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Abstract 

We investigated the interpolation of missing values in data 
that were fit by bidimensional regression models. This 
addresses a problem in spatial cognition research in which 
sketch maps are used to assess the veracity of spatial 
representations. In several simulations, we compared samples 
of different sizes with different numbers of interpolated 
coordinate pairs. A genetic algorithm was used in order to 
estimate parameter values. We found that artificial inflation in 
the fit of bidimensional regression models increased with the 
percent of interpolated coordinate pairs. Furthermore, samples 
with fewer coordinate pairs resulted in more inflation than 
samples with more coordinate pairs. These results have 
important implications for statistical models, especially those 
applied to the analysis of spatial data. 

Keywords: regression, bidimensional regression, 
interpolation, sketch maps, genetic algorithm  

Introduction 
Bidimensional regression is a statistical technique for 
assessing the relationship between two configurations of 
related, two-dimensional data. The method was originally 
introduced by Tobler (1965, 1994) for the analysis of 
geographical data. More recently, the method has been 
adopted by psychology (Friedman & Kohler, 2003) and 
computer science (Kare, Samal, & Marx, 2010).  
Bidimensional regression has been used for the geometric 
analysis of ancient and modern maps (Tobler, 1994), 
fictional maps (Louwerse & Benesh, 2012), and mental 
maps with sighted  (Schinazi, Nardi, Newcombe, Shipley, & 
Epstein, 2013; Weisberg, Schinazi, Newcombe, Shipley, & 
Epstein, 2013) and blind or visually impaired individuals 
(Jacobson, 1998; Jacobson & Kitchin, 1995; Schinazi, 
2008). The method has also been successfully used in 
conjunction with eye tracking studies (Fourtassi et al., 
2013), in the assessment of face familiarity (Kare et al., 
2010), and in the comparison of shapes of skulls and leaves 
(Tobler, 1994).  

Similar to unidimensional regression, bidimensional 
regression uses changes in one (predictor) variable to 
predict changes in the other (criterion) variable. This 
relationship is invariant to global transformations in terms 

of scale, rotation, and translation. Bidimensional regression 
is also characterized by a statistical model for which an 
equivalent number of predictor and criterion coordinate 
pairs are necessary. However, this requirement can 
sometimes be difficult to fulfill for situations in which the 
criterion variable is missing values. 

Missing values can be particularly problematic for 
situations in which the fit of the regression model is 
considered as a proxy for the veracity of spatial 
representation. In order to account for such possibilities, 
participants are often given a fixed list with all the 
landmarks that have to be drawn (Giannopoulos, Kiefer, & 
Raubal, 2013; Guzmán-Muñoz & Johnson, 2008; Ishikawa, 
2013; Lloyd, 2005; Uttal, Friedman, Hand, & Warren, 
2010) or small cardboard pieces representing landmarks that 
have to be placed on blank, grid paper (Waller, Loomis, & 
Haun, 2004; Waller, Loomis, & Steck, 2003). These 
approaches have had the advantage of producing balanced 
sets of landmarks that can be analyzed using bidimensional 
regression. One possible disadvantage is that the concept of 
“landmark” can be defined differently depending on the 
situation and the individual (Raubal & Winter, 2002). In 
addition, these methods may constrain the data provided by 
participants (Kitchin & Blades, 2002) and thus inflate the 
overall fit of the regression model. In other studies, 
researchers have tried to account for the issue of missing 
values (representing missing landmarks) in sketch maps by 
developing customized algorithms that categorically or 
metrically evaluate landmark placement (Gardony, Brunyé, 
Mahoney, & Taylor, 2013). Here, we used several 
simulations in order to investigate the conditions under 
which another type of interpolation may or may not be 
appropriate for bidimensional regression. 

One possible method for interpolating missing spatial data 
is to replace them with values that maximize the fit of a 
regression model. This is essentially the same as using the 
predicted values of one variable given the observed values 
of another variable.  This method of interpolation has 
several advantages over other methods (e.g., eliminating 
participants with a large amount of missing data; Schafer 
and Graham, 2002). For example, interpolation maintains 
statistical power and uses all of the available data (Schafer 
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& Graham, 2002). However, this interpolation of missing 
values may also lead to an artificial inflation of the fit of the 
regression model. 

For the present simulations, we used sets of coordinate 
pairs with numbers of values that corresponded to those 
typically seen in spatial cognition research (Guzmán-Muñoz 
& Johnson, 2008; Ishikawa & Montello, 2006; Ishikawa, 
2013; Lloyd, 2005; Schinazi, 2008; Uttal et al., 2010). We 
predicted that the artificial inflation of the fit of the 
bidimensional regression models would increase as the 
number of values in each coordinate set decreased (given an 
equal proportion of interpolated values). A bidimensional 
regression model that is used to fit fewer points may be 
more flexible because of the coarseness of the “fit surface” 
(i.e., the shape of the function relating parameter values to 
the overall fit of the model). Alternatively, if each 
interpolated value is considered a freely varying parameter, 
then the model with more points may be more flexible 
(Lewandowsky & Farrell, 2010). Similarly, given an equal 
number of values overall, we expected a greater proportion 
of interpolated values to result in more inflation in the fit of 
the bidimensional regression models. 

To anticipate, we found a very large, artificial inflation in 
the fit of bidimensional regression models after the 
interpolation of varying numbers of values. The number of 
free parameters (in terms of the number of interpolated 
values) did affect the extent of this inflation. However, 
models to which fewer values were submitted fit better than 
models to which more values were submitted, even though 
the latter models contained more free parameters. This 
pattern of results was also replicated using data from a real 
world study (see Weisberg et al., 2013). 
 

Method 
Bidimensional regression models were fit to (different) 
randomly generated sets of coordinate pairs using a program 
written in MATLAB (MathWorks®, Natick, MA, USA). 
Each individual number was randomly generated from a 
uniform distribution between -1 and 1. The first set of 
coordinate pairs represented the two-dimensional predictor 
coordinates, and the second set of coordinate pairs 
represented the two-dimensional criterion coordinates. One 
variable, “number of coordinates,” was manipulated 
between simulations and represented the number of 
coordinate pairs within each set. Either 10 or 40 coordinate 
pairs were used for each set. The predicted values for the 
criterion coordinates were calculated using the following 
equation (Friedman & Kohler, 2003; Tobler, 1994): 
 

 
Equation 1 

 

Note that we use the four-parameter, Euclidean version of 
the bidimensional regression equation. Here, A’ and B’ 
represent the predicted values for the criterion coordinates, 
X and Y represent the randomly generated values for the 
predictor coordinates, α1 and α2 represent the intercepts for 
the bidimensional regression model, and β1 and β2 represent 
the slopes for the bidimensional regression model. The fit of 
each bidimensional regression model was evaluated by 
comparing the predicted and the given (i.e., randomly 
generated) values for the criterion coordinates and 
maximizing R2:  
 

 
Equation 2 

 
where MA and MB represent the mean values for A and B 
(the criterion coordinates), respectively. 

We used a genetic algorithm to estimate the best fitting R2 
value because of the large number of freely varying 
parameters in some conditions. The estimated parameters 
included α1, α2, β1, β2, and parameters representing any 
missing coordinates. For the most part, genetic algorithms 
have the advantage of allowing the modeler to move toward 
the optimal solution while inserting enough randomness to 
avoid local minima (Hassan et al., 2004). Previous work has 
also demonstrated the performance advantages of genetic 
algorithms over more commonly used hill-climbing 
algorithms (Thrash & Thomas, 2013). In our case, the 
genetic algorithm began by pseudo-randomly generating 
1000 “organisms” (i.e., combinations of parameter values). 
The starting values for the missing coordinates were 
constrained to [-1, 1]. The starting values for α1 and α2 were 
constrained to [-1, 1], and the starting values for β1 and β2 
were constrained to [-10, 10]. Next, we determined the fit of 
every organism by calculating the R2 value (as described 
above). Only the best-fitting organism (out of every eight 
successive organisms) was selected for reproduction (i.e., 
“tournament selection”; Goldberg and Deb 1991). During 
the reproduction stage, each organism was converted to 
binary code and a random crossover point was determined. 
These organisms were then randomly paired, and each pair 
of organisms randomly exchanged the bits that occurred 
before the randomly determined crossover point. For each 
bit, the probability of mutation (or switching from 0 to 1 or 
1 to 0) for each organism was 0.5%. This procedure was 
repeated 100 times. In the end, the best-fitting organism 
over all iterations was maintained and used to calculate the 
R2 value for each pair of coordinate pairs. Throughout the 
genetic algorithm, each parameter was represented by 17 
bits (corresponding to a precision of approximately 
±0.0001).  

After estimating R2 for the original sets of coordinate 
pairs, some of the criterion coordinates were randomly 
selected for deletion. Deleted coordinate pairs were then  
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# coordinates % interpolated Mbefore SDbefore Mafter SDafter t SE df p 
10 10 0.1076 0.0938 0.1849 0.1048 5.4949 0.0141 195.6008 <.0001 
10 20 0.0920 0.0846 0.2247 0.0999 10.1360 0.0131 192.7549 <.0001 
10 30 0.0966 0.0881 0.3118 0.1189 14.5396 0.0148 182.4707 <.0001 
10 40 0.0903 0.0787 0.3709 0.1200 19.5491 0.0144 170.8757 <.0001 
40 10 0.0303 0.0271 0.0929 0.0365 13.7616 0.0045 182.7430 <.0001 
40 20 0.0260 0.0267 0.1444 0.0409 24.2383 0.0049 170.3885 <.0001 
40 30 0.0248 0.0251 0.2044 0.0542 30.0643 0.0060 139.6256 <.0001 
40 40 0.0259 0.0264 0.2516 0.0552 36.8878 0.0061 141.9366 <.0001 

          
Table 1: Descriptive and inferential statistics for comparisons corresponding to every combination of the variables “number 
of coordinates” and “percent interpolated.” Mbefore and Mafter represent the mean R2 for sets of coordinate pairs before and 
after interpolation, respectively. SDbefore and SDafter represent the standard deviation of R2 for sets of coordinate pairs before 
and after interpolation, respectively. Welch’s t-tests were used to compare Mbefore to Mafter for every condition.

replaced by values that maximized the fit of the 
bidimensional regression model. These coordinates were 
then considered additional free parameters and were 
estimated using the genetic algorithm as described above. 
The starting values for each of these coordinates were 
constrained to fall between -1 and 1. This procedure allowed 
us to compare the relationship between the original sets of 
coordinate pairs and the relationship between sets of 
coordinate pairs after interpolation. 

Different numbers of coordinate pairs were deleted and 
replaced for each of four levels of another variable, “percent 
interpolated.” The four levels of this variable corresponded 
to the deletion and replacement of 10%, 20%, 30%, and 
40% of the criterion coordinates for each set of coordinate 
pairs. 

For every factorial combination of the variables “number 
of coordinates” and “percent interpolated,” one hundred sets 
of coordinate pairs were generated and manipulated in the 
manner described above. Two-tailed, Welch’s t-tests for the 
comparison of samples with unequal variances (Welch, 
1947) were used in order to compare the mean R2 for each 
condition after interpolation to the mean R2 for the 
corresponding condition before interpolation. Before 
comparing different conditions, we subtracted the mean R2 

before interpolation from the mean R2 after interpolation. 
We then tested for main effects of and interaction between 
the number of coordinate pairs and percent interpolated 
using a 2 x 4 ANOVA.  

We also replicated our pattern of results using real-world 
data from a model building task (see Weisberg et al, 2013). 
The data represented 8 predictor and criterion coordinate 
pairs for each of 48 participants. We eliminated one 
participant from consideration because of a missing data 
point. One, two, or three data points were randomly 
selected, deleted, and interpolated, representing three 
different conditions of the variable “percent interpolated” 
(i.e., 12.5%, 25%, and 37.5%). Two-tailed, Welch’s t-tests 
were used to compare the mean R2 for each condition after 
interpolation to the mean R2 for the corresponding condition 
before interpolation. 

In order to validate the use of the genetic algorithm in the 
above simulations, we also evaluated the genetic 

algorithm’s ability to estimate known parameter values for 
bidimensional regression models. Initially, one set of 
coordinate pairs was randomly generated from uniform 
distributions between -1 and 1. The number of coordinate 
pairs in each set corresponded to the variable “number of 
coordinates” specified above. Then, starting values for α1, 
α2, β1, and β2 were randomly generated from uniform 
distributions. The parameters α1 and α2 were constrained to 
fall between -1 and 1, and the parameters β1 and β2 were 
constrained to fall between -10 and 10. Note that these 
constraints correspond to those placed on the starting values 
in the other simulations described above. Values for another 
set of coordinate pairs were then generated using these 
randomly generated parameter values and the initial set of 
coordinate pairs. We then estimated the known (previously 
generated) parameter values using the genetic algorithm and 
these two sets of coordinate pairs. The genetic algorithm 
was conducted in the same manner as for the other 
simulations (i.e., with 1000 organisms and 100 iterations). 
This procedure was repeated 100 times. Finally, we 
evaluated the genetic algorithm in terms of bias and 
variability in the parameter estimates. Bias in the parameter 
estimates was assessed by determining the degree of skew in 
the distribution of estimates for each parameter. 

Results 
As predicted, interpolation led to an artificial inflation of the 
bidimensional regression models (see Figure 1). For every 
condition, the mean R2 after interpolation was significantly 
higher than the mean R2 before interpolation (see Table 1). 
Given that all the initial comparisons were significantly 
different from chance (all ps < 0.0001), it is informative to 
investigate differences between conditions. The interaction 
between number of coordinate pairs and percent interpolated 
was marginally significant, F(3,792) = 2.61, MSE = 0.007, p 
= .0504. It appears that the rate of inflation was higher for 
the 10 coordinate pairs when compared to the 40 coordinate 
pairs. 

We then investigated two specific patterns among the 
conditions: the difference between 10 and 40 coordinate 
pairs per sample in terms of inflation, and the linear 
relationship between percent interpolated and inflation 
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(separately for 10 and 40 coordinate pairs). The fit of the 
bidimensional regression models were significantly higher 
with 10 coordinate pairs (M = 0.18; SD = 0.13) than with 40 
coordinate pairs (M = 0.15; SD = 0.08), F(1,792) = 24.70, 
MSE = 0.007, p < .0001. In this case, additional parameters 
did not result in a better fit. Both linear contrasts were also 
found to be significant. For 10 coordinate pairs, F(1,792) = 
53.87, MSE = 0.007, p < .0001. For 40 coordinate pairs, 
F(1,792) = 19.54, MSE = 0.007, p < .0001. 
 

 
 
Figure 1: A graph depicting the relationship between 
number of coordinate pairs, percent interpolated, and the fit 
of the bidimensional regression models. Error bars represent 
the standard error of the mean R2 for each condition. 
 

A similar pattern of results emerged from the 
interpolation of data points from a real world study. Welch’s 
t-tests found that the interpolation of one coordinate pair did 
not significantly inflate the R2 value, t(89.82) = 0.33, SE = 
0.035, p = .74; the interpolation of two coordinate pairs did 
significantly inflate the R2 value, t(88.62) = 3.34, SE = 
0.035, p < .001; and the interpolation of three coordinate 
pairs also significantly inflated the R2 value, t(87.02) = 4.59, 
SE = 0.037, p < .0001. 
 

 
 
Figure 2: A graph depicting the relationship between 
percent interpolated and the fit of the bidimensional 
regression models before and after interpolation. Error bars 
represent the standard error of the mean R2 for each 
condition 

 

 
Figure 3: Histograms representing the distributions of 
parameter estimates by the genetic algorithm for two 
different levels of “number of coordinates” (i.e., 10 and 40). 
The x-axes represent z-scores for the (signed) difference 
between each parameter estimate and that parameter’s 
known value. 
 

 
 Variance Skew 
 10 CP 40 CP 10 CP 40 CP 

α1 0.050 0.053 0.102 0.060 
α2 0.073 0.046 -0.063 -0.183 
β1 0.106 0.127 0.363 -0.259 
β2 0.141 0.136 0.322 -0.475 

     
Table 2: Variance and skew from the distributions of the 
differences between the original parameter values and those 
estimated by the genetic algorithm. CP refers to the number 
of coordinate pairs in each sample. 
 

 

1601



We also examined the distributions of parameter 
estimates for 10 and 40 coordinate pairs separately in order 
to validate the use of the parameter estimation algorithm 
(see Figure 2). Table 2 lists the skew and variability for the 
unstandardized differences between estimated and original 
parameter values. The lack of skew indicates a lack of bias 
in the parameter estimates, and low variability in the 
parameter estimates indicates consistency. Bias and/or 
inconsistency in the parameter estimates would have 
allowed for the possibility that our patterns of results were 
attributable to problems with the parameter estimation 
algorithm. 

Discussion  
In the present work, we investigated the effects of 
interpolation on the artificial inflation of the fit of 
bidimensional regression models. We generated random 
data representing various situations that are often 
encountered in spatial cognition research such as the 
analysis of incomplete sketch maps. In order to relate to 
situations with differently sized data sets, we manipulated 
the number of coordinate pairs per sample. We also 
manipulated percent interpolated in order to establish the 
conditions under which interpolation may not be 
appropriate. Using a genetic algorithm, we interpolated the 
missing data while ensuring unbiased and consistent 
parameter estimates for the bidimensional regression 
models. 

Two primary effects emerged. First, there was a linear 
relationship between percent interpolated and the amount of 
inflation in the fit of the bidimensional regression models. 
Specifically, inflation was higher when a greater percent of 
the coordinate pairs were interpolated. Second, smaller data 
sets produced more inflation than larger data sets despite 
having fewer free parameters.  

These results highlight a major limitation in using 
interpolation as a method for compensating for missing 
values when using bidimensional regression. For example, 
the interpolation of only one coordinate pair out of ten 
resulted in an artificial inflation of approximately 8% on 
average. Such effects should be considered in spatial 
cognition research, given that the analyses of most sketch 
maps involve only a limited number of points (i.e., 
landmarks; Guzmán-Muñoz & Johnson, 2008; Ishikawa & 
Montello, 2006; Ishikawa, 2013; Lloyd, 2005; Schinazi, 
2008; Schinazi et al., 2013; Uttal et al., 2010). Future 
studies that compare the fits of multiple regression models 
should also attend to the possibilities that one or more of 
those fits were inflated. This situation can be problematic 
because the precise extent to which a fit was inflated would 
be unknown. Thus, a comparison could artificially shift in a 
positive or negative direction. 

These results also indicate that a larger number of 
coordinate pairs allows for a more reliable interpretation of 
a model’s performance. This was evident in the significant 
difference between the samples with 10 and 40 coordinate 
pairs. Researchers are encouraged to design studies in such 

a way as to maximize the number of measured points. For 
example, this may be achieved by providing longer learning 
periods that allow for the acquisition of a larger number of 
landmarks.  

We also assessed whether genetic algorithms are 
appropriate for fitting bidimensional regression models. The 
utility of this algorithm was evidenced by low skew and 
variance in the distribution of the parameter estimates. 
Additional simulations should be conducted in order to 
compare genetic algorithms to others that are commonly 
used to fit bidimensional regression models (e.g., other hill-
climbing algorithms). 

Future research should also consider alternative methods 
of interpolation that have been employed in the analysis of 
unidimensional data. For example, Bayesian multiple 
imputation (Schafer & Graham, 2002) may be useful for 
bidimensional data. Using assumptions such as normality of 
the underlying population, this method may allow for a 
more veridical solution to the missing data problem. 

 Our results may also have an interesting implication 
regarding the relationship between the number of coordinate 
pairs and the smoothness of the fit surface. One difference 
between 10 and 40 randomly generated coordinate pairs that 
are constrained to be within the same range (e.g., between -1 
and 1 for the present case) is that the lower number of 
coordinate pairs can be more distributed. Because of this 
greater distribution, the movement of any one of these 
coordinate pairs (considered a free parameter) may have a 
greater effect on the prediction of a bidimensional 
regression model than the movement of an equivalent 
percent of coordinate pairs from the larger sample. 
Depending on the size of the difference in variability 
between the differently sized samples, this can override the 
flexibility typically afforded by the additional free 
parameters. Thus, a sample consisting of a larger number of 
coordinate pairs may result in a smoother function relating 
parameter values to overall model fit. 

In summary, we have demonstrated artificial inflation of 
the fit of bidimensional regression models after 
interpolation for both randomly generated and real-world 
data sets. We have also highlighted the conditions under 
which this inflation is more likely to occur. The conditions 
that were most affected also represented those that are 
commonly applied in spatial cognition research. 
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