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ABSTRACT OF THE DISSERTATION 

 

Poor Outlook for 4d and 5d Kitaev Candidate Materials: 

Density Functional Theory Calculations Point to Small Kitaev Terms 

 

by 

 

Daniel Ross Eth 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Los Angeles, 2020 

Professor Dwight Christopher Streit, Chair 

 

Na2IrO3 and other “Kitaev candidate” materials are of much scientific and technological 

interest. In such materials, proposed anisotropic, Ising-like interactions promote magnetic 

frustration, potentially leading to a quantum spin liquid (QSL) ground state with 

excitations (non-Abelian anyons) that could enable topological quantum computing – a 

form of quantum computing particularly robust to decoherence. Unfortunately, 

experimental work indicates that Na2IrO3 and other Kitaev candidates do not exhibit a 

QSL ground state. While there are several proposals for manipulating Kitaev candidates 

into a QSL state, there is no consensus over whether the effective-spin interactions of 

these materials are proximate to the values necessary for such a state. Here, we use 

density functional theory (DFT) and mathematical techniques to investigate the electronic 

properties and effective-spin interactions of Kitaev candidate materials. Our approach for 
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determining spin interaction terms, Compressive Sensing Spin Dynamics (CSSD), 

involves two main steps: 1) by appending the Kohn-Sham energy functional with a 

Lagrangian term that allows for quickly finding the lowest energy solution of a material 

given fixed magnetic moments, we perform many calculations of the material with the 

spins slightly perturbed from the equilibrium state; 2) we perform compressive sensing 

on these data (on the fixed spins and magnetic fields required to stabilize the desired spin 

arrangement) to yield the interaction terms with far fewer data than otherwise required. 

Performing this procedure on the Kitaev candidates Na2IrO3 and α-RuCl3 indicates 

neither is close to the Kitaev QSL regime. We further investigate manipulated versions of 

Kitaev candidate materials and find all have problems: epitaxial and single layers of 

Na2IrO3 are conductors (implying Na2IrO3 cannot be cleanly separated into individual 

layers without changing the band structure), while straining Na2IrO3 in-plane introduces 

different problems if under tension (the Ir-O-Ir angles increase, leading to less destructive 

interference of undesirable interactions) and compression (the Ir-Ir distances decrease, 

leading to larger isotropic Heisenberg interaction, which competes with the Kitaev 

interaction). We additionally use CSSD to evaluate the interaction terms of idealized 

versions of Na2IrO3 and α-RuCl3 (90° Ir-O-Ir and Ru-Cl-Ru angles), and our results 

indicate that these, too, are far from the Kitaev QSL state. Finally, we investigate if 

YbBr3, as a lanthanide material, may circumvent the problems with 4d and 5d candidates, 

due to smaller f-f orbital overlap compared to d-d overlap. While the results with YbBr3 

are somewhat ambiguous, we conclude f-orbital Kitaev candidate materials warrant 

further investigation. 
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Introduction 

 Recently, there has been much interest in Na2IrO3 and other “Kitaev candidate” 

materials. In such materials, it is hypothesized that anisotropic, Ising-like “Kitaev” 

interactions promote magnetic frustration, potentially leading to a quantum spin liquid 

(QSL) ground state.1 Due to the layered, two-dimensional structure of these materials, 

realization of a Kitaev QSL could allow for quasiparticles known as anyons – in 

particular, yet to be observed non-Abelian anyons. 

 Anyons are peculiar in that the statistics they follow are neither Fermi-Dirac nor 

Bose-Einstein. For fermions and bosons, adiabatically exchanging two indistinguishable 

particles is represented by multiplying the two-particle wave function by -1 or +1, 

respectively. 

 

𝜓!𝜓! = ± 𝜓!𝜓! . 

 

In three dimensions, these are the only two options, and all elementary particles are either 

fermions or bosons. This is because exchanging two particles twice is topologically 

equivalent to one particle circling around another, which is topologically equivalent to 

doing nothing, and thus must result in the original wave function (Figure 1). 

 
Figure 1: In 3D, circling one particle around another is topologically equivalent to doing nothing. 
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 For two-dimensional quasiparticles, however, the situation can be different. One 

quasiparticle circling another is no longer topologically equivalent to doing nothing, since 

it is impossible to deform the path of the circling quasiparticle to a point without the path 

hitting the other quasiparticle (Figure 2). 

 
Figure 2: In 2D, circling one particle around another is not topologically equivalent to 
doing nothing. 
 

 In two-dimensions, adiabatically exchanging two quasiparticles twice does not 

need to result in the original wave function, but instead can introduce an arbitrary phase. 

Exchanging the two quasiparticles can thus be expressed as: 

 

𝜓!𝜓! = 𝑒!" 𝜓!𝜓!          (θ is a real number), 

 

where the exchange takes place through the particles rotating counterclockwise (a 

clockwise rotation would instead multiply the wave function by e-iθ). Since introducing 

separate phases to the wave function is commutative, “braiding” several of such 

quasiparticles is also commutative. Quasiparticles that follow such statistics are known as 

Abelian anyons.2  

 On the other hand, if the system contains degeneracy, with m distinct states 

associated with the same quasiparticle configuration, then adiabatically exchanging 

quasiparticles can not only add a phase to the wave function, but also can send the system 
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into a different state associated with the same configuration. Adiabatically exchanging 

quasiparticles then can be represented by an m x m unitary matrix acting on the states. 

Since matrix multiplication need not commute, braiding the quasiparticles need not, 

either. Quasiparticles that follow such non-commutative braiding statistics are known as 

non-Abelian anyons. 

 

𝜓! = 𝑅𝜓!              (R is an m x m unitary matrix). 

 

 Non-Abelian anyons hold much technological potential, as they might allow for a 

particularly robust and scalable form of quantum computing known as topological 

quantum computing. 

 Unfortunately, attempts to create non-Abelian anyons in spin systems have so far 

failed or yielded inconclusive results. Na2IrO3, while initially hypothesized to yield a 

QSL ground state (allowing for non-Abelian anyons), instead gives an antiferromagnetic 

“zigzag” order.3, 4 It has been proposed that Na2IrO3 may be able to be coaxed into a QSL 

via manipulation, such as through doping or growing layers on a substrate.5 α-RuCl3, 

another Kitaev candidate material, has shown evidence of being coaxed into a QSL under 

application of a magnetic field, but it is not clear whether this QSL is due to Kitaev 

physics or some other phenomena.6 It is unclear whether the effective-spin interactions in 

these materials fall into the parameter regime of the Kitaev-model QSL. Here, we use 

density-functional theory (DFT) and mathematical techniques to examine the electronic 

structures and effective-spin interactions of Kitaev candidate materials. 
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Motivation for Topological Quantum Computing 

 Robust, large-scale quantum computers could be transformative. While classical 

computers store information as bits, quantum computers store information as qubits. A 

single qubit can be represented as a superposition of two states (“0” and “1”), and a 

system of n qubits can be represented as a superposition of 2n states. An n-qubit system 

can therefore be represented by a 2n-dimensional vector, (a0, a1, …, 𝑎!!!!), where each aj 

is a complex number, and where the sum over all j (with j varying from 0 to 2n – 1) of |aj|2 

is 1. Quantum logic gates can be described by unitary matrices, where a quantum gate 

acting on n qubits is represented by a 2n x 2n unitary matrix acting on the 2n-dimensinoal 

vector that represents the qubits. Typically, at the end of a quantum algorithm, a 

measurement occurs, collapsing the n qubits into a sequence of n bits, with a 

measurement corresponding to the jth possible sequence of bits occurring with probability 

|aj|2. 

 Quantum computing offers the potential to solve certain types of problems vastly 

faster than can classical computers. Prime factorization is one example of such a 

problem. While the most efficient known classical algorithm for factoring an integer into 

its constituent primes cannot be achieved in polynomial time, Shor’s algorithm – a 

quantum algorithm – can do just that.7 

 Quantum computers also would be very useful tools for scientific and 

technological advancement. This appears to be the case especially for certain simulations 

involving quantum mechanical processes, such as in computational materials science and 

computational chemistry. With classical computing, the computational cost of quantum 

mechanical simulations often increases exponentially with system size – making large 
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simulations intractable. Quantum computers, by contrast, could carry out many such 

calculations in polynomial time.8 

 Unfortunately, quantum computers have proven quite difficult to build. Google 

has recently claimed to have achieved quantum supremacy – performing a calculation in 

200 seconds that would take a state-of-the-art supercomputer approximately 10,000 

years.9 But this demonstration was purely a proof of concept, and a more practical 

quantum computer capable of performing calculations that we want to perform (beyond 

simply for the purposes of demonstration) is likely a ways away. The biggest problem is 

that quantum decoherence can destroy the superposition necessary for quantum 

computing. Quantum computers are typically isolated and run at low temperatures, but 

despite this, decoherence generally occurs in seconds or less. While methods for quantum 

error correction have been proposed, they require an incredibly small error rate and 

would greatly increase the number of qubits required. 

 Topological quantum computing could allow for circumventing the problem of 

quantum decoherence. In topological quantum computing, the qubits are stored in the 

phases of the wave functions of non-Abelian anyons. Logical operations are carried out 

by braiding these anyons in specific ways. Decoherence is much less likely in topological 

quantum computing than in other forms of quantum computing, since the information is 

stored not locally, but globally, and topological properties aren’t affected by local 

perturbations. 
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The Kitaev Model 

 Alexei Kitaev has proposed a model that would allow for non-Abelian anyons, 

and thus topological quantum computing.2 This model (the Kitaev model) consists of a 

2D honeycomb lattice, with spins of 1/2 on each lattice point, and each lattice point 

linked to its three nearest neighbors. Each link therefore points in one of three directions 

(with 120° between links), and the links can be labeled as x, y, and z, depending on their 

direction (Figure 3). 

 
Figure 3: A honeycomb lattice with x, y, and z links, as in the Kitaev model. 

 

Nearest-neighbor spins interact with each other in an anisotropic manner, dependent on 

the direction of the link between the lattice points. Spins connected by an x-link interact 

only via their x-component of the spin operator, and so on. This leads to the following 

Hamiltonian: 

𝐻 =  −𝐾! 𝜎!!𝜎!!

!!!"#$%

− 𝐾! 𝜎!
!𝜎!

!

!!!"#$%

− 𝐾! 𝜎!!𝜎!!

!!!"#$%

, 

 

where Kx, Ky, and Kz are the magnitudes of the interactions along the three links.2 Kitaev 

showed how this model is exactly solvable by describing the spin operators in terms of 
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Majorana fermions. Since the interactions along every link cannot be satisfied 

simultaneously, there is large magnetic frustration, and the resultant ground state is a 

QSL. If any of the K’s have larger magnitude than the sum of the other two, then there is 

a gap for all excitations of the ground state, and this phase allows for Abelian anyons. If 

none of the K’s have larger magnitudes than the sum of the other two, then this phase 

allows for non-Abelian anyons, yet the gap disappears. Applying a magnetic field, 

however, opens up a gap while still allowing for non-Abelian anyons.  

 Several candidate materials have been proposed to potentially satisfy the Kitaev 

model. 

 

Na2IrO3 

 Na2IrO3 possesses many characteristics that give it promise as a candidate for the 

Kitaev model. The basic structure of Na2IrO3 is of alternating layers of Na and NaIr2O6 

(Figure 4: left). Within the NaIr2O6 layers, edge-sharing IrO6 octahedra form hexagons, 

creating a honeycomb structure with Na in the center of each hexagon (Figure 4: right). 

The NaIr2O6 layers fulfill the 2D honeycomb lattice requirement of the Kitaev model. 

 
Figure 4: Left- Na2IrO3 consists of alternating layers of Na and NaIr2O6. Right- In the 
NaIr2O6 layers, edge sharing IrO6 octahedra form hexagons. (Figure generated with 
VESTA.10) 
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 In IrO6 octahedra, the crystal field splits the 5d orbitals into two higher energy eg 

states and three lower energy t2g states (xy, xz, and yz, with Cartesian coordinates 

corresponding to Ir-O octahedra bond directions). The t2g orbitals in the d5 configuration 

of Ir4+ contain a hole that has effective angular momentum leff = 1, with 𝑙!""! = 0 ≡ 𝑥𝑦  

and 𝑙!""! = ±1 ≡ − !
!
𝑖 𝑥𝑧 ± 𝑦𝑧 . The strong spin-orbit coupling (SOC) for Ir splits 

the three t2g orbitals into a lower-energy, fully filled, effective total angular momentum 

jeff = 3/2 quartet and a higher-energy, half-filled jeff = 1/2 Kramers doublet (Figure 5). The 

SOC also links the moments with reference to the crystal axes via the Kramers doublet 

states ( + 1 2 = sin𝛼 0, ↑ − cos𝛼 +1, ↓ , − 1 2 = sin𝛼 0, ↓ − cos𝛼 −1, ↑ , 

with α determined by the relative strengths of the SOC and possible tetragonal 

splitting).11, 12  

 
Figure 5: Proposed band structure for Na2IrO3, considering the crystal-field splitting and 
SOC. 
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 Electrons can potentially hop between jeff = 1/2 states on adjacent Ir ions via p 

orbitals on the mutually bonded O ions. Assuming Ir-O-Ir angles of 90°, destructive 

interference between the two Ir-O-Ir pathways destroys the isotropic part of the 

interaction, yielding an anisotropic interaction that is bond dependent, implying an 

effective Kitaev-like Hamiltonian.12 Competing with this Kitaev interaction, however, is 

direct Ir-Ir hopping, which results in isotropic, Heisenberg interactions between Ir spins. 

 Combining these two interactions leads to the Kitaev-Heisenberg model (K-H 

model):1 

𝐻 =  𝐾 𝜎!!𝜎!!

!!!"#$%

+ 𝜎!
!𝜎!

!

!!!"#$%

+ 𝜎!!𝜎!!

!!!"#$%

+ 𝐽 𝜎! • 𝜎!
!"" !"#$%

, 

 

where K corresponds to the strength of the anisotropic Kitaev interactions, J corresponds 

to the strength of the isotropic Heisenberg interaction, and the summations run over 

nearest-neighbor Ir-Ir pairs. The definition of x-, y-, and z-bonds are in terms of a 

Cartesian coordinate system in which the axes are pointed approximately along the Ir-O 

bonds (that is, from the Ir towards the vertices of the octahedra – though not exactly 

along these Ir-O bonds as the octahedra are not ideal). In this coordinate system, an Ir-Ir 

bond is considered an “x-bond” if the two Ir-O-Ir pathways between the specific Ir’s are 

within the yz-plane, and correspondingly for “y-bonds” (Ir-O-Ir pathways in xz-plane) 

and “z-bonds” (xy-plane) (Figure 6). The component of the spin considered in the Kitaev 

interaction for each Ir-Ir bond is therefore the component orthogonal to the Ir-O-Ir 

pathways between the two Ir. 
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Figure 6: Na2IrO3, oriented relative to the Cartesian coordinates used in the K-H model. 
Bonds between neighboring Ir (olive colored) are labeled with the axis perpendicular to 
the plane traced by the corresponding Ir-O-Ir pathways. The Ir-Ir x-bonds cut through the 
yz-plane (blue), and similarly for the y-bonds (magenta) and z-bonds (green). For each 
Ir-Ir bond, the portion of the spin relevant for the Kitaev interaction is the part along the 
corresponding axis (in other words, the x-component of the spin for an interaction 
between two Ir ions bonded by an x-bond, and so on). (Figure generated with VESTA.10) 
 

 The K-H model can also be expressed more succinctly in matrix form: 

𝐻 = 𝜎! • 𝐉𝜶 • 𝜎!
 !!!"#$%

,
!!!,!,!   

 

where the matrices Jα are: 

𝐉𝒙 =
𝐽 + 𝐾 0 0
0 𝐽 0
0 0 𝐽

, 𝐉𝒚 =
𝐽 0 0
0 𝐽 + 𝐾 0
0 0 𝐽

, 𝐉𝒛 =
𝐽 0 0
0 𝐽 0
0 0 𝐽 + 𝐾

. 
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 The K-H model inspired hope that either the ground state of Na2IrO3 was a QSL, 

or that Na2IrO3 might be able to be manipulated into being a QSL. Unfortunately, 

experiments indicate that the K-H model may be insufficient to describe Na2IrO3. While 

the K-H model predicts a magnetic ground state that is either Néel AF (each spin pointing 

in the opposite direction of the three nearest neighbor spins), stripy AF (each spin 

pointing the same direction as one of its three nearest neighbors, forming a stripy 

pattern), or QSL, the experimentally determined magnetic order of Na2IrO3 is zigzag AF 

(each spin pointing the same direction as two of its three nearest neighbors, forming a 

zigzag pattern).3, 4  

 Several theories have been proposed to explain why Na2IrO3 has this zigzag 

order. Most of these theories are variations on the K-H model. One theory states that 

zigzag magnetic order can be stabilized if the Kitaev and Heisenberg terms have the 

opposite sign as originally suggested.13 Another says it can be stabilized by considering 

next- and next-next-nearest (in-plane) neighbor Heisenberg terms in addition to nearest 

neighbor terms.14 

𝐻 = 𝜎! • 𝐉𝜶 • 𝜎!
!!  

+ 𝐽! 𝜎! • 𝜎!
!!!  

+ 𝐽! 𝜎! • 𝜎! .
!!!!  

 

 

 Further contention surrounds the fact that the insulating nature of Na2IrO3 is still 

not fully understood. According to naïve, non-relativistic band theory, Na2IrO3 should be 

a conductor, with five of six t2g orbitals filled. Yet experimentally, it is an insulator, with 

a band gap of around 340 meV.15 There is debate over what role the Hubbard repulsion 

(U) and SOC play regarding this insulating behavior, and disagreement over whether 

Na2IrO3 is a Mott insulator (where the insulating behavior originates from 
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electron-electron repulsive Coulomb energy), a Slater insulator (where the insulating 

behavior originates from long-range magnetic order), or if the insulating behavior has a 

separate origin.16-18 

 Other Kitaev candidate materials have many characteristics in common with 

Na2IrO3. In α-RuCl3, the layered honeycomb structure is preserved, with Ru3+ taking the 

place of Ir4+, and Cl- taking the place of O2-. α-RuCl3 holds a couple of advantages over 

Na2IrO3; the Ru-Cl-Ru bonds are closer to 90° than the Ir-O-Ir bonds, and α-RuCl3 has no 

equivalent to the intercalated layer of sodium, which complicates the picture.19 On the 

other hand, the SOC is smaller in the 4d α-RuCl3 than the 5d Na2IrO3.  

 Here, we model the electronic and magnetic structures of various Kitaev 

candidate materials, and using recently developed methods in computational materials 

science, we investigate spin interactions. In modeling these materials, we used Vienna Ab 

initio Simulation Package (VASP) to perform DFT(+U+SOC) calculations.20-24 In 

addition to DFT, we used adiabatic spin-constrained DFT (aSC DFT), which allows for 

fixing the spin moments in specified directions and with specified magnitudes.  

 

Adiabatic Spin-Constrained DFT (aSC DFT) 

 In DFT, the ground state electron density n(r) of a many-body system is 

approximated as the electron density that minimizes the Kohn-Sham energy functional 

EKS[n(r)]: 

𝐸!" 𝑛 𝑟 = 𝑉!"# 𝑟 𝑛 𝑟 𝑑𝑟 + 𝐸! 𝑛 𝑟 + 𝐸!" 𝑛 𝑟 + 𝑇! 𝑛 𝑟 , 

where Vext(r) is the external potential, EH[n(r)] and EXC[n(r)] are the Hartree and 

exchange-correlation energy functionals, and 𝑇! 𝑛 𝑟  is the Kohn-Sham kinetic energy 
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functional.25, 26 Normally, the minimum Kohn-Sham energy corresponds to the ground 

state spin structure of the material. We wanted to derive spin-spin interactions, however, 

which requires the ability to explore the energy landscapes of materials as a function of 

spin direction. This challenge can be met using aSC DFT, a modified version of DFT that 

allows for fixing the direction and magnitudes of spins during minimization. 

 For aSC DFT, spins are fixed by adding a Lagrangian term to the energy 

functional: 

𝐸 𝑛 𝑟 , 𝑠(𝑅) = 𝐸!" 𝑛 𝑟 + 𝐵! ∙ 𝜎! − 𝑠! ,
!

!!!

 

thereby minimizing the energy with the constraint 𝜎! = 𝑠!, where sa are the desired 

spin moments, σa are the calculated moments, R are the ionic coordinates, and Ba, the 

Lagrangian multipliers, are equal to the local magnetic fields required to counteract the 

tendency of DFT to move the spins away from the desired arrangement and towards the 

ground state arrangement. We performed Compressive Sensing (CS) on results from 

aSC DFT, to find the spin exchange interactions of Kitaev candidate materials. 

 

Compressive Sensing Spin Dynamics (CSSD) 

 CS is a signal processing technique for reconstructing a sparse signal based on a 

limited sampling. If a signal x is known to be sparse in some basis, then there exists some 

vector y = Ax such that the length of y is significantly smaller than the length of x, and all 

the information in x is captured in y. In CS, y is measured directly, with each 

measurement corresponding to linear combinations of the signals in x (in accordance with 

the measurement matrix A). Since x is longer than y, an infinite number of possible 

solutions to x exist, but (assuming x is sparse) with overwhelming probability, the “true” 
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values for x can be found by minimizing the ℓ1 norm of x, subject to the constraint 

y = Ax. If the data contain noise, the ℓ1 norm can be minimized subject to a constraint that 

penalizes inaccurate solutions, such as via an ℓ2 norm for the difference between y and 

Ax. 

 In CSSD, the desired signals (“x” above) are the spin interaction terms, captured 

by J. The measurements (“y”) are the local magnetic fields, B (consisting of the various 

Ba), found via aSC DFT. The measurement matrix, A, can be found by Taylor expanding 

the energy with respect to the spins: 

𝐸 = 𝐽!,!𝑠!,!

!

!!!!

+
1
2 𝐽!",!"𝑠!,!𝑠!,!

!

!,!!!!,!

+⋯ , 

where a and b are the sites of the spins, i and j are the Cartesian directions, and sa,i and sb,j 

are the components of the spins on site a and b in the directions of i and j, respectively. 

Since 𝐵! = −𝜕𝐸 𝜕𝑠!, we are left with (assuming the derivative is taken at perturbations 

about the local equilibrium and the first term disappears): 

𝐵! = − 𝐽!"𝑠!
!

−⋯ , 

in which Jab is the interaction matrix between the spins at a and b. By running aSC DFT 

on multiple spin configurations perturbed from a local equilibrium, a set of L linear 

equations can be found, such that we have B = AJ, where the measurement matrix is: 

𝐴 =
−𝑠!! −⋯

⋮
−𝑠!! −⋯

, 

where each row corresponds to a different local magnetic field on a particular site, and 

the superscripts refer to different spin configurations.  

  



 15 

 The interaction terms are then calculated by: 

𝐽!""# = argmin! 𝐽 ! +
!
!
𝐵 − A𝐽 !

! , 

where the first and second terms are the ℓ1 and ℓ2 norms, and µ is a parameter for trading 

off between these two. Lower values of µ produce sparser solutions, and thus are prone to 

under-fitting, while higher values of µ are prone to over-fitting. The fit can be checked by 

leaving out a portion of the data and conducting cross-validation. 

 

Results 

Na2IrO3 Electronic and Magnetic Structure 

 In order to determine the roles that electronic correlations and SOC play in the 

electronic behavior of Na2IrO3, we compared results between LSDA+U+SOC and 

calculations performed without U and/or SOC. We used the on-site Coulomb interaction 

according to the approach by Dudarev et al, which is dependent not on U in and of itself, 

but instead on Ueff = U – J, where J represents the effective on-site exchange 

interaction.27 Unless where otherwise noted, we used a k-point grid of 6x4x6, an energy 

cutoff of 10-5 eV for electronic convergence, a cutoff for ionic convergence of all forces 

being under 0.01 eV/Å, and PBE-PAW potentials (with the hard version of the oxygen 

potential).28 

 As a test to ensure that these parameters were appropriate, we performed several 

select calculations, increasing the k-mesh to 8x6x8 and decreasing both the electronic and 

ionic convergence cutoffs by a factor of 10. None of these changes appreciably changed 

any results. 
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 We ran DFT with four separate magnetic structures: ferromagnetic, Néel 

antiferromagnetic, stripy antiferromagnetic, and zigzag antiferromagnetic (Figure 7). 

 
Figure 7: The four magnetic orders that we tested. From left to right, these orders are FM, 
Néel AF, stripy AF, and zigzag AF. 
 

 Curiously, our initial results from LSDA+U often yielded significant changes in 

the band gap and converged energy when parameters were changed in ways that should 

have been inconsequential. Since DFT+U is known to exhibit local energy minima in 

orbital occupancies, the most likely explanation is that different local minima were found. 

To examine this effect further, we perturbed the original Na2IrO3 structure in 20 different 

ways, by displacing each atom in a random direction very slightly (less than 0.01 Å). We 

then relaxed all 20 of these different starting structures, and also the original structure, 

each under all four magnetic orders (with all other parameters the same), using an 

unrealistically high U (Ueff = 4.7 eV) to increase the number of local minima found. In 

total, of these 84 relaxations performed, 16 “unique” solutions were found, where two 

solutions were determined to be unique if they had different magnetic order or a 

difference in their relaxed energy (or band gap) greater than 1 meV/Ir (0.05 eV). 
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 These 16 solutions were then used as starting points for further LSDA+U 

calculations with lower U (at Ueff = 3 eV), each with the four different magnetic 

structures. The output ionic positions from the Ueff = 4.7 eV calculations were used as the 

input ionic positions at Ueff = 3 eV, and the output charge densities were used as input 

charge densities for calculations that continued with the same magnetic order. Unique 

solutions found at Ueff = 3 eV were then continued at Ueff = 2.75 eV (under the same 

magnetic order). This process of continuing unique solutions after decreasing Ueff by 

0.25 eV was carried out until a Ueff of 0.5 eV. There is some debate in the literature about 

the correct value for U, but it is generally accepted to be somewhere in the range of 1 eV 

to 3 eV, and J is usually assumed to be around 0.5 eV.4, 29 

 While the number of distinct solutions found for each magnetic order decreased as 

Ueff decreased, there remained several, even at low Ueff. Of note, the difference in 

energies between solutions of the same magnetic order was often greater than the 

difference in energies between solutions of different magnetic orders (Figure 8). For 

comparing the different magnetic orders, it is therefore important to ensure that the 

solution for each magnetic order truly is the ground state solution for that magnetic order. 
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Figure 8: The energy and band gap for structures of the four magnetic orders, after 
convergence using LSDA+U with Ueff = 2 eV. The spread of different solutions for the 
same magnetic order implies multiple local energy minima found. Note that the 
difference in energy between solutions of the same magnetic order is often larger than 
that between different magentic orders. 
 

 Inspection showed that different solutions typically correspond to different 

occupancies of Ir 5d orbitals, while calculations that resulted in the same solution 

typically correspond to almost identical occupancies of these orbitals. This result 

potentially explains some contradictions and other peculiar results in the literature 

surrounding Na2IrO3. For instance, different papers using DFT have found different 

angles of orientation for the magnetic spins.3, 30 Separately, other DFT calculations often 

indicate that very small structural changes in Na2IrO3 can lead to surprisingly large 

differences in properties.31 Both of these findings could be explained by some of the 

calculations resulting in solutions that are not in fact the ground state, but instead 

metastable states. A similar phenomenon has been observed in 3d and 5f materials with 
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highly localized orbitals, but we were somewhat surprised to find it appearing in a 5d 

material here.32 

 Comparing the lowest energy solution for each magnetic order at each value of 

Ueff shows that the lowest energy order is FM for all values of Ueff that are less than 2 eV 

(Figure 9: left). Above Ueff = 2 eV, the zigzag order becomes the lowest energy solution, 

but the FM order is energetically competitive (it is always within 3 meV per Ir). 

 

 
Figure 9: LSDA+U results. Left- The lowest energy solution for each magnetic order at 
each step of Ueff, compared to the lowest energy solution of all the magnetic orders at that 
step. Right- The corresponding band gaps for those lowest energy solutions. At some 
steps of Ueff, certain magnetic orders have multiple values for the band gap, due to 
multiple solutions with the same lowest energy (or within 3 meV per Ir) but different 
band gaps. 
 

 Unfortunately, comparing band gaps of different magnetic orders was more 

difficult than comparing the energies (Figure 9: right). Often, multiple solutions of the 

same magnetic order had the same lowest energy (or within 3 meV per Ir), but quite 

different band gaps. This difference in band gaps for the same magnetic order was even 
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occasionally greater than 0.3 eV. The two lowest energy magnetic orders – zigzag and 

FM – generally had no band gap or a very small band gap when Ueff ≤ 1.25 eV, but did 

have a band gap above this value (or in the case of FM, at least one solution per value of 

Ueff had a band gap). 

 For LSDA+U+SOC, we varied Ueff from 0.5 eV to 2 eV, in increments of 0.5 eV, 

starting at 2 eV and continuing unique solutions at lower Ueff as before. For the 

calculations at Ueff = 2 eV, for each magnetic order, the input atomic positions were the 

unique solutions found under LSDA+U at 2 eV with the same magnetic order. We 

relaxed each of these solutions three separate times – each with the magnetic moments 

initially pointing along a different axis of the unit cell (though these moments were 

allowed to move during relaxation). We found fewer unique solutions with the 

introduction of SOC, though the differences in energy between solutions of the same 

magnetic order were again often greater than the differences in energy of solutions of 

different magnetic orders. At each value of Ueff, the lowest energy solution was of zigzag 

order, and this solution was always at least 3 meV per Ir lower energy than the next 

lowest energy solution from a different magnetic order (Figure 10: left). This finding is 

consistent with experimental research that has demonstrated Na2IrO3 exhibits zigzag 

magnetic order.3, 4 Fortunately, with SOC added, the lowest energy solution for each 

magnetic order corresponds to a single band gap (Figure 10: right). Predictably, adding in 

SOC increases the band gaps considerably. 
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Figure 10: LSDA+U+SOC results. Left- The lowest energy solution for each magnetic 
order at each step of Ueff, compared to the lowest energy solution of all the magnetic 
orders at that step. Right- The corresponding band gaps for those lowest energy solutions.  
 

 Experimentally, the band gap of Na2IrO3 has been found to be 0.34 eV.15 Through 

interpolation, this corresponds to Ueff = 0.65 eV. Indeed, when we performed 

LSDA+U+SOC with Ueff = 0.65, we found a band gap of 0.339 eV for the lowest energy 

solution of zigzag magnetic order. Since J ~ 0.5, this corresponds to a U ~ 1.15 eV.  

 We used this value of Ueff to investigate the effects of U and SOC on the band 

structure. To do this, we performed band structure calculations of the lowest energy 

solutions for the zigzag order with LSDA+U and LSDA+U+SOC, using Ueff = 0.65. We 

also found the lowest energy solutions for the zigzag order with LSDA and LSDA+SOC 

(without U), and we calculated the band structure of those as well. We determined all 

k-paths with the software AFLOW.33 
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Figure 11: Band structures of the t2g orbitals in the zigzag order, using LSDA (top left), 
LSDA+SOC (top right), LSDA+U (bottom left), and LSDA+U+SOC (bottom right). The 
SOC appears necessary and sufficient to open the band gap, and U increases this band 
gap. 
 

 Comparing these band structures, the effects of U appear quite small, while the 

effects of SOC appear much larger (Figure 11). Qualitatively, band structures for LSDA 

and LSDA+U are almost identical, while the only major difference between that of 

LSDA+SOC and LSDA+U+SOC is that the latter has about twice the band gap of the 

former. This low importance of U casts doubt on the commonly held idea that Na2IrO3 is 
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a Mott insulator. U is neither necessary nor sufficient for opening up the band gap in the 

zigzag order, while SOC is both. It should also be noted that both with Ueff = 0.65 eV and 

without Ueff, the FM order has lower energy than the zigzag order if SOC is neglected 

(but not if SOC is included). This FM order also corresponds to no band gap under these 

parameters. We conclude that Na2IrO3 is a spin-orbit induced band-gap insulator. 

 

Na2IrO3 and α-RuCl3 Exchange Interactions 

 To understand the Ir-Ir (Ru-Ru) spin interactions, we performed CSSD with 

Na2IrO3 (α-RuCl3), using the following methodology. First, six relaxations were 

performed – 3 with FM spins initially pointing in each one of three orthogonal directions 

(two in-plane and one out-of-plane), and 3 with AF spins initially pointing in each of the 

same three directions. This step involved using LSDA+SOC (without U) on VASP with 

electronic cutoffs of 10-5 eV and ionic cutoffs of all forces under 0.01 eV/Å. 

 The lowest energy of these six relaxations was then used as a reference for 

running further calculations. These further calculations used aSC DFT to fix the magnetic 

moments in desired directions and with desired magnitudes. Calculations were performed 

both with a primitive cell (of 2 Ir/Ru per cell) and with a supercell (of 18 Ir/Ru per cell, 

such that ions had unique nearest, next-nearest, and next-next-nearest in-plane 

neighbors). In calculations with the primitive cell, both magnetic moment orientations 

were moved together, while in calculations with the supercell, only one moment was 

altered, while the other moments were kept in the reference direction (Figure 12).  
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Figure 12: Primitive cells and supercells of α-RuCl3, with magnetic moments. The blue 
moments are in the reference direction, while the red moments are perturbed. In the 
primitive cell, all the moments are perturbed simultaneously (and to the same degree). In 
the supercell, only one moment is perturbed (and all other moments are kept in the 
reference direction). (Figure generated with VESTA.10) 
 

 One calculation was performed using the primitive cell with all the moments fixed 

in the reference direction. Calculations were then performed using each of the primitive 

cell and the supercell, with the relevant moments moved from the reference direction by 

between ~0.1 µB and ~0.2 µB in various directions, with 12 calculations total for each of 

the primitive cell and the supercell. All moments were kept at the same magnitude as in 

the reference calculation. These calculations were performed to an electronic cutoff of 

10-7 eV using LSDA+SOC within a modified version of VASP, and ions were not 

allowed to relax. The results of these calculations were used for CSSD. 
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 We used LSDA+SOC without U because the code we were using for fixing the 

spins did not allow for simultaneously fixing the spins and enabling U, but we believe not 

including U in these calculations was appropriate, for a few reasons. First, as 

demonstrated in the section “Na2IrO3 Electronic and Magnetic Structure,” LSDA+SOC 

gave qualitatively similar results to LSDA+U+SOC, with U simply increasing the band 

gap. Second, as demonstrated in the same section, the inclusion of U increases the 

chances of a local (though not global) energy minimum being found, and inclusion of 

such results here could negatively affect CSSD (by, for instance, implying that moving 

the magnetic moment in one direction had different results than it actually would). Third, 

the way DFT+U employs U is not in accordance with fundamental physics, but instead as 

an empirical fix to correct for underestimating the band gap; there’s no guarantee that this 

same fix would improve the results here. 

 The last step in performing CSSD was to perform CS on the data we received 

from the above calculations. Here, the magnetic fields required to obtain the desired 

magnetic moments were used to determine the (in-plane) nearest, next-nearest, and 

next-next-nearest neighbor spin Hamiltonians. A µ of 10-7 was used for these 

calculations. Cross validation was performed to check fit, with relative errors calculated 

as follows: five times, 9% of the data were left out to check against what would be 

predicted from the other 91%, and the errors of those five times were averaged. 
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Na2IrO3 

 CSSD with Na2IrO3 produced the following interaction matrices with 15% 

relative predictive error: 

Nearest neighbors (interaction terms are in meV/µB
2):  

𝐉𝒙 =
45 −7 6
−7 61 8
6 8 57

,     𝐉𝒚 =
61 −7 −8
−7 45 −6
−8 −6 57

,     𝐉𝒛 =
50 4 10
4 50 −10
10 −10 31

. 

Note that Jy here is simply related to Jx by symmetry. As expected, the dominant values 

are along the diagonals, corresponding to the values for J1 and J1 + K; the off-diagonal Γ 

terms are much smaller. There are three unique (i.e., not simply related by symmetry 

operations) terms for J1, and two unique terms for J1 + K. The average value of J1 is 

therefore (61 + 57 + 50)/3 = 56 meV/µB
2, while the average value of J1 + K is (45 + 31)/2 

= 38 meV/µB
2. K therefore has an approximate value of: 38 – 56 = -18 meV/µB

2, or 

around one third of the magnitude of J1. 

Second-nearest neighbors (in meV/µB
2):  

𝐉𝟐,𝟏 =
25 0 2
1 29 −1
3 0 26

,     𝐉𝟐,𝟐 =
24 −3 2
−2 24 −1
1 −2 28

. 

Additional second-nearest neighbor interaction matrices are related to these via symmetry 

(as is also true for the third-nearest neighbor matrices – for subsequent results, we also 

only report the unique matrices for the second- and third- neighbor interactions). Here, 

the only large terms are the diagonal J2 terms, implying a value of approximately 

26 meV/µB
2, or around half of J1. 

Third-nearest neighbors (in meV/µB
2): 

𝐉𝟑,𝟏 =
2 −11 10
−11 2 −10
10 −10 0

,     𝐉𝟑,𝟐 =
−1 −13 11
−13 4 −6
11 −6 1

. 
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The J3 terms here are negligible, at an average value of approximately 1 meV/µB
2. The 

off-diagonal terms here are larger in magnitude, but they are still much smaller than the 

magnitudes for J1, J2, and K. 

 The overall picture of this material is of three interactions: J1, J2 of around 

one-half of J1, and K at a “disappointing” one-third of J1.   

 We decided to test whether these results were robust with respect to the reference 

magnetic structure. While Na2IrO3 is zigzag magnetic structure, a zigzag supercell that 

allowed for examining third-nearest neighbors would have had to be much larger than the 

supercell used here, and beyond reasonable computational resources. We instead decided 

to perform CSSD on a dataset that included both AF and FM calculations. In performing 

the AF calculations, we used the same relaxed structure as for the FM calculations above, 

as well as the same magnetic-moment axis and magnitudes, so that the only change was 

turning the moments antiferromagnetic. We included the same FM data as above, and for 

each FM calculation we included a corresponding AF calculation, with all other 

parameters the same.  

 CSSD with this combined dataset yielded the following Hamiltonians with 4.4% 

relative error (in meV/µB
2): 

𝐉𝒙 =
50 5 −4
5 46 −5
−4 −5 44

,     𝐉𝒚 =
46 5 5
5 50 4
5 4 44

,     𝐉𝒛 =
40 −5 −1
−5 40 1
−1 1 44

. 

 

Second-nearest neighbors (in meV/µB
2): 

𝐉𝟐,𝟏 =
30 −4 1
−3 33 −3
1 −2 25

,     𝐉𝟐,𝟐 =
28 −2 5
−3 28 −3
3 −5 26

. 
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Third-nearest neighbors (in meV/µB
2): 

𝐉𝟑,𝟏 =
3 −4 2
−4 3 −2
2 −2 −4

,     𝐉𝟑,𝟐 =
−2 −5 3
−5 5 −1
3 −1 3

. 

 These results are for the most part similar to the FM results. The largest term is 

still J1, and the value of J2 is still around half of that. J3 and the off-diagonal terms are 

also still very small. The only significant difference is that K has changed from -18 to 3 

meV/µB
2, in other words falling from a small factor to a negligible one. The actual 

situation with Na2IrO3 may be somewhere between these two scenarios, since in the 

zigzag magnetic structure, each spin is ferromagnetic with two of its three nearest 

neighbors. Regardless, the Kitaev term appears to be quite small. Inducing the Kitaev 

QSL state requires a K of at least 8 times J1, or a K:J1 ratio about 25 times larger than the 

more “generous” result found with just our FM dataset.  

 Since inclusion of AF data along with the FM data did not significantly alter the 

results, we decided to simply use the magnetic structure of lowest energy for subsequent 

CSSD calculations. 

 

α-RuCl3 

 CSSD with α-RuCl3 produced the following Hamiltonians with 13% relative 

predictive error: 

Nearest neighbors (in meV/µB
2): 

𝐉𝒙 =
49 3 4
3 51 −4
4 −4 43

,     𝐉𝒚 =
51 3 4
3 49 −4
4 −4 43

,     𝐉𝒛 =
59 4 6
4 59 −6
6 −6 42

. 

 

 



 29 

Second-nearest neighbors (in meV/µB
2): 

𝐉𝟐,𝟏 =
28 0 −3
0 28 3
−2 3 33

,      𝐉𝟐,𝟐 =
29 −2 −3
−1 30 2
−2 3 34

,      𝐉𝟐,𝟑 =
29 −1 −3
0 30 3
−2 4 33

. 

Third-nearest neighbors (in meV/µB
2): 

𝐉𝟑,𝟏 =
31 1 1
1 31 −1
1 −1 29

,     𝐉𝟑,𝟐 =
31 2 1
2 31 −1
1 −1 27

. 

 These data almost perfectly fit a Heisenberg J1-J2-J3 model. Using a similar 

method as above, we find the average J1 = 51 meV/µB
2, K = -6 meV/µB

2, J2 = J3 = 

30 meV/µB
2. K would have to increase by over a factor of 60 relative to J1 here to reach a 

Kitaev QSL state. 

 If we ignore the K terms (which are quite small for these materials), as well as 

further anisotropy, we can plot these structures on a classical J1-J2-J3 Heisenberg phase 

diagram (Figure 13).34 

 
Figure 13: α-RuCl3 and Na2IrO3 plotted on a classical J1-J2-J3 Heisenberg phase diagram. 
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 This J1-J2-J3 model explains α-RuCl3 well, as it has zigzag magnetic order. It also 

possibly explains another finding about α-RuCl3 – under application of a magnetic field, 

α-RuCl3 shows evidence of entering a QSL phase.6 Given α-RuCl3’s position on the 

phase diagram – very close to the triple point – it is presumably a very frustrated 

material, and thus it is not particularly surprising that it can be induced to enter a QSL 

phase (though this QSL phase is not necessarily of Kitaev origin). 

 Na2IrO3 is not as well explained by this model, as its magnetic structure is also 

zigzag, not spiral as indicated here. This discrepancy can likely be explained by two 

factors that are not included in the J1-J2-J3 model. First, Na2IrO3 has large 

magnetocrystalline anisotropy. Of our LSDA+U+SOC (Ueff = 0.65) calculations, different 

relaxations of Na2IrO3 show zigzag order with different spin axes varying in energy by as 

much as 6 meV per Ir. This magnetocrystalline anisotropy would favor collinear 

magnetic phases such as zigzag and stripy over the noncollinear spiral phases. Second, 

the small Kitaev term may be playing a role. In a K-J1-J2-J3 model, as K grows from zero, 

the zigzag phase on the J2/J1 v J3/J1 phase diagram grows down and left, at the expense of 

the Néel and spiral phases (the stripy phase also grows, though not as much, and in a 

leftward direction that may be away from where Na2IrO3 is on this diagram).14 We note 

that while Na2IrO3 has a zigzag ground state, Li2IrO3, which is isostructural and 

isoelectronic with Na2IrO3, has a spiral ground state.35 We can only speculate that 

Na2IrO3 may have larger magnetocrystalline anisotropy than Li2IrO3, which would 

conceivably explain this difference. 

 From CSSD, the major Kitaev candidate materials appear to have large nearest-

neighbor Heisenberg interactions, moderately large second-nearest-neighbor Heisenberg 
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interactions, small Kitaev interactions, and variation from small to moderately large 

third-nearest-neighbor Heisenberg interactions. 

 

Manipulated Kitaev Candidate Materials 

 While Na2IrO3 and α-RuCl3 may not themselves enable Kitaev QSL states, many 

proposals have been made for manipulating them into Kitaev QSL states. Here, we 

examine epitaxial and single layers of Na2IrO3, strained Na2IrO3, and idealized versions 

of Na2IrO3 and α-RuCl3. 

 

Epitaxial and Single Layers 

 

GaN/Na2IrO3 

 We searched Materials Project for possible substrates for Na2IrO3.36 We settled on 

GaN for several reasons. First, the lattice mismatch between Na2IrO3 and GaN is small; 

the cross-hexagon distance is 6.26 Å for Na2IrO3 and 6.43 Å for GaN. We hypothesized 

that the slightly larger distance for GaN may even help, as expanding Na2IrO3 in-plane 

may decrease the Heisenberg terms relative to the Kitaev term. Second, GaN is an 

insulator (3.4 eV band gap). Third, GaN can be grown by MBE, meaning synthesizing 

GaN/Na2IrO3 may be achievable.  

 We performed DFT calculations on a slab containing four layers of GaN (24 Ga 

ions) and one double layer of Na2IrO3 (one layer of NaIr2O6 and one layer of Na; 4 Ir 

ions) (Figure 14). We performed LSDA+U+SOC on the material (with the magnetic 

structure initialized to zigzag order) with Ueff = 0.65 eV. We used a k-mesh of 6x4x1, and 
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for ionic relaxation, we allowed the ions and cell shape to relax but held the cell volume 

constant. We set all the other parameters the same as in our Na2IrO3 calculations. 

 
Figure 14: Relaxed GaN/Na2IrO3 structure. (Figure generated with VESTA.10) 
 

 Unfortunately, despite GaN and Na2IrO3 both being insulators, we found this 

material to be a conductor. We considered that the insulating behavior may be due to the 

double-layer of Na2IrO3 on the end, and so we repeated this process with just a 

double-layer of Na2IrO3. As expected, this material was also a conductor, though the Na 

within the NaIr2O6 layer popped-out of the layer (Figure 15 – left). We additionally ran 

similar calculations with a double-layer of Na2IrO3 held static (ionic relaxation turned 

off) to assess whether structural changes were causing the conducting behavior, but a 

similar electronic calculation with this material still revealed conducting behavior (Figure 

15 – right). We surmise that growing double-layer thin films of Na2IrO3 on a GaN 

substrate is not a promising avenue to induce a Kitaev QSL. It remains to be seen 

whether a suitable oxide substrate can be found. The Na layers on both sides of the 

NaIr2O6 layer appear to affect the band structure, implying Na2IrO3 cannot be cleanly 
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separated into individual layers without drastically changing the band structure at the 

Fermi level. 

 
Figure 15: Relaxed (left) and static (right) double layers of Na2IrO3. (Figure generated 
with VESTA.10) 
 

Strained Na2IrO3 

 It has been suggested that applying strain on Na2IrO3 may enable the Kitaev QSL 

state, for one of two reasons.37, 38 First, as alluded to in the previous section, an expanded 

unit cell would mean larger Ir-Ir distances, and therefore smaller Heisenberg 

interactions.37 Second, it may be possible to apply strain to coax the Ir-O-Ir angles closer 

to 90°; this would presumably lead to more destructive interference from the isotropic 

parts of the Ir-O-Ir interactions and thus smaller Heisenberg interactions.38 We therefore 

performed a series of DFT calculations on Na2IrO3 at various amounts of strain.  

 For these calculations, we started with the experimental Na2IrO3 unit cell, and 

produced four more unit cells by simultaneously varying strain in both of the in-plane 

directions (5% tension, 10% tension, 5% compression, and 10% compression) while 

scaling all of the ion positions. We kept the out-of-plane distances constant; while most 

materials have positive Poisson’s ratios (often of ~0.3), layered materials don’t follow a 

clear pattern regarding Poisson’s ratios in their out-of-plane directions, and instead can 

have Poisson’s ratios in this direction that are positive, negative, or near zero, so we felt 

that an assumption of zero was a good prior.39 



 34 

 For each of these five unit cells (the four strained and the one unstrained), we 

performed LSDA+U+SOC (Ueff = 0.65 eV) while keeping the unit cell shapes and 

volumes constant during ionic relaxation, and all other parameters at our default settings. 

For each structure, we performed 12 calculations – 3 for each magnetic order (with spins 

initialized along different unit cell axes for each of the 3 calculations). 

 While in the unstrained structure, zigzag magnetic order has the lowest energy, at 

extreme tension and compression, the FM order has the lowest energy, and the difference 

between these two decreases at the more moderate strains as well (Figure 16 – left). 

Interestingly, the band gap also decreases as the strain increases (again, in both 

directions) (Figure 16 – right). 

 
Figure 16: Left – relative energy of the magnetic structures at various strain. Right – band 
gap of the lowest energy magnetic structure at each level of strain. 
 

 Under an assumption of a K-J1-J2-J3 model, as K increases relative to J1, the 

zigzag and stripy phases are expected to grow on the phase diagram at the expense of the 

Néel phase.14 In this situation, smaller J2 and J3 (also thought to be a requirement for the 

Kitaev QSL) would favor a stripy phase over zigzag. As tension is applied here, however, 

both the zigzag and stripy phases increase in energy relative to the Néel phase, while the 
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FM phase decreases in energy relative to all three (which is not expected as Kitaev QSL 

is approached). Under 5% compression, the stripy phase does decrease in energy, but it 

never decreases below the zigzag or FM phase, and the zigzag structure here increases in 

energy compared to FM. All three of these phases have relatively similar energies, 

implying a large amount of frustration, and conflicting evidence regarding hopes for 

achieving the QSL phase via elastic strain.  

 Examining the Ir-O-Ir angles suggests an explanation for this phenomenon. The 

angles grow under tension and shrink under compression, with a close-to-ideal 94° at 5% 

compression (Figure 17). As explained in the introductory section on Na2IrO3, ideal IrO6 

octahedra are expected to show strongest Kitaev-like couplings relative to Heisenberg 

interactions, as the isotropic portion of Ir-O-Ir hopping destructively interferes at an 

Ir-O-Ir angle of 90°. 

 
Figure 17: Ir-O-Ir angles in Na2IrO3 increase approximately linearly with in-plane lattice 
constants. 
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Idealized Na2IrO3 and α-RuCl3 Exchange Interactions 

 Many proposals for inducing the Kitaev QSL state rely on manipulating the bond 

angles in Kitaev candidate materials to be closer to 90°. In order to assess whether this 

would be enough to induce a Kitaev QSL state, we used CSSD to examine the magnetic 

interactions of idealized versions of Na2IrO3 and α-RuCl3.  

 To create these structures, we made versions of Na2IrO3 and α-RuCl3 with Ir-O-Ir 

and Ru-Cl-Ru angles of 90°, with Ir-Ir and Ru-Ru bond lengths equal to the averages of 

those respective bond lengths in the relaxed structures, and with other parameters (such 

as interlayer distance) held constant. 

 We then performed CSSD on these two structures, using a similar process to the 

one we used with the relaxed structures. The one difference was in the initial step – only 

electronic structure was allowed to relax as ions were held constant. 

 

Idealized Na2IrO3 

 In our initial comparison of various electronic relaxations of idealized Na2IrO3, 

there was a virtual tie for lowest energy (~0.1 meV difference per Ir) between one 

relaxation in which the spins pointed approximately along the a-axis of the unit cell, and 

one in which they pointed approximately along the b-axis of the unit cell. We therefore 

performed CSSD on both of these magnetic structures, and we report their results below. 

We also attempted to combine these data into one dataset for CSSD, but the relative error 

for the combined set was quite high (>40%), and therefore we are not reporting the 

combined results. 
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For the data with spins pointed near the a-axis (4.5% relative error): 

Nearest neighbors (in meV/µB
2): 

𝐉𝒙 =
39 8 −3
9 29 13
−2 15 30

,     𝐉𝒚 =
29 9 −13
8 39 3
−15 2 30

,     𝐉𝒛 =
35 1 0
3 35 3
−3 0 42

. 

Second-nearest neighbors (in meV/µB
2): 

𝐉𝟐,𝟏 =
30 36 −6
33 29 3
−4 0 −3

,      𝐉𝟐,𝟐 =
31 33 −3
33 31 3
−4 −3 −2

,      𝐉𝟐,𝟑 =
31 34 0
34 33 0
−5 2 −1

. 

Third-nearest neighbors (in meV/µB
2): 

𝐉𝟑,𝟏 =
8 11 0
9 12 1
−2 −2 −1

,     𝐉𝟑,𝟐 =
7 9 0
10 7 2
−2 0 0

. 

The largest term here is still J1 (with an average value of 31 meV/µB
2), though this is 

considerably smaller than the value with the relaxed Na2IrO3 (56 and 43 meV/µB
2). K 

here is 9 meV/µB
2, still considerably smaller than J1, and many of the off-diagonal terms 

(which have increased from before) are larger than this. There are also unusual 

anisotropic effects in the second-nearest-neighbor and third-nearest-neighbor interactions. 

In both, the off-diagonal terms are surprisingly large within the upper left 2x2 of the 

matrix, while the last diagonal term is surprisingly small. These unusual effects all point 

to anisotropy in orbital overlaps, which is likely caused by the strain put on the system 

from being forced to be idealized. 

 CSSD performed on the data with the spins pointed near the b-axis also shows 

unusual anisotropy (15% relative error): 

Nearest neighbors (in meV/µB
2): 

𝐉𝒙 =
58 13 10
12 68 −8
7 −2 27

,     𝐉𝒚 =
68 12 8
13 58 −10
2 −7 27

,     𝐉𝒛 =
61 11 −7
11 61 7
−7 7 16

. 
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Second-nearest neighbors (in meV/µB
2): 

𝐉𝟐,𝟏 =
33 0 −9
2 34 3
−4 10 60

,      𝐉𝟐,𝟐 =
31 6 −8
0 32 6
−6 6 53

,      𝐉𝟐,𝟑 =
34 4 −4
1 33 7
−7 7 54

. 

Third-nearest neighbors (in meV/µB
2): 

𝐉𝟑,𝟏 =
32 3 1
2 32 1
1 −1 4

,     𝐉𝟑,𝟐 =
31 9 0
7 31 −2
2 0 7

. 

The third diagonal term is unusual here in every matrix – for the nearest neighbors and 

third-nearest neighbors, this terms is considerably smaller than would be expected, and 

for the second-nearest neighbors, it is considerably larger. While this anisotropy does 

make determining K somewhat harder, it can still be estimated by examining the 

difference between J1 and J1 + K terms separately for the upper left 2x2 matrix, and the 

last diagonal term. Both of these methods indicate a K of approximately 11 meV/µB
2, 

which is similar to the value received from the calculation with the spins along the a-axis. 

This is considerably smaller than J1, which has an average value of about 52 meV/µB
2 

(though with large variance due to the above-mentioned anisotropy). 

 

Idealized α-RuCl3 

 CSSD with idealized α-RuCl3 produced the following Hamiltonians with 12% 

relative error: 

Nearest neighbors (in meV/µB
2): 

𝐉𝒙 =
50 9 13
9 50 −15
13 −15 32

,     𝐉𝒚 =
50 9 15
9 50 −13
15 −13 32

,     𝐉𝒛 =
50 7 3
7 50 −13
13 −13 25

. 
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Second-nearest neighbors (in meV/µB
2): 

𝐉𝟐,𝟏 =
30 −2 −5
−2 30 5
−5 5 39

,      𝐉𝟐,𝟐 =
34 −5 −9
−7 34 12
−9 9 44

. 

Third-nearest neighbors (in meV/µB
2): 

𝐉𝟑,𝟏 =
25 5 8
5 26 −7
8 −7 14

,     𝐉𝟑,𝟐 =
25 4 6
4 25 −6
6 −6 17

. 

Compared to the relaxed α-RuCl3 structure, the idealized α-RuCl3 generally has similar 

interactions, but with a few notable differences. First, the off-diagonal terms are 

significantly larger in the idealized structure, though they are still smaller than the 

Heisenberg terms. Second, in the idealized structure, there is more anisotropy among the 

Heisenberg terms – the z-z terms (for nearest, second-nearest, and third-nearest 

interactions) are quite different than the other terms (~40% smaller for nearest- and third-

nearest neighbors, and ~30% larger for second-nearest neighbors). Note that this is not 

the same as a Kitaev term – a nearest-neighbor Kitaev term would place the 

“odd-term-out” on a different interaction for the different interaction matrices, but here, 

the z-z interaction is always the odd-term-out. Both larger off-diagonal terms and more 

anisotropy among the Heisenberg terms are indicators of high anisotropy – which can 

probably be explained by the strained nature of this idealized structure. Of note, K is still 

small enough to be negligible. 

 J1 K J2 J3 Unusual anisotropy? 
Na2IrO3 (FM) 56 -18 26 1 N 
Na2IrO3 (FM+AF) 43 3 28 1 N 
Idealized Na2IrO3 (~a-axis) 31 9 20 5 Y 
Idealized Na2IrO3 (~b-axis) 52 11 40 21 Y 
α-RuCl3 51 -6 30 30 N 
Idealized α-RuCl3 50 -4 45 21 Y 
Table 1: Interaction terms found from CSSD. All reported values are in meV/µB

2. 
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 Neither Na2IrO3 nor α-RuCl3 appear to have significant Kitaev character, and 

neither do idealized versions of these structures. As the idealized version of these 

materials should see the isotropic portions of Ir-O-Ir interactions disappear, the dominant 

Heisenberg interactions presumably come from direct d-d hopping. While these 4d and 

5d honeycomb materials are highly frustrated due to competing AF Heisenberg 

interactions, they appear unlikely enable a Kitaev QSL. 

 

Possible Lanthanide Candidate Materials 

 4f honeycomb materials may have advantages over d honeycomb materials when 

it comes to fulfilling a Kitaev QSL state. First, the SOC is larger in f-orbitals. Second, 

f-orbitals are much more tightly bound, implying that the direct f-f orbital overlap (which 

contributes to Heisenberg-type interactions) would be significantly smaller than d-d 

overlap. We therefore investigated honeycomb lanthanides as potential Kitaev candidates 

(actinides were neglected due to their radioactivity). 

 We started our search by using Materials Project to identify lanthanide materials 

in a layered, honeycomb structure, and we found the following materials (with the 

following corresponding bond angles): Rb2CeO3 (~106°), GdBr3 (~96°), Na2TbO3 (~98°), 

K2TbO3 (~105°), YbBr3 (~97°), and YbCl3 (~100° and ~113°).36 For reference, Materials 

Project reports α-RuCl3 and Na2IrO3 have bond angles of ~95° and ~101°, respectively.36 

Rb2CeO3 would be left with no valence electrons on the Ce4+, so this material was 

dismissed. Of the remaining five materials, we chose to study GdBr3, Na2TbO3, and 

YbBr3, as these had bond angles significantly closer to 90° than the other two. 
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 Under SOC, the seven f-orbitals split into three lower energy j = 5/2 states and 

four higher energy j = 7/2 states. Octahedral crystal field further splits the j = 5/2 states 

into two lower energy Γ8 states and one higher energy Γ7 state. The j = 7/2 states are split 

under the crystal field into one lower energy Γ6 state, two middle energy Γ8 states, and 

one higher energy Γ7 state (Figure 18).40 

 
Figure 18: Proposed band structure for f orbitals under SOC and crystal field. 
 

 In GdBr3, on the Gd3+, the 4f7 electrons should fully fill the j = 5/2 states, and the 

Γ6 state of j = 7/2 should be half filled, potentially allowing for Kitaev interactions. In 

Na2TbO3, the Tb4+ should also have 4f7 electrons, and thus may be expected to act 

similarly. In YbBr3, on the Yb3+, the 4f13 should fully fill the j = 5/2 states, along with the 

Γ6 and Γ8 states of j = 7/2. The highest state, Γ7 of j = 7/2, should be half filled. 

 To investigate whether these descriptions of lanthanide honeycomb materials are 

accurate, we performed LSDA+U+SOC on VASP with these materials and a k-mesh of 

4x2x4. We used a Ueff = 6 eV for our calculations, which is within the range used for 
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similar lanthanide materials within the literature. For YbBr3, the unit cell contains three 

layers. To simplify our calculations, we used a reduced unit cell that contains only one 

layer, with the same interlayer distance. 

 Upon relaxation, we observed the multiple local-minima problem that we had 

previously seen with Na2IrO3, though, as expected, the problem was much more 

prevalent with these lanthanide materials. Additionally, relaxing these materials proved to 

be quite difficult, as the energies were prone to increase and the structures prone to “blow 

up” and “implode” upon attempts to relax the ions. In the end, we were unable to reliably 

relax GdBr3 and Na2TbO3, but we had better success with YbBr3. Of 12 initial YbBr3 

structures (magnetic moments initialized pointing in each of three directions and arranged 

in each of four magnetic structures), one “imploded” upon attempted relaxation, one 

“exploded,” and the rest were all either fully relaxed or were mostly relaxed before the 

energy cycled between higher and lower values throughout attempted ionic relaxation (in 

which case we took the lowest energy ionic position as the relaxed one). Of the four 

tested magnetic structures (FM, Néel, stripy, zigzag), all were quite similar in energy, 

with stripy as the lowest energy, zigzag and Néel within the margin of error at 0.4 and 0.5 

meV per Yb above the stripy phase in energy, and FM at 1.3 meV per Yb above stripy in 

energy. While these results must be approached with skepticism due to the small 

differences in energy and the difficulty in relaxing the structures, this does tentatively 

bode well for the possibility of achieving a Kitaev QSL state, as the stripy state is thought 

to be proximate to the Kitaev QSL state, and the zigzag and Néel states are thought to be 

closer than the FM state.  
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 We calculated the band structure of this lowest-energy, stripy structure (Figure 

19). While there was not as much separation between the j = 7/2 Γ7 and Γ8 states as may 

have been ideal, the band structure still generally follows the picture outlined above, with 

the j = 7/2 Γ7 band split into what appear to be an upper Hubbard band and a lower 

Hubbard band.  

 
Figure 19: Calculated band structure of YbBr3, showing the Γ7 (blue) and Γ8 (red) j = 7/2 
bands. (k-paths determined with AFLOW.33) 
  

 We additionally performed LSDA+SOC calculations on YbBr3; without U, the 

band gap disappeared, indicating that YbBr3 is indeed a Mott insulator. Unfortunately, 

this meant that we could not perform CSSD on YbBr3, because our code for fixing 

magnetic moments in desired directions only works with U turned off, and doing so with 

YbBr3 qualitatively changes the electronic character. Further research is necessary to 

determine if YbBr3 or other lanthanide honeycomb materials can enable the Kitaev QSL 

state. 
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Conclusion 

 4d and 5d Kitaev candidate materials appear unlikely to allow for the Kitaev QSL 

phase. CSSD indicates these materials have small Kitaev interactions and large 

Heisenberg interactions. Proposed methods of manipulating these materials – such as by 

growing epitaxial layers on a substrate or applying strain – have problems. For epitaxial 

layers, Na2IrO3 cannot be cleanly separated into individual layers without significantly 

changing the band structure (in our calculations, from insulating to conducting). 

Regarding strain, in-plane compression increases the Heisenberg interaction from direct 

d-d orbital overlap, while tension increases the Ir-O-Ir angle further away from 90°. Even 

idealized versions of Na2IrO3 and α-RuCl3 show very small Kitaev interactions and large 

Heisenberg interactions (as demonstrated via CSSD). f-orbital Kitaev candidate materials 

are worth investigating. It’s possible that such materials have interactions that are simply 

too weak, creating an indifference to magnetic order, but such materials in all likelihood 

avoid one of the largest problems with d-materials – direct f-f orbital overlap is 

presumably very small, implying much smaller Heisenberg interaction competing with 

the Kitaev interaction. 
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