35 probe positions per unit cell with the FWHM of the probe set to $0.8 \AA$. The lattice parameter was initially set using the cubic structure reported by Stoumpos et al. ${ }^{8}$ and transformed to tetragonal by applying $\mathrm{a}=\sqrt{2} \mathrm{a}, \mathrm{b}=\sqrt{2} \mathrm{a}$, and $\mathrm{c}=2 \mathrm{a}$ expansion. To generate out-of phase rotations, we applied a shift ($\delta \mathrm{x}$) to the 8 h Wyckoff position of the $I 4 / \mathrm{mcm}$ space group. The shift is related to the octahedral unit rotation angle by $\phi=\tan ^{-1}\left(1-4 x^{\prime}\right)$, where $\mathrm{x}^{\prime}=\mathrm{x}+\delta \mathrm{x}$ is the updated fractional coordinate for 8 h . Ptychography reconstructions were applied to both experimental and simulated 4D datasets using the Wigner distribution deconvolution (WDD) method. ${ }^{39}$

We can narrow the possible structures of CsPbBr_{3} following the pathways of distortions from the ideal cubic structure [Fig. 1(a)] by applying the group-subgroup relationship (Fig. S2 in the supplementary material). In-phase or

FIG. 1. Possible crystal structures of CsPbBr_{3} following the group-subgroup relationship for perovskites. (a) Cubic $\operatorname{Pm} \overline{3} m$, the aristotype crystal, denoted by Glazer notation $a^{0} a^{0} a^{0}$. (b) Tetragonal phase $P 4 / m b m$ generated by inphase rotation $P 4 / \mathrm{mbm}$ denoted by $\mathrm{a}^{0} \mathrm{a}^{0} \mathrm{c}^{+}$. (c) Tetragonal, I4/mcm generated by out-of-phase rotation, denoted by $\mathrm{a}^{0} \mathrm{a}^{0} \mathrm{c}^{-}$. (d) Pnma structure viewed along in-plane, $[010]_{O}$, and out of plane $[101]_{O}$ of the pseudocubic axis of the orthorhombic structure.
out-of-phase octahedral unit rotation around the fourfold [001] axis results in tetragonal P4/mbm [Fig. 1(b)] or $I 4 / \mathrm{mcm}$ [Fig. 1(c)] symmetries, respectively, with $\mathrm{a}^{0} \mathrm{a}^{0} \mathrm{c}^{+}$or $\mathrm{a}^{0} \mathrm{a}^{0} \mathrm{c}^{-}$ Glazer tilt system notation. The symmetry can be lowered further to orthorhombic Pnma [Fig. 1(d)] through additional rotations along [100] and [010] axes ($\mathrm{a}^{-} \mathrm{b}^{+} \mathrm{a}^{-}$). ${ }^{40}$

In principle, the crystal symmetries presented in Fig. 1 can be fully distinguished by analyzing CBED patterns taken at one of the high symmetry pseudocubic projections ${ }^{41}$ perpendicular to the alternating layers where the displacements of Br take place during phase transformations. Figure 2(a) shows a representation of two-dimensional (2D) plane groups that can be used to unambiguously distinguish the possible space groups. For example, along [001], space groups $\operatorname{Pm} \overline{3} m$ and $I 4 / \mathrm{mcm}$ have a 2 D projected symmetry $\mathbf{p 4 m m}$, and P4/mbm has a 2D projected symmetry p4gm. Pseudocubic axes of the orthorhombic Pnma structure were $[010]_{O}$ and [101] $]_{O}$ with projected symmetries $\mathbf{p 2 g g}$ and $\mathbf{p 2} \mathbf{~ m m}$, respectively. Figure 2(b) presents a zero-order Laue zone (ZOLZ)CBED pattern taken at the pseudocubic $[001]_{p c}$ axis, alongside a simulated ZOLZ-CBED pattern assuming a cubic $P m \overline{3} m$ crystal. The patterns clearly show the presence of mirror planes indicated by the arrowheads $m 1$ and $m 2$, depicting a $\mathbf{p} 4 \mathrm{~mm}$ plane group. The observed projected symmetry in the ZOLZ-CBED rules out the orthorhombic Pnma crystal system.

FIG. 2. (a) 2-D representation of possible plane symmetries for CsPbBr_{3}. (b) Experimental CBED pattern along [001] acquired at LN temperature showing a 4 mm symmetry, indicated by the arrowheads $m 1$ and $m 2$ alongside the simulated pattern for a cubic $\operatorname{Pm} \overline{3} m$ with a thickness of $600(\pm 10) \AA$. (c) Experimental high order Laue zone pattern acquired at LN temperature exhibiting a fourfold rotation and two mirror symmetries, with an overall symmetry of $p 4 \mathrm{~mm}$. The inset shows the geometrical representation for a $p 4 \mathrm{~mm}$ symmetry. (d) Simulated CBED for cubic $\operatorname{Pm} \overline{3} m\left(\phi=0^{\circ}\right)$ and tetragonal I4/mcm ($\phi=6.5^{\circ}$) along [001]. Arrowheads $m 1$ and $m 2$ highlight the two mirror symmetries and the dotted arc indicates a fourfold rotation.

Figure 2(c) shows HOLZ reflections at the same crystal orientation as in Fig. 2(b). HOLZ diffraction probes the subtle symmetry distortions along the beam direction distinguishing between the projected symmetries of possible tetragonal $I 4 / \mathrm{mcm}$ and $P 4 / \mathrm{mbm}$ along the [001] direction (same as $[001]_{p c}$) and $\operatorname{Pm} \overline{3} m$. The pattern clearly exhibits a fourfold rotation symmetry indicated by a dotted arc, and two mirror symmetries indicated by the arrowheads $m l$ and $m 2$, with a total projected symmetry of $\mathbf{p 4 m m}$. This symmetry reduction takes place through displacements of Br sites at Wyckoff position 8 h , which possess an $\mathbf{m} \mathbf{2 m}$ point symmetry. These out-of-phase displacements result in a superlattice reflection where Br sites contribute to the $h k l(\mathrm{~h}, \mathrm{k}=\mathrm{even})$ first-order Laue zone (FOLZ) reflections. Figure 2(d) shows HOLZ pattern simulations for $P m \overline{3} m$ and $I 4 / \mathrm{mcm}$ along the [001] axis for a thickness of $600 \AA$ and lattice parameters $\mathrm{a}=\mathrm{b}=7.7 \AA$ and $\mathrm{c}=13.5 \AA$. To generate the break of symmetry along the beam direction leading to the $14 / \mathrm{mcm}$ space group, a shift $\delta \mathrm{x}=0.195$ in fractional coordinate units was applied to Br atoms at 8 h sites (see Fig. S3 in the supplementary material for simulations applying different rotations and thicknesses). Such displacement corresponds to a PbBr_{6} octahedral rotation angle (ϕ) of $\approx 6.5^{\circ}$. The appearance of superlattice FOLZ reflection possessing a $\mathbf{p 4 m m}$ symmetry in the simulated CBED clearly matches the symmetry of the experimental pattern. The Br shift applied in Fig. 2(d) was chosen based on the estimation of the octahedral angle shown in the following ptychographic measurements. It is important to notice that any break of symmetry along the Z axis would produce an extra HOLZ line (see Fig. S3 in the supplementary material). Further structure refinement based on the FOLZ and SOLZ
relative intensity is possible in order to determine the rotation angle values as shown by Tsuda and Tanaka. ${ }^{33}$

Electron ptychography was applied for direct imaging Br sites and displacements due to the out-of-phase octahedral rotations enforced by the $14 / \mathrm{mcm}$ symmetry established by CBED. The 4D datasets acquired at room temperature using a fast pixelated direct electron detector contain redundant phase information that can be extracted using electron ptychography. ${ }^{37}$ The relatively total low electron dose applied in this work ($\approx 10^{3}$ e \AA^{-2}) reduces the specimen damage by the electron radiation. Before and after images confirm that the specimen remained undamaged after recording the ptychographic dataset (see Fig. S4 in the supplementary material). As individual diffraction patterns recorded with a short dwell time of 1.3 ms have a poor signal-to-noise ratio, the diffraction patterns were denoised using a clusterization procedure ${ }^{42}$ prior to applying ptychographic reconstruction improving the signal to noise of individual diffraction patterns (see Fig. S5 in the supplementary material).

Figure 3(a) shows an incoherent Z-contrast image recorded simultaneously with the ptychographic dataset using an annular dark field (ADF) detector. The inset shows a unit cell average of the experimental image. The ADF image provides a good contrast for Cs and Pb sites; however, Br visibility is much lower due to the low signal-to-noise

FIG. 3. (a) Simultaneously acquired ADF image showing high contrast for Cs and Pb sites, with poor Br contrast. (b) Ptychographically reconstructed phase image from the 4D-STEM dataset shows an improved contrast for all elements with projected vertical and horizontal stretches of Br sites. The insets in (a) and (b) show an averaged unit cell of the experimental images. The scale bar is $5 \AA$, and the color bar in (b) is in units of radian. (c) Experimental reconstructed phase image [same as the inset in (b)] compared with three different phase images reconstructed from a 4D-STEM simulated dataset corresponding, respectively, to octahedral rotations of (d) 5.5°, (e) 6.5°, and (f) 7.5°. A specimen thickness of $200 \AA$ was used in the simulations. The experimental distance $\mathrm{d}_{\text {exp }}=0.57 \AA$ matches the d_{2} value measured from simulated ptychographic reconstruction in e. The values of $\mathrm{d}_{\text {exp }}$, $\mathrm{d}_{1}, \mathrm{~d}_{2}$, and d_{3} were quantified by fitting two 2D Gaussian peaks to the elongated Br columns corresponding to a projected $\mathrm{I} 4 / \mathrm{mcm}$ structure along [001] axis as measured by CBED. All data acquired at 300 K .
ratio when imaged under low dose conditions. Figure 3(b) shows the phase of the ptychographically reconstructed complex specimen function, with a unit cell average shown as the inset. The phase image improves the contrast for all three elements including Br . In particular, fine details of the vertical and horizontal projected stretch of the Br are now visible in the phase image. The elongated Br columns are associated with the out-phase PbBr_{6} octahedral unit rotation that leads to a small splitting of the Br columns when projected along the [001] axis of the I4/mcm structure [Fig. 1(c)] determined by CBED (Fig. 2).

Comparison between experiment and a series of phase images ptychographically reconstructed from a 4D-STEM simulated dataset for different degrees of rotation allows us to estimate the experimental PbBr_{6} octahedral rotation (see Fig. S6 in the supplementary material). To estimate the projected distance of the split Br columns, we assumed the presence of two overlapped peaks within the elongated sites-as in the $14 / \mathrm{mcm}$ spacegroup viewed along the [001] axis-and refined the initial Br positions with nonlinear least squares two-dimensional Gaussian fitting (see Fig. S7 in the supplementary material). The experimental distance $\mathrm{d}_{\text {exp }}$ value of $0.57 \AA \pm 0.18 \AA$ was determined [Fig. 3(c)], with the uncertainty given by σ / \sqrt{N} of the applied metric (see details in the supplementary material). Figures 3(d), 3(e), and 3(f) show the results of ptychographically reconstructed phase images for simulated 4D-STEM datasets of structures with octahedral rotations of $5.5^{\circ}, 6.5^{\circ}$, and 7.5° and the measured values $d_{1}=0.43 \AA, d_{2}=0.58 \AA$, and $d_{3}=0.74 \AA$, respectively, from the same double Gaussian fit procedure. The $\mathrm{d}_{\text {exp }}$ value is most consistent with a 6.5° octahedral rotation, matching a direct geometric conversion of apparent Br sites in the phase reconstruction and implying a high degree of direct interpretability of the ptychography reconstruction even for thick specimens. The robustness of the reconstruction method for relatively thick foils, like the case presented here, is demonstrated in Fig. S8 in the supplementary material by determining the distance of the two Br related features in the phase reconstruction as a function of thickness (up to $400 \AA$) and octahedral rotation angle, further supporting the angular error bar of 1.5°.

We have determined the structural phase and estimated the octahedral rotation of a CsPbBr_{3} crystal under low dose conditions using a combination of CBED and electron ptychography. The presence of extra HOLZ reflections in the CBED patterns taken at LN temperature unambiguously assigns a $\mathbf{~} 4 \mathbf{m m}$ symmetry with out-of-phase PbBr_{6} octahedral unit rotations, which corresponds to the $14 / \mathrm{mcm}$ tetragonal space group. This phase may be originated from the single crystal growth method applied in this work, and the precise control of the crystalline phase by varying growth parameters remains interesting to explore in the future. The ptychographic phase image provided a sensitive phase contrast of elongated Br columns owing to the out-of-phase octahedral rotation and enables further quantification of the projected distance of Br sites $(0.57 \pm 0.18 \AA$) along the [001] axis of the $14 / \mathrm{mcm}$ structure that corresponds to a rotation angle of $6.5^{\circ} \pm 1.5^{\circ}$ at room temperature in comparison to ptychographic reconstructions of fully dynamical scanning diffraction simulations. It is important to emphasize that the
transformation of tetragonal $\mathrm{I} 4 / \mathrm{mcm}$ to orthorhombic Pmna is forbidden and that CsPbBr_{3} does not present structural changes until reaching $130^{\circ} \mathrm{C}$. Therefore, the CBED result obtained at cryogenic temperature and ptychographic result at room temperature ensure that the $14 / \mathrm{mcm}$ phase remains up to the point where CsPbBr 3 transforms to cubic. Also, based on the structural transformation of similar perovskite materials, ${ }^{16}$ we can infer that the octahedral rotation degree reduces as the temperature increases. In conclusion, we believe that our work demonstrates a powerful characterization routine that can be applied to studying a wide range of halide-based all-inorganic and inorganic-organic hybrid perovskites. Moreover, it opens up the opportunity to directly determine micro- and nano-scale structural mosaicism for a plethora of possible octahedral rotations, deformations, and off-centering in halide-based perovskites.

See supplementary material for photographs of a large single crystal of CsPbBr_{3} analyzed in this work; group-subgroup relationship scheme among Glazer tilt systems highlighting possible phase transitions for CsPbBr_{3}; CBED simulations showing HOLZ reflections for different octahedral rotation angles and thicknesses; HAADF images acquired before, during, and after the acquisition of diffraction datasets with their corresponding fast-Fourier transformation (FFT); single diffraction and mean diffraction over the whole dataset with and without clusterization; panel of simulated ptychographic reconstructed phase images for different octahedral rotation angles and specimen thicknesses; double Gaussian fitting of the projected $\mathrm{Br}-\mathrm{Br}$ bond length and related errors; and measured Br Br projected bond length values as a function of the octahedral rotation angles for different simulated thicknesses.

The work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231. D.P., T.S., G.B. and E.B. thank the support of the U.S. Department of Homeland Security/DNDO Contract No. DE-AC02-05CH11231. R.dR. and J.C. acknowledge support from the U.S. Department of Energy Early Career Research Program. R.dR. thanks Dr. Karen Bustillo for her help with experiments performed in the Libra microscope.
${ }^{1}$ H. J. Snaith, J. Phys. Chem. Lett. 4(21), 3623-3630 (2013).
${ }^{2}$ M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics 8(7), 506-514 (2014).
${ }^{3}$ M. Grätzel, Nat. Mater. 13(9), 838-842 (2014).
${ }^{4}$ W.-J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26(27), 4653-4658 (2014).
${ }^{5}$ J. S. Manser, J. A. Christians, and P. V. Kamat, Chem. Rev. 116(21), 12956-13008 (2016).
${ }^{6}$ M. R. Filip, G. E. Eperon, H. J. Snaith, and F. Giustino, Nat. Commun. 5, 5757 (2014).
${ }^{7}$ J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi et al., J. Am. Chem. Soc. 138(49), 15829-15832 (2016).
${ }^{8}$ C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, Cryst. Growth Des. 13(7), 2722-2727 (2013).
${ }^{9}$ C. K. Møller, Nature 180(4593), 981-982 (1957).
${ }^{10}$ C. K. Møller, Nature 182(4647), 1436-1436 (1958).
${ }^{11}$ M. Rodová, J. Brožek, K. Knížek, and K. Nitsch, J. Therm. Anal. Calorim. 71(2), 667-673 (2003).
${ }^{12}$ L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nano Lett. 15(6), 3692-3696 (2015).
${ }^{13}$ Y. Yu, D. Zhang, C. Kisielowski, L. Dou, N. Kornienko, Y. Bekenstein, A. B. Wong, A. P. Alivisatos, and P. Yang, Nano Lett. 16(12), 7530-7535 (2016).
${ }^{14}$ J. Young and J. M. Rondinelli, J. Phys. Chem. Lett. 7(5), 918-922 (2016).
${ }^{15}$ A. M. Glazer, Acta Crystallogr. B 28(11), 3384-3392 (1972).
${ }^{16}$ Y. Kawamura, H. Mashiyama, and K. Hasebe, J. Phys. Soc. Jpn. 71(7), 1694-1697 (2002).
${ }^{17}$ T. Baikie, N. S. Barrow, Y. Fang, P. J. Keenan, P. R. Slater, R. O. Piltz, M. Gutmann, S. G. Mhaisalkar, and T. J. White, J. Mater. Chem. A 3(17), 9298-9307 (2015).
${ }^{18}$ J. M. Zuo, Rep. Prog. Phys. 67(11), 2053 (2004).
${ }^{19}$ U. Dahmen, R. Erni, V. Radmilovic, C. Ksielowski, M.-D. Rossell, and P. Denes, Philos. Trans. R. Soc. A 367(1903), 3795-3808 (2009).
${ }^{20}$ R. Erni, M.-D. Rossell, C. Kisielowski, and U. Dahmen, Phys. Rev. Lett. 102(9), 096101 (2009).
${ }^{21}$ P. E. Batson, N. Dellby, and O. L. Krivanek, Nature 418(6898), 617-620 (2002).
${ }^{22}$ P. D. Nellist, M. F. Chisholm, N. Dellby, O. L. Krivanek, M. F. Murfitt, Z. S. Szilagyi, A. R. Lupini, A. Borisevich, W. H. Sides, and S. J. Pennycook, Science 305(5691), 1741-1741 (2004).
${ }^{23}$ Z. Dang, J. Shamsi, F. Palazon, M. Imran, Q. A. Akkerman, S. Park, G. Bertoni, M. Prato, R. Brescia, and L. Manna, ACS Nano 11(2), 2124-2132 (2017).
${ }^{24}$ B. F. Buxton, J. Eades, J. T. Steeds, and G. M. Rackham, Philos. Trans. R. Soc. A 281(1301), 171-194 (1976).
${ }^{25}$ M. Tanaka, Acta Crystallogr. A 50(3), 261-286 (1994).
${ }^{26}$ M. Tanaka and K. Tsuda, J. Electron Microsc. 60(suppl 1), S245-S267 (2011).
${ }^{27}$ J. M. Zuo and J. C. H. Spence, Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience (Springer, 2016).
${ }^{28}$ J. C. H. Spence, Acta Crystallogr. A 49(2), 231-260 (1993).
${ }^{29}$ K.-H. Kim, D. A. Payne, and J. M. Zuo, Appl. Phys. Lett 107(16), 162902 (2015).
${ }^{30}$ J. Gjønnes and A. F. Moodie, Acta Crystallogr. 19(1), 65-67 (1965).
${ }^{31}$ M. Tanaka, H. Sekii, and T. Nagasawa, Acta Crystallogr. A 39(6), 825-837 (1983).
${ }^{32}$ Z. Liliental-Weber and L. Parechanian-Allen, Appl. Phys. Lett 49(18), 1190-1192 (1986).
${ }^{33}$ K. Tsuda and M. Tanaka, Acta Crystallogr. A 51(1), 7-19 (1995).
${ }^{34}$ J. M. Rodenburg, Adv. Imaging Electron Phys 150, 87-184 (2008).
${ }^{35}$ H. Yang, T. J. Pennycook, and P. D. Nellist, Ultramicroscopy 151, 232-239 (2015).
${ }^{36}$ T. J. Pennycook, A. R. Lupini, H. Yang, M. F. Murfitt, L. Jones, and P. D. Nellist, Ultramicroscopy 151, 160-167 (2015).
${ }^{37}$ H. Yang, R. N. Rutte, L. Jones, M. Simson, R. Sagawa, H. Ryll, M. Huth, T. J. Pennycook, M. L. H. Green, H. Soltau et al., Nat. Commun. 7, 12532 (2016).
${ }^{38}$ E. J. Kirkland, Advanced Computing in Electron Microscopy (Springer, 2010).
${ }^{39}$ J. M. Rodenburg and R. H. T. Bates, Philos. Trans. R. Soc. A 339(1655), 521-553 (1992).
${ }^{40}$ C. J. Howard and H. T. Stokes, Acta Crystallogr. B 54(6), 782-789 (1998).
${ }^{41}$ J. W. Steeds and R. Vincent, J. Appl. Cryst. 16(3), 317-324 (1983).
${ }^{42}$ M. Battaglia, D. Contarato, P. Denes, and P. Giubilato, Nucl. Instrum. Methods Phys. Res. A 608(2), 363-365 (2009).

[^0]: ${ }^{a)}$ Electronic mail: rmsdosreis@lbl.gov.
 ${ }^{\text {b) }} \mathrm{H}$. Yang contributed equally to this work.
 ${ }^{\text {c) }}$ Electronic mail: jciston@lbl.gov.

