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Separating Dark Physics from Physical Darkness:

Minimalist Modified Gravity vs. Dark Energy

Dragan Huterer1 and Eric V. Linder2
1Kavli Institute for Cosmological Physics and Astronomy and

Astrophysics Department, University of Chicago, Chicago, IL 60637
2Berkeley Lab, University of California, Berkeley, CA 94720

(Dated: February 5, 2008)

The acceleration of the cosmic expansion may be due to a new component of physical energy
density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth
of large scale structure in tandem can provide insights to distinguish between the two origins. Using
Minimal Modified Gravity (MMG) – a single parameter gravitational growth index formalism to
parameterize modified gravity theories – we examine the constraints that cosmological data can
place on the nature of the new physics. For next generation measurements combining weak lensing,
supernovae distances, and the cosmic microwave background we can extend the reach of physics to
allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation
of state estimation by less than 25% relative to when general relativity is assumed, and determining
the growth index to 8%. For weak lensing we examine the level of understanding needed of quasi-
and nonlinear structure formation in modified gravity theories, and the trade off between stronger
precision but greater susceptibility to bias as progressively more nonlinear information is used.

I. INTRODUCTION

Whether the acceleration of the cosmic expansion is
due to a new physical component or a modification of
gravitation, the answer will involve groundbreaking new
physics beyond the current standard models for high en-
ergy physics and cosmology. To obtain the clearest, unbi-
ased picture of the fundamental physics we need to allow
for the possibility of gravitation beyond Einstein and see
where the data lead. This article presents simultaneous
fitting of the cosmic expansion and the theory of gravity.

Direct measurements of the expansion history can be
interpreted generally as the equation of state of the uni-
verse; this may or may not correspond to a physical com-
ponent. Measurements of the growth history of mass fluc-
tuations combine information on the expansion and the
theory of gravity. The two in complementarity thus allow
separation of the possible origins for cosmic acceleration
– a physical dark component, e.g. a new field in high en-
ergy physics, or dark (new) physics, e.g. a modification
of Einstein gravity.

Within a specific theory of modified gravity one can
attempt to calculate the cosmological observables and
determine the goodness of fit with data. This model de-
pendent approach must proceed on a case by case basis
and moreover suffers from difficulties in computation of
many quantities due to the complexity of the theories.
Nor are the modifications necessarily well motivated or
completely free from pathologies. The alternate approach
taken here is phenomenological, using a model indepen-
dent yet physically reasonable and broad parameteriza-
tion of the gravity modification to gain insight into the ef-
fect of generalizing Einstein gravity. This is closely anal-
ogous to the widely successful equation of state approach
to modifications of the expansion history, giving model
independent constraints and understanding.

In §II we discuss the development of the parametrized

approach and its range of validity. §III lays out the cos-
mological probes, fiducial models, and survey data char-
acteristics used in our analysis. We examine in §IV the
ability of next generation cosmological probes to reveal
new gravity simultaneous with fitting cosmological ex-
pansion, and the cosmological bias incurred if we neglect
to allow the possibility of beyond Einstein gravity. Lever-
age and systematics from the nonlinear regime are dis-
cussed in §V.

II. GRAVITATION AND GROWTH

Attempting to invent a general prescription for taking
into account the effects of modified gravity is like seek-
ing a general treatment of non-Gaussianity: there are so
many ways in which a theory can be “not”, in which a
symmetry can be broken, that it seems a hopeless task.
However, we do not seek an all-encompassing description
of modified gravity in all its aspects, but rather its gross
effects on cosmological observables beyond the expansion
rate.

As a beginning step, we take a fairly conservative ap-
proach we call Minimal Modified Gravity (MMG). The
modifications we consider are small, since general rela-
tivity gives a predominantly successful description of the
universe and its large scale structure, and homogeneous,
i.e. not dependent on environment à la chameleon scenar-
ios [1]. We assume that structure formation continues to
be described adequately by growth from Gaussian den-
sity perturbations. For weak gravitational lensing, we
do not have to get too deeply involved in the nonlinear
density regime and can concentrate on the growth law;
we assume changes to the gravitational deflection law are
negligible.

This approach seeks to build understanding of modi-
fied gravity by taking a modest step away from general
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relativity. By examining an alteration in the linear per-
turbation growth, preserving the standard mapping from
linear to nonlinear fluctuations, we obtain a clear pic-
ture of a specific effect of modified gravity (see §V for
relaxation of the assumption of standard mapping and
discussion of scale dependence). This serves as a proxy
for presumably more complicated and model dependent
effects.

The form of the growth equation can be written so as
to directly show the influence of the cosmic expansion
and the additional effect of the gravity theory. For a
matter density perturbation δ ≡ δρ/ρ, the linear growth
factor g = δ/a (scaling out the matter dominated uni-
verse behavior δ ∼ a) evolves in general relativity as

g′′ +

[

5 +
1

2

d lnH2

d ln a

]

a−1g′

+

[

3 +
1

2

d lnH2

d ln a
−

3

2
ΩM (a)

]

a−2g = 0, (1)

where a prime denotes derivative with respect to the scale
factor a, H = ȧ/a is the Hubble parameter, and ΩM (a)
is the dimensionless matter density. Since the global cos-
mology parameters H and ΩM (a) are, essentially, the
expansion history, we see that the cosmic expansion de-
termines the structure growth.

To make the relation between growth probes and ex-
pansion probes such as the luminosity distance-redshift
relationship rl(z) even more explicit, we can start from
the growth equation as

δ̈ + 2Hδ̇ − 4πρδ = 0, (2)

where a dot denotes time derivative, and use

rl = a−1

∫

dt/a = a−1

∫

da/(a2H) (3)

(for a flat universe to keep the notation simple) to write

d2δ

dr2
l

(a−2 − Hrl)
2 −

dδ

drl
(Ha−2 + ä/a) − 4πρδ = 0. (4)

Thus in general relativity the growth clearly contains the
same cosmological information as the distance relation.

As discussed in [2], we can alter the growth equation
in modified gravity by changing the matter source term
(proportional to ΩM (a) in Eq. (1) or ρδ in Eq. (2)) or
adding a new source through a nonzero right hand side.
Green function solutions for such modifications are given
in [2]. The matter source term can be written as Qδ,
and Q = ∇2Φ/δ arises from the equivalent of the Pois-
son equation relating the metric potential Φ to the mat-
ter perturbation δ. One possibility is to make a phe-
nomenological modification to the Poisson equation and
investigate its effects on structure growth; this has been
investigated by [3–6] and we revisit it in §V. An intrigu-
ing approach of general quadrature relations between the
matter perturbations and metric potentials is discussed
by [7].

A key aspect to note is that much of the growth is

determined by the expansion history, even in modified
gravity, so we should not throw away that knowledge. By
following the effects, treating the expansion in terms of
the well-developed equation of state formalism (whether
arising from a physical dark energy or a modified Fried-
mann equation), i.e.

H2(z)/H2
0 = ΩM (1 + z)3 + δH2(z) (5)

w(z) = −1 +
1

3

d ln δH2

d ln(1 + z)
, (6)

and adding a new parameter to incorporate the effects of
modified gravity specifically on the growth source term,
we render the physics appropriately. This was the mo-
tivation behind the gravitational growth index formal-
ism of [2], which we follow, calling the ansatz MMG. An
alternate approach is to define wholly separate growth
variables (see, e.g., [8, 9]).

The gravitational growth index serves as a proxy for
the full modified gravity theory. The linear growth factor
is approximated by

g(a) = e

∫

a

0
d ln a [ΩM (a)γ

−1]
, (7)

where γ is the growth index. This was shown to be ac-
curate to 0.2% compared to the exact solution within
general relativity for a wide variety of physical dark en-
ergy equation of state ratios. We verify explicitly that
for dynamical dark energy where the equation of state
ratio is parametrized as w(a) = w0 + wa(1 − a), the for-
mulas for γ(w) given in [2] recover g(a) to better than
0.3% when w0 + wa < −0.1. That is, the growth index
parametrization of linear growth is extremely robust as
long as the early matter dominated epoch is not upset.

The gravitational growth index formalism has also
been tested and found accurate to 0.2% for a single mod-
ified gravity scenario [2], DGP [10, 11] braneworld grav-
ity, giving γ = 0.68. We conjecture that it may work for
modified gravity theories with monotonic, smooth (Hub-
ble timescale) evolution in the source term, so long as
the matter dominated epoch is not disrupted. For exam-
ple, in DGP the source term receives a smooth correction
1 − (1/3)(1 − Ω2

M (a))/(1 + Ω2
M (a)) [11–14]. Preliminary

results in scalar-tensor theory also indicate successful ap-
proximation [15]. Future work includes testing this for
other specific models; here we use the growth index as
an indicator of possible effects of modified gravity, with
the advantage of knowing at least it is robust for many
cases beyond ΛCDM.

III. FIDUCIAL MODEL AND COSMOLOGICAL

DATA

To assess the leverage of cosmological observations
to reveal dark physics vs. physical darkness, we si-
multaneously fit nine cosmological parameters: A, the
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normalization of the primordial power spectrum at
kfid = 0.05h Mpc−1; physical matter and baryon den-
sities ΩMh2 and ΩBh2, spectral index n, sum of the
neutrino masses mν , matter energy density today rela-
tive to critical ΩM , and parameters describing the ef-
fective dark energy equation of state w0 and wa, where
w(a) = w0 + (1 − a)wa. The mass power spectrum
∆2(k, a) ≡ k3P (k, a)/(2π2) is written as

∆2(k, a) =
4A

25Ω2
M

(

k

kfid

)n−1 (

k

H0

)4

g2(a)T 2(k)Tnl(k, a)

(8)
where T (k) is the transfer function, and Tnl(k, a) is the
prescription for the nonlinear power. Modified gravity
enters through the ninth parameter, the gravitational
growth index γ in the linear growth function g(a) from
Eq. (7), with the growth index γ = 0.55 for the fiducial
cosmology corresponding to a flat universe with Einstein
gravity and a cosmological constant. The other fiducial
values adopted correspond roughly to the current con-
cordance cosmology, with ΩM = 0.3, w0 = −1, wa = 0,
ΩBh2 = 0.023, ΩMh2 = 0.14, n = 0.97, mν = 0.2 eV
(one massive species), and A = 2 × 10−9 (corresponding
to σ8 ≃ 0.9). While the exact values of some of these
parameters, especially σ8, are still a subject of much de-
bate, we do not expect that different values allowed by
current data will change any of our conclusions on the
detectability of non-standard growth.

The linear power spectrum uses the fitting formulae
of [16]. We always use the linear growth function from
Eq. (7) and account for its dependence on cosmological
parameters ΩM , w0, wa and γ when taking the deriva-
tives for the Fisher matrix. To complete the calcula-
tion of the full nonlinear power spectrum we use the halo
model fitting formulae of [17].

For the cosmological probes, we assume future weak
lensing (WL) and Type Ia supernova (SN) data as pro-
vided by the SNAP experiment [18] as well as cosmic
microwave background anisotropy (CMB) data provided
by the upcoming Planck satellite [19].

In this work, for weak lensing we only consider the
two point correlation function. The weak lensing shear
power spectrum measures cosmology through both the
mass power spectrum and distance factors,

P κ
ij(ℓ) =

∫

∞

0

dz

r(z)2H(z)
Wi(z)Wj(z)∆2

(

ℓ

r(z)
, z

)

,

(9)
where r(z) is the comoving distance and H(z) is the
Hubble parameter. The weights Wi are given by
Wi(χ) = (3/2)ΩM H2

0 fi(χ) (1 + z) where fi(χ) =
r(χ)

∫

∞

χ
dχsni(χs) r(χs − χ)/r(χs), χ is the radial co-

ordinate and ni is the comoving density of galaxies if χs

falls in the distance range bounded by the ith redshift bin
and zero otherwise. We employ the redshift distribution
of galaxies of the form n(z) ∝ z2 exp(−z/z0) that peaks
at 2z0 = 1.0. The observed convergence power spectrum

is [20]

Cκ
ij(ℓ) = P κ

ij(ℓ) + δij
〈γ2

int〉

n̄i
, (10)

where 〈γ2
int〉

1/2 is the rms intrinsic shear in each compo-
nent, taken to be 0.22, and n̄i is the average number of
galaxies in the ith redshift bin per steradian. The cosmo-
logical constraints can then be computed from the Fisher
matrix

FWL
ij =

∑

ℓ

∂C

∂pi
Cov

−1 ∂C

∂pj
, (11)

where pi are the cosmological parameters and Cov
−1 is

the inverse of the covariance matrix between the observed
power spectra whose elements are given by

Cov
[

Cκ
ij(ℓ), C

κ
kl(ℓ

′)
]

=
δℓℓ′

(2ℓ + 1) fsky ∆ℓ
× (12)

[

Cκ
ik(ℓ)Cκ

jl(ℓ) + Cκ
il(ℓ)C

κ
jk(ℓ)

]

.

The fiducial WL survey assumes 1000 square degrees with
tomographic measurements in 10 uniformly wide redshift
bins extending out to z = 3. The effective source galaxy
density is 100 per square arcminute.

We will also sometimes consider a South Pole Telescope
(SPT [21]) type cluster survey with sky coverage of 5000
deg2 and a total of about 25000 clusters (for the assumed
cosmology with σ8 = 0.9), giving a number-redshift test
involving the geometric volume and the number density
from growth of structure. For simplicity, we neither con-
sider the additional information provided by masses of
the clusters, nor degradation of constraints due to the
imperfectly calibrated mass-observable relation (here the
observable is the Sunyaev-Zel’dovich flux). Our previous
tests have shown that these two effects roughly cancel
out in the final cosmological constraints [22]. Then the
cluster Fisher matrix is

F clus
ij =

∑

k

1

N(zk)

∂N(zk)

∂pi

∂N(zk)

∂pj
(13)

where N(zk) is number of clusters in kth redshift bin.
The SN survey provides a luminosity distance-redshift

test, with 2800 SNe distributed in redshift out to z = 1.7
as given by [18], and combined with 300 local supernovae
uniformly distributed in the z = 0.03 − 0.08 range. We
add systematic errors in quadrature with intrinsic ran-
dom Gaussian errors of 0.15 mag per SNe. The system-
atic errors create an effective error floor of 0.02 (1+zi)/2.7
mag per bin of ∆z = 0.1 centered at redshift zi.

For the CMB we use the full Fisher matrix predicted
for the Planck experiment with polarization informa-
tion (W. Hu, private communication). Note that most,
though not all, information about dark energy is cap-
tured in the distance to the last scattering surface from
the acoustic peaks of the power spectrum (e.g. [23]). The
effective precision of the angular diameter distance to
z = 1089 from Planck is 0.4% with temperature and po-
larization information [24].
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IV. FITTING GRAVITY

The combination of probes of the expansion history of
the universe and the growth history of large scale struc-
ture tests the nature of the acceleration physics. The
expansion history is described by the effective equation
of state parameters w0 and wa, and the deviation of the
growth history from that given by Einstein gravity un-
der that expansion is measured by the growth index γ.
Almost all cosmological analyses to date, however, have
assumed Einstein gravity or worked within a specific al-
ternate theory of gravity, rather than fitting for gravity.

Ignoring the possibility of modified gravity creates the
risk of the biasing our cosmological conclusions. This
holds not only for “gravitational” parameters but all in-
formation. Neglecting possible modification is equivalent
to fixing the gravitational growth index γ to its Einstein
value (e.g. γ = 0.55 for general relativity and a cosmolog-
ical constant model); however this will bias the other pa-
rameters due to their covariances with γ (this “gravity’s
bias” was illustrated for the linear growth factor alone,
rather than the weak lensing shear power spectrum, in
Fig. 5 of [25]).

Suppose the true value of the growth index differs by
∆γ from its assumed general relativity value. This prop-
agates through into the weak lensing shear cross power
spectrum Cκ

α(ℓ) at multipole ℓ for the pair of redshift bins
α ≡ {i, j}, changing it from the assumed general relativ-
ity value of C̄κ

α(ℓ). Using the Fisher matrix formalism,
the bias on any of the P cosmological parameters is

δpi = F̃−1
ij

∑

ℓ

[

Cκ
α(ℓ) − C̄κ

α(ℓ)
]

×Cov−1
[

C̄κ
α(ℓ), C̄κ

β (ℓ)
] ∂C̄κ

β (ℓ)

∂pj
(14)

≈ (∆γ)F̃−1
ij Fjg (15)

where the last line follows if the finite difference is re-
placed by a derivative. Here F̃ is the (P − 1) × (P − 1)
Fisher matrix that specifically does not include the
growth index γ, F is the full P×P Fisher matrix, summa-
tions over j and the redshift bin indices α, β are implied,
and g is the index corresponding to the γ parameter in
the matrix F .

Bias in the cosmology from neglecting the possibility of
modified gravity can be significant. The red (open) con-
tours in Fig. 1 demonstrate that assuming Einstein grav-
ity in a universe with γ actually higher by 0.1 can shift
the expansion characteristics (effective equation of state
parameters) by ∼ 2σ. Recall that the DGP braneworld
model has ∆γ = 0.13 with respect to the standard cos-
mological constant case. Note too that within this simple
treatment of modified gravity a shift in γ moves the w0-
wa contour along the degeneracy direction, else the bias
would be even larger. Given the price of closing our eyes
to the issue of possible gravitational modifications, we

-1.2 -1.15 -1.1 -1.05 -1 -0.95 -0.9 -0.85 -0.8
w

0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

w
a

allows for

gravity having ∆γ=0.1
neglects modified

modified gravity

FIG. 1: 68% and 95% CL constraints on the expansion his-
tory equation of state parameters w0 and wa, marginalized
over all other parameters. The two blue (filled) contours give
constraints from combining weak lensing, supernovae, cluster,
and CMB data, while simultaneously fitting for beyond Ein-
stein gravity. The black dot shows the fiducial model. The
two red (empty) contours show the biased constraints if the
modified gravity growth rate, here with ∆γ = 0.1, is ignored
(i.e. fixing γ to the general relativity value).

must attempt to fit for beyond Einstein deviations.

Including the gravitational growth index as an addi-
tional parameter, and marginalizing over it to estimate
the effective equation of state parameters describing the
expansion, removes the bias but necessarily degrades pa-
rameter determination. (This would of course become
more severe if we required more growth variables than
just γ.)

The degradation on the weak lensing shear constraints
from marginalizing over γ causes a factor ∼ 2 increase
in the contour area. While adding CMB or supernovae
data does not directly constrain the growth, they prove
valuable in breaking degeneracies between parameters.
Adding CMB to WL improves constraints by 30-35%, but
still suffers the factor of 2 weakening relative to fixing γ.
The inclusion of SN is potent in reducing uncertainties.
WL+SN+CMB allows for fitting modified gravity, im-
proving parameter estimation by 5-7 times and the area
constraint by 40 times over WL alone. Conversely, it
only dilutes estimation of w0 by 23%, wa by 14%, and
the contour area by 35% relative to the “fixed to Ein-
stein” case. This seems a fairly modest price to pay for
extending the physics reach to beyond Einstein gravity.

The marginalized uncertainties on the key parameters
describing the nature of the effective dark physics are
shown in Table I. Since SN and CMB do not probe
growth, we start with WL measurements and add other
probes in sequence.
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TABLE I: Fiducial constraints on the gravitational growth
index γ (last column), as well as the two expansion history
parameters w0 and wa. Starting with the weak lensing survey,
we then add the supernova, CMB, and cluster information
consecutively. Note that both WL and cluster surveys are
partially sensitive to nonlinear physics; constraints that only
rely on the linear regime are discussed in §V.

Probe σ(w0) σ(wa) σ(γ)

Weak lensing 0.33 1.16 0.23

+ SNe Ia 0.06 0.28 0.10

+ Planck 0.06 0.21 0.044

+ Clusters 0.05 0.16 0.037

While marginalizing over the growth index allows us to
account for modified gravity rather than ignoring it, we
also want to measure the modification itself. That is, we
want to extract information quantifying the deviation,
to guide us toward any “dark physics”, not just say that
there is some inconsistency with general relativity. Fig-
ure 2 show the constraints on the growth index from the
cosmological probes, in the γ-ΩM plane (marginalizing
over the equation of state and other parameters).

We see an enormous difference in the leverage on mod-
ified gravity as we combine probes, again due to the
breaking of degeneracies. The determination of γ reaches
0.044 for the combination WL+SN+CMB, representing
8% precision with respect to the Einstein value. If we
do not include supernova data, then the uncertainty in-
creases by a factor 2 (5 with only WL), and furthermore
the overall contour area in the γ-ΩM plane increases by
11 times (44 for WL only). So complementarity between
WL and SN is quite important for answering the ques-
tion of whether we are facing dark physics or physical
darkness.

Complementarity of probes is important for separation
of different physical effects on growth. While inclusion
of neutrino mass, which can suppress growth (as does
increasing γ), broadens the uncertainty area of WL by
74%, adding other methods immunizes against such a
“theory systematic”, with the effect on WL+SN+CMB
limited to 10%.

V. STRUCTURE IN THE NONLINEAR

REGIME

A. Beyond the linear regime

The gravitational growth index modifies the linear
growth factor, which then propagates into the full non-
linear growth of structure. Here we examine some issues
related to the nonlinear regime. In particular, clusters of
galaxies involve nonlinear growth and we might wonder
whether special sensitivity to modified gravity arises in
this regime. The left panel of Fig. 3 shows cluster counts

FIG. 2: 68% CL constraints on the gravitational growth index
γ and the matter density ΩM , marginalizing over the effec-
tive equation of state (and all other parameters). To fit for
beyond Einstein gravity as well as the expansion history re-
quires a combination of probes. Other effects on growth, such
as neutrino masses, should be taken into account as well; the
inner contour of each pair shows the effect of holding this
fixed, most severe for weak lensing in isolation.

per ∆z = 0.1 as a function of redshift for our fiducial
survey (motivated by the South Pole Telescope), for two
values of the growth index (γ = 0.55 and 0.65). Since
we normalized the power spectrum at high redshift, the
number density of clusters is independent of the growth
index at high redshift. As z → 0, the volume element,
which is independent of the growth index by definition,
dominates over the number density and makes the counts
go to zero for either model. Therefore the biggest differ-
ence between the two models is around the peak of the
redshift distribution at z ∼ 0.6, as illustrated in the left
panel of Fig. 3. Also shown are number count predictions
when the equation of state and neutrino mass have been
perturbed from their fiducial values by 0.05 and 0.3 eV
respectively. While the strong degeneracy of the growth
index with other cosmological parameters is apparent,
it is worth noting that clusters can in principle provide
several other observables to break this degeneracy, chief
among them being the mass information. However, in
the nonlinear regime we are at increased risk of the sim-
ple MMG model breaking down, possibly requiring model
dependent simulations for a specific theory of gravity.

Weak lensing also involves scales in the quasi-linear
and nonlinear regimes. The sensitivity of a weak lens-
ing survey is shown in the right panel of Fig. 3. For
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FIG. 3: Left panel: Cluster counts per ∆z = 0.1 as a function of redshift for our fiducial survey, for two values of the growth
index (γ = 0.55 and 0.65). Also shown are cases when the equation of state and neutrino mass have been perturbed from their
fiducial values by 0.05 and 0.3 eV respectively. Right panel: Auto-correlation power spectra of 4-bin weak lensing tomography
for the two values of the growth index, with statistical errors shown for the γ = 0.55 model.

simplicity, we consider the same fiducial survey as before
but with 4-bin (instead of 10-bin) tomography, with di-
visions z = [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 3]. We show the
four auto-correlation power spectra with corresponding
statistical errors for γ = 0.55, and the same but without
errors for γ = 0.65. The raw signal-to-noise for distin-
guishing the two values of the growth index increases with
redshift, giving an advantage to a deeper survey. The an-
gular scale at which the two values are best distinguished
decreases with redshift, so the multipole increases, going
from ℓ ∼ 500 for the first bin to ℓ ∼ 5000 for the last bin,
making advantageous a higher resolution survey.

We have also checked that the sensitivity to the growth
index increases as the density of resolved source galaxies
ng and their mean distance, parametrized by the mean
of the redshift distribution, are increased. All these fac-
tors indicate that a space-based weak lensing survey has
certain definite advantages for testing beyond Einstein
gravity. At this time, however, we have not further pur-
sued these sensitivity tests nor tried to devise an optimal
strategy to determine the growth index. The reason is
that by far the dominant uncertainty is a theory uncer-
tainty — our ability to predict the nonlinear clustering
statistics and associated observables — in a given modi-
fied gravity theory.

B. Uncertainty and bias

So far we have included nonlinear scales when obtain-
ing constraints from measurements involving the growth
of structure. Indeed, none of the cosmological growth
probes is solely a linear theory probe, with the possi-
ble exception of the Integrated Sachs-Wolfe effect (which,

however, very directly depends on the metric potentials
which themselves are likely to be altered in the modi-
fied gravity theory). By including nonlinear scales we
increase the statistical discrimination power with respect
to growth but may bias the results as a result of employ-
ing an improper nonlinear prescription for the modified
gravity growth. We now consider the trade off between
these two trends.

Since weak lensing probes a range of scales, we can
consider limiting the weak lensing information to scales
k ≤ kcut and investigate how the information on the
growth index is degraded. This “k-cutting” can remove
those physical scales where we lack dependable estimates
of modified gravity effects. The most straightforward way
to implement the cutting is to use weak lensing power
spectrum nulling tomography (see §5 of [26]) where, for
a given multipole ℓ, only the lens planes with distances
r(z) > ℓ/kcut are allowed to contribute information.
Higher ℓ then contribute increasingly less information,
and exhaust all information below kcut. For a fixed kcut,
we compute the ratio of the error in the growth index
relative to the error with kcut = ∞. The results are
shown with the solid line in Fig. 4. Restricting the infor-
mation to purely linear scales (kcut < 0.2h Mpc−1) leads
to degradations in the marginalized error in γ of more
than a factor of 10 relative to the full nonlinear fidu-
cial case. However, when the quasi-linear scales are used
(kcut < 1h Mpc−1), the degradation is kept to a factor
of a few, and the resulting constraints on the growth in-
dex are still interesting. Therefore, even if the nonlinear
prediction out to k ≈ 10h Mpc−1 (ℓ ≈ 10000) in modi-
fied gravity theories is unfeasible, efforts to understand
predictions on quasi-linear scales are well worthwhile.

Since we desire to retain values of k beyond the lin-
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FIG. 4: The solid (black) line shows the degradation in con-
straints on the growth index γ from a SNAP-type weak lens-
ing survey (plus SN+CMB) as small-scale weak lensing in-
formation is increasingly dropped. For each value of kcut, we
drop all information from k > kcut following [26] and com-
pute the ratio of the constraint on γ relative to the case when
all information is used, that is, when kcut = ∞. The dashed
curves (dark (red) and light (orange)) lines show the bias in
the growth index divided by the kcut = ∞ statistical error for
the bias model given in Eq. (17) with c = 0.05 or 0.01. The
optimum choice of kcut, with the least risk, occurs near the
intersection of the error and bias curves.

ear regime, for their leverage, it is instructive to make at
least an approximate estimate of the bias that might be
induced by keeping such data. Within the halo model,
the linear regime corresponds to the 2-halo term of clus-
tering between dark matter halos, while the nonlinear
regime involves the 1-halo term of the profile and concen-
tration within a halo. For k ≈ 0.2−1h Mpc−1, the 1-halo
contribution may be approximated by a white noise term
in the power spectrum [27], due to Poisson fluctuations
in the number of halos. In other words,

∆2(k, z) ≃ ∆2
lin(k, z) +

(

k

k∗(z)

)3

. (16)

We find a good fit to the full power spectrum in the
quasi-linear regime for k∗(z) = (5/3) knl(z), where the
nonlinear scale knl(z) is defined via ∆2(knl(z), z) = 1.

Since neither the presence of a 1-halo/2-halo split nor
the Poisson fluctuations in number should rely on the
specific gravity theory, we adopt this approach and con-
sider what happens if we improperly estimate the 1-halo
effects. This would shift the white noise term to a differ-
ent value (equivalent to changing the scale at which the
2-halo and 1-halo terms are comparable), i.e. biasing the
power spectrum by

δ(∆2(k, z)) = c

(

k

k∗(z)

)3

(17)

where c is a dimensionless constant which represents the
fractional error in the 1-halo term. We then use the
Fisher formalism to propagate this offset into biases on
cosmological parameters. (The expansion parameters w0

and wa are not appreciably affected by nulling, so we
focus on γ.)

The less of the nonlinear regime we use, the less ef-
fect the misestimated 1-halo, or c, term has. The results
are shown in Figure 4 where the dashed curves give the
bias in the growth index divided by the fiducial statistical
error (i.e. the statistical error for kcut = ∞). It is clear
that, as we perform increasingly more drastic nulling, de-
creasing the value of kcut, the bias/error ratio decreases
significantly. For c = 0.05 (0.01), cutting information
beyond kcut = 1 (6) h Mpc−1 gives bias in γ that is be-
low the statistical error, while increasing the error by a
factor of three (25%). One might expect the bias model
of Eq. (17) to be cut off in the stable clustering regime,
causing bias in γ to level off or decline at k greater than
a few times knl, e.g. k > 1h Mpc−1. This would allow use
of more of the nonlinear regime.

C. Scale dependent growth

MMG, with the gravitational growth index formalism,
has been adopted as the simplest reasonable method of
accounting for the effects of beyond Einstein gravity on
cosmological probes involving the growth of structure.
One part of its simplicity is that γ acts in a scale inde-
pendent fashion; this should reproduce global effects such
as time varying gravitational coupling. However many
modifications to gravity will introduce scale dependence
in the growth. For example, in the DGP braneworld we
might expect changes to the growth equation beyond the
varying coupling on both small and large scales, due to
the Vainshtein radius (where the scalar degrees of free-
dom become relevant) and relativistic effects respectively
(R. Scoccimarro, private communication).

Scale dependence on small scales affects the nonlin-
ear regime, and this is just what we looked at with the
bias calculations above. On large scales, we may treat
the modification of the source term mode by mode in
the linear growth equation. From a harmonic analysis
of metric perturbations, [28, 29] found long wavelength
corrections to the Poisson equation; recall from §II this
alters the factor Q in the source term Qδ. Such JLW cor-

rections would multiply ΩM (a) by Q ∼ 1+αe−(k/kJLW)2 .
We can then either solve the modified differential equa-
tion for the linear growth, or we can retain the growth
index approach, but similarly multiply ΩM (a) in Eq. (7)
by that same factor (this can also be viewed as making
the growth index γ a function of k). The characteristic
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scale is the horizon scale, kJLW ∼ H , and the amplitude
α ∼ O(1). We find that effects on the growth are then
negligible for k > 10−3h Mpc−1.

Thus horizon size scale dependence, as should hold for
the DGP case and scalar-tensor theories as well, will have
essentially no effect on the weak lensing probe, as the
WL power spectrum errors on the near-horizon scales
are very large due to sample variance; see e.g. Fig. (10)
in [30]. Weak lensing can be reasonably treated by the
scale independent γ factor over 10−3 <

∼ k/h Mpc−1 <
∼ 10.

Such scale dependence may however need to be taken
into account for attempts to use the ISW effect to probe
cosmology, as mentioned previously. Only if the gravi-
tation theory possesses a substantially smaller scale, ap-
proaching the nonlinear scale, as in the phenomenological
alterations of the Poisson equation in [3–6], are we forced
to more elaborate parameterizations than γ.

The specific optimum of the trade off between leverage
on cosmological parameter constraints from the added
information of smaller scales and increasing risk of bias
from gaps in our understanding will depend on the spe-
cific gravity theory. Since this is what we are trying to
obtain insight into, a rational, model independent ap-
proach might be to carry out both a wide area survey
to squeeze the most statistical power out of the rela-
tively weakly discriminating low ℓ (linear) regime and
a deep, high resolution and high number density survey
to probe the richer high ℓ (quasi- and nonlinear) regime.
This indicates possible strong complementarity between
a ground-based weak lensing survey such as LSST [31]
and a space-based survey like SNAP.

VI. DISCUSSION

This article presents an approach for simultaneous fit-
ting of the cosmic expansion and the theory of gravity.
We have advocated a “minimalist” strategy of distin-
guishing modified gravity from dark energy, which con-
sists in measuring a single parameter, the growth index
γ. In addition to reproducing the linear growth function
for essentially all standard gravity, dark energy models
(parametrized with w0 and wa), the growth index also
fits the linear growth of a single known modified grav-
ity theory, the DGP braneworld scenario. Therefore, it
is reasonable to expect that the growth index can be
used to measure deviations from standard gravity: given
the measurements of the background expansion rate (pa-
rameterized, say, by ΩM , w0 and wa), standard gravity
predicts the value of γ, and a statistically significant de-
viation from this value can in principle be interpreted as
evidence for – and characterization of – beyond Einstein
gravity.

This is a first step, hence our emphasis in calling it
Minimal Modified Gravity. One could examine more
complex schemes but these may be more model depen-
dent or employ more parameters and are therefore likely
to give weaker results. The MMG approach therefore has

more statistical power, being more suitable to near-future
data, while we think the loss in generality is minimal.
We also emphasize the advantage in retaining the maxi-
mal physics information by treating the expansion effects
on growth through the effective equation of state, giving
clear separation from deviations in the gravity theory.

How accurately such a program can reveal beyond Ein-
stein gravity – dark physics vs. physical darkness – is the
main topic of this paper. We have shown that measure-
ments from weak gravitational lensing, Type Ia super-
novae, and the CMB combined can measure the growth
index to about 8%, or to ±0.04 around its ΛCDM value
(and galaxy cluster data could potentially reduce this
even further). At the same time, the constraints on other
cosmological parameters are not appreciably degraded,
essentially because the surveys probe a range of scales
and thus their complementarity breaks the degeneracies
between parameters.

One particular concern in the program of distinguish-
ing general relativity from modified gravity is the nonlin-
ear density regime of structure formation. Even for the
limited number of well-defined modified gravity theories,
details of nonlinear clustering are currently unknown.
While in principle the nonlinear structure formation is
calculable from N-body simulations of modified gravity,
creating these simulations in practice is extremely diffi-
cult except for some very simple cases. The structure and
evolution of galaxy clusters, which are nonlinear objects,
is fairly strongly dependent on the nonlinear physics, and
is consequently problematic.

Weak lensing, on the other hand, probes a range of
scales, and we studied how our results behave if we drop
small-scale (that is, nonlinear) information. Using the
nulling tomography approach and a reasonably well mo-
tivated toy model for bias due to uncertainty in nonlinear
structure, we found that cutting out the small scale infor-
mation (k >

∼ 1h Mpc−1) can lead to significant decrease
in the resulting bias in the growth index, at the expense
of increasing the statistical error in it by a factor of a
few.

Other cosmological observables exist with sensitivity
to the growth of fluctuations, and hence can be used to
constrain MMG, but we have not discussed them in any
detail. For example, the bispectrum of weak gravitational
lensing is a potentially powerful probe [32]; however, it
has proved to be a tough task to calibrate the bispectrum
even in standard general relativity. The same holds for
Lyman-alpha forest observations. The Integrated Sachs-
Wolfe effect is a potentially strong discriminant of mod-
ified gravity models (see in particular recent predictions
of the ISW in DGP models [14]); however, the metric po-
tentials are particularly sensitive to the structure of the
modified gravity theory. Neither we nor anyone else has
yet succeeded in finding a generic parametrization of the
deviations from general relativity for the ISW effect.

Our work outlines a first step in treating modified grav-
ity models. At the time of this writing, there is hardly
a single well-defined modified gravity theory that does
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not look like standard general relativity in terms of ob-
servables, but is not already ruled out or disfavored by
data. Considerable effort is underway to construct such
theories (e.g. [33–47]; for a review see [48–50]) and test
them experimentally.

It is heartening that the strong complementarity in cos-
mological probes such as the combination of weak lensing,
supernovae, and the CMB does provide important infor-
mation on the question of dark physics vs. physical dark-
ness. Such data from next generation experiments, here
calculated specifically for SNAP and Planck, does furnish
a real test not just of individual models but of the physics
framework beyond Einstein. We will be able to measure
the effective equation of state describing the cosmic ex-
pansion and simultaneously reveal the theory of gravity.

By continuing forward with advances in measurements,
theory, and computation we can lift the darkness on the
new physics.
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