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Abstract

Background

Lower vitamin D levels are found in people with schizophrenia and depressive disorders,

and also associated with neuroimaging abnormalities such as reduced brain volume in both

animals and humans. Reduced whole brain and increased ventricular volume are also sys-

tematically reported in schizophrenia. Even though vitamin D deficiency has been proposed

as a risk mechanism for schizophrenia there exist no studies to date of the association

between vitamin D levels and brain volume in this population. Therefore, we investigated

the relationship between vitamin D levels and brain phenotypes in psychotic disorders, and

assessed possible interactions with genetic variants in vitamin D receptor (VDR) and other

genetic variants that play a role in vitamin D levels in the body.

Methods

Our sample consisted of 83 psychosis patients and 101 healthy controls. We measured vita-

min D levels as serum 25-hydroxyvitamin D. All participants were genotyped and neuroim-

aging conducted by structural magnetic resonance imaging.

Results

Vitamin D levels were significantly positively associated with peripheral grey matter volume

in patients (β 860.6; 95% confidence interval (CI) 333.4–1466, p < .003). A significant inter-

action effect of BSML marker (rs1544410) was observed to mediate the association

between patient status and both white matter volume (β 23603.3; 95% CI 2732.8–48708.6,
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p < .05) and whole brain volume (β 46670.6, 95% CI 8817.8–93888.3, p < .04). Vitamin D

did not predict ventricular volume, which rather was associated with patient status (β
4423.3, 95% CI 1583.2–7267.8p < .002) and CYP24A1 marker (rs6013897) (β 2491.5, 95%

CI 269.7–4978.5, p < .04).

Conclusions

This is the first study of the association between vitamin D levels and brain volume in

patients with psychotic disorders that takes into account possible interaction with genetic

polymorphisms. The present findings warrant replication in independent samples.

Introduction

In the last decade, we have seen a growing interest in the possible interaction between vitamin

D deficiency and the development or clinical expression of psychiatric disorders, in particular

depression and schizophrenia. A number of environmental risk factors for schizophrenia and

psychosis such as urban birth, winter birth, malnutrition, and migration from the southern to

the northern hemisphere [1] are also associated with the risk of vitamin D deficiency, support-

ing this as an underlying risk factor for schizophrenia [2, 3]. To further investigate the role of

vitamin D in the etiology of psychosis, this study aims to demonstrate whether serum

25-hydroxyvitamin D (S-25(OH)D) levels and genetic variants that interact with vitamin D

levels are related to altered global brain volumes previously implicated in psychotic disorders.

Adults with schizophrenia and depression have been found to have lower serum 25-hyroxy-

vitamin D (S-25(OH)D) levels compared to healthy controls [4–6], which is the most stable

measure of vitamin D from both dietary and environmental sources [7]. Meta-analyses have

shown lower vitamin D levels in adults with schizophrenia [8] compared to healthy controls,

however, some of the included studies did not control for potential confounding factors, such

as ethnic minority status, which may have had an impact on the results and interpretation of

these analyses [9]. Although there is some support for an association between vitamin D levels

and diagnosis of schizophrenia, the causal pathways are complex and have yet to be described

in full in the literature.

Findings from animal models suggest that vitamin D may serve important functions during

neurodevelopment through supporting cell differentiation and inhibiting apoptosis [10]. Low

levels of S-25(OH)D have been associated with anthropometric measures [11], and vitamin D

depletion has been associated with smaller brain volume and larger ventricles in cross-sec-

tional studies of both animals and humans [12]. Studies in the elderly have shown a positive

association between vitamin D levels and whole brain volume [13], and a negative association

with white matter abnormalities [14]. Intracranial volume, grey and cerebral white matter vol-

ume has also been associated with S-25(OH)D levels in young women [15]. Larger ventricles

and reduced total brain volume are among the most consistently reported structural imaging

factors found to be associated with schizophrenia in adults [16–19]. Also, a longitudinal study

found higher S-25(OH)D3 levels to be associated with less regional cortical thinning in healthy

participants within the age range of 23–87, over a three-year period [20], suggesting a protec-

tive effect of vitamin D. However, to date, no MRI study has examined the relationship

between vitamin D levels and global brain volumes in psychotic disorders.

As a variety of brain phenotypes appear to be associated with vitamin D levels it is of poten-

tial importance to examine if these findings are mediated by genetic variation. A number of
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polymorphisms in genetic variants play a role in S-25(OH)D levels and are associated with

vitamin D receptors (VDR), which are proteins expressed widely in the brain [21]. The VDR
gene (ENSG00000111424) contains several polymorphisms that have been studied in relation

to diseases such as osteoarthritis, diabetes, and cardiovascular disease (CVD), but far less infor-

mation is available about its relation to brain structure and neuropsychiatric disorders [21].

We hypothesize that vitamin D plays a role in psychiatric disease pathways and brain structure

variability through interaction with genetic variants associated with vitamin D in the literature

[22–26].

In summary, low S-25(OH)D levels are frequently observed in patients with psychotic dis-

orders and in groups at high risk of developing schizophrenia [27, 28], and have also been

associated with decreased brain volume and larger ventricles in rodents and human adults

[12]. However, whether this effect is more pronounced in patients with psychotic disorders is

unknown, and the relationship between vitamin D deficiency, brain phenotypes, and psychiat-

ric disease has yet to be determined. This study was designed to achieve the following aims: 1)

to test the hypothesis that S-25(OH)D levels are positively correlated with total brain volume

(both white and grey matter), and negatively correlated with ventricular size in patients with

psychosis compared to healthy controls; and 2) to determine whether S-25(OH)D levels inter-

act with genetic variants, to contribute to brain volume variation in patients with psychotic

disorders compared to healthy controls.

Materials and methods

The current study was conducted in Oslo, Norway (59˚N) as part of the ongoing “Thematically

Organized Psychosis” (TOP) Study at the Norwegian Centre for Mental Disorder Research

(NORMENT). It was approved by the Regional Committee for Medical Research Ethics and

the Norwegian Data Inspectorate. Our research methodology conformed to The Code of Eth-

ics of the World Medical Association, Helsinki Declaration [29]. The study had a cross-sec-

tional design including a large, non-selected consecutively recruited catchment area sample of

patients with a DSM-IV schizophrenia or bipolar spectrum disorder (psychotic disorders) and

a healthy control group. All participants gave written informed consent.

Participants

The sample consisted of 83 patients and 101 healthy controls recruited between 2011 and 2014

that had S-25(OH)D measured, were genotyped, and had undergone magnetic resonance

imaging (MRI). All participants had blood samples and MRI scans conducted within the same

season or within 21 days of each other, of importance as S-25(OH)D serum levels vary between

seasons and years. Of the 83patients 46 (55.4%) had a schizophrenia spectrum disorder, 36

(43.4%) had a bipolar spectrum disorder and 1 (1.2%) had another psychotic disorder. Inclu-

sion criteria were age 18–65 years, IQ>70, no signs of organic etiology, substance-induced

symptoms or severe trauma to the CNS, and the ability to understand and speak a Scandina-

vian language. To avoid confounding of the association between S-25(OH)D levels and

anthropomorphic characteristics or other traits under investigation by population-associated

genetic and environmental factors, we excluded participants with non-European ancestry

from the current study.

Healthy control participants were randomly selected from national statistical records from

the same catchment area and contacted by letter inviting them to participate. Inclusion criteria

were no current or previous psychiatric disorders, no family history of severe psychiatric disor-

ders, no alcohol or substance dependence, no head trauma and no use of cannabis in the 6

months preceding assessment.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0200250 August 24, 2018 3 / 17

https://doi.org/10.1371/journal.pone.0200250


Assessments

Diagnoses in the patient group were assessed with the structured clinical interview for

DSM-IV disorders (SCID-I) [30] by a trained psychologist or physician. All patients included

were subject to a general somatic examination including body mass index (BMI) and fasting

morning blood samples. Current medication at the time of MR scan was estimated by conver-

sion into chlorpromazine (CPZ) equivalents [31], or if conversion values were not available

two alternative sources were used [32, 33].

Biochemical

From September 2012, total S-25(OH)D was determined using a liquid chromatography-tan-

dem mass spectrometry (LC-MS/MS) method developed at the Hormone Laboratory (Oslo

University Hospital, Aker, Norway) [34]. Prior to September 2012, total S-25(OH)D was mea-

sured by radioimmunoassay (RIA [kit from Diasorin]) [35] in the same laboratory. The regres-

sion equation LC-MS/MS = 1.16 × (RIA) − 9 was obtained at the laboratory during method

comparison and was used to convert all S-25(OH)D concentrations obtained by LC-MS to

equivalent concentrations obtained by RIA, which were used in the analyses.

MRI acquisition

MRI images were obtained at Ullevål, Oslo University Hospital, using a General Electric Signa

HDxt 3T system equipped with an 8-channel head coil. 3D sagittal fast spoiled gradient echo

(FSPGR) volumes were obtained using the FSPGR_SAG_TI450 sequence (TE: Min full, TR:

7.8s, TI: 450 ms, flip angle: 12˚; FOV = 25.6 cm, voxel size = 1.0x1.0x1.2 mm3). No acceleration

by parallel imaging was applied. Patients and controls were scanned interchangeably to avoid

any potential bias related to scanner drift.

MRI processing: SIENAX

Normalized whole brain volume and global gray and white matter volumes (normalized whole

brain, white matter, grey matter, peripheral grey matter volume and total ventricular volume)

were calculated using SIENAX [36], which is part of the FSL software package [37], v. 5.0. SIE-

NAX extracts brain and skull images from the single whole head input data. For this study, the

brain extraction parameters were first varied systematically in 10 independent images, since

optimal parameters may depend on scanner and sequence. We found a fractional intensity

threshold of 0.35 to be optimal. Bias field filtering and neck removal was applied. The brain

image was then affine-registered to MNI152 space using the skull image to determine the reg-

istration scaling in order to obtain the volumetric scaling factor, which is used to normaliza-

tion for head size. Next, tissue-type segmentation with partial volume estimation (FAST) [38]

was carried out in order to calculate total volume of brain tissue. Using this method, measures

of global brain volumes both before and after normalization for head size were obtained. SIE-

NAX is fully automated and no manual editing was performed, however, all volumes were

visually inspected to ensure quality.

Genotyping and quality control

Genomic DNA from participants was extracted from peripheral whole blood, and genotyped

at deCODE Genetics (Reykjavik, Iceland) on either the Human OmniExpress-12v-1-1_B (Illu-

mina, San Diego, CA, USA) or Human OmniExpress-12v1_H (Illumina, San Diego, CA,

USA) platforms in accordance with the manufacturer’s standard protocol. Genotypes were

assigned in concordance with the standard Illumina protocol in GenomeStudio software
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V2011.1 version 1.9.4. We performed a standard pre-imputation quality control, where mark-

ers exhibiting high rates of genotyping missingness (>95%), minor allele frequency (MAF)

<1% or showing departure from the Hardy Weinberg equilibrium (p<1.00E-05) were

excluded from the analyses. Also, individuals exhibiting high rates of genotyping missingness

(>5%), cryptic relatedness (PI_HAT>15%) or genome-wide heterozygosity (outside

mean ± 4SD of the sample) were removed from the analyses, as well as individuals with inco-

herent sex assessment based on the homozygosity estimate of X chromosome markers imple-

mented in PLINK [39]. Finally, we restricted our data by excluding individuals with non-

European ancestry (outside 3SD range of either one of the first two genetic principal compo-

nents).MACH (http://www.sph.umich.edu/csg/abecasis/MACH) was used to impute the geno-

types onto the reference haplotypes from the 1000 Genomes Project (build 37, assembly

Hg19).

Genetic variants of interest. Nine single-nucleotide polymorphism (SNP’s) markers of

VDR previously associated with vitamin D levels; namely rs2282679, rs7041, rs1790349,

rs6599638, rs2060793, rs1544410, rs12785878, rs10741657, rs6013897 [22–26] were extracted

from the imputed dataset (See Table 1).

Statistical analyses

The statistical analyses were performed in SPSS 22 [40]. The level of significance was pre-set to

<0.05, two sided since our research questions were strictly hypothesis-based. We removed two

outliers from the healthy control group with high S-25(OH)D levels. T-tests and chi-square

tests were used to compare patients and controls on socio-demographic measures of age, eth-

nic minority status, gender, height, weight, BMI, baseline S-25(OH)D levels and normalized

brain and ventricular volumes. For the statistical analyses of genetic variants implicated in the

vitamin D pathway, we created an additive variable (0,1,2) for each respective number of

minor/risk alleles (heterozygote: 1, homozygote: 2). In the whole sample Pearson’s partial cor-

relation test was conducted between all three variables of interest; vitamin D levels, normalized

brain volume and SNPs. In patients we conducted Pearson’s correlations between normalized

brain levels with dosage of antipsychotic medication (CPZ).

Prediction models were tested with multiple linear regressions. We analyzed the relation-

ship between S-25(OH)D levels and each SNP of interest on relevant normalized brain volume

measures while controlling for age, male gender, height/weight or BMI, patient/control and

genetic principal components, removing the variables that did not contribute to the model sig-

nificantly. The regression models only included SNP’s that were found to be significantly asso-

ciated with brain volume in the preliminary tests. Height has previously been linked to the

VDR SNP rs1544410 [41, 42] and was added to models including this marker instead of BMI.

We also assessed possible interaction effects in this order: S-25(OH)D-by-VDR marker,

patient-by-S-25(OH)D and patient-by-VDR marker. The regression analyses were re-esti-

mated using bootstrapping procedure with iteration of 1000 (CI95%) to control for multiple

testing.

Results

Table 2 contains a description of the final sample in terms of gender, age, height, weight, BMI,

S-25(OH)D levels and normalized brain and ventricular volumes, as well as comparative anal-

yses between patients and healthy controls. Patients had statistically significant higher BMI

and larger ventricles than the healthy control group. S-25(OH)D levels did not differ between

groups.
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Table 3 shows correlations between S-25(OH)D and normalized whole brain, white matter,

grey matter, peripheral grey matter volume and total ventricular volume before adjustment for

age, gender and height. There were no significant associations for the analyses of the whole

sample. Stratifying for patient versus control revealed that S-25(OH)D levels correlated posi-

tively with white matter (p< .02), whole brain (p< .02) and peripheral grey matter (p< .05)

volumes in the patient group but not in the controls.

We found no significant associations between level of medication use (measured as CPZ

equivalents) and neither S-25(OH)D levels nor measures of brain volume, the exception being

a negative correlation between CPZ for first generation anti-psychotics and grey matter vol-

ume (r = -.885, p< .05) (data not shown). This measure was, however, based on the only 5 par-

ticipants currently on first generation anti-psychotic medication, and therefore not controlled

for in further analyses.

The results for associations between S-25(OH)D levels and genotypes can be found in

Table 4. S-25(OH)D levels were significantly associated with SNPs rs2282679 and rs7041. Posi-

tive correlations were found between the rs1544410marker with white matter (r = .206, p<

.01) and whole brain volume (r = .159, p< .05), and the rs6013897marker and total ventricular

Table 1. Description of single-nucleotide polymorphism (SNP) markers.

SNP ID Chr. Position Functional Region Genomic Region Genome Build Gene ID Study

rs2282679 chr4:72608383 intronic 4q13.3 hg19/Human GC Ahn, 2010
rs7041 chr4:72618334 coding 4q13.3 hg19/Human GC Ahn, 2010
rs1790349 chr11:71142350 intergenic 11q13.4 hg19/Human none Ahn, 2010
rs6599638 chr10:124704149 intronic 10q26.13 hg19/Human C10orf88 Ahn, 2010
rs2060793 chr11:14915310 intergenic/upstream 11p15.2 hg19/Human upstream CYP2R1 Ahn, 2010
rs1544410 chr12:48239835 intronic 12q13.11 hg19/Human VDR Lambrinoudaki, 2013
rs12785878 chr11:71167449 intronic 11q13.4 hg19/Human NADSYN1 Wang, 2010
rs10741657 chr11:14914878 intergenic/upstream 11p15.2 hg19/Human upstream CYP2R1 Wang, 2010
rs6013897 chr20:52742479 intergenic 20q13.2 hg19/Human implicated in locus for CYP24A1 Wang, 2010

https://doi.org/10.1371/journal.pone.0200250.t001

Table 2. Sample description and patient/healthy control comparison.

Variable Complete sample (N = 184) Patients (N = 83) Controls (N = 101) x2 p>

Male 103 (56%) 44 (53%) 59 (57%) .540 ns

Chlorpromazine-equivalent dose

Current (N = 56) 287.9 ± 191.1

First generation (N = 5) 56.1 ± 32.4

Second generation (N = 55) 288.02 ± 190.13

t-test p>

Age 30.53 ± 9.42 29.4 ± 10.9 31.5 ± 7.9 1.487 ns

Height (cm) 176.3 ± 9.8 176 ± 9.7 176.5 ± 9.9 .306 ns

Weight (kg) 78.3 ± 16.6 80 ± 19 76.8 ± 14.3 -1.265 ns

BMI 24.4 ± 6.0 25.7 ± 5.3 23.3 ± 6.3 2.713 .007

S-25(OH)D nmol/L 53.03 ± 19.3 51.9 ± 21.3 53.99 + 17.5 .743 ns

Grey matter volume 653801.3 ± 58269.3 649285.5 ± 64822.7 657512.4 ± 52315.9| .953 ns

White matter volume 561997.0 ± 60617.2 556135.3 ± 61447.7 566813.9 ± 59800.7 1.190 ns

Whole brain volume 1215798.2 ± 110268.1 1205420.8 ± 115583.1 1224326.3 ± 105515.2 1.158 ns

Peripheral grey volume 514597.4 ± 47308.1 510882.6 ± 52809.9 517650.2 ± 42283.3 .965 ns

Total ventricular volume 26060.4 ± 9768.5 28133.9 ± 10894.6 24356.5 ± 8413.9 2.653 - .009

https://doi.org/10.1371/journal.pone.0200250.t002
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volume (r = .202, p< .01). Based on these analyses, we selected and analyzed rs1544410 and

rs6013897 as candidates for variants that may influence the association between vitamin D and

brain volume phenotypes.

The results of the regression analyses are shown in Table 5. White matter volume was pre-

dicted by gender, height and interaction between patient status and rs1544410. Similar results

Table 3. Pearson’s correlations for S-25(OH)D and brain volume stratified for patients and healthy controls.

Brain volume Total

(N = 184)

Patients

(N = 83)

Controls

(N = 101)

Grey matter volume 0.083 0.212 -0.083

White matter volume 0.135 .261� -0.002

Whole brain volume 0.118 .257� -0.042

Peripheral grey volume 0.095 .234� -0.087

Total ventricular volume 0.052 0.011 0.133

�. Correlation is significant at the 0.05 level (2-tailed).

https://doi.org/10.1371/journal.pone.0200250.t003

Table 4. Pearson’s correlation between genotype and S-25(OH)D nmol/L.

SNP Genotype S-25(OH)D (nmol/L)

rs2282679 (N = 181) GG (N = 17) -.211�

GT (N = 78)

TT (N = 86)

rs7041 AA (N = 43) -.214�

AC (N = 88)

CC (N = 53)

rs1790349 (N = 183) CC (N = 6) -.050

CT (N = 56)

TT (N = 121)

rs6599638 AA (N = 50) .126

AG (N = 85)

GG (N = 49)

rs2060793 AA (N = 26) .069

AG (N = 88)

GG (N = 70)

rs1544410 (N = 182) TT (N = 29) .015

CT (N = 94)

CC (N = 59)

rs12785878 TT (N = 87) .048

GT (N = 81)

GG (N = 16)

rs10741657 AA (N = 26) .083

AG (N = 90)

GG (N = 68)

rs6013897 (N = 182) AA (N = 7) -.089

AT (N = 74)

TT (N = 101)

� p < .05

https://doi.org/10.1371/journal.pone.0200250.t004
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were found for whole brain volume with age, gender, height and interaction between patient

status and rs1544410 as significant predictors. Peripheral grey matter was predicted by a signif-

icant interaction between patient status and S-25(OH)D levels, with a positive linear correla-

tion in patients but an inverse relationship in controls. Total ventricular volume was predicted

by age, gender, patient status and rs6013897 but not current S-25(OH)D levels, and we found

no significant interaction effects.

Table 5. Multiple linear regression models predicting white—and peripheral grey matter, whole brain—and total ventricular volume.

Model B Bias Std.error p Lower Bound Upper Bound AdjR2 F p

White matter volume .415 16.450 .001

(Constant) 340838.18 -3494.79 105039.76 0.003 130649.24 542924.85

Age 25.24 33.16 376.85 0.954 -639.18 830.44

Gender -48151.73 106.04 10136.10 0.001 -68847.43 -28135.19

Height 1476.89 7.39 527.27 0.005 420.73 2512.84

Weight -60.86 7.17 224.13 0.780 -489.44 394.42

Patients/Healthy controls -50082.94 -843.74 20090.17 0.011 -91352.95 -13026.73

S-25(OH)D nmol/L 253.42 -1.46 165.63 0.121 -102.22 562.21

rs1544410 -26010.80 -960.36 17313.97 0.133 -61650.81 5686.39

Patient X rs1544410 23603.27 705.00 11438.90 0.049 2732.79 48708.57

Whole brain volume .435 17.776 .001

(Constant) 775332.29 -9265.97 191297.38 0.001 378907.95 1146070.28

Age -2603.32 31.94 701.37 0.001 -3917.78 -1139.46

Gender -84566.40 1053.37 18777.35 0.001 -122618.72 -46054.27

Height 3606.92 22.17 978.00 0.001 1751.69 5619.78

Weight -655.83 31.48 451.70 0.138 -1459.25 334.49

Patients/Healthy controls -101398.72 -2074.77 37603.33 0.006 -179341.57 -34555.99

S-25(OH)D nmol/L 454.78 -7.58 316.26 0.151 -183.69 1047.28

rs1544410 -58598.44 -2160.59 32413.00 0.069 -127301.79 306.74

Patient X rs1544410 46670.61 1427.79 21458.00 0.036 8817.77 93888.34

Total ventricular volume .207 8.898 .001

(Constant) 21582.07 69.10 5194.50 0.001 11406.62 31759.04

Age 232.46 -8.72 98.70 0.018 46.08 419.04

Gender -5893.24 71.08 1182.73 0.001 -8252.21 -3502.80

BMI 32.78 5.12 130.71 0.807 -219.46 305.41

Patients/Healthy controls 4423.31 -43.91 1443.68 0.002 1583.22 7267.76

S-25(OH)D nmol/L 34.39 -0.63 34.64 0.308 -34.92 100.93

rs6013897 2491.48 7.22 1154.52 0.032 269.73 4978.46

Peripheral grey matter volume .430 23.980 .001

(Constant) 694849.08 -1278.81 19810.55 0.001 655363.06 733425.36

Age -2295.30 19.45 278.56 0.001 -2844.28 -1741.52

Gender -46235.64 288.21 5370.17 0.001 -56573.78 -35150.20

BMI -1271.56 24.57 378.32 0.001 -2052.17 -557.05

Patients/Healthy controls -51039.94 -180.59 14932.30 0.001 -82662.66 -22629.55

S-25(OH)D nmol/L -1043.07 -11.12 444.49 0.017 -1982.31 -226.77

Patient X S-25(OH)D nmol/L 860.56 6.76 290.93 0.003 333.42 1465.95

Results are presented after bootstrapping procedure with iteration of 1000 (CI95)

https://doi.org/10.1371/journal.pone.0200250.t005
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Discussion

This study aimed to elucidate the association between S-25(OH)D levels and brain volume in

psychotic patients compared to healthy controls, and investigated possible interactions with

genetic polymorphisms. Whole brain and white matter volumes were significantly associated

with an interaction between the VDR BSML marker rs1544410 and patient status, but not with

current S-25(OH)D levels. Ventricular size was predicted by the CYP24A1 SNP, rs6013897, but

not current S-25(OH)D levels. Peripheral grey matter volume was the only brain phenotype in

this study to be associated with S-25(OH)D levels, but only in patients. Our results provide

novel insight into the relationship between brain phenotypes, genomic variants, and S-25(OH)

D levels, as studies in this field have to date been few and with conflicting results.

Neuroimaging and genetic determinants of vitamin D

Previous research has found a significant association between S-25(OH)D levels and brain vol-

umes [12]. Reduced brain volume in those with vitamin D deficiency is shown in one animal

study [43] and in a cross-sectional human study of community dwellers older than 65 [44], but

not in other studies of animals [45] or elderly humans [46]. Except for in concern to peripheral

grey matter this was not replicated in our study. We found that the apparent association of cur-

rent S-25(OH)D levels with white-and whole brain matter did not survive correction for con-

founders such as age, gender, height and patient status. We did however find an interaction

between patient status and genetic variants, for white matter and whole brain volume

(rs1544410) and ventricular volume (rs6013897).

The rs1544410 is found to influence individual responses to vitamin D supplementation

[25, 26], and has been studied extensively in association with a number of human diseases,

among others endocrine immune-mediated disorders [47]. This is of interest because of the

associations found between the immune system and risk of schizophrenia [48]. Even though

this marker is not previously linked to brain morphology it could have a mediating role that

deserves further attention. No association is found between rs1544410markers and heightened

risk of psychosis in case control studies [24], however it is associated with cognitive decline

among healthy women [49]. As cognitive deficits are a hallmark symptom of psychotic disor-

ders this is a marker of interest.

Vitamin D and ventricular volume

Contrary to previous research, we did not find an association between S-25(OH)D levels and

total ventricular volume. A systematic review and meta-analyses concluded that vitamin D

depletion is associated with greater lateral ventricular volume [50]. However, these findings

were based on animal studies of vitamin D deficiency during gestation, hence affecting the

developing brain [43, 45], and cross-sectional studies of humans over the age of 60 or with

dementia [51, 52]. One study found that healthy elderly Caucasians with vitamin D deficiency

(S-25(OH)D�50 nmol/L) had 28% larger lateral ventricles than those with sufficient S-25

(OH)D levels [51]. The elderly have a particularly high risk for vitamin D deficiency [53] and

aging is associated with enlargement of the lateral ventricles [54]. The mean age in our sample,

however, was only 30 years. A more age similar sample of healthy young women (mean age

22), with relatively high S-25(OH)D levels, did not find an association with ventricular volume,

rendering age as a possible explanation for the differences found between studies [15]. There-

fore, further population studies in different age ranges are needed before we can conclude that

there exists an age-independent correlation between S-25(OH)D levels and ventricular size.

Our findings could suggest that factors other than current vitamin D levels influence total

ventricular volume in patients with psychosis, as we found this measure to be associated with
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CYP24A1 polymorphisms (rs6013897). This has not been reported nor assessed in previous

studies of S-25(OH) D levels and brain volume, and should be the subject of future research.

CYP24A1 is a candidate gene for S-25(OH)D concentration and among the genetic variants

near genes involved in cholesterol synthesis, hydroxylation and vitamin D transport that affect

vitamin D status [23]. This gene encodes a member of the cytochrome P450 superfamily of

enzymes which catalyze many reactions involved in drug metabolism as well [55], and could

thus be of interest in psychopharmacological studies of patients with psychosis.

Further, baseline DNA methylation levels of CYP24A1 predict variation in vitamin D

response in previous studies [56]. We found that polymorphisms in CYP24A1 and not current

vitamin D levels, were associated with ventricular volume and suggest that a genetic contribu-

tion to response to vitamin D levels during early development may be associated with ventric-

ular volume. This process would thus affect the developing brain but not current vitamin D

status as such in an adult population. Another possibility is that the CYP24A1 SNP has a subtle

impact on vitamin D levels over the lifespan, such that repeated measurements would be

needed to detect the between-subject variation in S25-OH D levels caused by variation in this

SNP.

Vitamin D and neurodevelopment

Animal models have shown that developmental vitamin D deficiency may cause abnormal

brain development contributing to sensitivity to agents that induce psychosis [57] and adverse

neuropsychiatric outcome [58]. It has also been found that neonatal S-25(OH)D3 levels are

associated with increased risk of schizophrenia [59], and that vitamin D supplements during

the first year of life decreased the risk of schizophrenia in male offspring [60].

An individual’s susceptibility to disease in adulthood is linked to prenatal phases of devel-

opment, particularly through placental function [61]. Flow of nutrients such as vitamin D in

the placenta programs physiological systems at the genetic, cellular, tissue, organ and system

level, thus influencing structural and functional development in the fetus [62], and placental

insufficiency is associated for example with enlarged ventricles and reduced brain weight in

animal models [63]. Vitamin D metabolism in the placenta also modulates cytokine produc-

tion and the immune response to infection, as well as the balance between adaptive and innate

maternal immune systems [64].

Vitamin D deficiency in utero is thus associated with brain development, the immune sys-

tem and increased risk of schizophrenia, commonly regarded as a neurodevelopmental disor-

der, even though the symptoms of schizophrenia usually do not manifest until puberty.

Vulnerability in the immune system may lay latent until major changes in the endocrine and

immune system occur during puberty [65] and when an individual is exposed to environmen-

tal stressors [66]. Animal models show that vitamin D deficiency exacerbates vulnerability to

social stress [67] and that prenatal insult, with the ensuing immune activation, increases vul-

nerability to stress [68].

The findings of patient-by-genetic marker interaction on brain volume found here could

suggest that S-25(OH)D levels resulting from genetic expression during neural development

influence brain volume and perhaps continue to influence S-25(OH)D concentrations later in

life. Our results support the hypothesis that the association between vitamin D and brain mor-

phology in psychosis manifests during early development through genetic mechanisms inter-

acting with the environment as part of a multifactorial etiology of schizophrenia. Future

studies should assess the genetic influence of polymorphisms in BSML and CYP24A1 markers

on vitamin D levels in utero, and how this effects the development of the immune system and

later vulnerability to environmental stress.
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Current vitamin D levels and grey matter

We did find that current S-25(OH)D levels were associated with peripheral grey matter vol-

ume. Dysmaturation of grey matter has been suggested as a partial explanation of early and

late neural developmental abnormalities common in psychosis [69]. A steeper rate of cortical

grey matter decline is consistently found in persons who convert from clinical high risk of psy-

chosis to frank psychosis and thought to be associated with neuroinflammation [70]. Also, it

has been demonstrated that vitamin D has a neuroprotective effect in animal models of Par-

kinson’s disease by attenuating pro-inflammatory and up-regulating anti-inflammatory pro-

cesses [71]. In research on multiple sclerosis (MS) an association was found between vitamin

D levels and inflammatory activity, and more recently a possible neuroprotective role of vita-

min D on grey matter volume [72]. Our findings lend support to the hypothesis that vitamin D

has a neuroprotective effect on grey matter. Candidate genes for schizophrenia are related to

immune function [73] and findings of the interaction between inflammation, vitamin D and

brain morphology suggest a complex interplay of genes and environment in neurodevelop-

ment. At the moment it is uncertain if vitamin D levels may have an etiological influence on

psychosis, MS or Parkinson’s disease, but research supports a possible prognostic effect on MS

in terms of severity and relapse rates [74]. Vitamin D supplements as an add-on therapy in

psychosis are deemed warranted and we suggest a possible effect on grey matter volume,

inflammation and cognitive and negative symptoms of the disorder [75, 76].

This study also found two genetic variants to be significantly associated with current S-25

(OH)D levels in patients and controls, rs2282679 and rs7041 located in the GC gene on chro-

mosome 4. While it is possible that each SNP independently has an effect on S-25(OH)D levels,

the most parsimonious explanation is that one SNP is driving the association while the other

demonstrates an association with vitamin D because of its high Linkage Disequilibrium (LD)

with the true causal SNP. A third explanation is that neither SNP is causally associated with S-

25(OH)D levels, but both are in LD with a third (unobserved) variant, which is the true causal

one. Neither of these markers was associated with brain volume and therefore of any further

interest to this study, but both could be of interest to vitamin D research in general.

Limitations

The findings of the present study should be interpreted in light of some limitations. First, the

study is cross-sectional which makes it difficult to draw conclusions about causal relationships.

We had strict inclusion criteria selecting only participants who had blood samples and MRI

conducted within the same season or within 21 days. However, there is no established standard

in the field regarding how quickly S-25(OH)D levels change over time. Other studies of S-25

(OH)D levels and MRI have had varying time intervals between blood sampling and imaging;

from a few hours [51] up to 30 days in between [77, 78]. Our strict criteria resulted in a small

sample size and findings should be replicated in larger, independent samples. We controlled

for a number of factors of importance such as ancestry, gender, age, height, weight, BMI and

patient status but other potential confounders may exist. Also, our study focused on global

brain measures, and we cannot exclude associations between S-25(OH)D levels and more

regional brain structures. In schizophrenia S-25(OH)D levels were found to be associated with

hippocampal grey matter volume, but not with other regional volumes [79], and there may be

an age related decline in the association between S-25(OH)D levels and total hippocampal vol-

ume in patients with psychotic disorder [80]. Longitudinal studies throughout the lifespan are

needed to assess the role of vitamin D on brain morphology.

Lower S-25(OH)D levels have previously been found in patients with psychosis but some

studies suggest that this is driven by ethnic minority status and not patient status [34]. In this
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study, we removed participants with non-European ancestry as external factors that are associ-

ated with ancestry and S-25(OH)D levels could be a confounder, and because of the reduced

accuracy of imputation of these samples in individuals of non-European ancestry descent.

Genetic models of common diseases or traits derived from EA populations may generate spu-

rious results in non-European ancestry populations due to differences in environmental fac-

tors, allele frequencies and varying effect sizes between populations [81]. Our exclusion of

non-European populations is common in genomics research, but a significant weakness that

must be addressed in future studies by greater inclusion of diverse ancestral groups, in an

effort to provide equal access to genomic medicine and ameliorate existing health disparities

[82].

Conclusions

To conclude, this study adds to the growing knowledge base of associations between vitamin

D and brain morphology. Our first hypothesis was partially confirmed as S-25(OH)D levels

were found to be positively associated with peripheral grey matter volume in patients. How-

ever, we did not find an association between S-25(OH)D levels and total ventricular volume as

expected. The CYP24A1 (rs6013897) locus was found to interact with patient status in predict-

ing total ventricular volume. Further, the VDR locus BSML (rs1544410) interacted with patient

status in predicting white matter and whole brain volumes. We encourage others to conduct

similar and replication studies of our findings on vitamin D, genetic variants, and brain

phenotypes.
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