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Modeling the influence of working memory, reinforcement, and 
action uncertainty on reaction time and choice during 
instrumental learning

Samuel D. McDougle1,2,*, Anne G.E. Collins2,3

1Department of Psychology, Yale University

2Department of Psychology, University of California, Berkeley

3Helen Wills Neuroscience Institute, University of California, Berkeley

Abstract

What determines the speed of our decisions? Various models of decision-making have focused on 

perceptual evidence, past experience, and task complexity as important factors determining the 

degree of deliberation needed for a decision. Here, we build on a sequential sampling decision-

making framework to develop a new model that captures a range of reaction time (RT) effects by 

accounting for both working memory and instrumental learning processes. The model captures 

choices and RTs at various stages of learning, and in learning environments with varying 

complexity. Moreover, the model generalizes from tasks with deterministic reward contingencies 

to probabilistic ones. The model succeeds in part by incorporating prior uncertainty over actions 

when modeling RT. This straightforward process model provides a parsimonious account of 

decision dynamics during instrumental learning and makes unique predictions about internal 

representations of action values.

Introduction

Life is full of decisions, and decisions take time. Consider a labored deliberation in the 

cheese section of a grocery store - do you opt for your old stand-by, the Irish Cheddar, or 

take a risk on a fragrant Roquefort? Or maybe the Gouda? Research on decision-making 

typically focuses on the choices people make (which cheese?), though studying decision 

time can also shed light on underlying cognitive processes. In our grocery example, several 

factors may influence decision time: For instance, decision time could be affected by both 

how much you like a particular option over the others (which can become stronger with 

experience), but also the total number of options there are to choose from (which will vary in 

different contexts).

Most preferences emerge via learning, suggesting that learning models could be useful for 

explaining decision latencies. Indeed, a body of recent research (Fontanesi et al., 2019; 

Frank et al., 2015; Miletić et al., 2020; Pedersen et al., 2017; Shahar et al., 2019) has 
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attempted to combine models derived from reinforcement learning (RL) theory with a class 

of sequential sampling process models derived from perceptual decision-making – “evidence 

accumulation" models – which account for choice and RT data simultaneously. In evidence 

accumulation models, such as Ratcliff's drift diffusion model (DDM; Ratcliff, 1978) or 

Brown and Heathcote's Linear Ballistic Accumulator (LBA; Brown & Heathcote, 2008), RT 

is determined by the accumulation of evidence for different choices, where accumulators 

move towards a decision boundary. Evidence accumulation models are traditionally used to 

fit RT distributions in decision-making tasks, where human and other animal subjects have 

to, for instance, integrate noisy evidence over time to make perceptual discriminations 

(Ratcliff & Rouder, 1998; Shadlen & Newsome, 1996; Usher & McClelland, 2001), perform 

categorical classifications (Nosofsky & Palmeri, 1997; Sewell et al., 2019), or choose 

between well-known items with different subjective values (Busemeyer et al., 2019). These 

sequential sampling models provide good fits to RT data, and provide a link between 

psychological processes and neural mechanisms. For example, the incremental accumulation 

of perceptual evidence has been linked to parametric changes in the spiking of cortical 

neurons (Shadlen & Newsome, 1996).

Recent studies directly linking evidence accumulation with reinforcement learning 

(Fontanesi et al., 2019; Frank et al., 2015; Pedersen et al., 2017; Shahar et al., 2019) have 

used tasks where subjects have to choose between two actions to maximize probabilistic 

rewards. These models suggest that the rate of accumulation may be proportional to 

differences in the learned value of actions: If two actions have similar values, internal 

evidence accumulation (and thus choice RT) will be slow relative to a situation where one 

action is strongly preferred over the other. Because of this principled relationship between 

RT and choice, sequential sampling models can also be leveraged for fitting choice data, 

providing a more mechanistic account of the decision-making process compared to simpler 

choice policies (e.g., softmax).

To our knowledge, however, no modeling effort that links RL and RT has addressed the full 

range of established choice RT effects. These effects include the set size effect, where 

increasing the number of choice options drives a logarithmic increase in RT (“Hick's Law"; 

Hick, 1952; Rabbitt, 1968), repetition effects (i.e., attenuated RT when a choice stimulus is 

repeated; Bertelson, 1965), delay effects (i.e., changes in RT based on how long ago a choice 

stimulus was last observed; Hyman, 1953; Remington, 1969), and learning and set size 

interactions (i.e., gradual reductions in RT and the attenuation of set size effects over time; 

Davis et al., 1961; Mowbray & Rhoades, 1959; Proctor & Schneider, 2018; Schneider & 

Anderson, 2011). Although some memory-based accumulation models can capture set size 

effects (Pearson et al., 2014), they often do not address learning or repetition effects. In 

contrast, the aforementioned RL-based DDM models (Frank et al., 2015; Pedersen et al., 

2017) can capture choices and RT distributions, but are not suited for capturing set size 

effects, as they are usually designed for two-alternative forced-choice tasks. One short-term 

memory model built on the ACT-R framework (Schneider & Anderson, 2011) was able to 

capture Hick's Law and learning-related RT effects, but did not model RT distributions. A 

recent neural model provides a normative account of multi-alternative decision-making that 

captures set size effects, but does not address learning (Tajima et al., 2019). Taking 
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inspiration from these previous efforts, we propose a simple model of choice and RT that 

can capture this range of behavioral phenomena.

Furthermore, we test two specific hypotheses about RT and instrumental learning by 

analyzing two previous behavioral data sets and performing one new experiment. First, we 

test the idea that choice RT is best modeled by taking into account both a labile working 

memory process and a slow RL process that operate in parallel during learning. Previous 

work has shown that choices during instrumental learning are best explained by 

simultaneous contributions from both of these systems (A. G. E. Collins & Frank, 2012). 

Second, we posit a key latent variable that modulates decision time: a prior uncertainty over 

actions, where the speed of action selection is influenced by an internal estimate of action 

uncertainty averaged over all states.

Results

Task and behavior overview

Even in simple tasks, multiple cognitive processes may be recruited to optimize our 

decisions. For instance, a driver approaching an intersection has to select well-practiced 

motor movements to slow the vehicle at the proper rate, while also guiding attentional 

control to various external factors as they decide which lane to enter (e.g., the position of 

neighboring cars, the distance until the next turn, etc.). Various studies show that decision-

making in a simple laboratory stimulus-response learning task is best modeled by 

accounting for these two systems, exemplified by, respectively, RL and working memory (A. 

G. E. Collins & Frank, 2012). Specifically, when human subjects learn deterministic 

stimulus-response mappings, they appear to rely on short-term memory of recent trial 

outcomes, in addition to gradual, implicit consolidation of the correct stimulus-response 

map.

The trade-off between these qualitatively distinct processes may be influenced by set size 

(the number of stimulus-response instances to be learned), where lower set sizes lead to 

more working memory-driven learning and higher set sizes lead to more RL-driven learning. 

A dualprocess model that captures this idea – the RLWM model – has been shown to 

provide a better fit to choice data in these tasks than models that postulate a single learning 

mechanism (A. G. E. Collins et al., 2014, 2017; A. G. E. Collins & Frank, 2018; A. G. E. 

Collins & Frank, 2012). However, the RLWM model was not developed to account for RT 

data. Here we build on this body of work to provide a more complete model that captures 

both choice and RT, and we also extend this model to stochastic learning contexts with 

probabilistic reward feedback. We start by describing the laboratory task, previous 

behavioral findings, and the RLWM model introduced in previous studies.

The standard version of the RLWM task (Fig. 1A; A. G. E. Collins et al., 2014, 2017; A. G. 

E. Collins & Frank, 2018; A. G. E. Collins & Frank, 2012) proceeds as follows: Subjects are 

instructed to learn which of three responses is associated with a particular image to 

maximize reward. Stimuli are presented in a pseudorandomized sequence within a block of 

trials, and subjects are required to respond to each stimulus with a button press (either the 

“j”, “k”, or “l” keys on a keyboard) in under 1.5 seconds. When a stimulus appears and the 
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correct response is made, a reward of “+1" points is earned; when an incorrect response is 

made, no reward is earned. In the standard version of this task, rewards are deterministic – 

each stimulus is associated with one correct response (however, see below for results of a 

probabilistic version of the task). Each stimulus is seen 9-12 times per block.

Critically, each block is associated with a particular set size, which represents the number of 

distinct stimulus-response pairs to be learned during that block. Moreover, to discourage 

subjects from trying to infer correct actions for unseen stimuli (e.g., via process-of-

elimination), different stimulus-response “mappings” are used within set sizes. For example, 

in one set size 3 block, each of the three stimuli could be associated with exactly one of the 

3 available response buttons, while in another set size 3 block, two stimuli could be 

associated with one response, with the third stimulus associated with a second response and 

no stimuli associated with the third response.

The first key behavioral result is the effect of set size on performance: Average learning 

curves at each set size are shown in Figure 1B. Subjects learn to select correct actions in all 

set sizes, but they are slower to learn at higher set sizes. This negative effect of set size on 

performance has multiple possible sources: First, it could be the result of interference 

between stimulus representations or value decay within the RL system, where higher set 

sizes lead to a greater degree of interference. A non-mutually exclusive proposal is that 

subjects also recruit working memory processes in this task, and that the restrictive capacity 

limitations of working memory account for most of the set size effects observed (A. G. E. 

Collins & Frank, 2012). Indeed, support for the latter has been observed in computational 

(A. G. E. Collins & Frank, 2012), neuropsychological (Collins et al., 2014), and 

neurophysiological studies (Collins et al., 2017; Collins & Frank, 2018).

Similarly, delay (i.e., the number of trials since the current stimulus was last responded to) 

also has a negative effect on performance (Figure 1C), and subjects' performance at different 

delays interacts with set size, where longer delays at higher set sizes leads to relatively 

weaker performance. This result reflects a form of sequential learning effects (Lohse et al., 

2020) that are consistent with trial- or time-based decay (i.e., forgetting) of items held in 

short-term memory (Posner & Keele, 1967).

Lastly, the magnitude of the adverse influence of set size on performance diminishes with 

practice (Figure 1D). This suggests that subjects may cache learned associations over time, 

perhaps reducing their reliance on more costly, capacity-limited executive functions. We 

note that the behavioral effects depicted in Figure 1 (A. G. E. Collins & Frank, 2018) have 

been replicated across several different studies using this task (A. G. Collins et al., 2014, 

2017; A. G. Collins & Frank, 2012).

Collins and Frank (2012) formalized the concept of working memory (WM) and 

reinforcement learning (RL) working in parallel in a simple learning model, the RLWM 

model. In the RLWM model, two modules learn the stimulus-response contingencies (i.e., 

state-action values) over time.
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The RLWM model of choice

The learning of stimulus-action values is modeled using a variant of a standard RL model 

(Sutton & Barto, 1998). The task consists of two main variables - the state, s (i.e., the 

stimulus on the screen), and the action, a (i.e., the button pressed). The action-value in a 

given state, Q(s, a), is updated on each trial, t, using the delta rule (Rescorla & Wagner, 

1972):

Qt + 1(s, a) = Qt(s, a) + αδt (1)

δt = r − Qt(s, a) (2)

where α is the learning rate, δ is the reward prediction error, and r is the (binary) reward 

received.

In the basic RLWM model of choice, values are transformed into probabilities, or “weights”, 

with the softmax function,

p(a ∣ s) = eQ(s, a)β

ΣieQ(s, ai)β (3)

where β constitutes the inverse temperature parameter, and the sum in the denominator is 

taken over the three possible actions, ai.

The RLWM model captures the parallel recruitment of working memory (WM) and 

reinforcement learning (RL) by training two simultaneous learning modules (Figure 2A). 

The RL module is characterized by Equations 1-2. The WM module learns stimulus-

response associations (W), and is formally similar to Equations 1-2 albeit with a fixed 

learning rate of αWM = 1:

W t + 1(s, a) = W t(s, a) + αW M(r − W t(s, a)) = r (4)

Thus, the WM module has, in principle, perfect learning of the observed outcome, which 

makes it qualitatively distinct from a gradual RL process. Critically, however, working 

memory is vulnerable to short-term forgetting after updating is performed: The model 

captures trial-by-trial decay of W,

W t(sj, ai) = W t(sj, ai) + ϕ W 0 − W t(sj, ai) (5)

where ϕ draws W (over all stimuli j and actions i) toward their initial values, W 0 = 1
nA

, 

where nA is the number of actions (in this task, 3).

Separate WM and RL policies (πWM and πRL) are computed using the softmax function 

(Equation 3), and are then combined in the calculation of the final policy via a weighted 

sum,
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π = wπW M + (1 − w)πRL (6)

where w approximates how much WM should contribute to the decision (Figure 2A). This 

parameter is determined by two free parameters, the working memory capacity (i.e., 

resource limit) C, and the initial WM weighting ρ,

w = ρ ∗ min 1, C
n_Sk

(7)

where n_S represents the set size in block k. In short, this equation says that the influence of 

WM on choice is reduced if the set size exceeds WM capacity C. This weighting step, and 

the free parameters C and ρ, are critical for capturing the quantitative and qualitative effects 

of set size on performance in this task (A. G. E. Collins & Frank, 2012).

Lastly, the model also captures learning biases, in particular, the neglect of negative 

feedback consistently observed in this task: When an action is incorrect and thus generates a 

negative prediction error (i.e., δ < 0), the learning rate α is reduced multiplicatively:

α = γα (8)

where γ controls the degree of perseveration (higher values cause less perseveration, and 

lower values more). Perseveration occurs for both the RL and WM modules; in the latter 

case, the fixed learning rate of 1 is scaled by γ.

Previous work has shown that the RLWM model successfully recapitulates the learning 

curves of human subjects performing this task, and does so better than various other 

candidate models (e.g., RL-only models, as well as RL models including mechanisms that 

capture qualitative set size effects, such as RL models with individual learning rates for each 

set size, simple RL models with forgetting, interference, credit assignment limitations, or 

other noise mechanisms, etc.; A. G. E. Collins et al., 2014, 2017; A. G. E. Collins & Frank, 

2018; A. G. E. Collins & Frank, 2012). Critically, the final output of the RLWM model is π, 

which represents the action policy. We note here that instead of referring to the quantities 

represented in the policy as probabilities, as they’re typically referred to in RL, we will refer 

to them as weights given to each of the three possible responses. In several of the models 

described below, we extend the function of these weights to serve as the input to an 

accumulation process, allowing us to model both choice and RT.

Expanding the RLWM choice model to RTs

In settings with binary choices, the drift-diffusion model (DDM) is often used to model 

choice and RT (Frank et al., 2015; Pedersen et al., 2017; Ratcliff, 1978; Ratcliff & McKoon, 

2008). While powerful, this model is not particularly well-suited to situations where there 

are more than nA = 2 available actions. A similar evidence accumulation model, the Linear 

Ballistic Accumulator, or LBA (Figure 2B; Brown & Heathcote, 2008), can easily 

accommodate any number of actions (nA = 1, 2, 3,…∞). The LBA shares many key 

properties with the DDM, although within-trial accumulation is simplified to a noiseless 

linear process.
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Accumulation via the LBA is schematized in Figure 2B. Parameter A corresponds to the 

upper limit of a uniform distribution from which the starting point (or bias) of the 

accumulator is drawn. The parameter b corresponds to the boundary of accumulation (i.e., 

the threshold at which the accumulator terminates and generates a reaction time). The 

parameter t0 determines the “non-decision time”, commonly interpreted as time taken for 

visual processing of the stimulus and motor execution (not shown).

The density function associated with the ith accumulator in the LBA is given by (Brown & 

Heathcote, 2008):

PDFi(t) = fi(t)∏j ≠ i 1 − Fj(t) (9)

where Fj(t) is the cumulative probability function associated with all other competing 

accumulators, j ≠ i. Here, the probability density of a response time for a particular 

accumulator is normalized by the probability of the agent making the response associated 

with that particular accumulator, with other accumulators (competing actions) not having 

reached threshold. The termination time distribution function for the ith accumulator to be 

the first to reach threshold (fi) is the given by the probability density function:

fi(t) = 1
A −viΦ

b − A − tvi
tsv + svϕ b − A − tvi

tsv + viΦ
b − tvi

tsv − svϕ b − tvi
tsv (10)

where the drift rate is drawn from the normal N(vi, sv), and ϕ and Φ refer to, respectively, 

the Gaussian distribution’s density and cumulative probability functions. Further details 

concerning the LBA distribution specifications and their mathematical derivations can be 

found in Brown & Heathcote (2008).

We have thus far presented two separate modeling frameworks – the RLWM model of 

learning and the LBA model of reaction time (Figure 2A, B). How should we connect these 

two models to capture both learning and RT in our instrumental learning task?

We start with a baseline model inspired by previous work connecting reinforcement learning 

processes with the DDM. In these other models, the difference between learned Q-values of 

two competing actions directly scales a single mean drift rate v of a diffusion process (Frank 

et al., 2015; Pedersen et al., 2017). Thus, when two action values are far apart, RT will be 

short, and when two values are close, RT will be long. Directly replicating that model with 

an LBA, which instead has individual accumulators for each action, is not possible; however, 

individual drift rates can be scaled proportionally by their associated action weights.

The first model we tested (the π model) posits a nonlinear relationship between latent action 

weights and accumulation rates. In the π model, weights of each action scale the drift rate of 

their associated accumulators: Each drift rate mean parameter vi is directly multiplied by the 

associated weight πi of each action i on trial t:

vi, t = ηπi, t (11)
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where η is a scaling parameter (simply allowing for the scaling of all drift rates across 

subjects). Critically, this model performs softmax normalization (Equation 3) to compute π 
and thus to determine the accumulation drift rates associated with each action; this step 

reflects the assumption that a non-linearity (i.e., the transformation of Q and W into weights) 

governs both the differential weighting of Q and W and the relationship between action 

value and reaction time. This aspect of the model is consistent with similar recent work 

(Fontanesi et al., 2019), as well as assumptions from the actor-critic framework (Sutton & 

Barto, 1998), where state-action weights in the striatum govern decision latency.

Consider that the time needed for a decision should not only be affected by the difference of 

one action’s value over another (e.g., a strong preference for eating chocolate ice cream 

versus vanilla), but, more generally, the uncertainty over all relevant actions (e.g., choosing 

between ten flavors that are all similarly valued). Indeed, uncertainty is thought to be a key 

ingredient in capturing choice RT (Hyman, 1953). Thus, we hypothesized that drift rates 

should vary as a function of two quantities: First, individual accumulation rates should be 

affected by the estimated weight of each action i given the current state (πi), as reflected in 

the π model above. Second, we intuited that prior uncertainty over actions (i.e., over their 

average weights over all stimuli within a block) would also influence decision time. That is, 

the time it takes to select an action in a given state may be affected to some degree by the 

distribution of average action weights across all states. Thus, if the average weights of the 

three possible actions across all states are very similar, we should expect maximum 

uncertainty, and a slow RT. This prior uncertainty term (Hprior) was modeled by first 

computing an average policy (π μ), which requires averaging action weights for each action i 
over each state/stimulus k (πi,k) across all n_S possible states/stimuli:

π i
μ = 1

nS ∑k = 1
n_S πi, k (12)

This simple averaging step thus collapses latent action weights into a single 1 X nA vector 

that putatively represents the probability of choosing each of the three actions prior to 

encoding the current trial’s stimulus. Then, to ascertain the degree of uncertainty over this 

prior, the Shannon entropy (Shannon, 1948) is computed on this vector, inspired by classic 

work on RT and uncertainty (Hyman, 1953). (We note here that using inverse variance 

instead of entropy to quantify uncertainty produced qualitatively similar results.):

Hprior = − ∑i = 1
3 π i

μ log2 π i
μ (13)

Because action weights change with learning, the quantity above will take on a unique value 

for each trial t. To illustrate, if the current block was a set size 4 block, the three-element 

vector π μ used to compute Hprior is the column-wise average over a 4 X 3 matrix of states X 

actions.

Finally, we incorporate the uncertainty quantity from Equation 13 into the evidence 

accumulation rate for the ith accumulator using division:
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vi, t = η πi, t
Hprior, t

(14)

Thus, in this model, all three drift rates are scaled down equally by the degree of uncertainty 

associated with taking any particular action in that trial. This heuristic could be interpreted 

as capturing conflict between actions, which occurs at the level of their prior probabilities 

going into each trial. We hypothesized that this additional consideration would help the 

model better estimate RTs. We refer to this as the πH model.

We also tested two additional control models, the Q model and the πH-RL model. In the Q 
model, we tested an alternative assumption where latent variables from the separate RL (Q-

values) and WM (W stimulus-response associations) modules linearly scale drift rates. Thus, 

we exclude the step where those values are nonlinearly transformed with the softmax 

function (Equation 3). These quantities are still differentially weighted according to 

Equation 6 to reflect respective WM and RL contributions across different set sizes. 

However, the mean accumulation rate for each accumulator (vi) corresponding to each action 

i is directly proportional to the weighted Q and W quantities for each action (Vi) on trial t:

vi, t = ηV i, t (15)

Lastly, the πH-RL model was included to test the utility of including a working memory 

module in the underlying learning process (A. G. E. Collins & Frank, 2012). This model is 

identical to the πH model, but only a single action policy is learned (Equations 1 and 2). In 

this model, the three working memory-related free parameters – capacity (C), weighting (ρ), 

and decay (ϕ) – are not included.

In all four models, choices and RTs are fit simultaneously. That is, a model’s fit to subjects’ 

RTs determines its likelihood during the fitting process, and the probability of a given RT is 

linked to the probability of the choice associated with that RT (Equation 9; Brown & 

Heathcote, 2008). Models were fit to the data using maximum likelihood estimation by 

minimizing the negative log likelihood using the MATLAB function fmincon. Fit quality 

was determined using both the Bayesian Information Criterion (BIC ; Schwarz, 1978), as 

well as a leave-p-out cross-validation procedure (see Methods for further details on model 

fitting, parameter recovery, validation, and model simulation).

Model comparisons

The πH model assumes that action uncertainty modulates RTs and choices. To test this claim 

we compared it to the three other variants highlighted above (π, Q, and πH-RL), performing 

model fitting on a previously-published data set (data set 1; N = 40; A. G. E. Collins & 

Frank, 2018). As shown in Figure 2C, the πH model fit the RT data better than the other 

three models (i.e., lower BIC values; all average BIC differences > 120; protected 

exceedance probability = 1.0). Figure 2D shows individual BIC comparisons of the πH 

model versus the second-best model, the π model, for each subject. Best fit parameter values 

for all models are shown in Table S1.
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We also performed a cross-validation comparison analysis (Figure 2E, F): Models were fit to 

individual subject's RT data, leaving out the last block from each set size as a test set. The 

πH model outperformed the alternatives in this analysis as well (paired t-tests on cross-

validated log-likelihoods, all p's < 0.001). We additionally performed a simulation and fitting 

procedure, using the best-fit parameters, to test how well differentiated the four models were 

from one another (see Methods; Wilson & Collins, 2019). As suggested by the confusion 

matrix in Figure S1, the four models were reliably separable.

The specific implications of our model comparisons (Figure 2C-F) are as follows: First, the 

πH-RL model did not perform as well as any of the other models. This echoes previous work 

showing that modeling parallel WM and RL systems better describes behavior in this task 

versus modeling a single RL system alone (A. G. E. Collins et al., 2014, 2017; A. G. E. 

Collins & Frank, 2018; A. G. E. Collins & Frank, 2012). Here, we extend this finding to RT 

data. Second, as predicted, the π model outperformed the Q model, showing that 

incorporating a nonlinearity (e.g., via the softmax) better captures the relationship between 

latent value estimates and evidence accumulation rates, consistent with previous work 

(Fontanesi et al., 2019). Finally, the πH model outperformed all other models. This suggests 

that prior uncertainty over actions has a measurable influence on subjects’ behavior in this 

task.

We emphasize that the model comparisons highlighted in Figure 2 reflect how well the 

models fit the RT distributions, which, in the LBA architecture are also linked to subjects' 

choices (Brown & Heathcote, 2008). Thus, this analysis reflects each model's ability to 

characterize both RT and choice data simultaneously.

Parameter recovery

Although the πH model performed well in the fitting procedure, this does not guarantee that 

the model is well identified. To investigate the model’s identifiability, we performed a 

parameter recovery experiment, simulating choices and RTs using the best-fit parameters 

from the fitting procedure, and then attempting to fit the resulting synthetic data to recover 

those parameters (see Methods).

The πH performed well in the recovery experiment, showing consistent recovery of all 8 of 

its free parameters (Figure S2). Moreover, the πH model recovered 4 of the 5 parameters of 

the underlying RLWM learning model significantly better than the RLWM model recovered 

those free parameters when fit to the same choice data (for statistics see Figure S2). This 

improvement in recovery supports recent findings showing that leveraging RT data in 

addition to choice data in RL tasks improves the identifiability of underlying RL parameters 

(Ballard & McClure, 2019; Shahar et al., 2019).

For completeness, we conducted an additional control analysis: In all tested models, the non-

decision time parameter t0 – which is meant to capture the portion of the RT that involves 

perception of the stimulus as well as motor execution – was fixed at 150 ms. We also fit a 

version of the πH model where t0 was allowed to freely vary (Figure S3). In this fitting 

analysis we found that t0 traded-off with various other model parameters, and also tended to 

take on values well below biologically reasonable minimum human RTs (i.e., < 100 ms), 
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even when fitting constraints were altered or additional rapid RTs were screened. Moreover, 

as shown in Figure S3, while allowing t0 to vary freely improved the model fit versus having 

a fixed t0, as was expected, parameter recovery was modestly but consistently attenuated. We 

note that the main results and conclusions of our study are not significantly altered by using 

a fixed versus a free t0 parameter.

Model simulations

To validate the πH model, we used simulations to test its ability to produce qualitative 

choice and RT behavior that echoed subjects’ behavior. We simulated the model using the 

best fit parameters from the fitting procedure.

The model was able to capture the learning time course of reaction times in each set size, 

showing the expected facilitation of RTs as learning progressed (Figure 3A). Moreover, the 

model mimicked the effect of set size on performance in the task (Figure 3B), consistent 

with previous models fit on choices only (A. G. E. Collins & Frank, 2012). We note that our 

model did not successfully capture RTs in the earliest stimulus iterations, particularly in the 

lower set sizes (we return to this point in the Discussion).

The πH model also mimicked the logarithmic relationship between set size and average RT 

(i.e., Hick's Law, also known as the Hick/Hyman Law), as shown in Figure 4A. The πH 

model outperformed the π model in capturing this relationship (t-test comparing regression 

coefficients between modeled and observed Hick's Law slopes: t(39) = 8.23, p < 0.001). The 

π model approximated a sigmoidal set size effect rather than a logarithmic one, suggesting a 

misspecification in the relationship between action policies and RT. This fundamental error 

in the π model occurs because the π model essentially re-capitulates, in RTs, the effect of 

set size on choice performance (Figure 1B). That is, in the choice data, the larger set size 

effects are present in the higher set sizes, whereas in the RT data, the larger set size effects 

are present in the lower set sizes. The result presented in Figure 4A suggests that the action 

uncertainty term is critical for capturing the set size effect in RTs. As illustrated in Figure 

4B, the quantity computed in Equation 14 (which sets the drift rates), here depicted using 

simulations from the fitted model, decreases exponentially as a function of set size. Taken 

together, these results echo the classic finding that uncertainty is a key element in the effect 

of set size on RT (Hyman, 1953).

To further understand why the inclusion of an action uncertainty term helped the πH model 

perform better than the more straightforward π model, we next looked at how RTs differed 

between different stimulus-response (S-R) mappings within each set size.

Recall that in set sizes greater than 1, subjects could be faced with different S-R mappings 

within particular set sizes (see Methods). That is, in one set size 4 block, two stimuli could 

map onto one of the response buttons, another two stimuli could map onto a second 

response, and no stimuli could map onto the third response. For simplicity, we can notate 

this mapping as [0 2 2], where each number in this vector represents the number of stimuli 

assigned to each of the three possible actions (we note here that the order of responses in this 

notation is not consequential, as actual button assignments were randomized across blocks). 

In contrast, on a different set size 4 block, two stimuli could map onto one of the responses, 
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and the remaining two stimuli could each separately map onto one of each of the remaining 

two responses (i.e., a [1 1 2] mapping). Overall, in all n_S > 1 blocks subjects experienced a 

total of 12 possible mappings (Figure 5).

Crucially, after some learning has occurred, different S-R mappings within a set size should 

be associated with different degrees of action uncertainty. To illustrate, if we imagine a 

situation where a subject has perfect knowledge of the correct S-R associations, the entropy 

over the average policy (Equation 13) for a [0 2 2] mapping will be H([0/4 2/4 2/4]) = 1 bit, 

and for a [1 1 2] mapping will be H([1/4 1/4 2/4]) = 1.5 bits. Thus, the πH model will tend to 

predict a higher RT in the latter condition, even though both conditions have an identical set 

size. In contrast, the π model predicts no such distinction.

Figure 5 shows average RTs (with 95% confidence intervals) for each mapping within each 

set size, as well as average simulated RTs from both the πH and π models. As expected, the 

πH model was able to capture within-set-size variance in RTs while the π model was not. 

Crucially, significant RT mapping effects were not limited to comparisons between 

mappings with a different number of 0’s (i.e., blocks where one action was not associated 

with any stimuli). For example, RTs were significantly lower in the set size 5 [1 1 3] 

mapping versus the set size 5 [1 2 2] mapping (t(39) = 2.56, p = 0.01), and the set size 4 [0 1 

3] mapping versus set size 4 [0 2 2] mapping (t(39) = 4.69, p < 0.001). These results are 

consistent with the action uncertainty account and rule out potential action “pruning” 

strategies as an explanation of our results.

To quantify these effects independent of the modeling analysis, we entered subjects’ mean 

RTs for each block into a repeated-measures ANOVA, with independent variables for the set 

size and for the S-R mapping entropy given an idealized asymptotic action policy (as 

described above). We observed robust main effects of set size (F(1,39) = 1124.00, p < 

0.001), mapping entropy (F(1,39) = 228.10, p < 0.001), and a significant (negative) 

interaction (F(1,39) = 13.97, p < 0.001). Critically, these findings could not be explained by 

differences in the proportion of correct/incorrect trials between mappings: First, a similarly 

robust main effect of mapping entropy on RT was observed when this analysis was restricted 

to correct trials (F(1,39) = 352.80, p < 0.001). Moreover, when the above ANOVA was 

performed with choice performance (i.e., probability correct) as the dependent variable 

instead of RT, we unsurprisingly observed a significant (negative) main effect of set size 

(F(1,39) = 98.45, p < 0.001), but we did not observe significant effects of mapping entropy 

(F(1,39) = 2.32, p = 0.14) nor any interaction (F(1,39) = 0.00, p = 0.98).

Linking back to our observations in Figure 4, the findings in Figure 5 may partly explain the 

model’s ability to capture overall set size effects on RT: The key role of uncertainty echoes 

classic interpretations of Hick’s Law that point to uncertainty over the probability of the 

stimulus as the main determinant of RT (Hyman, 1953); here, this idea is extended to 

uncertainty over internal representations of action values learned via reinforcement, as 

stimulus appearance probability was identical within set sizes.

Figure 6A and B show full distributions of pooled subject RT data (bars) and the distribution 

of pooled simulation data (black lines), for, respectively, correct and incorrect trials, 
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collapsed over set sizes. The model’s ability to capture RT distributions across set sizes is 

further illustrated by comparing the simulated and observed RT data quantiles within each 

set size (Figure 6C).

We illustrate the model’s ability to fit the data at the level of individual subjects in Figure 7. 

The model appeared to perform well at the level of fitting individuals, shown in the fit to five 

example subjects’ RT distributions, RT time courses, and choice learning curves (Figure 7; 

ordered from top to bottom by membership in choice performance quantiles computed on 

the group).

We hypothesized that due to working memory limitations, evidence accumulation speed 

should decrease as a function of the number of intervening trials between successive 

presentations of a given stimulus, and thus RT would increase. The effect of these delays on 

average RT is shown in Figure 8A for subjects (purple triangles) and model simulations 

(black triangles), collapsed across set sizes. As predicted, the model approximated the 

effects of trial delay on RT.

It follows from the delay effects that repeated presentations of a stimulus should produce 

relatively fast RTs. Repetition RT effects of this nature have been widely documented 

(Bertelson, 1965; Campbell & Proctor, 1993; Hale, 1969; Proctor & Schneider, 2018). In 

this analysis, we examined subjects' RTs when they responded to the same stimulus two 

trials in a row. Consistent with our predictions, the model replicated the effect of repetition 

on RT (Figure 8B).

One widely documented amendment to Hick's Law is the effect of practice (Davis et al., 

1961; Mowbray & Rhoades, 1959; Proctor & Schneider, 2018). That is, if a learner is 

thought to have proceduralized stimulus-response contingencies, Hick's effect should be 

attenuated or even abolished. This can be quantified as a decrease in the slope of a linear 

function, where the x-variable is defined as log2(set size) and the y-variable is the average 

RT in each set size. The attenuation of this slope should occur on long learning time scales, 

especially in higher set sizes like those used in classic studies (e.g., Hick, 1952). Given the 

relatively brief blocks in our task, we thus chose to analyze the late phase of learning for this 

analysis (iterations 7, 8, and 9).

We predicted that in this later phase of learning, where working memory retrieval processes 

presumably become less important, the slope of the log-linear set size effect would decrease 

because the reinforcement learning system has begun to cache a stimulus-response map 

(McDougle & Taylor, 2019). Consistent with previous work, the log-linear slope of the set 

size effect significantly decreased over time (t-test on regression coefficients of slope 

change: t(39) = 2.29, p = 0.03; Figure 8C). The model produced a qualitatively similar 

decrease in the set size effect (black triangles), reflecting the effect of practice on 

crystalizing action policies and attenuating set size effects.

As shown in Figure 1C, trial-based delay has a marked effect on choice performance, 

especially in higher set sizes. Here, to capture interactions between delay and learning, we 

operationalized delay as the previous time a given stimulus was responded to (A. G. Collins 

& Frank, 2012), and separated choice data into an early learning phase (iteration < 5) and a 
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late learning phase (iteration ≥ 5). As learning progressed, the effect of delay was attenuated 

(t-test on regression coefficients of delay effect slope change from early to late learning: 

t(39) = 3.35, p = 0.002). This attenuation is potentially due to a gradual trade-off between 

working memory and RL systems. As shown in Figure 8D, the model also approximates this 

process.

Taken together, the results of our model simulations suggest that the πH model provides a 

parsimonious account of learning and decision-making processes in our task, accounting for 

a variety of choice and reaction time phenomena. One concern in any behavioral study is the 

replicability of the main behavioral trends. In our case, we have multiple data sets from 

previous studies using the same task in independent samples of subjects. We demonstrate the 

replicability of the task’s average behavioral trends, and illustrate the model’s ability to 

capture these trends, as follows (Figure S4): We took the average of the πH model 

parameters derived from fitting the model to data set 1 (n = 40; A. G. E. Collins & Frank, 

2018), then we simulated the πH model with those average parameter values on the block 

and stimulus sequences subjects experienced in data set 2 (n = 79; A. G. Collins & Frank, 

2012). The behavioral trends were similar in the two data sets, and the πH model was able to 

capture RT time courses, set size effects on choice, Hick’s Law, and RT distributions in this 

separate group of subjects (Figure S4). This result is expected – if the behavior is replicated 

across experiments, the model’s ability to capture trends in that behavior should be 

replicated as well. More importantly, the simulated πH model also fit better than the 

simulated π model on these out-of-set data (average BIC difference: 22.21; protected 

exceedance probability: 0.97), further favoring the former model over the latter.

Model performance in probabilistic learning

Having established that the πH model can characterize various choice and RT effects in a 

simple deterministic instrumental learning task, we next wanted to test the model’s ability to 

capture data in a probabilistic learning context. The vast majority of research on traditional 

choice RT effects use simple deterministic tasks, where stimulus-response associations are 

fixed and often explicitly explained to subjects (Hick, 1952; Hyman, 1953; Proctor & 

Schneider, 2018), or perceptual discriminations have a ground truth correct answer (Ratcliff 

& McKoon, 2008). On the other hand, RL tasks typically involve stochastic reward 

schedules (Pedersen et al., 2017). Because our model characterizes RT as a function of 

probabilistic action policies acquired via reinforcement learning and short-term memory 

maintenance, it should, in theory, generalize to situations where rewards are not perfectly 

reliable. In this context, in addition to set size effects, the reliability of stimulus-response 

associations should influence RT in a similar manner (i.e., by decreasing stimulus-action 

weights and generally increasing uncertainty). The goal of this experiment was to test the 

hypotheses that a) the concept of concurrent working memory and RL processes would 

generalize to a stochastic learning setting (i.e., the RLWM framework), and b) the πH 

extension of the RLWM model would capture the effects of probabilistic feedback on both 

RT and choice.

In a new experiment (Figure 9A) we modified our deterministic instrumental learning task 

by adding two reliability conditions: In the High-prob condition, the “correct” response to a 
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stimulus was rewarded on 92% of trials, and an incorrect response was rewarded on 8% of 

trials. In the Low-Prob conditions, the correct response was rewarded on 77% of trials, and 

an incorrect response was rewarded on 23% of trials. In both cases, either of the two 

incorrect responses could produce a reward on the pre-designated low-probability trials. Two 

set sizes, 3 and 6, were used, creating a 2 X 2 design (Figure 9A; see Methods for further 

details of the task).

We performed two separate repeated-measures ANOVAs to quantify the effects of set size 

and feedback reliability on reaction time and choice performance in the probabilistic 

context. In terms of RT (Figure 9B, D), we observed a significant main effect of set size 

(F(1,33) = 55.99, p < 0.001), but no significant effect of reliability (F(1,33) = 0.73, p = 0.79) 

nor any interaction (F(1,33) = 0.26, p = 0.61). In terms of choice (Figure 9C, E), as 

predicted, we observed both significant set size (F(1,33) = 31.56, p < 0.001) and reliability 

main effects (F(1,33) = 105.4, p < 0.001), but a nonsignificant interaction (F(1,33) = 1.77, p 
= 0.19). The strong effect of set size on learning in the probabilistic context suggests that 

putative working memory recruitment in our task may not be contingent on there being 

deterministic stimulus-response associations.

To test the generalizability of the πH model, we fit it to these new data. As predicted, the 

model was able to approximate the time courses of subjects’ reaction times (Figure 9B, 

dashed lines) and learning curves (Figure 9C, dashed lines) in this probabilistic setting (fit 

parameter values are presented in Table S1). In particular, the model was able to recapitulate 

the result where feedback reliability and set size have comparable effects on choice, but the 

effect of reliability on RT is much weaker than the effect of set size on RT (Figure 9D). 

These results endorse the generalizability of our model, suggesting that the underlying 

action policy, if modeled accurately, can predict RT and choice dynamics across 

experimental contexts. (We note here that the mapping analysis shown in Figure 5 could not 

be conducted on the probabilistic experiment, as only a single mapping was used within 

each set size.)

Relative to the deterministic experiment, we observed several significant changes in fit πH 

parameter values in the probabilistic experiment: First, as predicted, the learning bias to 

neglect negative feedback (as captured in the γ parameter) was significantly higher in the 

probabilistic experiment (Mann-Whitney U tests, comparing fitted values from the 

probabilistic versus the deterministic experiment, p < 0.001). Moreover, the weight given to 

the working memory module (ρ) was lower in the probabilistic context (p < 0.001), while 

the reinforcement learning rate (α) did not differ between conditions (p = 0.49). 

Interestingly, the capacity parameter (C) was higher in the probabilistic task (p = 0.003), as 

was the accumulation rate scaling factor (η; p = 0.01). No other parameters differed 

significantly between experiments (all p’s > 0.24).

In terms of the unexpected bi-directional differences between the key working memory 

parameters (ρ and C) across experiments, we note that these parameters can be difficult to 

independently estimate when there are only two set sizes (as in the probabilistic experiment). 

However, using Equation 7, the actual weight given to the working memory (WM) module 

during learning can be directly computed using these two free parameters. As shown in 
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Figure S5, we found significantly greater WM weighting in the deterministic experiment 

(data set 1) versus the probabilistic experiment in both set size 3 (2-sample t-tests; t(72) = 

6.55, p < 0.001) and set size 6 (t(72) = 4.13, p < 0.001). Moreover, the decrease in WM 

weighting from set size 3 to set size 6 was larger in the deterministic versus probabilistic 

experiment (t(72) = 6.88, p < 0.001), also indicating less reliance on WM in the probabilistic 

experiment.

Discussion

Choice and reaction time are tightly intertwined aspects of decision making. Here, using a 

novel evidence accumulation reinforcement learning (RL) model, we show that leveraging 

both choice and reaction time (RT) data can help shed light on a variety of behavioral 

phenomena, including effects of repetition, delay, and set size on RT, and the interaction of 

working memory and reinforcement during instrumental learning.

The results presented here provides further support to the hypothesis that working memory 

and RL act in concert during instrumental learning (A. G. E. Collins & Frank, 2012). Our 

model expands this idea into the more mechanistic framework of evidence accumulation. 

Evidence accumulation models have provided many insights in the domain of perceptual 

decision making tasks (Ratcliff & McKoon, 2008), and recent efforts have extended this 

class of models to instrumental learning (Fontanesi et al., 2019; Frank et al., 2015; Miletić et 

al., 2020; Pedersen et al., 2017). This is an important development, as RL models generally 

characterize choice policies using simple functions like the softmax or rigid “greedy” 

policies. However, these characterizations of the choice process are clearly 

oversimplifications, and do not make predictions about RT. Our model suggests that the 

concurrent operation of working memory and RL, as well as an internal representation of 

action uncertainty, shape RT.

Simultaneously modeling choice and RT can provide practical benefits that modeling each in 

isolation cannot. For instance, recent work shows that incorporating RT data during model 

fitting improves the estimation of RL model parameters (Ballard & McClure, 2019). We 

replicated this result, demonstrating that our combined choice/RT model led to improved 

recovery of both the RL and working memory parameters (Figure S2). In general, rich RT 

data, while often neglected in reinforcement learning tasks, can be leveraged to better 

understand the underlying cognitive and neural processes driving decision making. 

Furthermore, when attempting to characterize RL model parameters in the clinical setting, as 

in the burgeoning field of computational psychiatry (Huys et al., 2016), achieving more 

reliable parameter estimates could improve the replicability of between-group comparisons 

and clinical interpretations.

One critical component of our model is prior action uncertainty (Equation 13). This value 

represents the effect that uncertainty over the full action policy space (i.e., over all states) 

has on an agent's reaction time. Incorporating this value in our model was critical for 

accurately capturing the effect of different stimulus-response mappings on RT (Figure 5), 

appeared to aid in the modeling of set size effects (Figure 4), and also lead to an improved fit 

to the data when compared to models omitting this quantity (Figure 2). Normatively, the 
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average action policy (Equation 12) used in our uncertainty heuristic could be interpreted as 

the Bayes-optimal policy going into a trial, before the state/stimulus is observed. Even 

though our states/stimuli have virtually no observation noise (as they were all saliently 

different colors, objects, shapes etc.; see Methods), this prior policy still appeared to exert an 

influence on RT.

At the process-level, one interpretation of the uncertainty heuristic we used in the πH model 

is that it approximates a form of competition between actions (Usher & McClelland, 2001). 

In our model, this conflict is implemented by decreasing all drift rates based on the degree of 

action uncertainty (Equation 14). One speculative process-level extension of this is that 

uncertainty-related RT effects in our task are the result of proactive, versus reactive, 

cognitive control processes being recruited before each trial (Braver, 2012). At the neural 

level, this could perhaps be implemented by top-down parallel preparation of actions.

The results depicted in Figure 4 also speak to the psychological processes underlying Hick's 

Law (Proctor & Schneider, 2018). One common explanation is that the law represents the 

amount of time it takes subjects to extract the (Shannon) information related to a stimulus. 

For instance, RT is affected by the probability that a given stimulus will be presented within 

a specific trial sequence (Hyman, 1953). If we assume a uniform distribution of stimulus 

presentations, as used in our task, these stimulus probabilities will decrease with set size 

because the probability that a stimulus appears is 1/n_S, with n_S reflecting the number of 

stimuli that could be seen in a block. Leveraging this simple fact could explain both the 

basic set size effect, as well as the effect of delays and repetitions on choice RT (Hyman, 

1953). However, this particular explanation of Hick's Law does not address the learning of 

S-R associations, nor uncertainty over actions versus stimuli (exemplified in, respectively, 

the numerator and denominator of the values depicted in Figure 4B). Our findings, 

particularly on within-set-size S-R mapping effects (Figure 5), suggest that a more 

generalized account of Hick's Law should incorporate both trial-by-trial learning dynamics 

and, critically, uncertainty over learned action weights (Wifall et al., 2016). We note that a 

learning-based approach to explaining Hick's Law has been taken before – Schneider and 

Anderson (Schneider & Anderson, 2011) proposed an elegant model within the ACT-R 

framework to capture set size RT effects. They were able to show that Hick's Law, and the 

impact of practice and repetition on RTs, could be linked to the effects of load, time, and 

forgetting in short term memory.

Another important detail in our model is the proposed nonlinear relationship between latent 

action values and the rate of evidence accumulation, operationalized by a sigmoidal transfer 

function (Equation 3) that transforms those values into weights, which are then used to set 

accumulation rates. This step is inspired by the RL actor-critic framework, which suggests 

that while ventral striatum (the critic) tracks state values and enables prediction error 

computations, the dorsal striatum (the actor) instead tracks stimulus-action weights (Joel et 

al., 2002; O’Doherty et al., 2004; Sutton & Barto, 1998). Consistent with our model, some 

theories support a nonlinear relationship between values represented in the critic system and 

striatal state-action weights represented in the “actor” system (A. G. E. Collins & Frank, 

2014). This nonlinearity can be captured by a softmax transfer function such as that used in 

our model, which, importantly, improved the model fit (see Fontanesi et al., 2019 for a 
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similar conclusion). Moreover, the use of a softmax function could be interpreted as a 

simplified implementation of lateral inhibition between competing actions (Usher & 

McClelland, 2001).

The ability of the πH model to also capture probabilistic stimulus-response learning (Figure 

9) has several implications. First, this result shows that the model is flexible enough to 

capture learning in different task contexts. Second, our results show that the underlying 

hypothesis of concurrent working memory and RL contributions to instrumental learning, 

which has to date only been tested via tasks with deterministic feedback (A. G. E. Collins et 

al., 2014, 2017; A. G. E. Collins & Frank, 2018; A. G. E. Collins & Frank, 2012), may 

generalize to a probabilistic setting. However, we note that do not have direct evidence that 

working memory strategies are leveraged in the probabilistic task.

Interestingly, the cross-experiment comparisons supported our expectation that working 

memory is given a lower weight in the probabilistic context (Figure S5), suggesting that if 

working memory strategies are leveraged here, they may have a weaker influence on 

decisions. Further research could attempt to better model working memory processes in 

these probabilistic settings by going beyond the simplified one-trial-back algorithm 

presented here (Equation 4). One approach could be to model learned associations held in 

working memory as probabilistic hypotheses rather than deterministic stimulus-response 

associations. Lastly, we observed no significant change in the reinforcement learning rate 

(α) between deterministic and probabilistic contexts. This suggests that the slower learning 

observed in the probabilistic task may primarily be a consequence of noisier explicit 

working memory strategies, though this should be more fully explored in future research.

We note several limitations in this study.

First, our model was clearly ineffective at capturing RTs in the earliest iterations of each 

block (Figure 3A). This was partly expected, as action values are initialized to the same 

number in all set sizes (1/3); thus, both the action weights and prior uncertainty over actions 

were identical in the first trial of every block, leading to similar RTs across blocks. Why, 

then, did we observe a set size effect in subjects’ RTs at the start of the block? First, subjects 

are likely guessing on most of these early trials (Schaaf et al., 2019), and this kind of un-

directed exploration (Wilson et al., 2014) is not explicitly specified in our models. We also 

speculate that some subjects may covertly name or label stimuli early in the block, 

especially in the higher set sizes, and associate those labels with their guesses – strategies 

like this could appear as early as the first iteration because subjects are informed about the 

upcoming set size before each block begins and shown a preview of the full set of images. In 

some situations, subjects could even perform deterministic hypothesis-testing strategies in 

the early phases of a learning block (e.g., trying each finger from left to right; Mohr et al., 

2018). Despite these caveats and alternative learning strategies, our model was still able to 

closely approximate the time course of subjects' reaction times and choices (Figures 3, 7, 

and 9).

Second, our model also appeared to underestimate variance in RT distributions, particularly 

for incorrect trials (Figure 6B), and to underestimate the RT set size effect (Figure 6C). The 

reason for this is not clear, although we note that there were clear variations in fit quality on 
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the individual level (Figure 7). Moreover, the model tended to overestimate RTs in the set 

size 1 condition. This was partly expected, as a true decision process would not be needed 

once subjects learned the correct action in the set size 1 condition (rather, they simply 

needed to detect the appearance of the stimulus). These fitting limitations may relate to 

model misspecification as discussed above; subjects likely leverage additional learning and 

hypothesis-testing strategies (e.g., systematic guesses, pre-planning responses) that are 

simply not specified in our modeling approach.

Another limitation of our modeling effort is the requirement to fix certain parameters, 

namely, non-decision time t0, the noise parameter s_v, and the softmax sensitivity parameter 

β. Although fixing versus fitting these parameters did not alter the main conclusions of our 

study, we made decisions to fix these parameters for several reasons: First, as shown in 

Figure S3, fitting t0 provided an expected increase in fit quality at the expense of 

interpretability and model recoverability. If and how different experimental conditions may 

influence non-decision time in our task is an issue for future model development. In terms of 

the noise parameter s_v, previous studies have shown that fixing this parameter is important 

for LBA model identifiability (Donkin et al., 2009), a finding we replicated in our own 

control analyses (not shown). Lastly, fixing β at a relatively high value is important for 

identifiability and recovery of the RLWM choice model (A. G. E. Collins, 2018).

Evidence accumulation has been directly linked to specific neural dynamics underlying 

decision making. Most prominently, this has been demonstrated in activity profiles of neural 

populations that may reflect the accumulation of perceptual evidence (Shadlen & Newsome, 

1996, see also Latimer et al., 2015). Recent evidence also suggests that neurons in the 

striatum, a key substrate in reinforcement learning and decision making, perform evidence 

accumulation during decision-making (Yartsev et al., 2018). Future human physiological 

studies, perhaps using techniques with high temporal resolution (e.g., intracranial 

electroencephalography), could attempt to measure putative neural accumulation processes 

at play during instrumental learning and action selection.

Conclusion

Here we presented a model of choice and RT that captures decision-making behaviors in two 

stimulus-response learning tasks. The model was able to capture a variety of RT and choice 

phenomena, including set size, repetition, delay, and practice effects, and was effectively 

validated with multiple methods. Modeling RT and choice together improved the estimation 

of underlying reinforcement learning parameters and incorporating internal estimates of 

action uncertainty in the model markedly improved model fit and validation. Lastly, the 

model was able to characterize choice and RT in both deterministic and probabilistic 

feedback contexts. Our results suggest that modeling choice and RT together can provide a 

more nuanced account of instrumental learning.
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Methods

Behavioral task

The protocol for all behavioral tasks was approved by the institutional review board at 

Brown University. Details of subject samples for data set 1 and the out-of-sample data set 

(data set 2, Figure S4) can be found in the original source papers (respectively, A. G. E. 

Collins & Frank, 2018; A. G. Collins & Frank, 2012). Forty-one subjects were recruited for 

the probabilistic task (data set 3; mean age = 21, 23 females). Given the increased difficulty 

of the probabilistic task, seven subjects were excluded for having average choice 

performance that was at or below the chance level (0.33) for selection of the optimal action 

(i.e., the one most likely to be rewarded for a given stimulus), leaving a sample of 34 (mean 

age = 20.97, 20 females) for the model fitting analysis of the probabilistic task.

The basic structure of the task is depicted in Figure 1A. The task was administered as 

follows: Subjects were seated in front of a computer monitor and made responses on an 

external USB computer keyboard. Subjects were instructed by the experimenter to learn 

which of three responses was associated with each presented image, in order to maximize 

earned rewards. On correct trials, positive feedback (“+1”) was displayed centrally in green 

font; on incorrect trials, negative feedback (“0”) was displayed centrally in red font. On trials 

where subjects responded too slowly, a “Too Slow” warning appeared in red font on the 

center of the screen. Across experiments and analyses, trials where responses were too slow 

(1.33%) or overly rapid (<150 ms, 0.75%) were excluded.

Each experiment was divided into several blocks of trials, and each block was associated 

with a particular set of images and a particular set size, defined by the number of stimulus-

response pairs to be learned in that block. The number of actions was held constant across 

all blocks at 3. Key press responses were made with the dominant hand, and required 

pressing one of three adjacent keys (e.g. j, k, or l) with the index, middle, or ring finger, 

respectively. To discourage process-of-elimination strategies, in set sizes over 1 the correct 

actions were not always evenly distributed among the stimuli (e.g., in some set size three 

blocks, each action could be correct for exactly one stimulus, while in other blocks, one 

action could be correct for two of the stimuli, one could be correct for the third stimulus, and 

the third action could be correct for no stimuli). Twelve such mappings were used overall 

and are each depicted in Figure 5.

Before each block, all of the images to be learned about in that block were centrally 

displayed in a tiled layout on the screen (e.g., all 3 images if set size = 3) for subjects to 

familiarize themselves with the stimuli before the block began. On each trial, one image was 

displayed at a time in the center of the computer screen over a black background (visual 

angle of stimulus, ~8°). Subjects had a maximum of 1400 ms to respond to the image. For 

data sets 1 (N = 40; A. G. E. Collins & Frank, 2018) and 2 (N = 79; A. G. E. Collins & 

Frank, 2012), the correct stimulus-response contingencies were consistent throughout the 

block. That is, the correct action for a given stimulus would always yield a reward, and both 

of the two incorrect actions for that stimulus would never yield a reward. Within a block, 

each stimulus was presented a minimum of 9 times and a maximum of 15 times (data sets 1 

and 2); the block ended either after n_S × 15 trials, or when subjects reached a performance 
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criterion whereby they had selected the correct action for three of the four last iterations. The 

specific sequence of stimuli within a block was pseudorandomized. Stimuli within a given 

block were drawn from a single category (e.g. scenes, fruits, animals), and stimuli never 

repeated across blocks. In data set 1, 22 blocks were completed (set sizes 1-6); in data set 2 

(Figure S4), 18 blocks were completed (set sizes 2-6).

The probabilistic experiment (N = 34; data set 3) had a similar design to the deterministic 

experiments, but with two key differences: First, only two set sizes were used (set sizes 3 

and 6) with only one S-R mapping per set size ([0 1 2] and [2 2 2]). Second, two different 

feedback “reliability” conditions were introduced: In the High-prob condition, the “correct” 

response to a stimulus was rewarded 92% of the time, and an incorrect response (either of 

the other two actions) was rewarded 8% of the time. In the Low-Prob conditions, the correct 

response was rewarded 77% of the time, and an incorrect response was rewarded 23% of the 

time. That is, subjects still had to learn which action was the most rewarded for each 

stimulus, but the solution was not deterministic. The specific trials in which unreliable 

reward feedback was given were predetermined. Exactly twelve iterations of each stimulus 

were presented per block, and 14 blocks were completed in total.

Model fitting and model comparison

Models were fit to reaction time data using maximum likelihood estimation, specifically by 

minimizing the negative log likelihood using the MATLAB function fmincon. All RTs were 

specified in milliseconds. Initial parameter values were randomized across fitting iterations, 

and 40 iterations were used per fitting run to avoid local minima. Parameter constraints were 

defined as follows: α = [0,1]; γ = [0,1]; ϕ = [0,1]; ρ = [0,1]; C = [2,5]; η = [0,3]; A = 

[0,500]; b = [0,600]; and b > A. The s_v parameter was fixed at 0.1; fixing this parameter 

has been shown to significantly improve LBA model identifiability (Heathcote et al., 2019). 

(We note that our model comparison results were similar when allowing s_v to freely vary, 

but identifiability was strongly weakened for the other LBA parameters.) Inverse 

temperature β was fixed at 50 for all fits and simulations, consistent with previous studies 

(A. G. E. Collins & Frank, 2018). The non-decision time parameter t0 was subtracted from 

RT data before fitting and was fixed at 150 ms (data set 1 and the probabilistic experiment; 

Table S1) or 225 ms (data set 2; Figure S4). All Q and W values were initialized at 1/3 for 

all fitting iterations and simulations.

Model comparisons were conducted using two methods: First, we fit models on subjects' full 

data sets and compared them using the Bayesian Information Criterion (Schwarz, 1978), 

plotting mean BIC differences with standard errors (Figure 2), reporting the mean BIC 

differences of the best model versus its competitors, and computing the protected 

exceedance probability (Stephan et al., 2009) of the winning model (using the MATLAB 

spm_BMS function from the SPM toolbox; https://www.fil.ion.ucl.ac.uk/spm). Second, we 

also computed a cross-validated likelihood measure: This value was determined by a leave-

p-out cross-validation procedure, where models were fit to each subject on a reduced data set 

that left out the last block of each set size, after which a log-likelihood was computed on the 

six left-out blocks using the parameters gleaned from the fit.
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Model simulation

For simulations, the mean accumulation rate (v) is computed for each action i (Equations 

11-14), which is shaped by the modeled learning of stimulus-response associations 

(Equations 1-8). The ith accumulator's starting point k is drawn from a uniform distribution 

on the interval [0, A] and the drift rate d is drawn from a normal distribution, N(v, s_v). The 

time to threshold and the simulated choice can then be directly computed,

T i = b − ki
di

+ t0 (16)

a = min(T ) (17)

where the chosen action a corresponds to the accumulator that generates the minimum RT 

across the three accumulators (i.e., the winning accumulator). Simulated accumulators with 

negative drift rates, which are possible given that drift rates are normally distributed, were 

disqualified from reflecting the winning action, and simulated trials that produced an RT that 

exceeded the experimentally enforced maximum RT (1400 ms) were re-run until that 

constraint was satisfied. Model simulations were performed 100 times per simulated subject 

then averaged.

Parameter recovery and model separability

We performed a model separability analysis by computing a model confusion matrix as 

follows: Choices and RTs were simulated 40 times for each of the four models using the 

best-fit parameters gleaned from fitting each model to each of the 40 individual subjects. 

Each model was then fit to each of the four sets of simulations (using 40 starting points of 

randomized parameter initializations per fit and selecting the best result), in an attempt to 

recover the underlying model that produced the simulated data. In each case, the optimal 

outcome is for the winning model in the fitting procedure to match the model that was 

originally used to simulate the underlying synthetic data (Wilson & Collins, 2019). After 

fitting, we plotted a confusion matrix using the proportion of simulations best fit by each 

model (Figure S1). We performed this analysis using both the AIC (Akaike, 1974) and BIC 

metrics and found that the BIC-based confusion matrix resulted in better model separability. 

Therefore, we used the BIC for our model comparisons, though all main findings were 

similar with the AIC.

We also performed a parameter recovery experiment to measure model identifiability 

(Figure S2). In this analysis, after fitting each model, we simulated data using either the πH 

model (which simulates choices and RTs) or the basic RLWM model of (choices only; A. G. 

Collins & Frank, 2012). We then attempted to recover the free parameters by fitting the 

resulting choice/RT data (again using 40 starting points of randomized parameter 

initializations and selecting the best fit). Resulting Spearman correlations were computed 

and compared across models using the Fisher r-to-z transformation. Parameters were 

depicted in scatter plots to visualize recovery success (Figures S2 and S3).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. RLWM task and behavioral signatures.
(A) Task design. In the RLWM task, subjects learn stimulus-response associations over 

several blocks of trials. Two example blocks are shown, each with a different set size, or the 

number of associations to be learned in that block. Regardless of set size, three actions are 

available. Stimuli are presented in a pseudo-randomized sequence, and each stimulus is seen 

9 times within a block. (B) Learning, plotted as a function of stimulus iteration, is less robust 

as set size increases. (C) A greater number of intervening trials between responses to a 

specific stimulus decreases performance. The effect of this trial-based delay is stronger in 

higher set sizes. (D) The effect of set size on performance is most pronounced early in 

learning versus late in learning. All error bars = 95% CIs. Data from Collins & Frank, 2018.
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Figure 2. Model overview and comparisons.
(A) Schematic diagram of the RLWM model of choice. A working memory (WM) module 

deterministically learns stimulus-response associations, with trial-based forgetting. A 

reinforcement learning (RL) module learns stimulus-action associations with standard 

reward prediction error based RL. WM and RL are differentially weighted to produce an 

action policy. (B) Schematic diagram of the Linear Ballistic Accumulator (Brown & 

Heathcote, 2008), where responses compete to produce a choice and a reaction time. (C-F) 
Model comparisons, showing (C) mean BIC differences relative to the winning model, (D) 

BIC differences between the best and second-best model for each individual, and (E, F) a 

leave-1-block out validation comparison procedure. Sorting of individuals in (F) matches the 

ordering in (D). LL = cross-validated log-likelihood. Error bars = 95% CIs.

McDougle and Collins Page 27

Psychon Bull Rev. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. RT and choice learning curves with model simulations.
Mean RT time courses (A) and choice performance (B) for each set size, showing subject 

data (solid lines) and model simulated data (dashed lines). Error shading = 95% CIs. Data 

from Collins & Frank, 2018.
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Figure 4. Set size effects.
(A) Average RTs across set sizes form subject data (filled triangles), the πH model (unfilled 

triangles), and the π model (unfilled circles). (B) Simulated policy of chosen action i divided 

by the prior uncertainty, as specified in Equation 13, across set sizes. Simulations are 

averaged across simulated subjects. Error bars = 95% CIs.
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Figure 5. S-R mapping effects.
Different stimulus-response (S-R) mappings were used within each set size (n_S > 1). 

Mappings on the x-axis refer to the specific assignment of stimuli to their associated 

responses – each response could be associated with 0-3 stimuli depending on the particular 

mapping and set size. S-R mappings are notated by a sorted 3-element vector describing the 

number of stimuli associated with each response (the order of values in this notation does 

not reflect the actual response buttons used). Mappings are also visually schematized, where 

each colored square represents a single stimulus (note that specific stimuli were never 

repeated across blocks). Error bars = 95% CIs.
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Figure 6. RT distributions.
Model and data RT distributions for correct (A) and incorrect (B) trials, collapsed over set 

sizes. (C) RT quantile data and model simulations over five cumulative probability bins. 

Error bars = 95% CIs.
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Figure 7. Example individual model fits.
Five subjects were randomly selected for display after sorting subjects into five quantiles 

based on average choice performance, with one subject selected from each bin (top to 

bottom ordering reflects increasing choice performance). Left column: full RT distributions. 

Center column: RT time courses. Right column: Choice learning time courses. Solid lines: 

data. Dashed lines: model.
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Figure 8. Delay, repetition, and learning effects.
(A) Subject delay effects on RT (purple), and model simulated delay effects (black). (B) 
Subject repetition effects, and model repetition effects. (C) The effect of practice on the 

Hick's Law function over time. (D) Effects of trial delay on human and model choice 

performance, separated by early and late learning phases. Error bars = 95% CIs.
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Figure 9. Probabilistic task.
(A) In this task, subjects learn stimulus-response associations under varying degrees of 

reward reliability given the correct action, and under two set sizes (nS = 3 and nS = 6). 

Subject data and fitted model simulations, showing RT (B) and choice (C) learning curves, 

as well as average RT (D) and choice (E) performance across the set size and probability 

conditions. Error bars and shading = 95% CIs.
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