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Abstract 

The basic cognitive architecture of the human brain remains 
unknown. However, there is evidence for the existence of 
distinct behavioral control systems shared by humans and 
nonhumans; and there is further evidence pointing to distinct 
higher-level problem solving systems shared by humans and 
other primates. To clarify the nature of these proposed 
systems and examine how they may interact in the brain, we 
present a four-level model of the primate brain and compare 
its performance to three other brain models in the face of a 
challenging foraging problem (i.e., with transparent, and thus, 
invisible barriers). In all manipulations (e.g., size of problem 
space, number of obstacles), our model never performed the 
best outright; however, it was always among the best, 
appearing to be a jack-of-all-trades. Thus, the virtues of our 
primate brain lie not only in the heights of thinking it can 
reach, but also in its range and versatility. 

Keywords: cognitive control; cognitive architecture; 
reinforcement learning; creativity; agency; concept formation 

Introduction 
There is considerable evidence for the existence of two 
neural systems controlling mammalian behavior: (1) a goal-
directed decision-making system based in the ventromedial 
prefrontal cortex (vmPFC), and (2) a habit system based in 
the striatum (Daw, Niv, & Dayan, 2005; Rangel, Camerer, 
& Montague, 2008). It has been argued that the goal-
directed system is model-based, meaning essentially that an 
individual knows what will happen upon taking an action; 
while the habit system is not, meaning that an individual 
simply knows what action to take in a given state of the 
world (Daw et al., 2005). A model-based system potentially 
provides an infrastructure for mental simulation, planning, 
and reasoning, which in turn lead to faster learning and 
greater generalization across environmental conditions. 
Such potent abilities reduce errors when facing novel 
situations. However, research in engineering and computer 
science shows that models are notoriously brittle and 
therefore often break under real-world conditions. One 
approach to dealing with this brittleness is to have a fallback 
process that does not rely on the model, and this appears to 
be one of the main advantages of the model-free habit 
system. Another approach would be to have an additional 
system that can fix the models when they break, enabling 
individuals to solve these harder problems. We classify 
these two types of problems as apparent — i.e., the problem 
features are properly modeled by the standard model-based 

problem-solving system — and nonapparent — i.e., those 
that break the system.  

In primates, there is neuroanatomical evidence for a 
distinct region of prefrontal cortex (PFC), called granular 
PFC (which includes lateral PFC and frontal pole), and 
some theorists have suggested that this region may enable 
primates to perform unconventional behaviors, such as 
looking away from a salient visual stimulus when required 
to do so (Passingham & Wise, 2012; Striedter, 2005). 
Related to this view, we hypothesize that granular PFC 
mediates the cognitive ability to solve nonapparent 
problems. Moreover, we believe that a detailed analysis of 
this ability in primates will shed light on the mechanisms 
that underpin creative problem solving in people.  

Here, we present a computational framework and model 
to begin this analysis of clarifying apparent versus 
nonapparent problem solving, as well as to examine how 
these processes interrelate with the other main behavioral 
control systems of the primate brain. First, we focus on the 
classic detour problem in the comparative literature, in 
which subjects must circumvent a barrier (either via 
reaching or navigating) to obtain a reward item (Wynne & 
Udell, 2013). Most comparative research on the detour 
problem has focused on cases with opaque barriers as 
obstacles, and have generally shown that many species can 
solve the problem — thus, they have the basic capacity to 
take paths away from a goal item to reach it, at least when 
the obstacle is clearly defined. 

However, as illustrated in Figure 1a, many nonhuman 
animals and human infants find the problem challenging 
when the barrier is transparent, as they repeatedly attempt to 
reach directly for the reward item, even in the face of strong, 
negative feedback (Diamond, 1990; Santos, Ericson, & 
Hauser, 1999; Wallis et al., 2001). This insensitivity to 
feedback is typically explained as an inability to inhibit a 
lower-level behavioral control system (such as a Pavlovian 
system). However, other experimental conditions suggest 
not, at least for nonhuman primates (Santos et al., 1999). 
For example, when first given experience with an opaque 
barrier, subjects tend to solve the transparent barrier 
problem. The ease with which they refrained from reaching 
directly for the food item once they had an alternative 
response available suggests that the major difficulty did not 
stem from a lack of self-control.  

We propose that the difficulty results from confusion with 
the transparent barrier: the subjects do not readily see that 

2723



there is a barrier. Although their response is blocked, there 
is no apparent reason for it, and so they continue to attempt 
the most efficient solution of reaching directly for the goal 
item. We suggest that this is an example in which a 
problem-solving system sees a clear solution and is 
therefore overriding feedback to the contrary. However, it is 
using a broken model. Put differently, it is an example of a 
cognitive illusion that provides insight into how cognitive 
systems are constructed (Kahneman, 2011).  

 

 
Figure 1: Illustration of a nonapparent problem. (a) The 
marmoset monkey attempts to reach directly for the 

marshmallow but is blocked by the transparent barrier. (b) 
The monkey learns to reach around the barrier.1 

 
We further suggest that the transparent barrier problem 

requires a nonapparent solution. To solve it, the problem-
solving system must include an obstacle in the problem 
formulation, thus fixing the model that did not include it. 
However, if an individual cannot see that an obstacle exists, 
it must be inferred from the effect of being blocked. Thus, 
taken together, we use the detour problem with a transparent 
barrier as an example of a nonapparent problem, and more 
specifically, as a case in which an individual confronts an 
unknown event or consequence, must infer a hidden cause, 
and create a (nonperceptual) concept to model it (Goswami, 
2008; Holyoak & Morrison, 2012). 

In addition, there is evidence that the ability to solve this 
nonapparent problem is subserved by a separate problem-
solving system. Chiefly, it has been shown that rhesus 
monkeys who normally solve the transparent barrier 
problem lose this ability with lateral PFC lesions (Diamond, 
1990). Thus, such findings implicate lateral PFC in 
mediating nonapparent problem solving, and suggest that it 
is separable from what we are calling apparent problem 
solving.  

From these results and others, we model the primate brain 
with four basic levels of behavioral control. The first is 
based on the first main system in the vertebrate brain that 
controls complete goal-oriented behaviors: the 
hypothalamus (Swanson, 2000). That is, it is the first 
behavioral control system involving complete behavioral 
sequences that attain goals, such as goal-directed approach 
and ingestion behaviors when food is perceived. However, 
here we assume it is normally inhibited until the goal state is 
reached, and then is used to complete the process of actually 
obtaining and ingesting the food item. The second level 

                                                             
1With permission from Wallis, Dias, Robbins, & Roberts (2001) 

© 2001 Federation of European Neuroscience Societies. 

represents the striatal-based habit system, which uses 
model-free reinforcement learning. The third level 
represents the first model-based problem solving system, 
i.e., that which solves apparent problems. This system 
would solve the detour problem with well-defined, opaque 
barriers, but would produce direct reaching with the ill-
defined transparent barrier. The fourth level, then, performs 
nonapparent problem solving, and evidence suggests it is 
mediated by granular PFC. Evidence that granular PFC 
mediates nonapparent problem solving further suggests that 
mammalian vmPFC likely underlies the solving of apparent 
problems. 

Because these systems of the primate mind/brain evolved 
under specific selection pressures, we also attempted to 
model these pressures to best understand the utility of each 
system and their interactions. More specifically, we used a 
foraging problem, and tested parameters to mimic basic 
selection pressures, such as size of the foraging 
environment, number of obstacles, and changing conditions, 
e.g., changes in the goal state position. In addition, because 
the primate brain evolved along a specific phylogenetic 
trajectory, rather than studying each system in isolation, we 
examine them from this phylogenetic perspective, in which 
each system appears to be added to a previous combination. 
Thus, very roughly, we compared the four-level primate 
brain model to an ancestral vertebrate brain, consisting of 
the first two levels, and an ancestral mammalian brain, 
consisting of the first three levels. We also compared the 
model to an alternative primate brain consisting of Levels 1, 
2, and 4 (i.e., without the simpler apparent problem-solving 
system).   

In this paper, we focus on the main difference between 
the levels and therefore only use transparent barriers (i.e., no 
opaque ones). Thus, when no obstacles are in the direct 
path, the apparent system can solve the problem; otherwise, 
the nonapparent system must be utilized. 

In sum, the aims of the current project were (1) to begin 
specifying more clearly how nonapparent problems can be 
solved when the simpler model-based problem solving 
system fails; (2) to examine the potential advantages and 
disadvantages of a four-level system; and (3) to determine 
the foraging conditions that would provide a selective 
advantage for this brain architecture. 

Methods 
In what follows, we describe the modeling environment, and 
then layout the details of our model; we next present the 
four competing models, and then describe how the models 
were assessed. 

Modeling environment 
To focus on the main features of our model, we sought to 
keep the testing environment as simple and straightforward 
as possible. Therefore, we tested the model with a foraging 
problem using a 2D grid world, in which the agent must 
learn a path from its current location to the goal location that 
avoids all obstacles (Figure 2).  
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Figure 2: Example grid world, with the ‘Initial state’ 
denoted as “S” (Start) and the ‘Goal state’ in green. 

Obstacles are denoted in black, however, they are actually 
transparent (and thus hidden to the problem solver visually). 

Model description 
Our model consists of the four levels and a cognitive control 
mechanism that passes control between them. 
Level 1 enables actual goal attainment once in view. For 
foraging, it completes the act of food consumption. This 
level is assumed in the four-level model, and is not 
explicitly modeled or tested here. With respect to the brain, 
Level 1 represents hypothalamus, which is considered the 
first behavioral control system involving complete 
behavioral sequences that attain goals (Swanson, 2000). 
Level 2 represents the striatal-based habit system. It uses a 
Markov Decision Process (MDP) and Reinforcement-
Learning (RL) framework (Sutton & Barto, 1998). Thus, 
there is a set of states, i.e., the (x, y) positions in the grid 
world; a set of possible actions, i.e., all eight reachable 
positions from a given grid world position; and a reward 
function that assigns values (called action or Q values) to 
the actions based on environmental feedback, with the Q 
values representing expected future reward. The agent then 
learns to choose the best action (i.e., policy) in a given state 
that leads to the highest future reward. Thus, rather than 
having a model of the world, i.e., an understanding of how 
the states relate to each other in the larger grid world, Level 
2 sees the states independently, simply using a Q-Table to 
determine action values in each state (Daw et al., 2005). 
Level 2 is composed of learning and acting components. 
The learner updates the action values using the following 
Q-learning algorithm (a form of RL learning): 

Qt+1(st, at) = Qt(st, at) + α [rt+1 + γmaxa(st+1, a) - Qt(st, at)] 
where α is the learning rate α ∈ [0, 1]; rt+1 is the actual 
reward received at episode t+1; and γ is the discount factor 
γ ∈ (0, 1) (Sutton & Barto, 1998). The actor selects an 
action according to the Boltzmann distribution of Q values: 

, where τ is the temperature that 
controls the degree of action exploration. 
Cognitive control, i.e., control between levels, in the 
current model is generally hierarchical and modulatory 
(Kahneman, 2011; Miller & Cohen, 2001). Control begins 
at Level 2; however, when Level 2 fails (here, when the 
maximum Q value for an action is not unique), control 
passes to Level 3. Levels 3 & 4, representing apparent and 

nonapparent problem solving respectively, derive their 
behavioral control by modulating the actor in Level 2 (by 
modifying the action values and then passing control back 
to the Level 2 actor when a solution is found). If Level 3 
fails to find a solution, it passes control to Level 4; and if 
Level 4 fails, Level 2 selects an action randomly. Future 
work will examine a more sophisticated controller based on, 
e.g., cost/benefit analysis (Daw et al., 2005; Kowaguchi et 
al., accepted). 
Level 3 represents explicit problem solving when problem 
components are apparent, passing control to Level 4 when 
they are ill-defined and a solution cannot be found. Both 
Levels 3 and 4 look for solutions based on a cognitive 
model—i.e., a cognitive map—of the problem environment 
that is built in the background as the problem solver moves 
through it and experiences the state transitions: i.e., the 
subsequent state reached when an action is taken in a given 
state (with all transition probabilities = 1), e.g., T(si, aj) à 
sʹ′, where si = (1, 1), aj = move right; and sʹ′ = (2, 1), and 
thus, placing sʹ′ to the right of si in the map/model (Sutton & 
Barto, 1998; Daw et al., 2005). This model thus has an 
understanding of the relationships among the states in the 
grid world that Level 2 cannot see. Currently, we have one 
cognitive model that is built; however, Levels 3 and 4 
contribute different elements to it and utilize what they have 
access to. 

More specifically, for both Levels 3 and 4, all problems 
are considered multi-agent problems, with three classes of 
agents: self, others, and goals (Holyoak & Morrison, 2012; 
Shi et al., 2010; Wooldridge, 2009). All are considered 
agents because they could theoretically invoke a state 
change by virtue of their actions and functional relationships 
with other agents. (This would occur for the goal item if, for 
example, it were moving prey; however, in the current case, 
the goal item is stationary.) Thus, the cognitive model used 
by Levels 3 and 4 consists of four main components: (1) an 
x, y coordinate frame that defines each location in the grid 
world; (2) the identification and location of every agent in 
the problem; (3) the set of available actions each agent 
could take; and (4) an understanding of functional 
interactions among the agents (Goswami, 2008): i.e., 
fi(agentj, target agentk), where fi could be acquiring the goal 
item by the problem solver or blocking of the problem 
solver by an obstacle (also considered an agent by virtue of 
this blocking effect). For the current study, there is only one 
type of obstacle with only one available action: blocking.  

For any novel problem in the grid world, the problem 
solver cannot see the entire problem immediately — the 
world is too large — and so a cognitive model must be 
developed via initial experience with each state. Model 
building entails developing the cognitive map of (x, y) 
coordinates for each state as well as whether an agent 
resides in each state. Again, because Level 3 can only see 
apparent obstacles, not invisible ones, it cannot see any of 
the transparent obstacles, and thus assumes there aren’t any.   

For problem solving, Level 3 uses the cognitive model to 
find a path to the goal. Since Level 3’s view of the grid-

 

 
Initial	
  state 

Goal	
  state 
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world problem appears clear of obstacles, it always finds a 
direct path to the goal. The potential advantage of this is that 
when there are clear paths to the goal, a brain that contains 
this system would provide fast and efficient solutions. Since 
Level 3 always sees a clear path, it will continue producing 
this solution (via hill climbing), leaving the problem solver 
in a potential phase of perseveration (i.e., continuing to 
attempt the same direct path solution). This impasse, then, is 
what causes cognitive control to pass to Level 4. 
Level 4 assumes control when Level 3’s model breaks. 
Level 4 therefore represents the system that attempts to find 
these nonapparent solutions. For the current project, this 
occurs every time a hidden cause, i.e., an ‘invisible’ 
obstacle, blocks the direct path to the goal. In this case, the 
obstacle is literally nonapparent to Level 3. 

Level 4’s main contributions occur with both the building 
of the overall cognitive model of the grid-world problem 
and utilizing it to solve the nonapparent problems. First, as 
the problem solver is moving in the problem space (the grid 
world) via the actor module, when it is blocked, Level 4 
uses this information conceptually, inferring that there is an 
agent doing the blocking (Goswami, 2008; Holyoak & 
Morrison, 2012; Tenenbaum et al., 2011; Wynne & Udell, 
2013). That is, it infers fi(obstacle, self), where fi is blocking. 
From this inference, Level 4 places a blocking agent at the 
grid location in the cognitive model. Unfortunately, Level 3 
cannot see this nonvisual conceptual obstacle; it is beyond 
Level 3’s comprehension. 

Second, when cognitive control is passed to Level 4, it 
uses the complete cognitive model (including the 
transparent barriers) to find a path to the goal. To achieve 
this, Level 4 currently uses the planning algorithm A* 
(called ‘A star’) to find an efficient path around the 
obstacles to the goal (Russell & Norvig, 2010). Once a path 
is found, Level 4 then modifies the Level 2 action values so 
that the actor module will use the path. The main advantage 
of Level 4 over Level 2 (simple model-free RL) is that it can 
perform inductive inference, and use the internal cognitive 
map for mental simulation and planning, leading to rapid, 
one-trial learning via problem solving (as well as greater 
generalization to novel problems in future model 
development) (Passingham & Wise, 2012).  

Figure 3 summarizes the key characteristics of each level. 
 

 
             Figure 3: Description of model levels. 

Brain models 
We compared our model to three others, thus testing four 
different multi-level models:  

(1) Model 1: consisting of levels 1 & 2 
(2) Model 2: levels 1, 2, & 3 
(3) Model 3: levels 1, 2, & 4 
(4) Our model, Model 4: levels 1, 2, 3, & 4 

All four models assume the existence of Level 1. Model 1 
simply uses model-free reinforcement learning, and roughly 
speaking, perhaps represents an ancestral vertebrate. Model 
2 combines model-free RL with the ability to solve more 
straightforward, apparent problems, perhaps representing 
the ancestral mammalian brain. Model 3 represents a brain 
that contains both lower level model-free RL and the higher 
level nonapparent problem-solving system that one might 
argue should replace the simpler apparent problem-solving 
system altogether. Model 4 is our multi-level model of the 
primate brain. 

Model assessment 
We examined the effects of (1) grid world size, (2) number 
of obstacles, (3) changing initial states, (4) changing goal 
states, and (5) changing obstacles. The models were 
assessed via two measures (average from ~50 iterations): (1) 
Cumulative number of steps to reach the goal after 200 
learning episodes (i.e., 200 times in which the goal item was 
reached); and (2) Cumulative computational cost needed per 
action, measured as the amount of processing time per 
action. The two measures were combined to obtain an 
overall performance score.  

Simulation results 
Because Level 1 was not explicitly modeled or examined 

here, results are from Levels 2-4. We maintain the color-
coding of the model names to help keep them straight. 

Grid world size 
To examine the effects of grid world size, no obstacles were 
included. As seen in Figure 4a, performance was best for 
Model 1 with the smaller world and worse with the largest 
grid size. As the world size increased, Model 2 and Model 4 
performed the best. Figure 4b shows the learning rates, and 
Figure 4c the cumulative computational costs for all four 
brain models for the largest grid world size (40x40). Model 
1 was slower to learn a path to the goal (and progressively 
more so as the world size increased); in contrast, the other 
models all continued to learn very quickly. For all grid 
world sizes, the computational cost was greatest for Model 3 
and lowest for Model 1. 

Number of transparent obstacles 
All remaining analyses used the large grid size. As the 
number of obstacles increased, Model 1 and Model 2 were 
slower to learn a path to the goal, while Model 3 and Model 
4 continued to learn quickly. As shown in Figure 5, Model 4 
performed relatively well across all numbers of obstacles, 

1. See goal à obtain it  
    (e.g., Approach food à  ingest) 
2. (a) Actor (action selection via Boltzmann distribution) 
    (b) Learner (Q-learning algorithm) 
3. (a) Builds internal cognitive model 
    (b) Hill-climbing search 
    (c) Change Level 2 Q-values for Actor 
4. (a) Adds transparent obstacles to the internal model 
    (b) A* search  
    (c) Change Level 2 Q-values for Actor 

Levels  
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Model 2 performed relatively well until the largest number, 
Model 3 was relatively better with the largest number of 
obstacles, while Model 1 performed the poorest at every 
number of obstacles. 

 

 
Figure 4: (a) Performance of the four brain models as a 
function of grid world size, (b) Learning rates, and (c) 

Cumulative computational costs for all four brain models 
for the largest grid world size (40x40). Bands around the 

curves represent standard error of the mean (SEM). 
 

 
Figure 5: Model performance as a function of the number 

of transparent obstacles in the grid world. 

Changing world 
To examine the effects of a changing initial state and 
changing goal state, no obstacles were used.  
Changing initial state The initial state of the problem 
solver was changed once every 50 episodes or once every 
10 episodes. The models were generally robust with the 
changing initial states, although computational costs 
increased, especially for Model 3. As shown in Figure 6, 
overall performance was best for Model 2 and Model 4. 
Changing goal state As seen in Figure 7a, rises in path 
length occurred when the goal state changed, especially for 
Model 1. With a changing goal state (and no obstacles), the 
computational costs for Model 3 were relatively high (Fig. 
7b).  

 
Figure 6: Model performance as a function of the rate of 

change of the initial state: once every 50 episodes or once 
every 10 episodes. 

 
Figure 7: (a) Learning rates and (b) Cumulative 

computational costs for the highest rate of goal state 
location change (once every 10 episodes). Bands around the 

curves are SEMs. 
 

As seen in Figure 8, Model 2 and Model 4 outperformed the 
others. 

 
Figure 8: Performance as a function of changing goal state. 

Changing (transparent) obstacles As shown in Figure 9, 
when the number of obstacles (600) and frequency of 
change (1/10) were high, Model 3 and Model 4 found a path 
to the goal most quickly (Fig. 9a), however, the 
computational demands were relatively steep (Fig. 9b). 

 
Figure 9: (a) Learning rates and (b) Cumulative 

computational costs for changing obstacles (600 total, once 
every 10 episodes). Bands around the curves are SEMs. 
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Discussion 
Model-based problem solving potentially provides great 
advantages, such as lowering the number of errors during 
learning and generalizing to novel problems (Daw et al., 
2005; Holyoak & Morrison, 2012). However, models of the 
real world are notoriously brittle, and thus require other 
approaches to problem solving when they break. It has been 
hypothesized that primates have evolved granular prefrontal 
cortex to cope with these more challenging, nonapparent 
problems. Here, the aims of our study were threefold: (1) to 
begin clarifying the mechanisms of nonapparent problem 
solving, (2) to examine the potential advantages and 
disadvantages of having four types of behavioral control 
systems, and (3) to determine the foraging conditions that 
would provide a selective advantage for this brain 
architecture. We used the classic detour problem in the 
comparative literature, and in particular, focused on the use 
of transparent barriers, which prove challenging for 
nonhuman animals. We suggest that an apparent problem-
solving system, likely mediated by vmPFC, can solve detour 
problems with well-defined obstacles; while a nonapparent 
system, mediated by granular PFC, can solve the problem 
with ‘invisible’, transparent barriers. It does so by inferring 
the existence of a barrier from its effects on the problem 
solver. Thus, this system may underlie the powerful ability 
of humans to infer hidden causes from given events and 
consequences (Holyoak & Morrison, 2012; Tenenbaum et 
al., 2011). Other behavioral research we have conducted 
with monkeys suggests further possible mechanisms for the 
nonapparent system that help solve insight problems by both 
nonhuman primates and people (Murray, Kralik, Wise, 
2005; Kowaguchi et al., accepted; Kralik, 2005, 2011). We 
plan to incorporate these findings in the future.  

With respect to our second and third aims, the advantages 
of greater cognitive abilities must outweigh the 
disadvantages, and the advantages of a multi-level brain 
architecture appears to lie in its versatility. In all 
manipulations conducted here, our model (Levels 1-4) never 
performed the best outright; however, it was always among 
the best, appearing to be a jack-of-all-trades. Thus, rather 
than fitting a high-level cognitive niche best, our brain 
model appears to best fit a niche with problems of varying 
levels of complexity: a low-to-high cognitive niche. Thus, it 
may be useful to have multiple behavioral control systems 
at different levels of sophistication, which allow 
computational savings when facing simpler problems, and 
more elaborate capabilities when faced with more 
challenging ones (Kahneman, 2011; Rangel et al., 2008).  

More theoretical development, however, is required to 
better understand the characteristics of such multi-level 
systems. For example, we plan further developments that 
include using a dynamic environment, different classes of 
agents that can both hinder or aid the problem solver in goal 
attainment, more sophisticated inductive reasoning and 
cognitive-control mechanisms, and further levels of 
abstraction (Botvinick, Niv, & Barto, 2009; Daw et al., 
2005; Shi et al., 2010; Tenenbaum et al., 2011).  

The ability to solve problems creatively across a wide 
range of domains embedded in complex, physical 
environments remains out of reach for current artificial 
systems; but we are extending their reach (Hélie & Sun, 
2010). A detailed analysis of how it evolved in the human 
lineage should help to further demystify the creative 
process. Such an analysis can also help to clarify how 
primates in general, and humans in particular, have come to 
fill the low-to-high cognitive niche. Creative thinking 
represents the pinnacle of high-level cognition and underlies 
many of our greatest achievements. This success not only 
derives from the heights of thinking we can attain, but also 
the diversity of challenges we can master. 
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