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REGIONAL VARIATION IN HOME-RANGE-SCALE HABITATMODELS FOR
FISHER (MARTES PENNANTI) IN CALIFORNIA

FRANK W. DAVIS,1,4 CHANGWAN SEO,2,5 AND WILLIAM J. ZIELINSKI
3

1Donald Bren School of Environmental Science and Management, University of California,
Santa Barbara, California 93106-5131 USA

2Institute for Computational Earth System Science, University of California, Santa Barbara, California 93106-5131 USA
3Redwood Sciences Laboratory, Pacific Southwest Research Station, U.S. Forest Service, 1700 Bayview Drive,

Arcata, California 95521 USA

Abstract. We analyzed recent survey data and mapped environmental variables integrated
over a home range scale of 10 km2 to model the distribution of fisher (Martes pennanti) habitat
in California, USA. Our goal was to identify habitat factors associated with the current
distribution of fishers in California, and to test whether those factors differ for widely disjunct
northern and southern populations. Our analyses were designed to probe whether poor
habitat quality can explain the current absence of fishers in the historically occupied central
and northern Sierra Nevada region that separates these two populations. Fishers were
detected at 64/433 (14.8%) sample units, including 35/111 (32%) of sample units in the
Klamath/Shasta region and 28/88 (32%) of sample units in the southern Sierra Nevada.
Generalized additive models (GAM) that included mean annual precipitation, topographic
relief, forest structure, and a spatial autocovariate term best predicted fisher detections over
the species’ recent historical range in California. Models derived using forest structure data
from ground plots were comparable to models derived from Landsat Thematic Mapper
imagery. Models for the disjunct Klamath/Cascades and southern Sierra Nevada populations
selected different environmental factors and showed low agreement in the spatial pattern of
model predictions. Including a spatial autocovariate term significantly improved model fits for
all models except the southern Sierra Nevada. We cannot rule out dispersal or habitat in
explaining the absence of fishers in the northern and central Sierra Nevada, but mapped
habitat quality is low over much of the region. Landscapes with good fisher habitat may exist
in rugged forested canyons of the currently unoccupied northern Sierra Nevada, but these
areas are fragmented and at least 60 km from the nearest recent fisher detections.

Key words: California, USA; fisher; forest carnivore; generalized additive model (GAM); GIS; habitat
model; Martes pennanti; Receiver Operating Characteristic, ROC.

INTRODUCTION

Predictive mapping of species distributions is used

widely in conservation planning to protect and recover

rare and endangered species (Guisan and Zimmermann

2000, Margules et al. 2002, Poirazidis et al. 2004).

Spatially explicit statistical models of species–environ-

ment association can help to identify critical habitat

areas for species protection or reintroduction and to

project distribution shifts under climate change (Araujo

et al. 2005, Guisan and Thuiller 2005). Such habitat

modeling (Kearney 2006) assumes that the observed

distribution of a species represents its true habitat needs

and preferences. This assumption may be untenable for

rare and endangered species whose distributions have

been reduced by overharvest or historical habitat

degradation. If those species have not reoccupied now-

suitable habitat because of social, demographic, or

dispersal factors, it will be difficult (if not impossible)

to distinguish unsuitable from unoccupied habitat.

Ultimately, understanding species’ environmental niche

relations and limits to distribution requires experimental

research and long-term demographic studies (Austin

1985), which present special challenges for endangered

species. In the interim, statistical models that consider

spatial autocorrelation as well as multiple scales of

environmental controls can strengthen inference about

species’ environmental niche relations and potential

distributions to inform near-term conservation and

management decisions (Guisan et al. 2006, Latimer et

al. 2006).

Here we report research to model the distribution of

fishers (Martes pennanti) in relation to mapped habitat

variables in California, both to better understand what

controls the current distribution of the species and to

evaluate habitat extent and quality in the northern

Sierra Nevada, where reintroduction of the species is

being considered. In the western United States, the fisher
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occurred historically throughout the northern Rocky

Mountains, Cascade Mountains, Coastal Ranges, and

Sierra Nevada (Gibilisco 1994). The range and abun-

dance of this forest-dwelling carnivore have decreased

dramatically since Columbian times due to commercial

trapping, changes in forest structure associated with

logging and altered fire regimes, increased human access,

and habitat loss to urban and recreational development

(Powell and Zielinski 1994, Buskirk et al. 2002).

Although trapping was prohibited in California in

1946, the other threats continue. The fisher occupies less

than half of its recent historical range in the state, and

remnant populations in the southern Sierra Nevada are

separated by more than 400 km from the nearest

populations in the southern Cascades and Coast Ranges

of northern California and southern Oregon (Zielinski et

al. 1995, Carroll et al. 1999). Zielinski et al. (2005)

hypothesized that the modern absence of fishers from

the northern and central Sierra Nevada was due to

timber harvest and forest management practices that

reduced late-seral montane forest area from 50% of the

region in 1945 to less than 5% in 1996. Fisher population

decline and fragmentation have reduced genetic diversity

(Drew et al. 2003), and listing of a distinct population

segment of the fisher (including portions of California,

Oregon, and Washington) under the U.S. Endangered

Species Act is deemed ‘‘warranted’’ by the U.S. Fish and

Wildlife Service (U.S. Federal Register, 8 April 2004).

Critical habitat has not been delineated, but predictive

mapping of habitat quality could support such an effort

and could also aid in planning for habitat restoration

and reintroduction of the species to unoccupied areas.

Spatial distribution modeling must account for

characteristic scales of habitat factors associated with

different levels of organization of the species: individu-

als, populations, species in toto (Wiens 1989, Mackey

and Lindenmayer 2001, Latimer et al. 2006). At the

regional scale (1000–10 000 km2), western fisher popu-

lations generally occur in mountainous areas with

extensive forest cover and low-to-moderate snowfall

(Buskirk and Powell 1994, Powell and Zielinski 1994,

Krohn et al. 1995). In California, Powell and Zielinski

(1994) estimated the minimum area needed to support a

viable fisher population to be at least 600 km2. At the

home range scale (which for fishers encompasses

landscape heterogeneity over 1–10 km2), individuals

are found in areas with low levels of human activity,

ready access to water, and extensive late-seral forest

cover (Carroll et al. 1999). At the topo–climatic scale (1–

10 ha), fishers are associated with north-facing slopes

that support late-seral forest and trees of the largest size

classes (Zielinski et al. 2004a). At the microscale (0.1–1

ha), fishers tend to rest and den in large conifers, conifer

snags, and oaks (especially Quercus kelloggii) on steep

slopes under a closed canopy of large trees (Zielinski et

al. 2004b, 2006b).

These habitat associations could express both direct

environmental controls on fisher distributions and

indirect controls such as habitat requirements of the

fisher’s prey species. Fishers in California appear to prey

on a greater variety of species than elsewhere in their

range (Zielinski et al. 1999, Golightly et al. 2006) and

preferentially select larger trees in closed forests for

resting and denning (Zielinski et al. 2004b); thus,

available evidence suggests at least some direct environ-

mental control on fisher distribution at the scale of

individual home ranges.

Modeling fisher distribution at the home range scale is

particularly useful to managers evaluating the effects of

vegetation management regimes on fisher habitat quality

(Zielinski et al. 2004a). In the western United States,

fisher home range size averages ;1500 ha among

females and 4000 ha among males (Zielinski et al.

2004a). Mazzoni (2002) estimated mean home ranges for

female and male animals in the southern Sierra Nevada

to be 1192 ha and 2194 ha, respectively. Zielinski et al.

(2004a) documented substantially smaller mean female

home range sizes (527 ha), but similar mean male home

ranges (2998 ha) in the southern Sierra. A coastal

population in northwestern California, however, had

larger mean home ranges (1498 and 5806 ha for females

and males, respectively) than reported in the Sierra

Nevada.

Fishers in the southern Sierra Nevada differ in

population genetics, home range size, diet, and resting

habitats from fishers in the wetter, denser forests of

northwestern California (Zielinski et al. 2004a, b). Given

these differences, we considered the possibility that

separate distribution models might be needed for

northern vs. southern populations. Region-specific

habitat associations have been documented for numer-

ous other species, but are usually not considered in

building or testing distribution models (Fielding and

Haworth 1995, Whittingham et al. 2003).

In addition to multi-scale habitat associations, we

expected dispersal and social behavior to affect patterns

of fisher occurrence. Fishers are polygnous and exhibit

intrasexual territoriality; male territories usually overlap

the territories of more than one female (Powell 1979,

1994). Fishers also tend to disperse relatively short

distances (mean ;10 km; Arthur et al. 1993). Thus we

expect fishers to be overdispersed at and below the scale

of individual territories, but to be clustered at larger

scales encompassing multiple territories.

To summarize, our research objective was to model

the relationship between fisher distribution and mapped

environmental factors and to use this relationship to

map the distribution of fisher habitat within the species’

historical range in California. We hypothesized that

fisher occurrence in California is associated with

climatic, topographic, and vegetation habitat factors

measured at regional and home range scales. We further

hypothesized that habitat associations at the home range

scale would vary between disjunct northern and

southern populations and that regional models would

perform better than a statewide model for the species in

FRANK W. DAVIS ET AL.2196 Ecological Applications
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California. Lastly, we hypothesized that occurrence

patterns would be spatially autocorrelated as a result

of the territorial social system and local dispersal. To

test these hypotheses, we fit generalized additive models

(GAM) to fisher detection data based on environmental

variables measured at the home range scale of 10 km2,

with and without a spatial autoregressive term. We

compared habitat associations and predicted distribu-

tions of fishers in the Klamath-Cascades and southern

Sierra Nevada regions of California and tested the skill

of models developed in one region in predicting fisher

detections in a different region. We extrapolated

statewide and regional models to map fisher habitat

quality in the currently unoccupied forests of the

northern Sierra Nevada in order to inform ongoing

planning for fisher habitat management and possible

reintroduction of the species into this area.

METHODS

Fisher survey data

Fisher surveys were conducted between 1996 and 2002

in California and southern Oregon, USA (Zielinski et al.

2005). We analyzed the 445 survey points that occurred

in California, ranging from the Siskiyou Mountains of

northwest California (42800 N, 124800 W) to the Piute

Mountains of the southern Sierra Nevada (358300 N,

1198300 W) (Fig. 1). We restricted the analysis to

California because digital environmental data used in

the analysis were not consistent between California and

Oregon.

Field survey points were arrayed in a systematic-

cluster design aligned with the grid established by the

U.S. Forest Service Forest Inventory and Analysis

(FIA) program (Bechtold and Patterson 2005). The

FIA grid consists of a systematic hexagonal array of

points separated by 5.47 km that are distributed across

both public and private forest lands and are monitored

on a 10-year interval for forest structure, composition,

and condition (FIA grid available online).6 Fisher survey

crews surveyed alternate FIA lattice points separated by

;10 km (Zielinski et al. 2005). The sample spacing was

chosen on the basis of fisher home range sizes in

California to minimize the possibility that the same

fisher would be detected at more than one sample unit.

Each of the sample units consisted of six enclosed

track-plate stations and 1–2 remotely triggered 35-mm

cameras (Zielinski et al. 2005). A track-plate station

located at the FIA point was surrounded by five

additional track-plate stations equally spaced around

the circumference of a 3.14-km (500 m radius) circle

centered on the point. The track plate consisted of a

carbon-blackened aluminum plate (20 3 76.2 3 0.1 cm)

partially covered with white contact paper and enclosed

in either a plywood box or a plastic canopy with a metal

base (Zielinski et al. 1995, 2005). The plate was baited

with raw chicken and a scent lure. Camera(s) were

randomly paired with one (or occasionally two) of the

track-plate stations. All stations were checked and re-

baited with chicken every other day for eight visits over

a 16-day survey. Scent lures were only used toward the

end of a survey period if no fishers had been detected up

to that time. For the rest of the paper, we will refer to

individual track-plate stations as ‘‘stations’’ and the

cluster of stations as a ‘‘sample unit.’’

We dropped 12 of the original 445 California sample

units from the analysis, including 11 units in Yosemite

National Park and one unit from Sequoia-King’s

Canyon National Park, because of inconsistencies in

the vegetation GIS data, leaving a statewide sample of

FIG. 1. Location of 433 fisher sampling units in California,
USA, excluding national parks. Fisher detections (solid circles)
vs. non-detections (open circles) are shown in the northern
(Klamath/Shasta) and southern (southern Sierra Nevada)
subregions. Locations of non-detections (crosses) in the
unoccupied central and northern Sierra Nevada (northern
Sierra Nevada) are also mapped. The white area is the recent
historical range of the species in California, as depicted in
Zeiner et al. (1990).

6 hhttp://fia.fs.fed.us/i
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433 units (Fig. 1). We refer to this as the ‘‘statewide’’

data set.

To test for regional differences in habitat associations,

we divided the 433 sample units into three sets (Fig. 1):

(1) a ‘‘Klamath/Shasta’’ (KS) data set comprised of 111
sample units from the Six Rivers, Klamath, and

Shasta/Trinity National Forests, which contain fisher

populations; (2) 234 samples from the unoccupied

northern and central Sierra Nevada region (NS) between
the Pit River to the north and the Merced River to the

south, located mainly in the Modoc, Lassen, Plumas,

Tahoe, Eldorado, and Stanislaus National Forests, and

Sequoia-Kings Canyon National Park; and (3) 88
sample units encompassing fisher populations in the

southern Sierra Nevada (SS) and located in the Sierra or

Sequoia National Forests.

The absence of fishers in the central and northern

Sierra Nevada could reflect a lack of suitable habitat or
the failure of fishers to recolonize suitable habitat in the

region. If the latter were true, then including the 234

samples from the NS region in a statewide analysis

should weaken the relationship between fisher detections

and habitat factors. To test this idea, we excluded the

NS samples and fitted habitat models to the 198 samples

from the Klamath/Shasta and southern Sierra Nevada

regions. We refer to this as the Klamath/Shasta þ
southern Sierra (KS þ SS) data set.

Habitat variables

We considered five categories of landscape-scale

habitat variables: topography; precipitation; field obser-

vations of forest structure and composition; vegetation

structure and composition derived from Landsat The-

matic Mapper imagery and digital elevation data; and

road influence (Table 1; see Appendix A). Topographic

variables derived from USGS 1-ha digital elevation grids

included mean latitude-adjusted elevation and mean

relief (the standard deviation of elevation within 500 3

500 m moving windows) in a 10-km2 area encompassing

all stations at a sample unit (Fig. 2a). To adjust for

increasing latitude, we added 0.625 m of elevation per

kilometer north (Schoenherr 1992). The adjustment is an

admittedly crude proxy for the complex interaction of

TABLE 1. Variables tested for association with the detection of fishers (Martes pennanti) in California, USA.

Variable Variable description

Topography

adj.elevation Latitude-adjusted elevation.
relief Topographic relief (standard deviation of elevation in a local 5 3 5 moving window).

Climate

ann.ppt Mean annual rainfall for 1960–1991 (source grid has 1-km2 resolution).

Field vegetation

field.CWHR Mean fisher habitat rating (0–100) of 6–7 track plate stations at a fisher sampling unit based
on the California Wildlife Habitat Relationship System (CWHR).

field.CWHR2 Mean forest habitat rating (0–100) of track plate stations at a fisher sampling unit based on
a refined version of CWHR.

field.hardwood Maximum CWHR montane hardwood or montane hardwood conifer habitat rating (0–100)
of tracking plate stations at sampling unit.

field.structure Product of a CWHR2 habitat indicator variable (1, fisher forest habitat type; 0, otherwise),
forest canopy closure (centroid of class interval), and tree size (centroid of class interval),
averaged over 6–7 track plate stations.

Vegetation habitat scores from
remote-sensed imagery

GIS.CWHR Average CWHR fisher habitat rating (0–100).
GIS.CWHR2 Average refined CWHR fisher habitat rating (0–100).
GIS.structure Product of a CWHR2 habitat indicator variable (1, fisher forest habitat type; 0, otherwise),

forest canopy closure (centroid of class interval), and tree size (centroid of class interval).
GIS.dense.forest Proportion of 1-ha cells in a 10-km2 area classified as CWHR2 fisher forest habitat types

and with 60–100% tree canopy closure.
GIS.dense.hardwood Proportion of the 10-km2 sample area classified as CWHR montane hardwood or montane

hardwood–conifer type and with 60–100% tree canopy closure.

Road influence

paved.roads Mean inverse square root of distance to nearest paved road, including primary highways,
secondary highways, and improved, light-duty paved roads.

improved.roads Mean inverse square root of distance from a 1-ha cell to nearest improved road, including
primary highways, secondary highways, improved, light-duty paved roads, improved light-
duty gravel roads, and improved light-duty dirt roads.

Spatial autocorrelation (SA) Spatial autocovariate term tested in the ‘‘spatial’’ models. Each sample unit observation (0,
1) within 20 km of the reference sample unit was weighted by its inverse squared distance
to the sample unit, normalized by the sum of weights for all sample units in the 20-km
region.

Notes: GIS variables are derived from source data with 1-ha spatial resolution and are the mean value of cells in a 10-km2

circular window unless otherwise indicated. See Appendix A for a more complete explanation of variables and their derivation.
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elevation and latitude. We used latitude-adjusted eleva-

tion instead of interpolated temperature data because,

although the two were significantly correlated, the

former was strongly associated with fisher detections

whereas the latter was not related to detections (for

January minimum temperature, Wilcoxon Z¼�0.753, P
¼ 0.45), perhaps due to the coarse scale or interpolation

errors in the temperature grids.

FIG. 2. Maps of selected GIS variables used to model and map the probability of detecting fishers in California, including (a)
relief (calculated as the standard deviation of elevation in a local 535 moving window), (b) ann.ppt (annual precipitation, mm), (c)
GIS.CWHR2 (average refined fisher habitat rating, 0–100, based on the California Wildlife Habitat Relationship System), and (d)
GIS.dense.forest (proportion of 1-ha cells in a 10-km2 area classified as CWHR2 fisher forest habitat types with 60–100% tree
canopy closure). Vegetation variables were not mapped over most of Yosemite and Sequoia-Kings Canyon National Parks
(hatched areas in panels c and d). See Table 1 and Appendix A for a description and explanation of the variables. Areas outside the
fisher’s recent historical range are masked.
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Based on previous research (Krohn et al. 1995, 1997),

we hypothesized that snowpack depth was an important

climatic factor. However, given the sparse snowpack

measurement network, we instead analyzed PRISM

maps of mean annual precipitation for the period 1960–

1991. These maps are derived by interpolating weather

station data over terrain facets derived from digital

elevation data (Daly et al. 1994); see Fig. 2b.

Field vegetation data were collected at every fisher

survey station by trained observers, based on visual

assessments. The observers classified the vegetation in

the immediate vicinity of the station into general wildlife

habitat type, canopy closure class, and tree size class

based on version 8.0 of the California Wildlife Habitat

Relationships (CWHR) system (California Department

of Fish and Game 1992). We converted these data into

an overall fisher habitat suitability based on the CWHR

habitat rating system (Table 2). This system rates the

suitability of each combination of habitat type, canopy

closure class, and tree size class as high (1), medium

(0.66), low (0.33), or unsuitable (0), and calculates an

overall habitat suitability rating based on the arithmetic

mean or geometric mean of the separate scores for

reproduction, cover, and feeding. In the fisher habitat

models, the structural ratings are nearly identical across

suitable forest habitat types. The arithmetic mean was

slightly better than the geometric mean in predicting

fisher detections, based on Wilcoxon rank sum tests, so

we only include arithmetic mean scores here. We scored

each station for arithmetic means and then used the

average score across the 6–7 stations to rate the habitat

of the sampling unit (field.CWHR).

The CWHR system is based on expert judgment and

continues to be evaluated and revised. Based on

extensive field observations of fishers in California (W.

Zielinski, personal observation), we believed that the

current CWHR system was in error in assigning high

suitability scores to upper montane, subalpine, and

montane riparian forest types. To test our judgment, we

modified the CWHR ratings by setting suitability scores

for lodgepole pine, red fir, subalpine conifer, and

montane riparian forest habitat types to 0; we retained

arithmetic mean CWHR ratings for the remaining types.

We refer to scores based on the revised system as

CWHR2 scores; for example, field.CWHR2 is the

average CWHR2 score of the stations at a sampling

unit based on field vegetation surveys (Table 2).

We also created and tested new indices of forest

composition and structure based on recent studies of

fisher distribution in California (Table 1). We multiplied

a habitat indicator variable (1, fisher forest habitat type

according to CWHR2; 0, otherwise), canopy closure

(centroid of class interval), and tree size (centroid of

class interval) to produce a forest structure index

(field.structure). Given the importance of large hard-

woods, particularly black oak (Quercus kelloggii), in

supplying resting cavities (Seglund 1995, Mazzoni 2002,

Zielinski et al. 2004b), we calculated the maximum

arithmetic mean WHR rating for montane hardwood

and montane hardwood–conifer habitat types among

the stations (field.hardwood) and used this to indicate

high-quality montane hardwood habitat within the

sampling unit.

We also modeled and mapped fisher habitat based on

statewide digital vegetation data derived from satellite

remote sensing. A digital vegetation database at 1-ha

resolution was produced for national forest lands by

applying classification models to 30-m Thematic Map-

per satellite imagery and digital elevation data (Franklin

et al. 2000), which are available online.7 This database

(see Table 1) includes CWHR habitat type, density class,

and size class for each 1-ha cell, so we were able to derive

the same variables from field and GIS data, including

GIS.CWHR, and GIS.CWHR2 scores for 10-km2

circular areas centered on and encompassing each

sampling unit. We chose the 10-km2 scale of analysis

based on the documented home range size of fishers in

California. Also, a previous landscape–fisher habitat

model evaluated alternative spatial scales of analysis and

concluded that model fit with observation data peaked

around a 10-km2 scale (Carroll et al. 1999). We

calculated the mean of cell scores over the 10-km2 areas

centered on the sample unit for a landscape-scale

measure of CWHR and CWHR2 habitat suitability

(Table 1). We also calculated a forest structure index as

TABLE 2. Habitat rating of forest structure classes (fisher
forest habitat types only) used to create landscape-scale
California Wildlife Habitat Relationship (CWHR) scores.

Tree dbh
size class (cm)

Canopy closure
class (%)

CWHR
score

,2.5 all 0

2.5–15 all 0

15–28 10–24 0
25–39 0.07
40–59 0.10
60–100 0.19

28–61 10–24 0.07
25–39 0.34
40–59 0.69
60–100 0.89

.61 10–24 0.21
25–39 0.38
40–59 0.80
60–100 1

Multistory, trees .61 cm
above trees .28 cm

.60 1

Notes: For CWHR scores, the following forest CWHR
habitat types were considered fisher habitat: aspen, Douglas-fir,
eastside pine, Jeffrey pine, Klamath mixed conifer, lodgepole
pine, montane hardwood–conifer, montane riparian, ponderosa
pine, redwood, red fir, Sierran mixed conifer, subalpine mixed
conifer, and white fir. For CWHR2 ratings, aspen, eastside
pine, lodgepole pine, montane riparian, red fir, and subalpine
conifer were dropped from the original CWHR list.

7 hhttp://frap.cdf.ca.gov/data/frapgisdata//select.aspi
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the product of forest canopy cover and tree size for

CWHR2 forest habitats (Fig. 2c).

We expected the data from remote sensing to be more

accurate for canopy closure than for modeled tree size

(Franklin et al. 2001); accordingly, we classified each

pixel as either dense canopy (60–100% tree cover) of

suitable CWHR2 forest types, or not, to derive the

proportion of the 10-km2 sampling unit area in closed-

canopy forest habitat (GIS.dense.forest) (Fig. 2d).

Lastly, we derived a measure of late-seral hardwood

forest in the landscape as the proportion of cells in the

10-km2 area that were classified as montane hardwood

or montane hardwood–conifer forest with 60–100% tree

canopy cover (GIS.dense.hardwood).

To measure road influence over the sample units, we

calculated the mean square root of the distance from

each cell in the 10-km2 unit to the nearest paved road

(paved.road) and improved road (improved.road).

Spatial autocorrelation

As noted previously, intrasexual territoriality (Powell

1994) and limited dispersal (Arthur et al. 1993) should

result in negative autocorrelation of fisher detections at

distances shorter than the typical home range radius and

positive spatial autocorrelation at distances encompass-

ing multiple home ranges. Because sampling units were

deliberately spaced to avoid multiple samples per home

range, we were mainly interested in the latter. To

measure the degree of clustering, we created a spatial

autocovariate based on the detection or non-detection of

fishers at neighboring survey stations (Beard et al. 1999,

Segurado and Araujo 2004, Luoto et al. 2005). Residuals

from habitat models that did not include an autoco-

variate term generally displayed significant positive

autocorrelation out to 10–20 km (see Results). Given

this result and our expectation that fisher interactions

would be localized, a spatial autocovariate (SA) was

calculated by weighting the data from sampling units

within 20 km of a survey point by the inverse of squared

distance to the reference sampling unit, normalized by

the sum of weights for all units in the 20-km region

(Appendix A). Distance-weighted observations (non-

detections ¼ 0, detections ¼ 1) were summed across all

sampling units in the neighborhood. The 20 km radius

(1256 km2) is roughly twice the average distance between

sampling units, encompassing 7–8 sample units and

representing an area that might encompass the home

ranges of 10–20 individuals (Zielinski et al. 2004a).

Statistical analysis

We measured pairwise association between environ-

mental factors and fisher detections using Wilcoxon

rank sum tests. Multivariate habitat models were

produced using stepwise generalized additive modeling,

GAM (Hastie and Tibshirani 1987, Yee and Mitchell

1991, Guisan et al. 2002). We chose GAM because it

consistently outperformed General Linear Modeling

(GLM) and Classification and Regression Trees

(CART), and GAM models were easier to interpret

than neural network models (which had slightly higher

skill in fitting the data).

GAM analyses were conducted using S-PLUS version

6.0 (Insightful Corporation 2001) with GRASP 3.0

(General Regression Analysis and Spatial Prediction;

Lehmann et al. 2002, 2004). Alternative multivariate

models were generated by stepwise GAM modeling and

a best model was selected using the Akaike Information

Criterion, AIC (Hastie 1992, Manel et al. 2001,

Burnham and Anderson 2002, Thuiller 2003). We

integrated the Area under the Receiver Operating

Characteristic (ROC) curve (AUC) to evaluate the

classification skill of the models (Altman and Bland

1994, Fielding and Bell 1997). A model with no

classification skill produces an AUC of 0.5, whereas a

perfect model corresponds to an AUC of 1.0.

Model robustness was tested using fivefold cross-

validation of the fitted models. Both presence and

absence data were divided into five equal partitions, one

partition was withheld for testing, and the model was

fitted using the remaining data. The process was

repeated five times and the mean performance of the

five trials was calculated. We report both the model

AUC and cross-validated AUC. When the model is

sensitive to moderate changes in the input data set, the

cross-validated AUC will be substantially lower than the

AUC from the full data set.

GAM models can be unstable and goodness-of-fit

statistics can be biased downward when there is

concurvity (the nonparametric analogue to multicolli-

nearity in generalized linear models) (Ramsay et al.

2003). Latitude-adjusted elevation, relief, precipitation,

and road indices were not highly correlated, and of these

variables, only elevation was moderately, negatively

correlated with vegetation habitat indices (Appendix B).

The vegetation habitat indices, on the other hand, were

highly correlated (r values . 0.5). To reduce the

potential impact of concurvity in the GAM models, we

limited the number of candidate vegetation variables for

stepwise selection. Rather than entering all vegetation

variables into the stepwise GAM models, we first fitted

and compared a large set of full models that included

precipitation, elevation, relief, one forest structure

variable (e.g., field.CWHR2), and one measure of

hardwood fraction (e.g., field.hardwood), separately

testing all possible vegetation variables. For stepwise

modeling, we included only the forest structure variable

and hardwood variable that produced the best fit among

the set of models. Also, we did not include field and GIS

variables in the same model.

We analyzed spatial autocorrelation in GAM model

residuals using spatial correlograms (Moran’s I) (Legen-

dre and Fortin 1989, Lichstein et al. 2002). Significance

of the autocorrelation term as a function of distance was

determined using a two-tailed global Bonferroni test.

We fitted ‘‘spatial GAM models’’ by including the

environmental variables selected in stepwise GAM
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modeling plus the spatial autocovariate. When included

as a variable in stepwise GAM modeling, the spatial

autocovariate term was usually selected first and its

strong effect tended to mask the role of other

environmental factors (see Miller and Franklin [2002]

for a discussion of this issue in spatial autoregressive

models). Constraining the SA term to enter after the best

environmental variables had been identified allowed us

to better model the combined effect of environmental

habitat factors and autocorrelation on patterns of fisher

detections. We also fitted models based solely on the

spatial autocovariation. Comparing the three classes of

models (environmental, environmental plus spatial

autocovariation, spatial autocovariation) helped us to

tease apart environmental vs. spatial associations in the

fisher distribution data.

Based on AUC statistics, we measured the classifica-

tion skill of a model developed for one region in

predicting fisher detections in other regions. For

example, we compared the performance of statewide

vs. KS þ SS models in predicting patterns of fisher

detections in the KS þ SS area.

Habitat envelope modeling

To further probe whether the lack of fishers in the

northern and central Sierra is better explained by habitat

limitations or dispersal, we created a more liberal

habitat envelope model based on statewide presence-

TABLE 3. Univariate tests of association between fisher detections and environmental factors based on the Wilcoxon U test.

Variable

Statewide (n ¼ 433) KS þ SS (n ¼ 199) Klamath/Shasta (n ¼ 111) Southern Sierra (n ¼ 88)

Wilcoxon P Wilcoxon P Wilcoxon P Wilcoxon P

adj.elevation 3.400 0.001 1.456 0.146 1.860 0.063 0.184 0.854
relief �6.630 ,0.001 �4.167 ,0.001 �4.135 ,0.001 �1.429 0.153
ann.ppt 0.824 0.410 0.126 0.900 1.860 0.063 1.778 0.075
paved.roads �3.089 0.002 �3.087 0.002 �2.821 0.005 �1.653 0.098
improved.roads �1.275 0.202 �0.308 0.758 �1.038 0.299 0.506 0.613
field.CWHR �2.219 0.027 �2.898 0.004 �3.805 0.000 0.063 0.950
field.CWHR2 �3.473 0.001 �3.616 0.000 �4.276 ,0.001 �0.799 0.425
field.hardwood �6.455 ,0.001 �3.456 0.001 �4.072 ,0.001 �0.598 0.550
field.structure �3.693 0.000 �3.847 0.000 �4.681 ,0.001 �0.843 0.399
GIS.CWHR �2.979 0.003 �3.318 0.001 �3.337 0.001 �0.999 0.318
GIS.CWHR2 �4.483 ,0.001 �3.464 0.001 �3.706 0.000 �1.330 0.183
GIS.structure �3.529 0.000 �3.259 0.001 �3.538 0.000 �1.035 0.301
GIS.dense.hardwood �5.629 ,0.001 �2.602 0.009 �2.670 0.008 �0.481 0.631
GIS.dense.forest �5.773 ,0.001 �3.489 0.001 �2.659 0.008 �2.280 0.023

Notes: Separate tests were performed for the indicated subregions; KSþ SS is Klamath/Shasta and southern Sierra. Cell entries
are two-tailed P values and have not been adjusted to account for spatial autocorrelation. See Table 1 for an explanation of the
variables. Sample size (n) is the number of sample units (each with six track-plate stations and 1–2 remotely triggered cameras).
Values are negative when the variable has higher values at sites with fisher detections than those with non-detections. Values in bold
indicate P values , 0.05.

TABLE 4. Summary of generalized additive models to predict fisher detections derived using field-based and GIS-derived
vegetation data.

Model and
vegetation data N (prevalence)

Nonspatial GAM model

Variables AUC CV AUC AIC

Statewide 433 (0.15)

Field ann.ppt, relief, field.hardwood 0.84 0.79 303.0
GIS ann.ppt, GIS.dense.forest, relief 0.85 0.81 290.4

KS þ SS 199 (0.32)

Field relief, ann.ppt, field.CWHR2 0.77 0.7 228.9
GIS ann.ppt, GIS.CWHR2, relief 0.80 0.72 220.3

Klamath/Shasta 111 (0.32)

Field ann.ppt, field.CWHR2, relief 0.90 0.82 103.7
GIS relief, GIS.structure, ann.ppt 0.89 0.84 99.7

Southern Sierra 88 (0.32)

Field ann.ppt 0.70 0.58 110.51
GIS ann.ppt, GIS.dense.forest, adj.elevation 0.83 0.73 104.10

Notes: Variables are listed in their order of contribution to the final models, by subregion; KS þ SS is Klamath/Shasta and
southern Sierra. For fisher prevalence, the first number is sample size (number of sample units); the number in parentheses is the
proportion of sample units with fisher detections. Model AUC (area under the curve), and fivefold cross-validated AUC (CV AUC)
values are also tabulated. See Table 1 and Appendix A for an explanation of the variables and their abbreviations. Blank cells
indicate that no data are possible.
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only data and GIS-based habitat data using maximum

entropy (MAXENT) modeling (Phillips et al. 2006).

Absence data were generated by statewide random

sampling. The MAXENT approach performs better

with presence-only data than other methods such as

bioclimatic envelope modeling or genetic algorithms

(Elith et al. 2006). In comparing GAM and MAXENT

outputs, we reasoned that the habitat-based explanation

would be reinforced if both GAM and maximum

entropy models produced low habitat suitability scores

for the unoccupied region, whereas the dispersal

explanation would be strengthened if the GAM models

produced low scores and the MAXENT model pro-

duced high habitat scores over much of the region.

RESULTS

Fishers were detected at 14.8% (64/433) of sample

units including 32% (35/111) of sample units in the

Klamath/Shasta region and 32% (28/88) of sample units

in the southern Sierra Nevada (Fig. 1). One fisher was

detected at the extreme southern end of the 234 sample

units in the central and northern Sierra Nevada.

Based on AUC and AIC values, GAMmodels derived

using the vegetation GIS data performed as well as or

better than the models using field vegetation data (see

Table 4). Given our focus on predictive mapping, we

concentrate on the GAM models derived using GIS

vegetation variables. We report summary statistics for

both classes of model and consider the implications of

the better performance of the GIS-based models in the

Discussion.

Statewide model

Fisher detections were significantly associated (Wil-

coxon Z, P , 0.05) with latitude-adjusted elevation (�),

relief (þ), and paved roads (þ), as well as all of the field-
based and GIS-based measures of vegetation structure

(Table 3). Detections were most associated with the

landscape fraction of late-seral forest (GIS.dense.forest)

and late-seral hardwood forest (field.hardwood, GIS.-

dense.hardwood), and were more likely in forested areas

with high tree cover and larger tree sizes (positive

associations with field.CWHR, GIS.CWHR, field.struc-

ture, and GIS.structure). Detections were more strongly

associated with high field- or GIS-based CWHR2

ratings than with the original CWHR ratings, support-

ing our expectation that fishers are less likely to use

upper montane and subalpine forests than lower-to-mid

elevation conifer and mixed conifer–hardwood forest

types.

The positive association of fisher detections with

proximity to paved roads runs counter to our expecta-

tion that fishers would avoid areas of high human

activity. The correlation could be spurious, given the

tendency for roads to have been located along water-

ways and near high-value timber stands at mid-to-low

elevations (Riitters and Wickham 2003). These relation-

ships are evident in the moderate (0.3 , r , 0.5)

correlations between the index for improved roads and

topographic and vegetation factors (Appendix B).

Correlations between the paved road index and topo-

graphic or vegetation variables, however, are relatively

low (r , 0.2; Appendix B). The index is positively

correlated with average distance in the 10-km2 sample

unit area to major streams and rivers depicted in

1:100 000 scale topographic maps (r ¼ 0.27), but fisher

detections are not directly associated with this hydro-

logic variable (Wilcoxon Z¼ 0.05, P¼ 0.96). Because we

have no ecological interpretation for the positive

association with paved roads, and because including

the paved road index did not improve the fit of the

GAM models based on AIC values or the classification

skill based on AUC values, we opted to exclude road

variables from further analyses.

The best nonspatial GAM model using statewide

GIS vegetation data includes ann.ppt, relief, and

GIS.dense.forest (Table 4, Fig. 3). Model residuals

(observed – predicted) are significantly positively auto-

correlated up to 20 km (Fig. 4a), mainly because the

model underpredicts fisher detections in the Klamath/

Shasta and southern Sierra regions, producing large

regions of positive residuals, and overpredicts fisher

detections in the unoccupied northern Sierra Nevada,

producing a cluster of negative residuals (Fig. 5a).

Adding the spatial autocovariate improves model

classification skill, indicated by an increase in cross-

validated AUC from 0.81 to 0.90, and model residuals

are spatially uncorrelated (Table 4). The model based

solely on spatial autocovariation has comparable skill to

that combining environmental variables and the spatial

autocovariate term (cross-validated AUC ¼ 0.89), and

slightly lower goodness of fit (AIC ¼ 232 vs. 226).

TABLE 4. Extended.

Spatial GAM models

Variables AUC CV AUC AIC

SA 0.90 0.89 232.2

ann.ppt, relief, field.hardwood, SA 0.93 0.90 232.1
ann.ppt, GIS.dense.forest, relief, SA 0.93 0.90 226.6

SA 0.76 0.75 206.8

relief, ann.ppt, field.CWHR2, SA 0.85 0.78 203.3
ann.ppt, GIS.CWHR2, relief, SA 0.86 0.76 202.4

SA 0.89 0.88 89.9

ann.ppt, field.CWHR2, relief, SA 0.96 0.86 84.3
GIS.structure, relief, SA 0.95 0.89 82.0

SA 0.60 0.45 114.4

ann.ppt, SA 0.72 0.53 114.9
ann.ppt, GIS.dense.forest,
adj.elevation, SA

0.84 0.61 112.5
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When evaluated against the regional subsets of the

data, the nonspatial and spatial statewide models

perform best at predicting the lack of fisher detections

in the northern Sierra and worst at predicting fisher

detections and non-detections in the southern Sierra

Nevada (Table 5). The models perform nearly as well in

the Klamath/Shasta region (spatial model AUC¼ 0.93)

as for the statewide data set (spatial model AUC¼0.95),

again indicating that the statewide GAM models are

particularly poorly specified for the southern Sierra

Nevada.

Klamath/Shasta þ southern Sierra (KS þ SS) model

When samples from the unoccupied northern Sierra

Nevada region are excluded, fisher detections in the KS

þ SS regions are significantly associated with relief,

paved.roads, and every vegetation variable (Table 3).

The main difference in pairwise associations between KS

þ SS vs. statewide data sets is the lack of association of

fisher detections with latitude-adjusted elevation in the

KSþSS data. Fisher detections are positively associated

with late-seral stages of mid-montane forest types, late-

FIG. 3. Partial response curves for the statewide GAM (generalized additive model) based on topographic relief (relief,
calculated as the standard deviation of elevation in a local 5 3 5 moving window), annual precipitation (ann.ppt), and forest
structure (GIS.dense.forest, calculated as the proportion of 1-ha cells in a 10-km2 area classified as CWHR2 fisher forest habitat
types with 60–100% tree canopy closure). The x-axis is the value of the model independent variable, and the y-axis (S) is the additive
contribution of the variable to the nonparametric GAM smoothing function. Dashed curves are two standard errors about the
estimated function.

FIG. 4. Moran’s I spatial correlograms of GAMmodel residuals from the nonspatial models based on GIS vegetation data. The
x-axis shows the distance between site pairs. Models include (a) statewide, (b) Klamath/Shasta þ southern Sierra (KS þ SS), (c)
Klamath/Shasta (KS), and (d) southern Sierra (SS). Significant (P , 0.05) values of Moran’s I are indicated with solid squares.

FRANK W. DAVIS ET AL.2204 Ecological Applications
Vol. 17, No. 8



seral hardwood forest, and the fraction of the landscape

occupied by dense mid-montane forest.

The nonspatial GAM model includes ann.ppt,

GIS.CWHR2, and relief (Table 4, Fig. 6). Model

residuals are significantly spatially clustered to a lag

distance of 20 km, due to underprediction of fishers in

the occupied subregions and overprediction of detec-

tions in the unoccupied northern and central Sierra

Nevada region (Fig. 4b).

The KS þ SS models have a lower classification skill

than the statewide models, with cross-validated AUC

values of 0.7–0.75. The nonspatial KSþ SS models have

AUC values equivalent to the statewide model when

applied to the statewide data set (Table 5), although the

patterns of predicted detections are somewhat different,

FIG. 5. Mapped probability of fisher detection within the historic range of fishers in California based on (a) statewide, (b)
Klamath/Shastaþ southern Sierra (KSþ SS), (c) Klamath/Shasta (KS), and (d) southern Sierra (SS) GAM models and GIS data.
Darker areas have higher calculated probabilities.
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partly due to the higher model prevalence. The

nonspatial KS þ SS model yields a high probability of

fisher detections in east–west running river canyons of

the northern Sierra Nevada (Fig. 5b).

Inclusion of a spatial autocovariate term improves the

skill of models using either field or GIS vegetation data,

although the models are weaker than their statewide

counterparts (Table 4). Model residuals are not signif-

icantly autocorrelated at any lag distance. Including

environmental variables offers only a slight improve-

ment in model fit over the model based simply on spatial

autocovariation (AIC of 202.4 vs. 206.8; Table 4).

The KSþ SS models are equivalent to, or better than,

the statewide models at predicting survey results

statewide, in the Klamath Shasta region, and in the

southern Sierra Nevada (Table 5). Excluding the 233

non-detections from the unoccupied region in the

statewide model does not improve model fit to statewide

patterns in fisher detections.

Klamath/Shasta model

Despite the smaller sample size, fisher detections in

northern California are strongly associated with all

predictor variables except proximity to improved roads

(Table 3). Relief, field.structure, field.CWHR2, and

field.hardwood exhibit the strongest association with

the pattern of fisher detections, although the associa-

tions with field vegetation data are only slightly stronger

than with GIS vegetation data (Table 3).

GAM models based on relief, ann.ppt, and

GIS.CWHR2 have good classification skill for the

survey data from northwestern California, with cross-

validated AUC values of 0.84 (Table 4, Fig. 7). Higher

misclassification rates occur in the northwest corner of

the region, where the model overpredicts fisher detec-

tions. Model residuals are significantly positively auto-

correlated to a lag distance of 10 or 20 km (Fig. 4c). The

addition of the SA term increases the cross-validated

AUC from 0.84 to 0.89 for the GIS-based model (Table

4), and the model produced by fitting environmental

factors and then SA is superior to the model based solely

on SA (AIC values of 82.0 vs. 89.9; Table 4).

The Klamath/Shasta models perform relatively well in

the Klamath/Shasta and northern Sierra Nevada test

regions, but poorly in the southern Sierra Nevada (Fig.

5c, Table 5). In the southern Sierra, the few survey units

where the model correctly predicts fisher detections tend

to be western units at the lower elevations in areas of

lower precipitation.

Southern Sierra model

Physical and vegetation factors at the 10-km2 scale are

weakly associated with fisher detections in the southern

Sierra, and only GIS.dense.forest is significant at P ,

TABLE 5. AUC (area under the curve) measures of model performance for GAM models in the
calibration region (rows) and test region (columns).

Model

AUC

Statewide KS þ SS Klamath/Shasta Southern Sierra Northern Sierra

Statewide

Nonspatial 0.85 0.76 0.81 0.70 0.89
Spatial 0.93 0.84 0.92 0.70 0.98

KS þ SS

Nonspatial 0.84 0.80 0.87 0.71 0.88
Spatial 0.93 0.86 0.93 0.73 0.96

Klamath/Shasta

Nonspatial 0.74 0.73 0.89 0.61 0.91
Spatial 0.80 0.77 0.95 0.61 0.97

Southern Sierra 0.69 0.68 0.52 0.73 0.70

Notes: Spatial models include a spatial autocovariate term. Results are for the GAM models
based on GIS-derived measures of vegetation structure and composition. The spatial autocovariate
term was not significant in the southern Sierra, so only the nonspatial models are shown. KSþSS is
Klamath/Shasta and southern Sierra.

FIG. 6. Partial response curves for the Klamath/Shasta þ southern Sierra GAM model based on topographic relief (relief),
annual precipitation (ann.ppt), and forest structure (GIS.CWHR2). See Fig. 3 for an explanation of the response curves.
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0.05 (Table 3). Although the sample size is small (n¼ 88

sample units, each with six track-plate stations and 1–2

remotely triggered cameras), the result is puzzling, given

the strong association of fisher detections with relief and

other vegetation variables in the statewide and northern

data sets.

GAM models based on GIS vegetation data have

higher skill than those based on field vegetation data

(Table 4), but none of the nonspatial or spatial models

provides a good fit to the survey data (Table 4). We

hypothesized that this might be due to the greater

heterogeneity and finer grain of vegetation mosaics in

the southern Sierra compared to northwestern Califor-

nia, in which case, fisher survey data should be more

strongly associated with vegetation variables integrated

over smaller areas. In the southern Sierra, fisher

detections are slightly more strongly associated with

vegetation variables assessed at 3 km2 than at 10 km2,

whereas in the Klamath/Shasta region, stronger associ-

ation can be at 3-km2 or 10-km2 scale, depending on the

variable (Table 6). The differences in association are

small and dependence on spatial scale does not seem to

explain the systematically lower association of fishers

with GIS and field vegetation variables in the region.

Residuals from the GAM model based on adj.eleva-

tion, ann.ppt, and GIS.dense.forest exhibit no spatial

autocorrelation in the southern region (Moran’s I ¼
�0.01, P . 0.10) (Table 4, Figs. 4d and 8). In other

regions, the southern Sierra model produces strikingly

different patterns of fisher habitat than those observed

or predicted by the other models (Fig. 5d). Low

predicted probabilities of occurrence prevail over most

survey points in the northern Sierra Nevada and

Klamath/Shasta regions, and high detection probabili-

ties are mapped at high elevations in drier regions to the

east of actual fisher detections. Fisher surveys occurred

at systematically higher adjusted elevations in the

southern Sierra (2808 6 482 m, mean 6 SD) than in

the Klamath/Shasta (2358 6 476 m) region, and also

systematically drier locations. The association of fishers

with precipitation is also different: in the southern

Sierra, fisher detections are more likely at lower and

drier sites, whereas in the Klamath/Shasta, fishers are

only lacking at the very wettest sites. These differences in

environmental associations are indicated by the poor fit

of the southern Sierra model to the other regional and

subregional data sets, in particular to the Klamath/

Shasta data set, where an AUC value of 0.52 is hardly

better than a random association between predicted and

observed values (Table 5).

Statewide habitat envelope model

The MAXENT model based on fisher detections and

pseudo-absences drawn from statewide environmental

data selected ann.ppt, GIS.dense.forest, and relief and

produces a probability map similar to the statewide

GAM model (Fig. 9). The correlation between GAM

and MAXENT scores at sampling unit locations is 0.83.

As expected, the MAXENT model identifies more area

with high probability of predicted occurrence, especially

in the Klamath/Shasta region and at middle elevations

of the southern Sierra Nevada. Like the GAM models,

MAXENT models predict low probabilities of occur-

rence over much of the northern and central Sierra

Nevada.

DISCUSSION

We first discuss our findings in the light of current

understanding of fisher habitat associations before

turning to the role of spatial autocorrelation. We then

TABLE 6. Univariate tests of association between fisher detections and selected vegetation factors
in the Klamath/Shasta and southern Sierra region at two different spatial scales based on the
Wilcoxon U test.

Region Variable

Scale 3 km2 Scale 10 km2

Wilcoxon Z P Wilcoxon Z P

Klamath/Shasta GIS.dense.forest �3.253 0.001 �2.659 0.008
GIS.CWHR2 �3.694 ,0.001 �3.706 ,0.001

Southern Sierra GIS.dense.forest �2.576 0.015 �2.280 0.023
GIS.CWHR2 �1.649 0.099 �1.330 0.183

FIG. 7. Partial response curves for the Klamath/Shasta GAM model based on topographic relief (relief), forest structure
(GIS.structure), and annual precipitation (ann.ppt). See Fig. 3 for an explanation of the response curves.
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consider possible explanations for the absence of fishers

in the northern and central Sierra Nevada and conclude

with a brief discussion of the management implications

of our findings.

Fisher habitat relations

Habitat associations of fisher detections in the

statewide survey reinforce current scientific understand-

ing of the species as inhabiting rugged terrain with

extensive closed-canopy, mid-to-late seral mixed conifer

or mixed hardwood–conifer forest. We have shown that

fishers are less likely to occur in subalpine forest types

such as red fir (Abies magnifica) or lodgepole pine (Pinus

contorta) forests, and we recommend revising the

California Wildlife Habitat Relationship System model

for fishers to reflect the low association of fishers with

these habitat types.

Fishers are associated with dense forest cover in both

the Klamath/Shasta region and the southern Sierra

Nevada, but these populations differ in the details of

their habitat associations. Fisher detections in the

Klamath/Shasta region were clustered at mid-elevations

in rugged mountainous areas and were negatively

associated with highest levels of precipitation. Like

Carroll et al. (1999), we found that fisher detections in

northwestern California were positively associated with

the proportion of the landscape in mature montane

forest and montane hardwood forest, and with increas-

ing average tree size and canopy closure. These

relationships hold for both field-based and satellite-

derived estimates of forest extent, composition, and

structure. As noted by Carroll et al. (1999), fishers may

associate with landscapes with a high fraction of mature

forest because those areas pose a lower risk of predation

by raptors and other mammalian carnivores (Powell et

al. 2003) and offer higher levels of forest-associated

prey.

In contrast, fisher detections in the southern Sierra

region were associated with satellite-derived estimates of

dense cover, but were not strongly associated with

topography, forest composition, or structure. This

pattern may partly reflect undersampling of lower

elevations in the southern Sierra region. The survey

grid may not have spanned a sufficient range of climatic,

topographic, and vegetation conditions to allow fisher

habitat preferences to be discriminated. Campbell (2004)

using a similar set of data, also described fisher

occurrence on the basis of a simple model that included

only slope as a predictor (although this was correlated

with other vegetation features).

Another circumstance that may be responsible for the

unique set of predictors associated with fisher occur-

rence in the southern Sierra is the fisher’s diverse diet in

this region. Zielinski et al. (1999) found that the diet of

fishers in the southern Sierra Nevada includes prey items

from both forest and non-forest habitats. Porcupines

and snowshoe hares, which are staples of fisher diets

elsewhere, do not occur in the southern Sierra Nevada,

where fishers eat lizards, birds, and insects in addition to

mammal prey (Zielinski et al. 1999). This suggests that

FIG. 8. Partial response curves for the southern Sierra GAM model based on annual precipitation (ann.ppt), forest structure
(GIS.dense.forest), and latitude-adjusted elevation (adj.elevation). See Fig. 3 for an explanation of the response curves.

FIG. 9. Mapped probabilities of fisher detection within the
species’ historic range in California based on the MAXENT
model and statewide survey data. Darker areas have higher
calculated probabilities.
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fishers may be foraging across a wide range of montane

habitats in the southern Sierra.

Spatial autocorrelation in fisher detections

The fisher survey data reveal two dominant scales of

distribution pattern: regional and local. Statewide, three

regions emerge, including the occupied Klamath/Shasta

and southern Sierra Nevada regions, where fishers were

detected at roughly one-third of the sampling units, and

the central and northern Sierra Nevada, an unoccupied

area representing more than half of the species’

historical range in the state. None of the spatial or

nonspatial models fits this biogeographic pattern closely,

in part because of the different habitat associations of

northern vs. southern populations and in part because

the statewide average frequency of detections (model

prevalence) yields models that underpredict fisher

detections in the occupied regions and overpredict

detections in the unoccupied region. The spatial

autocorrelation structure of model residuals for the

nonspatial GAM models reflects these large-scale

effects, showing significant positive autocorrelation up

to 20 km and decreasing autocorrelation with increasing

distance for 50–100 km.

Fisher detections in the Klamath/Shasta are locally

clustered and the pattern suggests the effect of territorial

and dispersal behavior on current fisher distributions in

the region. GAM models based solely on environmental

factors produce autocorrelated model residuals at the

10-km scale and are weaker than a simple spatial

autoregressive model or the model combining both

environmental factors and the spatial autoregressive

term (Table 4). We can say little about the relative roles

of environment vs. movement behavior in the distribu-

tion of fishers in the southern Sierra Nevada. Of the

environmental factors, detections are associated only

with dense forest and are not spatially autocorrelated at

a scale of 10–20 km. Monitoring of the survey localities

over a longer term and expansion of the survey to lower

elevations are necessary to better understand the

environmental, behavioral, and demographic controls

on the species’ distribution in this region.

The absence of fishers in the northern

and central Sierra Nevada

Habitat quality, dispersal limitation, and demography

may all be contributing to the current absence of fishers

in the northern and central Sierra. Several lines of

evidence indicate limited high-quality habitat in the

unoccupied region. All of the models estimate low

detection probabilities over much of the area (Fig. 5).

The nonspatial statewide GAM model is more skillful

than the model excluding data from the unoccupied

region (KS þ SS). Both the GAM models based on

detection vs. non-detection and the more liberal

MAXENT model (based on detections only) indicate

extensive areas of unsuitable habitat, especially in the far

northern Sierra. Forests of the northern Sierra Nevada

have been more extensively impacted by historical

logging than those farther south, where Yosemite and

Sequoia-King’s Canyon National Parks still harbor

extensive late-seral forests (Franklin and Fites-Kauf-

mann 1996, Zielinski et al. 2005). Late-seral forests now

occupy ,10% of the northern region compared to

>40% in the mid-20th century (Franklin and Fites-

Kaufmann 1996, Zielinski et al. 2005). The highest

habitat scores in the northern Sierra Nevada occur in

steep, east–west running canyons such as the canyon of

the north fork of the American River in Nevada County

and the Middle Fork of the Feather River in Plumas

County. These areas were identified by Franklin and

Fites-Kaufmann (1996) as supporting much of the

remaining late-seral old-growth forest on public lands

in the northern and central Sierra Nevada.

The absence of fishers from areas predicted to have

high suitability in the northern Sierra Nevada could be

due, at least in part, to their inaccessibility to fishers or

because surplus individuals are not being produced in

the occupied regions. Individuals attempting to disperse

into the northern Sierra Nevada from the closest

occupied sites south of Lake McCloud in the Shasta

National Forest would encounter numerous barriers,

including the Pit River and the Highway 299 corridor

(where much of the land cover is chaparral, early-seral

forest recovering from the 1992 Fountain Fire, or

agriculture), only to reach fragmented forests of the

Lassen National Forest (Fig. 10). The northern limit of

fisher detections in the southern Sierra occurs inside

Yosemite National Park just south of the Merced River

and Yosemite Valley. The limit is not obviously

associated with major gaps in forest habitat, although

forest habitat is extensively modified in the surrounding

national forest lands to the north and east, largely as a

result of fires and timber harvest.

Even allowing for dispersal routes into the unoccu-

pied northern Sierra region, if fisher populations are not

increasing in their current distribution, there may not be

a steady supply of emigrating individuals to reoccupy

these areas. Recent reviews of the vital rates of fishers in

California, and the effect of these rates on viability, do

not forecast significant growth in the fisher population

(Powell and Zielinski 1994; R. H. Lamberson, R. L.

Truex, W. J. Zielinski, and D. MacFarlane, unpublished

manuscript). Unfortunately, detailed demographic data

are not available and we cannot parameterize a spatially

explicit dynamic population model to examine this

possibility (Guisan and Zimmerman 2000).

Management implications

The conservation of fishers is a major concern to

conservation biologists in the western United States, as

evidenced by the favorable response of the U.S. Fish and

Wildlife Service to the most recent petition to list the

fisher as endangered in the Pacific States (U.S. Federal

Register, 8 April 2004). Ecologists increasingly use

species distribution models to address conservation
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and management issues (Scott et al. 2002, Latimer et al.

2006), and our model and its successors could be used by

managers and policy makers to inventory and monitor

fisher habitat extent and condition, to identify regional

bottlenecks in fisher habitat connectivity, to identify

areas for fisher habitat maintenance or restoration, to

consider candidate areas for reintroduction, and to

explore implications of regional climate change. Such

applications would be strengthened by additional studies

of GIS data quality and model sensitivity and uncer-

tainty (Hines et al. 2005).

The reliability of existing digital vegetation maps has

been of particular concern, given the documented

affinity of fishers with late-seral montane forests in

California and the known limitations of satellite-derived

vegetation maps (Miller and Franklin 2002, Hines et al.

FIG. 10. Map of fisher habitat quality in the area between the Klamath/Shasta and northern Sierra Nevada subregions. Fisher
sampling unit locations (fisher detections vs. non-detections) are superimposed on GIS.CWHR2 scores (see Table 1) derived from
U.S. Forest Service vegetation maps. Higher scores indicate higher habitat suitability. State highways 299 and 89 are labeled.
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2005). The USFS databases used here have been

documented as having only moderate (70–80%) site-

level accuracy for vegetation type and lower accuracy

for canopy cover class (50–60%) and crown size class

(30–40%) (Franklin et al. 2000, Hines et al. 2005). The

moderate correlation (0.37 , r , 0.72) between field-

based and GIS-based vegetation variables was higher

than we expected, as was the highly significant

association between fisher detections and GIS vegetation

data and the close similarity of predictive models derived

from field and GIS data. The agreement between field

and GIS results is presumably because the data were

integrated over large assessment areas (10 km2) rather

than applied at the pixel or site scale. At this scale, the

analysis appears to be relatively robust to local

inaccuracies in the GIS data.

Our finding that vegetation databases derived from

remotely sensed imagery perform at least as well as field

vegetation data implies that fisher habitat at the home

range scale can be monitored using public geospatial

databases that are being maintained by state and federal

agencies (Franklin et al. 2000, Rogan and Chen 2004),

and that field collection of habitat data could focus on

refining and validating remote-sensing models and

quantifying map data quality (Zielinski et al. 2006b).

Maintenance of a regionally consistent database across

state and agency jurisdictional boundaries would enable

range-wide monitoring of fisher habitat conditions and

progress toward restoring habitat conditions in the

central and northern Sierra.

Could fishers be successfully reestablished in unoccu-

pied regions of the central and northern Sierra Nevada?

Our data suggest that the distribution of potential

habitat in this region is limited to a few areas associated

with the densely forested river canyons of the northern

Sierra. These potential habitat areas are smaller and less

well connected than areas within the currently occupied

regions of the Klamath/Shasta region or the southern

Sierra. This suggests caution in implementing a reintro-

duction and we would recommend additional analyses

to determine the likelihood that these areas could sustain

a viable population. In the near term, however, the

potential habitat areas that were identified in the

northern Sierra Nevada would be places to focus future

surveys because these are the most likely settling places

for fishers that may naturally disperse south and east

from the Klamath region. In this regard, our statewide

model (Fig. 5a) was the best at predicting absence in the

northern Sierra Nevada and should probably be used to

map habitat and for other fisher conservation applica-

tions in this region.

Fishers currently occur in portions of Oregon, Idaho,

Montana, British Columbia, and Alberta. Developing

empirical landscape habitat-suitability models will assist

conservation in these regions. Fishers have been

extirpated from Washington, but plans for reintroduc-

tions have included an expert-derived habitat model that

has been used to select from candidate reintroduction

sites (Lewis and Hayes 2004). Future modeling efforts,

however, are likely to be built using detection data that

come with more information than simple occurrence.

Identification of sex and individuals is possible using

genetic samples derived from scat and hair (Eggert et al.

2003, Riddle et al. 2003, McKelvey et al. 2006), and

methods have been developed to collect hair when

fishers visit enclosed track plate stations (Zielinski et al.

2006a). Future models will be able to link habitat value

to demographic information, which will add consider-

ably to the utility of empirical habitat models for

conservation planning.
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APPENDIX A

Descriptions of variables tested for association with the detection of fishers in California (Ecological Archives A017-090-A1).

APPENDIX B

Correlations among environmental variables applied to fisher habitat modeling (Ecological Archives A017-090-A2).
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