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ABSTRACT OF THE DISSERTATION 

 

Robust Parametric Statistical Methods and Software for 

Multi-Species and Multi-Phylum Age Prediction, and 

Quantification of Human HIV-Induced and HAART-Mitigated 

Age Acceleration 

 

by 

 

Joseph A. Zoller 

Doctor of Philosophy in Biostatistics 

University of California, Los Angeles, 2024 

Professor Christina Ramirez, Chair 

 

Epigenetic clocks, DNA methylation-based biomarkers, accurately measure age within 

specific species and tissues but face challenges in multi-species and non-mammalian contexts. 

This study aims to enhance the construction of biologically meaningful, multi-species epigenetic 

clocks, particularly applicable to both humans and animals. Utilizing supervised machine 

learning on DNA methylation data, this research incorporates biological information, such as 

genome mapping and life history traits, to improve clock accuracy and interpretability. Findings 

include the development of diverse epigenetic clocks for various mammalian species, enabled 

by robust statistical methods and a reproducible software pipeline. An R package, 

MammalMethylClock, was introduced to facilitate the construction, assessment, and application 

of these clocks, incorporating existing models from the Mammalian Methylation Consortium. 

This package supports translational biomedical research by enhancing the study of age-related 

chronic diseases across different model organisms. 



 

 iii 

Moreover, the remainder of this study examines the research problem of accelerated 

aging in people living with HIV (PLWH) and the mitigating effects of highly active antiretroviral 

therapy (HAART). Previous research indicates that HIV-related age acceleration begins shortly 

after seroconversion. This longitudinal study within the Multicenter AIDS Cohort Study (MACS) 

examines 60 PLWH and 60 matched controls across four specific time points: pre-

seroconversion, closest to seroconversion, pre-HAART, and post-1-3 years of HAART. The 

study uses comprehensive epigenetic clock data and flow cytometry measures, including naive, 

senescent, activated, and total CD4/CD8 counts. The method involves analyzing epigenetic 

aging through five different aging clocks at these time points to assess the impact of HIV on 

aging and the partial restoration effects of HAART on immune function and aging patterns. By 

tracking these changes, the study aims to identify specific aging patterns associated with HIV 

and guide potential interventions. The findings reveal that HIV infection significantly accelerates 

epigenetic aging in most clocks, and this acceleration is only partially mitigated by HAART. This 

suggests that HIV contributes to the premature onset of clinical aging through its profound 

effects on the immune system, even when viral replication is controlled. The study underscores 

the need for interventions to enhance the healthspan of PLWH and offers insights into the 

broader aging process. 
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FIGURES 

 

Figure 4-1. Flowchart for Constructing and Evaluating Epigenetic Clocks. This flowchart 
outlines the foundational stages of creating and appraising epigenetic clocks, alongside the 
typical procedures and their underlying logic. For a deeper understanding of the causes and 
effects of epigenetic clocks, one might employ functional enrichment tools and various other 
computational resources. 
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Figure 5-1: Multiple epigenetic measures in peripheral blood mononuclear cells (PBMC) 
demonstrate significant changes in biologic aging after initial HIV infection, with partial 
reversal after initiation of HAART, compared to age-matched HIV-uninfected persons.  
Longitudinal PBMC samples from men before (visit A) and after (visit B) documented HIV 
infection and seroconversion (SC) and before (visit C) and after (visit D) initiation of HAART, 
and from matched (chronologic age, Hepatitis C status, and time interval) persistently HIV 
seronegative men (SN), were evaluated for biologic aging by five different age adjusted 
epigenetic clocks: a) Age Acceleration Residual (AAR), b) Extrinsic Epigenetic Age Acceleration 
(EEAA), c) Phenotypic Epigenetic Age Acceleration (PEAA), d) Grim Epigenetic Age 
Acceleration (GEAA), and e) age-adjusted DNA methylation-based estimate of telomere length 
(aaDNAmTL).  Each panel shows spaghetti plots (heavy line = fitted LMER line, translucent 
band = 95th percentile confidence band) for SC (red) and SN (cyan) participants at visits A 
through D; light lines are trajectories for individual subjects, with same coloring.  60 SC and 60 
SN subjects were evaluated. 
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Figure 5-2: Multiple epigenetic measures in peripheral blood mononuclear cells (PBMC) 
demonstrate significant changes in biologic aging over continuous time after initial HIV 
infection, with partial reversal after initiation of HAART, compared to age-matched HIV-
uninfected persons.  Longitudinal PBMC samples from men before (visit A) and after (visit B) 
documented HIV infection and seroconversion (SC) and before (visit C) and after (visit D) 
initiation of HAART, and from matched (chronologic age, Hepatitis C status, and time interval) 
persistently HIV seronegative men (SN), were evaluated for biologic aging by five different age 
adjusted epigenetic clocks: a) Age Acceleration Residual (AAR), b) Extrinsic Epigenetic Age 
Acceleration (EEAA), c) Phenotypic Epigenetic Age Acceleration (PEAA), d) Grim Epigenetic 
Age Acceleration (GEAA), and e) age-adjusted DNA methylation-based estimate of telomere 
length (aaDNAmTL).  Each panel shows spaghetti plots (heavy line = fitted LOESS line, 
translucent band = 95th percentile confidence band) for SC (red) and SN (cyan) participants at 
visits A through D, as functions of time since visit A; light lines are trajectories for individual 
subjects, with same coloring.  60 SC and 60 SN subjects were evaluated. 
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Figure 5-3: Multiple epigenetic measures demonstrate similar changes in aging at all 
post-HIV infection visits and at the post-HAART visit in SC, regardless of final plasma 
HIV viral load (HIV VL) at visit D, compared to age-matched HIV-uninfected persons.  The 
changes in epigenetic measures, grouped by HIV detectability at post-HAART visit (visit D) are 
shown for: a) AAR, b) EEAA, c) PEAA, d) GEAA, and e) aaDNAmTL.  HIV detectability group is 
a trichotomous variable (UU = uninfected and undetectable, IU = infected and undetectable, ID 
= infected and detectable).  Each panel shows spaghetti plots (heavy line = fitted LMER line, 
translucent band = 95th percentile confidence band) for SC HIV-detectable at visit D (red), SC 
HIV-undetectable at visit D (blue), and SN uninfected (green) participants at visits A through D; 
light lines are trajectories for individual subjects, with same coloring.  19 SC in ID, 41 SC in IU, 
and 60 SN in UU subjects were evaluated. 
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Figure 5-4: Participant Demographics and Characteristics 
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TABLES 

Table 5-1: Demographics and characteristics of HIV seroconverter (SC) and matched HIV 
seronegative (SN) participants from the Multicenter AIDS Cohort Study (MACS) 

Participants 
SN a, 

n (%) or mean (SD) 
SC b, 

n (%) or mean (SD) 

White Race 47 (78.3%) 53 (88.3%) 

1+ year of College 
Education 

53 (88.3%) 56 (93.3%) 

Visit A to Visit B, 
years 

2.8 (0.6) 3 (0.4) 

Visit A to Visit C, 
years 

8.3 (4.2) 9.3 (3.4) 

Visit A to Visit D, 
years 

11 (4.4) 12.1 (3.5) 

At each visit Visit A Visit B Visit C Visit D Visit A Visit B Visit C Visit D 

Age, years 36.4 (9) 39.2 (8.9) 44.7 (8.7) 47.4 (8.7) 35.5 (8.7) 38.5 (8.6) 44.9 (8.6) 47.7 (8.7) 

Hepatitis B Virus  

surface antigen-positive 

1 (1.7%) 

n=58 

2 (3.4%) 

n=58 

2 (3.3%) 2 (3.3%) 1 (1.7%) 0 (0%) 0 (0%) 1 (1.7%) 

n=59 

Hepatitis C Virus  

RNA-positive 

0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Body Mass Index, kg/m2 
25.4 (5.1) 

n=59 

25.6 (4) 

n=57 

27.4 (5) 

n=57 

27.8 (4.9) 

n=59 

24.4 (3.5) 25.3 (3.7) 

n=57 

25.9 (4) 

n=55 

26 (3.9) 

n=55 

Smoking,  

cumulative pack years 

8 (14.8) 8.5 (15.3) 9.1 (16.1) 9.5 (16.3) 10.7(13.9) 

n=59 

11.6 (15) 

n=56 

12.9(16.7) 

n=57 

13.2(17.1) 

n=59 

Plasma HIV Viral Load c, 
copies/mL 

N/A N/A N/A N/A N/A 29,994 
(40,301) 

58,893 
(119,006) 

n=56 

5,884 
(15,569) 

Estimated time since HIV 

infection d, years 
N/A N/A N/A N/A N/A 2.3 (0.4) 8.6 (3.4) 11.5 (3.5) 

Estimated time since 
HAART initiation e, years 

N/A N/A N/A N/A N/A N/A N/A 2.1 (0.4) 

a: n=60 SN at Visits A through D, unless indicated otherwise 
b: n=60 SC at Visits A through D, unless indicated otherwise 
c: For 10 SC missing HIV VL at Visit B, HIV VL from the closest MACS study visit 3-6 months prior to Visit B was 

used 
d: Date of HIV infection estimated as midpoint between the last MACS study visit that was HIV seronegative and HIV 

VL undetectable (if VL data were available) and the first MACS study visit with either HIV-positive serostatus or 
detectable HIV VL, whichever came first 

e: Date of HAART initiation estimated as midpoint between the last MACS study visit that was before HAART 
initiation and the first MACS study visit that was after HAART initiation 
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Table 5-2: Potential contribution of demographic and behavioral covariates to epigenetic 
measures over time, using mixed effects models 

Potential Contributors 

to Epigenetic Measures 

F-value 
(p-value) a 

AAR EEAA PEAA GEAA aaDNAmTL 

Study Visit, Visits A-D 6.56 (<0.001) 5.19 (0.0016) 8.56 (<0.001) 3.83 (0.01) 19.21 (<0.001) 

HIV Serostatus Group, 

SC vs SN b 
7.8 (0.0063) 2.34 (0.13) 26.14 (<0.001) 11.27 (0.0011) 28.7 (<0.001) 

Study Visit * HIV Serostatus 

Group 
16.03 (<0.001) 14.4 (<0.001) 19.24 (<0.001) 0.5 (0.68) 34.51 (<0.001) 

Race, white vs non-white 0.66 (0.42) 0.81 (0.37) 0.05 (0.82) 6.48 (0.013) 0.3 (0.59) 

BMI, kg/m2 2.19 (0.14) 2.16 (0.14) 0.08 (0.77) 0.61 (0.43) 0.44 (0.51) 

Smoking, cumulative pack years 0.84 (0.36) 3.3 (0.072) 1.46 (0.23) 32.87 (<0.001) 1.34 (0.25) 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic 

Age Acceleration, aaDNAmTL = age-adjusted DNA methylation-based estimate of Telomere Length, BMI = Body 
Mass Index 

a: Type III F-values and (Pr >F) p-values (p-values in italics, bold if <0.05) from mixed models incorporating all 
potential covariates for all participants at all visits (n=400 out of 480 total observations due to missing data for some 
covariates, 54 SN and 46 SC) in a single model 

b: HIV serostatus groups classified as SC (became HIV infected and seroconverted between visits A and B) vs SN 
(persistently HIV uninfected and seronegative at visits A through D) 
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Table 5-3: Mean absolute T cell counts of the SC and SN groups, at Visits A through D 

T cell population 

Visit A a, 

Mean (SE) 
n 

Visit B b, 

Mean (SE) 
n 

Visit C c, 

Mean (SE) 
n 

Visit D d, 

Mean (SE) 
n 

SN SC SN SC SN SC SN SC 

CD4 T cells, cells/mm3 
991 (463) 

n=58 

1117 (419) 

n=53 

1042 (396) 

n=56 

658 (240) 

n=59 

1005 (353) 

n=60 

362 (215) 

n=59 

983 (322) 

n=60 

537 (260) 

n=60 

CD8 T cells, cells/mm3 
625 (302) 

n=58 

627 (249) 

n=53 

684 (335) 

n=56 

892 (417) 

n=59 

614 (295) 

n=60 

1026 (463) 

n=59 

596 (316) 

n=60 

994 (471) 

n=60 

Naïve 
(CD45RA+CCR7+) CD4 
T cells, cells/mm3 

401 (332) 

n=57 

402 (205) 

n=53 

385 (239) 

n=55 

249 (141) 

n=59 

363 (246) 

n=59 

128 (109) 

n=57 

350 (231) 

n=60 

209 (142) 

n=59 

Naïve 
(CD45RA+CCR7+) CD8 
T cells, cells/mm3 

208 (143) 

n=57 

207 (114) 

n=53 

215 (127) 

n=55 

135 (76) 

n=59 

182 (130) 

n=59 

108 (79) 

n=57 

168 (123) 

n=60 

178 (119) 

n=59 

Senescent 
(CD28-CD57+) CD4 T 
cells, cells/mm3 

34 (30) 

n=57 

51 (63) 

n=53 

43 (41) 

n=55 

48 (59) 

n=59 

48 (56) 

n=59 

36 (42) 

n=57 

45 (52) 

n=60 

42 (48) 

n=59 

Senescent 

(CD28-CD57+) CD8 T 
cells, cells/mm3 

117 (93) 

n=57 

114 (93) 

n=53 

129 (120) 

n=55 

153 (134) 

n=59 

119 (102) 

n=59 

233 (217) 

n=57 

127 (134) 

n=60 

229 (181) 

n=59 

Activated 

(HLA DR+CD38+) CD4 T 
cells, cells/mm3 

29 (20) 

n=56 

29 (13) 

n=51 

32 (20) 

n=53 

33 (17) 

n=57 

28 (16) 

n=59 

27 (17) 

n=57 

27 (14) 

n=58 

23 (10) 

n=59 

Activated 
(HLA DR+CD38+) CD8 T 
cells, cells/mm3 

23 (17) 

n=56 

26 (18) 

n=51 

30 (34) 

n=53 

163 (119) 

n=57 

22 (19) 

n=59 

198 (135) 

n=57 

21 (14) 

n=58 

86 (79) 

n=59 

a: all participants HIV-uninfected at Visit A, matched on age and hepatitis C status 
b: SC recently HIV-infected, SN persistently HIV-uninfected at matched time intervals at Visit B 
c: SC shortly before beginning HAART, SN persistently HIV-uninfected at matched time intervals at Visit C 
d: SC recently on HAART, SN persistently HIV-uninfected at matched time intervals at Visit D 
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Table 5-4: Mean percentages of T cell subsets within live lymphocytes of the SC and SN 
groups, at Visits A through D 

T cell population 

Visit A a, 

Mean (SE) 
n 

Visit B b, 

Mean (SE) 
n 

Visit C c, 

Mean (SE) 
n 

Visit D d, 

Mean (SE) 
n 

SN SC SN SC SN SC SN SC 

CD4 T cells, % 

0.593 
(0.0926) 

n=49 

0.618 
(0.0926) 

n=53 

0.595 
(0.109) 

n=53 

0.427 
(0.143) 

n=52 

0.629 
(0.0976) 

n=53 

0.286 
(0.146) 

n=52 

0.631 
(0.0979) 

n=49 

0.378 
(0.159) 

n=52 

CD8 T cells, % 

0.344 
(0.0866) 

n=49 

0.327 
(0.0805) 

n=53 

0.345 
(0.104) 

n=53 

0.511 
(0.135) 

n=52 

0.319 
(0.088) 

n=53 

0.647 
(0.145) 

n=52 

0.313 
(0.0902) 

n=49 

0.559 
(0.153) 

n=52 

Naïve 
(CD45RA+CCR7+) CD4 
T cells, % 

0.16 
(0.0786) 

n=50 

0.149 
(0.0587) 

n=56 

0.15 
(0.0728) 

n=55 

0.113 
(0.0643) 

n=54 

0.153 
(0.0844) 

n=53 

0.0689 
(0.0559) 

n=52 

0.142 
(0.0739) 

n=49 

0.096 
(0.0689) 

n=52 

Naïve 

(CD45RA+CCR7+) CD8 
T cells, % 

0.0761 

(0.0377) 

n=50 

0.073 

(0.0364) 

n=56 

0.07 

(0.0349) 

n=55 

0.0558 

(0.0328) 

n=54 

0.0635 

(0.0378) 

n=53 

0.0447 

(0.031) 

n=52 

0.0548 

(0.0341) 

n=49 

0.0645 

(0.0437) 

n=52 

Senescent 

(CD28-CD57+) CD4 T 
cells, % 

0.0133 

(0.0112) 

n=50 

0.0167 

(0.0202) 

n=56 

0.0155 

(0.0132) 

n=55 

0.0183 

(0.0186) 

n=54 

0.0181 

(0.0165) 

n=53 

0.0167 

(0.0174) 

n=52 

0.0209 

(0.0206) 

n=49 

0.0178 

(0.0203) 

n=52 

Senescent 
(CD28-CD57+) CD8 T 
cells, % 

0.0445 
(0.0325) 

n=50 

0.038 
(0.0279) 

n=56 

0.0471 
(0.0411) 

n=55 

0.0619 
(0.042) 

n=54 

0.0415 
(0.0339) 

n=53 

0.0929 
(0.07) 

n=52 

0.0468 
(0.0438) 

n=49 

0.0831 
(0.0538) 

n=52 

Activated 
(HLA DR+CD38+) CD4 T 
cells, % 

0.0108 
(0.00357) 

n=49 

0.0107 
(0.00414) 

n=53 

0.0116 
(0.00513) 

n=53 

0.0139 
(0.00569) 

n=52 

0.0118 
(0.00474) 

n=53 

0.0136 
(0.0073) 

n=52 

0.0112 
(0.00364) 

n=49 

0.0102 
(0.00462) 

n=52 

Activated 
(HLA DR+CD38+) CD8 T 
cells, % 

0.00857 
(0.00565) 

n=49 

0.00943 
(0.00695) 

n=53 

0.0102 
(0.0126) 

n=53 

0.0609 
(0.0396) 

n=52 

0.0082 
(0.00685) 

n=53 

0.0847 
(0.0501) 

n=52 

0.00817 
(0.0071) 

n=49 

0.0288 
(0.0227) 

n=52 

a: all participants HIV-uninfected at Visit A, matched on age and hepatitis C status 
b: SC recently HIV-infected, SN persistently HIV-uninfected at matched time intervals at Visit B 
c: SC shortly before beginning HAART, SN persistently HIV-uninfected at matched time intervals at Visit C 
d: SC recently on HAART, SN persistently HIV-uninfected at matched time intervals at Visit D 
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Table 5-5: Potential contribution of absolute T cell counts to epigenetic measures over 
time, using mixed effects models 

Potential Contributors 

to Epigenetic Measures 

F-value 
(p-value) a 

AAR EEAA PEAA GEAA aaDNAmTL 

Study Visit, Visits A-D 0.53 (0.66) 1.2 (0.31) 1.34 (0.26) 3.79 (0.011) 3.82 (0.011) 

HIV Serostatus Group, 

SC vs SN b 
1.44 (0.23) 1.2 (0.28) 1.28 (0.26) 3.95 (0.05) 3.36 (0.07) 

Study Visit * HIV Serostatus 

Group 
2.15 (0.09) 2.75 (0.044) 3.87 (0.01) 0.64 (0.59) 2.89 (0.036) 

Absolute Count CD8 T cells c, 
log(cells/mm3) 

0.61 (0.43) 1.32 (0.25) 0.65 (0.42) 0.34 (0.56) 3.8 (0.052) 

% Naïve (CD45RA+CCR7+) 
CD4 T cells, log(%) 

16.5 (<0.001) 9.02 (0.0029) 21.87 (<0.001) 3.66 (0.057) 30.78 (<0.001) 

% Naïve (CD45RA+CCR7+) 
CD8 T cells, log(%) 

0.09 (0.76) 33.48 (<0.001) 11.99 (<0.001) 0.93 (0.33) 20.73 (<0.001) 

% Senescent (CD28-CD57+) 

CD8 T cells, log(%) 
13.72 (<0.001) 17.16 (<0.001) 3.19 (0.075) 0.03 (0.86) 33.64 (<0.001) 

% Activated (HLA DR+CD38+) 

CD8 T cells, log(%) 
0.003 (0.96) 3.56 (0.06) 3.65 (0.057) 0.58 (0.45) 3.65 (0.057) 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic 
Age Acceleration, aaDNAmTL = age-adjusted DNA methylation-based estimate of Telomere Length 

a: Type III F-values and (Pr >F) p-values (p-values in italics, bold if <0.05) from mixed models incorporating all 
potential covariates for all participants at all visits (n=288 out of 480 total observations due to missing data for some 
covariates, 34 SN and 38 SC) in a single model 

b: HIV serostatus groups classified as SC (became HIV infected and seroconverted between visits A and B) vs SN 
(persistently HIV uninfected and seronegative at visits A through D) 

c: Absolute counts of T cell subsets as described in Methods and Table S6; all cell counts and percentages were 
natural log-transformed (log) for analyses 
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Table 5-6: Regression summary of epigenetic measures over time by HIV detectability 
status at Visit D, using mixed effects models 

Regression Fixed Effects 

Coefficient Estimates 
(Standard Errors) a 

AAR EEAA PEAA GEAA aaDNAmTL 

(Intercept) -0.7 (0.69) -0.31 (0.7) -1.64 (0.97) -0.29 (0.48) 0.11 (0.04) 

Study Visit, Visit B vs A -0.03 (0.58) -0.09 (0.58) -0.93 (0.84) -0.49 (0.3) -0.01 (0.03) 

Study Visit, Visit C vs A -0.71 (0.58) -0.86 (0.58) -1.82 (0.84) -0.91 (0.3) 0.06 (0.03) 

Study Visit, Visit D vs A -1.12 (0.58) -0.67 (0.58) -2.02 (0.84) -1.03 (0.3) 0.07 (0.03) 

HIV Detectability Group, ID vs UU b 0.65 (1.41) 1.49 (1.42) 2.71 (1.99) 2.26 (0.97) -0.11 (0.07) 

HIV Detectability Group, IU vs UU b -1.34 (1.08) -2.01 (1.1) -1.16 (1.53) 1.08 (0.75) 0.01 (0.06) 

Visit B vs A * ID vs UU 1.46 (1.19) 0.16 (1.19) 4.8 (1.71) -0.36 (0.61) -0.24 (0.06) 

Visit B vs A * IU vs UU 1.86 (0.91) 1.64 (0.91) 5.66 (1.31) 0.44 (0.47) -0.24 (0.05) 

Visit C vs A * ID vs UU 5.08 (1.19) 3.61 (1.19) 9.46 (1.71) 0.6 (0.61) -0.51 (0.06) 

Visit C vs A * IU vs UU 6.02 (0.91) 6.23 (0.91) 11.4 (1.31) 0.35 (0.47) -0.48 (0.05) 

Visit D vs A * ID vs UU 2.65 (1.19) 0.6 (1.19) 5.05 (1.71) 0.51 (0.61) -0.22 (0.06) 

Visit D vs A * IU vs UU 5.62 (0.91) 3.71 (0.91) 6.78 (1.31) 0.85 (0.47) -0.34 (0.05) 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic 
Age Acceleration, aaDNAmTL = age-adjusted DNA methylation-based estimate of Telomere Length 

a: Coefficient values and standard errors for fixed effects (bold if Wald test p-value <0.01) from mixed models (n=480 
all observations) in a single model 

b: HIV detectability groups classified as ID (“infected and detectable”, became HIV infected, seroconverted, and still 
detectable (VL > 50) after HAART) vs IU (“infected and undetectable”, became HIV infected, seroconverted, but 
now undetectable (VL < 50) after HAART) vs UU (“uninfected and undetectable”, persistently HIV uninfected and 
seronegative at visits A through D) 
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CHAPTER 1: INTRODUCTION AND MOTIVATION 
 

Epigenetic clocks are broadly defined as DNA methylation-based biomarkers for age, 

and are accurate within the set of species and tissue types that they are trained on.  The 

construction of epigenetic clocks involves the careful use of supervised machine learning 

applied to DNA methylation data along CpG islands, along with the manual incorporation or 

consideration of biological information like array probe mapping to the genome and life history 

traits.  The ability to accurate quantify and measure biological aging in various mammalian (and 

non-mammalian) model organisms is an important part of improving translational biomedical 

research, when these model organisms are used for studying chronic diseases that are also 

known to be age-related diseases in humans.  However, there are ongoing challenges with the 

task of building multi-species and non-mammalian clocks, especially regarding accuracy and 

biological interpretability.  This research aims to identify strategies for building accurate multi-

species clocks, especially those that work on humans with other animals, and to modify the 

approach to building epigenetic clocks to be more innately biologically meaningful.  This chapter 

will provide an introduction to this research, by discussing the background, context, and 

motivation of developing these biomarkers for age. 

Since the 1960’s, long before the development of the first epigenetic clocks in humans, a 

large body of literature demonstrated that DNA methylation levels at millions of CpG 

dinucleotide sites genome wide were seen to consistently change with age (Ahuja, et al., 1998; 

Bell, et al., 2012; Berdyshev, et al., 1967; Christensen, et al., 2009; Hernandez, et al., 2011; 

Maegawa, et al., 2010; Rakyan, et al., 2010; Teschendorff, et al., 2010).  With the development 

of sophisticated statistical models for high-dimensional data and supervised machine learning, 

the computational power to train these models extremely quickly, and the advancement in array 

technology to be able to measure DNA methylation levels at hundreds of thousands of sites 

simultaneously, came the ability to “reconstruct” an organism’s age.  In other words, given 

enough samples across the lifespan of an animal, and given enough sites that consistently gain 
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or lose methylation with age, one could construct a model that accurately estimates age using 

DNA methylation levels at select sites.  The first notable example of this was the development of 

the first multi-tissue epigenetic clock for humans, which measures intrinsic biological age using 

only 353 CpG sites, and was dubbed the “Horvath clock” (Horvath, 2013). 

As it would turn out, the most consequential and age-associated changes in DNA 

methylation occur on special loci, known as “CpG islands”, where CpG dinucleotides occur in 

high frequency over the span of several hundred base-pairs.  CpG islands are known to contain 

or be adjacent to transcriptional regulatory elements, especially promoter regions, in the DNA of 

most mammals and many other animals.  In addition, a large number of CpG islands were found 

to be evolutionarily conserved across most mammalian species.  Given this knowledge, a DNA 

methylation array chip was developed, dubbed the HorvathMammalMethylChip40, and 

commonly referred to as the “mammalian array”; this chip captures methylation levels at over 

37,000 CpG island sites, and it was designed such that all of these sites are evolutionarily 

conserved across most mammalian species (Arneson, et al., 2022).  With the construction of 

this array, it provides a uniform set of data points on which to build all intrinsic epigenetic clocks, 

and thus allows us to combine methylation data from different species, and cross-apply clocks 

trained in one species to methylation data in another species. 

While these scientific developments and insights may be interesting to some, one might 

ask what the significance is of being able to estimate age without looking at a date of birth.  

Besides being a statistically and biologically fascinating tool to study, biomarkers for age are of 

significant interest to clinical and biomedical researchers, and development of epigenetic clocks 

for measuring intrinsic aging has resulted in significant insight into the molecular mechanistic 

relationship between aging and many different chronic diseases.  Specifically, the quantity of 

intrinsic “age acceleration”, the difference between the biomarker’s estimate of a person’s age 

and the person’s chronological age, is clinically significant, as positive intrinsic age acceleration 

is linked with Alzheimer’s disease (Levine, et al., 2015; Lu, et al., 2017), Cancer (Ambatipudi, et 
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al., 2017; Dugué, et al., 2018; Levine, et al., 2015; Zheng, et al., 2016), Obesity (Levine, et al., 

2018; Quach, et al., 2017), Osteoarthritis (Vidal, et al., 2016), Parkinson disease (Horvath and 

Ritz, 2015), and many more chronic disease and conditions. 

Moreover, certain diseases are thought to or know to rapidly accelerate epigenetic aging, 

because these diseases do substantial and/or organism-wide damage, often by attacking the 

immune system.  One such prominent disease is HIV, which is known to cause significant 

epigenetic age acceleration when left untreated, even within the first few years of infection 

(Breen, et al., 2022; Sehl, et al., 2022).  This has led to an area of open research, with ongoing 

research to understand the molecular mechanisms which cause this rapid age acceleration, and 

whether modern treatment for HIV through anti-retroviral therapy (ART) reverses this 

acceleration once someone becomes undetectable (i.e., they no longer have active HIV 

circulating). 

Even with the significant accuracy of and resulting insights from epigenetic clocks in 

humans, one may be curious about building epigenetic clocks for non-human mammalian 

species, or for multiple mammalian species at once, given the evolutionary conserved nature of 

age-related methylation changes, and the careful construction of the mammalian array.  As will 

be shown in this study, it has become abundantly clear that one can build epigenetic clocks for 

other mammalian species, for entire families of mammalian species, for humans and relatively 

distantly related mammalian species, and more recently, even for some non-mammalian 

species, although the framework for building these clocks is non-uniform out of necessity, due to 

the complexity of identifying shared epigenetic aging features across distantly-related species. 

The first portion of this study will present a whole host of successfully built epigenetic 

clocks for mammalian species in general, made possible by a variety of statistical strategies, 

and the creation of a software pipeline for reproducibility for building new epigenetic clocks 

when new data is provided.  The remainder of this study will shift focus towards the application 

of epigenetic clocks into humans, and aim to further quantify the rejuvenating (age decelerating) 
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effect ART has on individuals with active HIV infection once they become partially treated or 

completely undetectable.  The research aims of this study are: 

1) To expand the epigenetic clock-building pipeline with additional steps, to allow for non-

human and multi-species data, 

2) To demonstrate the ability to train epigenetic clocks for single mammalian species, for 

families of mammalian species, and for human-animal species pairs, 

3) To examine the effects of both HIV and HAART (highly active ART) on epigenetic age 

acceleration and T cell subset composition. 

In Chapter One, the background and motivation of the study have been introduced, and 

the research aims have been identified.  In Chapter Two, the existing literature will be reviewed 

to explain the current framework for building epigenetic clocks, and to present the landscape of 

trained epigenetic clocks.  In addition, the existing literature on HIV-induced age acceleration 

will be reviewed.  In Chapter Three, the techniques for building non-human epigenetic clocks 

will be presented, and the myriads of next-generation epigenetic clocks will be discussed and 

examined.  In Chapter Four, the newly-published R software package containing a pipeline for 

reproducibility for building novel mammalian epigenetic clocks will be presented, including an 

overview of features.  In Chapter Five, novel research on data from the Multicenter AIDS Cohort 

Study (MACS), and the insights gained about the relationship between aging, HIV, ART, and T 

cell composition will be discussed. 
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CHAPTER 2: LITERATURE REVIEW 
 

This literature review begins with a brief overview of the biological framework of 

epigenetic clocks, followed by the current standard statistical approach to building epigenetic 

clocks, and then by an overview of existing and published epigenetic clocks for mammals.  To 

start with, is a review of the definition of what is an epigenetic clock.  When interpreted as a 

biomarker, an epigenetic clock is any highly accurate estimator of age that is based on DNA 

methylation levels, although it may potentially incorporate life history traits during final 

computation.  Moreover, an intrinsic epigenetic clock is an estimator of intrinsic age, meaning 

that it is unperturbed by changes in cell-type composition and independent of tissue type, which 

will be the case for all of the clocks presented during this literature review.  An epigenetic clock 

can also be interpreted biologically/conceptually, and refer to a collection of innate biological 

mechanisms which give rise to these underlying age-related changes in DNA methylation levels 

(Horvath and Raj, 2018). 

When presenting the problem of building an intrinsic epigenetic clock as an estimation 

problem, it is specified as follows: 

𝐹(𝑦) = 𝑥𝑇𝛽 + 𝜀, 𝛽 ∈ ℝ𝑃 , 𝔼[𝜀] = 0 

where 𝑦 is Age (in years), and 𝑥 ∈ [0,1]𝑃 is a vector of DNA methylation beta values (normalized 

values, such that 1 means consistently hypermethylated and 0 means consistently 

hypomethylated).  Furthermore, 𝐹: (−1,+∞) → ℝ is any continuously differentiable, concave, 

strictly increasing function, and is referred to as the “age transformation” of the epigenetic clock 

(although it may simply the identity function in many cases).  The model could be fitted to find �̂�, 

given 𝐹, using any supervised machine learning method designed for extremely high-

dimensional data.  The estimated age �̂� is referred to as “DNA methylation age” or “epigenetic 

age”, or simply “DNAm age”.  The estimation residual �̂� − 𝑦 is referred to as “age acceleration”, 

and is an important clinical measure that captures abnormal aging effects.  It is important to 
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note here that tissue type is NOT incorporated into the model specification, which is the main 

reason why such an epigenetic clock is labeled as “intrinsic” (Horvath and Raj, 2018).  The fact 

that building such an estimator is possible (as shall be seen) is an interesting discovery all its 

own, given the biology behind DNA methylation and cell type definition and differentiation, but 

for this study we will simply move past it.  Much like with any statistical estimator, an epigenetic 

clock should not be used for extrapolation; it is only expected to be accurate over the range of 

ages and set of tissue types on which it was trained. 

While the definition of an epigenetic clock is broad, and the corresponding estimation 

problem is broadly specified, there is a specific and standard methodological approach used 

when building intrinsic epigenetic clocks for animal species or sets of animal species.  First, 

regarding the data being used to train the clock, it is typically generated using the Horvath 

mammalian array (Arneson, et al., 2022), when building clocks for non-human mammals.  

Second, regarding the model fitting method, it is standard (assuming normal errors) to use 

elastic net regularization (Friedman, et al., 2010) on 𝐹(𝑦)~𝑥 with an equal weighting between 

the 𝐿1 and 𝐿2, and 10-fold internal cross-validation for selecting the penalty parameter.  Then, �̂� 

is computed by applying the inverse function 𝐹−1 to the predicted values.  This regression 

method captures common features of both lasso and ridge regularization, namely that of 

sparsity and shrinkage.  Given that there are over 37,000 probes in the mammalian array, and 

that there are hundreds of thousands of probes in other arrays, the model fitting method must 

be sparse in order to generate a flexible and parsimonious estimator; the clock should not only 

be accurate, but biologically interpretable, by using a small fraction of the sites on the genome.  

Regarding the interpretation, the regression model selects the ‘most informative’ probes for the 

final clock, based purely on the ability to collectively explain a sufficient amount of the variance 

in the outcome, but without selecting too many probes.  Therefore, single selected CpG sites 

cannot be interpreted as biologically meaningful; they must be interpreted as a collection. 
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Regarding how epigenetic clocks are assessed for accuracy, aside from considering the 

age range and sample size of the training data, there are two importance measures for 

assessing accuracy.  Rather than looking at MSE, we instead use “age correlation”, which is the 

Pearson’s correlation between DNAm age and age, 𝑟 = 𝑐𝑜𝑟(�̂�, 𝑦).  As a second measurement, 

we calculate “median error”, which is the median absolute error between DNAm age and age, 

∑|�̂� − 𝑦|.  These measurements are both typically assessed not from the final model, but from a 

cross-validated variation, using leave-one-out (LOO) estimation; this is done to maximize the 

sample size of the training data.  Specifically, for every training sample, fit an estimator (with the 

exact same specifications) using all of the other training samples, and apply that estimator to 

the sample that was left out; we call this value “DNAm age LOO”, and the resulting correlation 

“LOO age correlation”.  An age estimator is deemed to be a proper and accurate epigenetic 

clock if the LOO age correlation exceeds 0.8 with a significant sample size (Horvath and Raj, 

2018). 

Having defined intrinsic epigenetic clocks, both conceptually and statistically, and having 

reviewed the standard statistical framework for training epigenetic clocks, it now stands to 

review the literature of published intrinsic epigenetic clocks, and examine their accuracy, 

methodological differences, and biomedical applications.  The first major intrinsic epigenetic 

clock to be published, the “Horvath clock”, was published in 2013, and it is a highly accurate 

multi-tissue clock (age correlation = 0.96, and MAE = 3.6, in independent testing data set) 

designed to measure intrinsic age in humans (Horvath, 2013).  This clock was trained on over 

7,000 tissue samples from 51 different tissue and cell types, making it extremely flexible.  This 

clock, and other clocks like it, that are designed to work on various tissue types from a single 

species, are often referred to as “1st-generation” clocks.  The Horvath clock was a significant 

development, because it was a biomarker that only used DNA methylation levels at 353 sites on 

the genome.  It should be noted that the Horvath clock used a distinctive non-linear age 

transformation, with logarithmic behavior at pre-juvenile ages, and linear behavior at post-
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juvenile ages.  The idea of using this kind of age transformation, to try to capture the non-linear 

nature of mammalian development and maturity, is one of the main reasons why it has been 

possible to build future epigenetic clocks. 

The demonstration that it was possible to build a highly accurate predictor of intrinsic 

age using an extremely small number of CpG islands, motivated the research work to build 1st-

gen clocks in other mammalian species.  Significantly many other 1st-gen epigenetic clocks 

have since been successfully trained (and are highly accurate) for other non-human mammalian 

species as well (some using a large diversity of tissue types), including: rhesus macaque (pan-

tissue) (Horvath, et al., 2021), naked mole rat (pan-tissue) (Horvath, et al., 2021), brown rat 

(pan-tissue) (Chiavellini, et al., 2022), pig (pan-tissue) (Schachtschneider, et al., 2021), cattle 

(blood-oocyte) (Kordowitzki, et al., 2021), sheep (blood-ear) (Sugrue, et al., 2021), common 

bottlenose dolphin (blood-skin) (Barratclough, et al., 2021; Robeck, et al., 2021), Indo-Pacific 

bottlenose dolphin (skin) (Peters, et al., 2023), vervet monkey (blood-brain-liver) (Jasinska, et 

al., 2022), plains zebra (blood-skin) (Larison, et al., 2021), horse (blood-liver) (Horvath, et al., 

2022), opossum (ear-liver-tail) (Horvath, et al., 2022), masked shrew (fetal-liver-tail) (Cossette, 

et al., 2023), common marmoset (blood) (Horvath, et al., 2021), roe deer (blood) (Lemaître, et 

al., 2022), yellow-bellied marmot (blood) (Pinho, et al., 2022), Tasmanian devil (blood) (Horvath, 

et al., 2022), red kangaroo (blood) (Horvath, et al., 2022), killer whales (skin) (Parsons, et al., 

2023), bowhead whales (skin) (Parsons, et al., 2023), and olive baboon (pan-tissue) (Horvath, 

et al., 2023). 

With the development of these clocks, the next step was to see if it were possible to 

build more advanced epigenetic clocks, which would work in multiple species simultaneously, 

and potentially capture underlying aging processes that were shared across taxonomic families 

rather than being species-specific.  It quickly became apparent that these clocks were possible 

to build (and still highly accurate), and this led to the emergence of 3rd-gen clocks (clocks that 

are accurate and designed to work for multiple species simultaneously).  3rd-gen clocks have 
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since been developed for many mammalian families, sub-orders, and highly heterogeneous 

species, including: bats (skin) (Wilkinson, et al., 2021), toothed whales (blood-skin) (Robeck, et 

al., 2021), elephants (blood) (Prado, et al., 2021), cats (blood) (Raj, et al., 2021), spiny mice 

(pan-tissue) (Horvath, et al., 2022), Macropus (kangaroos and wallabies) (blood) (Horvath, et 

al., 2022), dogs (blood) (Horvath, et al., 2022), killer-bowhead whales (skin) (Parsons, et al., 

2023), pinnipeds (blood-skin) (Robeck, et al., 2023), lemurs (blood-skin) (Horvath, et al., 2023), 

and primates (pan-tissue) (Horvath, et al., 2023).  Incredibly, it was also possible to build 3rd-gen 

clocks for sets of species that were NOT close relatives of each other, as many “human-animal” 

clocks have also been developed, including: human-rhesus macaque (pan-tissue) (Horvath, et 

al., 2021), human-naked mole rat (pan-tissue) (Horvath, et al., 2021), human-brown rat (pan-

tissue) (Chiavellini, et al., 2022), human-cattle (blood-oocyte) (Kordowitzki, et al., 2021), human-

sheep (blood-ear) (Sugrue, et al., 2021), human-vervet monkey (blood-brain-liver) (Jasinska, et 

al., 2022), human-horse (blood-liver) (Horvath, et al., 2022), human-common marmoset (blood) 

(Horvath, et al., 2021), human-elephants (blood) (Prado, et al., 2021), human-cats (blood) (Raj, 

et al., 2021), human-pig (pan-tissue) (Schachtschneider, et al., 2021), human-spiny mice (pan-

tissue) (Horvath, et al., 2022), human-opossum (ear-liver-tail) (Horvath, et al., 2022), human-

dogs (blood) (Horvath, et al., 2022), human-olive baboon (pan-tissue) (Horvath, et al., 2023), 

and human-clawed frog (pan-tissue) (Zoller, et al., 2023).  As the development of new 

epigenetic clocks emerge, there are early results about successful clocks for non-mammalian 

species, and even human-amphibian clocks, including axolotl, clawed frog, and human-clawed 

frog clocks (all under editor review).  The most significant development in 3rd-gen clocks is the 

“universal mammalian clock”, which is designed to work in all mammalian species and all tissue 

types (and is currently under editor review) (Lu, et al., 2023).  The universal clock, like most of 

the 3rd-gen clocks, uses an age transformation, and the age transformation chosen for each of 

these clocks can be quite variable.  For example, the universal clock uses a more sophisticated 

transformation, a “log-linear” age transformation, that is similar in idea to the original Horvath 
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clock (but parameterized by the age of sexual maturity of a given animal).  The motivation and 

details of these age transformations will be a primary point of discussion in Chapter 3. 

The development of most of these 3rd-gen clocks has been possible due to statistical 

strategies for re-parameterizing the clock model, and assisting the machine learning algorithm 

by manually “pre-filtering” the probes before passing them in to the machine learning algorithm 

(the details of which shall be a primary point of discussion in Chapter 3).  However, the 

techniques necessary to achieve these successful developments highlight a significant short-

coming in the current approach to building epigenetic clocks, which is the complete reliance on 

the supervised machine learning algorithm to identify the most predictive probes, and do so in a 

way that maximizes LOO correlation, and thus largely guarantees consistent accuracy in new 

external data sets.  Another, secondary, short-coming that is highlighted, is that the current 

approach does not utilize any information about how these thousands of CpG sites interact with 

each during transcription, and how they may or may not regulate or co-regulate gene 

expression.  Furthermore, in some of these new 3rd-gen clocks, the best performance is 

achieved through data-driven pre-filtering of probes, and results in epigenetic clocks where 

some of the selected probes do not map to a CpG site on the specific animal’s genome.  These 

short-comings motivate the development of a more biologically-informed modeling framework 

for building epigenetic clocks, so that the machine learning algorithm might be able to leverage 

biological associations between CpG sites on the genomes. 

This literature review concludes with an overview of HIV-induced age acceleration.  In 

recent years, significant strides have been made in the treatment of HIV, notably through the 

use of antiretrovirals, which have markedly extended life expectancy for those living with the 

virus.  Despite these advancements, people living with HIV (PLWH), even those maintaining 

undetectable viral loads, continue to face elevated risks of aging-related diseases such as 

frailty, heart disease, and neurocognitive degeneration.  This phenomenon has spurred interest 

in measuring biological aging beginning at HIV acquisition, and using metrics like the "age 
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acceleration residual" (AAR) from the Horvath multi-tissue clock.  Furthermore, other epigenetic 

tools like the Grim Epigenetic Age Acceleration (GEAA) and the Phenotypic Epigenetic Age 

Acceleration (PEAA) have emerged, offering insights into life and health spans, and DNAmTL 

which measures telomere length, an important marker of cellular aging.  In the context of HIV, 

epigenetic tools have revealed significant accelerated aging in individuals with HIV compared to 

age matched uninfected controls (Breen, et al., 2022; Sehl, et al., 2021).  However, most studies 

have lacked longitudinal data from the onset of HIV infection through its progression and 

treatment. 

  



 

 12 

CHAPTER 3: PARAMETRIC STATISTICAL METHODS FOR MULTI-SPECIES AND MULTI-
PHYLUM AGE PREDICTION 

 
The purpose of this chapter is to present the initial methodological developments of this 

study; specifically, expanding the epigenetic clock-building pipeline to allow for non-human and 

multi-species data.  These developments can be categorized into two set of strategies: (1) 

utilizing intuitive age-transformations that account for different “speeds” of aging in different 

animal species, and (2) strategies for sensibly “pre-filtering” probes using species genome 

annotations or using data itself.  This chapter will conclude with a presentation of an R package 

containing all of the functions for the clock-building pipeline, and containing options to allow the 

user to use these various strategies. 

The principal challenge (a statistical challenge) of expanding the epigenetic clock-

building framework to allow for multi-species data is the issue of time scales.  Specifically, if one 

wants to build an age-predictor that operates by assigning linear weights on methylation levels 

at CpG sites, then the magnitude of these weights is influenced by the lifespan of the animal, 

such that the magnitudes will be smaller if the lifespan is larger.  As a result, it becomes 

infeasible and statistically inappropriate to pool samples from different species, if those species 

have significantly different lifespans; it will result in huge variation, in order to keep the bias 

down.  Therefore, a natural solution is to introduce the concept of “scaling the age space”, so 

that the weights on CpG sites no longer have a uniform effect on the predicted outcome across 

all species.  In this approach, one wants to reparametrize the outcome variable, age, so that in 

all species, this variable has roughly the same value for every species at every key life history 

trait (e.g., conception, birth, sexual maturity, adulthood, and death).  By doing so, the weights on 

CpG sites would correspond to progression along the life course, rather than unit increments to 

age in years.  This is the motivation behind what will be referred to as “species-parametric age 

transformations”. 
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When using a species-parametric age transformation, the new statistical model for the 

estimation problem becomes: 

𝐹(𝑦|𝜃) = 𝑥𝑇𝛽 + 𝜀, 𝛽 ∈ ℝ𝑃 , 𝔼[𝜀] = 0 

where 𝜃 is a vector containing one or more life history traits (which change depending on 

species).  The model could be then fitted in the same ways to find �̂�, given 𝐹, and given 𝜃 for 

every species in the training data, using any supervised machine learning method designed for 

extremely high-dimensional data.  In our studies on building 3rd-gen epigenetic clocks for 

various sets of species, including human-animal clocks, we find that one particular 

class/functional form of 𝐹 is both effective for prediction, and intuitive to interpret, which is a 

“log-linear” age transformation.  This type of smooth age transformation is defined as a 

logarithmic function for values less than some significant developmental stage (usually age at 

sexual maturity), and is defined as a linear function for values greater than that stage. 

Within the many human-animal clock papers that I have worked on (presented in 

Chapter 2), there is one age transformation that I developed that we have found to be effective 

in all of these papers, and which I named the “LLin3” transformation (standing for “Log-Linear 

version 3”, because it was the 3rd transformation that I developed and tested).  Learning from 

previous iterations, I found that a transformation based on a single life-history trait was more 

effective in improving prediction, because it was “simpler” and less rigid.  I used a 

transformation parameterized by Age of Sexual Maturity (A).  The LLin3 transformation is 

𝐹(𝑦|𝐴), given by 

𝐹(𝑦|𝐴) = 𝑔 (
𝑦 + 1.5

𝐴 + 1.5
)   where  𝑔(𝑡) =  {

log(𝑡),      𝑓𝑜𝑟 𝑡 ≤ 1
𝑡 − 1,       𝑓𝑜𝑟 1 ≤ 𝑡

, 

where y denotes Age.  This transformation ensures continuity and smoothness at the change 

point y = A.  Explicit, 𝐹(𝑦|𝐴) is given by 
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𝐹(𝑦|𝐴) = {
log (

𝑦 + 1.5

𝐴 + 1.5
) ,      𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 𝐴

𝑦 − 𝐴

𝐴 + 1.5
,     𝑓𝑜𝑟 𝐴 ≤ 𝑦

. 

This transformation was used in all of the human-animal clocks, the primate clock, and the bat 

clock, and we found that it was highly necessary for ensuring accurate prediction. 

This transformation later formed the basis for a more sophisticated transformation, one 

that is used for the universal mammalian clock (Lu, et al., 2023).  This age transformation, which 

I will refer to as the “LLinR” transformation (or “Log-linear Relative” transformation), is also 

parametrized by Age of Sexual Maturity (A), but is also parametrized by Gestation Time (G), and 

by a species-specific scaling/change point parameter, given by m.  The LLinR transformation is 

motivated by the functional form 𝐹(𝑦|𝐴, 𝐺, 𝑚), given by 

𝑢(𝑦|𝐴, 𝐺) =
𝑦 + 𝐺

𝐴 + 𝐺
, 

𝐹(𝑦|𝐴, 𝐺, 𝑚) = 𝑔 (
𝑢(𝑦|𝐴, 𝐺)

𝑚
)   where  𝑔(𝑡) =  {

log(𝑡),      𝑓𝑜𝑟 𝑡 ≤ 1
𝑡 − 1,       𝑓𝑜𝑟 1 ≤ 𝑡

, 

where y denotes Age.  This transformation ensures continuity and smoothness at the change 

point u = m.  Explicit, 𝐹(𝑦|𝐴, 𝐺,𝑚) is given by 

𝐹(𝑦|𝐴, 𝐺,𝑚) =

{
 

 log (
𝑦 + 𝐺

𝑚(𝐴 + 𝐺)
) ,      𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 𝑚(𝐴 + 𝐺) − 𝐺

𝑦 + 𝐺 − 𝑚(𝐴 + 𝐺)

𝑚(𝐴 + 𝐺)
,         𝑓𝑜𝑟 𝑚(𝐴 + 𝐺) − 𝐺 ≤ 𝑦

 

The parameter m is a substitute for the ideal parameter value m*; 

𝑚∗ = 𝑐1 ∗ (
𝑀𝑎𝑥𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 + 𝐺

𝐴 + 𝐺
), 

where 𝑐1 < 1 is a proportionality constant that would control the distribution of 𝐹(𝑦|𝐴, 𝐺, 𝑚∗), 

such that 𝐹(𝑦|𝐴, 𝐺, 𝑚∗) is approximately normal.  The reason that we substitute m for m* is 

because we want to define our transformation without the use of maximum lifespan, since it is 

an unreliable quantity for understudied species (i.e., maximum lifespan is something that must 

be observed over a long period of time, and is occasionally updated and increased as new 
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longevity records are broken).  We noticed that the ratio (Max Lifespan/Age of Sexual Maturity) 

is moderately constant across species, and that when examining the logarithm of m*/𝑐1, 

log(𝑚∗/𝑐1) = log(𝑀𝑎𝑥𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 + 𝐺) − log(𝐴 + 𝐺) 

= log (
𝑀𝑎𝑥𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 + 𝐺

𝐴
) − log (

𝐴 + 𝐺

𝐴
) 

= log (
𝐺

𝐴
+
𝑀𝑎𝑥𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛

𝐴
) − log (

𝐺

𝐴
+ 1). 

Therefore, we decided to construct an approximation of m* (for each species) based on the 

quantity G/A.  Indeed, the log (
𝑀𝑎𝑥𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛+𝐺

𝐴+𝐺
) and the log (

𝐺

𝐴
) have moderate correlation across 

all sampled mammalian species in the universal mammalian clock (r=0.5), and the specific 

approximation was 

log (
𝑀𝑎𝑥𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 + 𝐺

𝐴 + 𝐺
) ≈ 2.92 +0.38 log (

𝐺

𝐴
) 

⬚
⇒ 
𝑀𝑎𝑥𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 + 𝐺

𝐴 + 𝐺
≈ 𝑒2.92 (

𝐺

𝐴
)
0.38

 

⬚
⇒ 𝑚∗ ≈ 𝑐1𝑒

2.92 (
𝐺

𝐴
)
0.38

= 𝑐2 (
𝐺

𝐴
)
0.38

, 

where 𝑐2 = 𝑐1𝑒
2.92.  Therefore, we defined our substitution approximation, �̂�(𝐴, 𝐺), as 

�̂�(𝐴, 𝐺) = 5.0 ∗ (
𝐺

𝐴
)
0.38

, 

where we chose 𝑐2 = 5.0 because it led to 𝐹(𝑦|𝐴, 𝐺, �̂�(𝐴, 𝐺))) being approximately normal and 

mean 0 in our data, with a median of 0.0009 and a skewness of -0.02.  In summary, the LLinR 

transformation is 𝐹(𝑦|𝐴, 𝐺) given by 

𝑢(𝑦|𝐴, 𝐺) =
𝑦 + 𝐺

𝐴 + 𝐺
, 

𝐹(𝑦|𝐴, 𝐺,𝑚) = 𝑔 (
𝑢(𝑦|𝐴, 𝐺)

5 ∗ (𝐺/𝐴)0.38
)   where  𝑔(𝑡) =  {

log(𝑡),      𝑓𝑜𝑟 𝑡 ≤ 1
𝑡 − 1,       𝑓𝑜𝑟 1 ≤ 𝑡

. 

The secondary challenge (a biological challenge) of expanding the epigenetic clock-

building framework to allow for non-human array data, generated by the mammalian array or by 
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a generic human-specific array, is the issue of interpretability and signal.  Specifically, if one 

wants to build age-predictors for many different mammalian species, starting from the same set 

of CpG probes, then there is the concern that the probes used for prediction in the final model 

may not all map to the genome of the given species.  Although we hope that the machine 

learning algorithm would be good at selecting the probes that map to CpG sites on the genome 

of a non-human species, this is not usually the case.  This is because, when running an array 

like this on a non-human tissue sample, the probes that do not map to any CpG sites on the 

genome do not necessarily return with an ambiguous signal (i.e., a beta value close to 0.5).  

One theory is that these probes may instead be capturing technical background noise that is 

important or useful for more accurate prediction, but at the cost of interpretability.  Often, the 

machine learning algorithm alone is not biologically informed enough to find a strong signal and 

generate a strong prediction using only the probes that map to the animal’s genome.  Therefore, 

a natural and necessary solution is to “pre-filter” the methylation data before passing it into the 

algorithm.  In this approach, one wants to simply reference the most up-to-date genome 

annotation for that animal, and cross reference it with the list of probes that are present in the 

methylation data, removing any probes that do not have a corresponding match.  By doing so, 

one guarantees that the probes used for prediction in the final model will all map to the animal’s 

genome.  Using mappability to genome annotation as a pre-filtering step has been effective in 

all of the non-human and human-animal clocks that I have worked on that are published (see 

Chapter 2); it led to interpretable clocks, and it also almost always resulted in a stronger 

accuracy of the clocks (when using the cross-validation analyses to estimate unbiased 

performance). 

As a final remark, more recent research work has been on building epigenetic clocks in 

non-mammalian species, while still using the mammalian array to collect DNA methylation.  In 

this more extreme modeling scenario, it turns out that it is still possible to build moderately or 

highly accurate epigenetic clocks, depending on the animal; however, it becomes much more 
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challenging from a prediction perspective.  There is a dilemma about how to choose a pre-

filtering step, because while in mammalian species clocks, pre-filtering based on genome 

mappability is sufficient to achieve both biological interpretability and higher predictive accuracy, 

in these non-mammalian species clocks, there is sometimes a trade-off that must be evaluated 

between statistical accuracy and biological interpretability.  While it is not surprising that on 

average, a small fraction (10%-15%) of the probes on the mammalian array map to these non-

mammalian species of interest (like axolotls, which are amphibians, and clawed frogs, which are 

reptiles) (Zoller, et al., 2023), it is somewhat surprising that one can still construct accurate 

epigenetic clocks if one keeps probes that do not map to the animal’s genome, and instead pre-

filter probes using data-driven methods.  Currently, the most successful and promising strategy, 

which I have called the “middle filter”, is to simply remove probes that have a mean methylation 

(across samples across all ages) “near” to 0.5.  Just as what has been discussed above, a 

significant fraction of the probes that remain do still map to the genome of the animal, but a 

significant fraction of the probes that remain also do not map, and sometimes removing these 

probes hurts substantially hurts prediction. 
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CHAPTER 4: SOFTWARE FOR DNA METHYLATION-BASED EPIGENETIC CLOCKS IN 
MAMMALS 

 
The purpose of this chapter is to present the R package “MammalMethylClock” and the 

accompanying statistical techniques pivotal for the development, assessment, and application of 

these epigenetic clocks. I will describe the steps to use this software package, including how to 

easily apply the aforementioned published non-human and multi-species clocks (notably 

including the Universal Pan-Mammalian clocks (Haghani, et al., 2023)). 

 

DISCUSSION 

Overview of the software package 

The MammalMethylClock R package serves as a comprehensive suite tailored to the 

demands of constructing, assessing, and deploying new epigenetic clocks. An overview of the 

typical analysis sequence can be found in Figure 4-1. To begin, the Building Clocks module 

empowers users to fashion new epigenetic clocks. Our package also offers an Applying 

Clocks module. If pertinent, an inverse age transformation should also be specified. 

Recognizing the criticality of rigorous model evaluation, the package integrates two distinct 

cross-validation schemes: Leave-One-Out (LOO) and Leave-One-Species-Out (LOSO). For 

researchers keen on examining the relationship between DNA methylation and age, the 

Epigenome-Wide Association Studies (EWAS) feature has been incorporated, including Meta 

EWAS utility. 

 

Epigenetic clocks as penalized regression models 

Formally, epigenetic clocks are conceptualized as regression models, given 

mathematically as: 

𝐹(𝑦) = 𝑥𝑇𝛽 + 𝜀, 𝛽 ∈ ℝ𝑃 , 𝔼[𝜀] = 0 
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Here, 𝑦 is Age (in years), and 𝑥 ∈ [0,1]𝑃 signifies a vector of DNA methylation beta values from 

P CpG probes. These beta values render a spectrum wherein '1' epitomizes consistent 

hypermethylation and '0' characterizes consistent hypomethylation. The “age transformation” 

function 𝐹 is integral to the epigenetic clock, although in numerous applications, it is simply the 

identity function. 

Central to the construction of most epigenetic clocks is a sparse, penalized regression 

method such as elastic net regression or LASSO (Tibshirani, 1996; Zou and Hastie, 2005). The 

clock building tools employ R functions from the "glmnet" package (Friedman, et al., 2010). 

 

Overview of DNA methylation data handling 

Our membership of the Mammalian Methylation Consortium used the 

HorvathMammalMethylChip40 Infinium array platform, also known as the mammalian 

methylation array, which profiles oligonucleotide probes that pinpoint sites conserved across a 

vast majority of mammalian species (Arneson, et al., 2022). Every published clock integrated 

into our software package owes its genesis to this mammalian methylation array, most notably 

the Universal Pan-Mammalian clocks (Lu, et al., 2023). 

Raw array data (idat files resulting from the iScan machine) require normalization to 

arrive at DNA methylation values (beta values). Our membership of the Mammalian Methylation 

Consortium used SeSaMe normalization, a trusted method for all clocks embedded in this 

software, but other approaches can be adopted (Arneson, et al., 2022; Zhou, et al., 2018). 

 

CpG probe pre-filtering 

For a given array, the beta values should typically follow a bimodal distribution, with most 

values clustering near 0 or 1. However, in many species, one often observes a trimodal 

distribution, characterized by an additional intermediate peak around 0.5. This mid-point peak, 
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which represents a technical artifact, signifies the presence of CpGs on the array that fail to 

align with the underlying genome. 

 

Annotation Mappability Filtering: The mammalian methylation array's probes aren't universally 

applicable to every species. For example, several thousand CpGs aren't applicable for mice, but 

are to humans (Arneson, et al., 2022). I advise data analysts to exclude CpG probes from their 

analysis when the associated oligonucleotide sequence isn't found in the target genome. CpG 

genome annotations for hundreds of species (including non-mammalian) are available on the 

Mammalian Methylation Consortium's GitHub page (Haghani, et al., 2023; Lu, et al., 2023) at 

https://github.com/shorvath/MammalianMethylationConsortium/tree/v2.0.0. 

 

Middle Filtering: It can be advisable to exclude CpG probes with an average DNA methylation 

value approximating 0.5 across all (training) samples. This simple procedure can be accessed 

within the “selectProbes.middleFilter()” function. 

 

Sesame Detection P-value Filtering: It can be advisable to discard CpG probes with detection p-

values exceeding 0.05. This filtering method is done via supplemental data generated during the 

SeSaMe normalization (Zhou, et al., 2018). 

 

Unsupervised hierarchical clustering 

To filter out technical outliers and identify inherent batch effects in the data, 

unsupervised hierarchical clustering is applied to the normalized DNA methylation data via the 

standard R function, “hclust()” (Murtagh, 1985). Each branch of the hierarchical clustering 

dendrogram represents a cluster (a group of closely correlated DNA samples). These clusters 

can be identified from various branch cutting techniques, using “cutreeStatic()” from the 

https://github.com/shorvath/MammalianMethylationConsortium/tree/v2.0.0
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WGCNA package (Langfelder and Horvath, 2008). Hierarchical clustering effectively highlights 

outlier samples based on a large height value (y-axis) in the cluster tree. 

To evaluate the pairwise resemblance in DNA methylation array readings, I employ the 

inter-array Pearson correlation coefficient across CpGs. Generally, anticipated pairwise 

correlations of the same tissue exceed 0.9. For discerning intergroup disparities, I usually 

choose "average linkage", but other intergroup dissimilarities can be used as well. 

 

Transforming age in the clock model 

Age transformations play a pivotal role in bolstering the predictive accuracy of epigenetic 

clocks in external datasets. This software suite offers predefined transformation functions (along 

with their inverse functions) tailored to the specific pre-constructed clock in use. 

 

Existing clocks included in the package 

The MammalMethylClock package is equipped with built-in clocks designed for a diverse 

range of mammalian species and groups, spanning from rats, primates, and cetaceans to 

marsupials. To ensure accurate results, data should be obtained from the mammalian 

methylation array, and the “predictAge()” function should be employed.  A comprehensive list of 

built-in clocks and other pertinent information can be found in the “getClockDatabase()” function, 

and also on the software's GitHub repository (https://github.com/jazoller96/mammalian-methyl-

clocks/tree/main). 

 

EWAS 

The Epigenome-Wide Association Study (EWAS) module is used to identify individual 

CpGs and genomic locations that highly relate to age. During an EWAS, correlations between 

every CpG probe and a specified outcome variable (e.g., age) are ascertained across all 

(training) samples. 

https://github.com/jazoller96/mammalian-methyl-clocks/tree/main
https://github.com/jazoller96/mammalian-methyl-clocks/tree/main


 

 22 

The results of an EWAS act as precursors for downstream analyses including eFORGE 

(Breeze, et al., 2019), Genomic Regions Enrichment of Annotations Tool (GREAT) analysis 

(McLean, et al., 2010), and universal chromatin state analysis (Vu and Ernst, 2023). These 

functionalities are not currently embedded in our software package. 

 

METHODS 

Training, Validation, and Downstream Analysis Pipelines 

The MammalMethylClock package delivers a comprehensive toolkit for researchers 

venturing into the domain of epigenetic clock studies. This package is designed to incorporate a 

suite of functionalities tailored for the development, assessment, and utilization of epigenetic 

clocks. Among its main features is the ability to create new epigenetic clocks/biomarkers using 

training datasets provided by users. These datasets should include age values coupled with 

normalized DNA methylation data. It's worth noting that the output of this feature might be 

influenced by inherent algorithmic randomness. To ensure reproducibility, users are strongly 

advised to use the “set.seed()” function in their R scripts before executing these functions. 

Another primary feature of this package is the capacity to predict DNAm age for specific 

samples. This feature only requires normalized DNA methylation data, coupled with any pre-

built epigenetic clock, which is itself characterized by a coefficients table and, if relevant, an 

inverse age transformation. 

For model evaluation, the package offers the Leave-One-Out (LOO) cross-validation 

technique, in which each sample is systematically excluded to assess the accuracy and 

robustness of the model. As with the clock construction, outputs from this analysis might exhibit 

some randomness. Thus, the insertion of the “set.seed()” function is strongly advised. 

Furthermore, the package includes a variant of this approach, called Leave-One-Species-Out 

(LOSO) cross-validation. Here, instead of single samples, all data from a distinct species are left 
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out during the model training step. Consistency and reproducibility in results can be maintained 

with the “set.seed()” function. 

Beyond these features, the MammalMethylClock package is equipped to conduct 

Epigenome-Wide Association Studies (EWAS). This allows researchers to probe the relationship 

between DNA methylation patterns and specific phenotypes, especially age. Complementing 

this, the package also supports a simple Meta EWAS feature, which refines the study by taking 

stratifying variables such as tissue type or species into account. 

 

Implementing Cross-validation Techniques 

To ascertain the accuracy of a clock, I advocate for users delve into cross-validation 

statistics. The software package boasts two distinct methodologies which hinge on the nature of 

the data at hand: LOO (Leave-One-Out) and LOSO (Leave-One-Species-Out). Each approach 

partitions the dataset in a unique manner for validation purposes. 

In the LOO analysis, employed via the “saveLOOEstimation()” function, the process 

unfolds for every sample within the dataset as follows: Initially, a provisional replica of the 

datasheet and associated DNA methylation data are constructed, deliberately excluding the 

chosen sample from both. Then, a clock model is fit utilizing this provisional dataset. The 

specifications for this step are parallel to those presented in the “saveBuildClock()” function. 

Following this, the coefficient table of this LOO clock is archived into a list of matrices. 

Concluding the process, this provisional LOO clock is applied to the omitted sample, and the 

forecasted value is stored in the output. 

For computational efficiency, it's crucial to understand that this function avoids 

conducting an internal cross-validation at each iteration to pinpoint a potentially varied optimal 

value for the penalty parameter lambda for every LOO clock. Instead, recognizing that these 

optimal lambda values typically converge closely, the function designates a singular optimal 
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lambda value based on the starting dataset. This identical lambda value is then harnessed to 

configure every LOO clock. 

 

Species characteristics from AnAge 

Characteristics of species, including maximum lifespan, age of sexual maturity, and 

gestational period, which serve as parameters for certain clocks within this package, were 

sourced from a revised edition of the Animal Aging and Longevity Database (AnAge, 

https://genomics.senescence.info/species/index.html) (de Magalhães, et al., 2007). I employ the 

same enhanced version of AnAge that was presented in a paper I contributed to by Lu, et al (Lu, 

et al., 2023). 

 

CONCLUSION 

The MammalMethylClock R package offers specialized statistical and bioinformatics 

tools dedicated to developing epigenetic clocks for single and multiple species. The R functions 

can be used to both devise new epigenetic clocks and deploy pre-existing ones. While our 

primary focus has been on mammalian species, we've recently extended the software's 

application to amphibians, like Xenopus frogs (Zoller, et al., 2023). 

While the MammalMethylClock package is optimized for data from the mammalian 

methylation array, most of package’s functions apply to data from other measurement platforms 

as well. 

  

https://genomics.senescence.info/species/index.html
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CHAPTER 5: LONGITUDINAL ANALYSIS OF EPIGENETICS FROM SEROCONVERSION 
UNTIL FIRST ART INITIATION 

 
The purpose of this chapter is to present and results and discussion from a longitudinal 

study of already examined subjects in the MACS (Multicenter AIDS Cohort Study), which spans 

4 specific time points, and which examines 60 PLWH and 60 age-matched, hepatitis C-matched 

and time-interval matched individuals living without HIV as controls.  The study captures various 

important timepoints: 2-3 years prior to seroconversion (Visit A), the period closest to 

seroconversion (Visit B), the phase of living with HIV before ART initiation (Visit C) and after 1-3 

years of being on ART (Visit D).  All participants had complete observations on all 5 epigenetic 

clocks examined.  Comprehensive data on flow cytometry measures was also utilized, including 

naive CD4/CD8 counts, senescent CD4/CD8, activated CD4/CD8, as well as total CD4/CD8, in 

both absolute counts and as percentages. 

It has previously been shown that acquisition of HIV impacts the immune system and 

can accelerate aging as measured with epigenetic clocks.  Antiretroviral therapy has been 

shown to slow these aging effects and can partially restore the immune function in patients who 

achieve durable virologic suppression.  By tracking epigenetic changes from the time of 

seroconversion to ART initiation, this study seeks to unravel the specific aging patterns 

associated with HIV, potentially guiding the development of interventions to enhance the 

healthspan of PLWH and also lend insights into aging.  In this chapter, I analyze epigenetic 

aging using five different aging clocks across 4 four time points, running from pre-

seroconversion to the initiation of ART in 60 seroconverters and 60 age-matched controls.  I 

incorporate multivariate adaptive regression splines, a machine learning model to aid in model 

selection and mixed models to explain the data.  My findings indicate that, across most aging 

clocks, HIV infection significantly and prematurely alters the epigenetic aging process and this is 

only partially restored when the viral replication is controlled.  This suggests that HIV itself 
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contributes to the earlier onset of clinical aging through its profound effects on the immune 

system. 

 

RESULTS 
 
Demographics 
 

Participants from the Multicenter AIDS Cohort Study (MACS) who were included in the 

current sub-study of initial HIV infection were predominantly white, college-educated men who 

have sex with men (Table 5-1), similar to the overall MACS demographics at the initiation of the 

study in the 1980s (Kaslow, et al., 1987).  The proportion of non-white men among the 

persistently HIV-seronegative (SN) participants (13/60) compared to the participants who 

became HIV-infected and seroconverted was not significantly different (SC; 7/60, p=0.14).  

Mean age in SC and SN at Visit B (post-HIV infection or equivalent visit) was 39.2 and 38.5 

years, at Visit C was 44.7 and 44.9, and at Visit D was 47.4 and 47.7, respectively, reflecting the 

matching criteria (range 21-75 years across all participants and visits in this study).  In this 

substudy neither patients nor controls had Hepatitis C infection. The SC and SN groups also 

had similarly low rates of active Hepatitis B Virus (HBV) infection at all four visits (1-2%).  SC 

trended towards greater cumulative pack-years of smoking compared to SN at Visit D, but was 

not significant (p= 0.22). 

By design, the mean time intervals between peripheral blood mononuclear cell (PBMC) 

samples at Visits A to B, A to C, and A to D were very similar in SC (3.0 years, 9.3 years, 12.1 

years), and SN (2.8 years, 8.3 years, 11.0 years).  Among SC, the mean time interval between 

estimated date of HIV infection and the post-HIV infection PBMC sample at Visit B was 2.3 

years (sd 0.4 years).  In addition, the mean time interval between estimated date of HAART 

initiation and the post-HAART initiation PBMC sample at Visit D was 2.1 years (sd 0.4 years).  

The calendar dates of estimated HIV infection ranged from 1985-2004, with 93% of the infection 

dates occurring prior to 1995.  All SC post-HIV infection samples (i.e., Visit B samples) were 



 

 27 

prior to the initiation of highly active antiretroviral therapy (HAART) (Castillo-Mancilla, et al., 

2016).  Mean plasma HIV viral load (VL) in SC at or immediately preceding Visit B was 29,994 

copies/mL (sd 40,301 copies/mL), ranging from a single individual with <50 copies/mL up to 

192,000 copies/mL.  For Visit C, the mean was 58,893 copies/mL (sd 119,006 copies/mL), 

ranging from three individuals with <50 copies/mL up to 815,000 copies/mL.  Mean plasma HIV 

VL in SC at or immediately preceding Visit D (and after HAART initiation) was 5,884 copies/mL 

(sd 15,569 copies/mL), ranging from 68% of individuals with <50 copies/mL up to 81,000 

copies/mL. 

 
Multiple epigenetic age acceleration measures differ significantly after initial HIV 
infection 
 

At visit A, the pre seroconversion visit, all patients were (by design) HIV-seronegative.  

When comparing the SC and matched SN at Visit A, there were no statistically-significant 

differences between the two groups in Age Acceleration Residual (AAR), Extrinsic Epigenetic 

Age Acceleration (EEAA), Phenotypic Epigenetic Age Acceleration (PEAA), and Age-adjusted 

DNA methylation-based estimates of telomere length (aaDNAmTL) (Figure 5-1a-c,1e). The 

Grim Epigenetic Age Acceleration (GEAA) demonstrated a small difference bordering on 

statistical significance (Figure 5-1d), with the SC group being slightly epigenetically older with 

respect to Grim Age than the SN group. 

At Visits B and/or C, following initial HIV infection in the SC, SC showed dramatic 

differences in some epigenetic age metrics (greater EEAA, PEAA) and estimated telomere 

length (shorter aaDNAmTL) that were significant, and moderately significant differences in AAR, 

compared to matched HIV-uninfected SN, as well as continuing to be slightly more accelerated 

in GEAA (Figure 5-1a-e). 

Following initial ART initiation (Visit D), SC showed deceleration in epigenetic aging 

however there remained significant differences in some epigenetic age metrics (greater AAR, 

PEAA) and estimated telomere length (shorter aaDNAmTL) compared to matched HIV-
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uninfected SN, as well as continuing to be slightly more accelerated in GEAA (Figure 5-1a, 5-

1c-e).  Average EEAA at Visit D was still greater in SC compared to SN, but the difference was 

not statistically significant (Figure 5-1b). 

Out of concerns about the significant variation between time points across subjects 

(namely, Visits B and C), we created models using continuous time (time since Visit A) rather 

than design visit (visit letter).  However, the results remain largely unchanged, as the changes in 

epigenetic measures follow similar trends (Figure 5-2a-e). 

 

Initial HIV infection remains associated with older EEAA, and PEAA ages, and shorter 
estimated aaDNAmTL, even after taking demographic factors and T cell type composition 
into account 
 

Mixed model analyses were conducted on all participants across all visits, accounting for 

demographic characteristics.  This model, consistently applied across all 5 epigenetic 

measures, assessed the potential influences of demographic factors, time, HIV status, time*HIV 

status, and ART usage on the results of each epigenetic measure (Table 5-2, Table S2).  The 

analyses showed that seroconversion to HIV at Visit B significantly affected epigenetic aging as 

measured by AAR, PEAA, GEAA and aaDNAmTL (all p< 0.005).  Conversely, factors such as 

race (white vs. not white), body mass index (BMI), or smoking did not generally impact these 

measures (all p> 0.10), except for a highly significant contribution to GEAA made by smoking 

(p< 0.001), and a mildly significant contribution to GEAA made by race (p= 0.013). 

The analysis also highlighted that the Study visit (A, B, C, or D) alone was a strong 

determinant of the chronologic age-adjusted epigenetic values over time for all five epigenetic 

measures (all p< 0.025, Table 5-2).  However, when considering the interaction of the study visit 

and HIV serostatus group (i.e., SC or SN), which reflects the transition from HIV-uninfected to 

HIV-infected and the subsequent initiation of HAART in the SC group compared to the 

persistently HIV uninfected SN group, it is apparent that the initial HIV acquisition was the 

predominant factor affecting the epigenetic values seen at the four visits for AAR, EEAA, PEAA, 
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and aaDNAmTL.  Although GEAA showed significant variation with respect to study visit and 

HIV serostatus group, it was not linked with most other covariates, including the study visit∗HIV 

serostatus group interaction (all p≥ 0.05).  As expected, smoking history was strongly 

associated with GEAA, due to the inclusion of smoking-related biomarkers into this specific 

epigenetic clock (Table S1). 

As noted in a previous study (Breen, et al., 2022), it was necessary to develop another 

set of mixed models that could account for potential differences in the cell composition of each 

sample.   This study used the already collected flow cytometry data that was available from this 

particular subset. A description of these measures is given in for participants at all visits (Table 

5-3, Table 5-4).  As expected, there were no differences in any of the mean absolute T cell 

counts or mean percentages of T cell subsets between the SC and SN group at visit A (pre-

seroconversion).  Significant differences between the groups were found (for both absolute 

counts and percentages) at visits B and C in 6 out of the 8 T cell subsets (namely, CD4 and 

CD8, naïve CD4 and CD8, senescent CD8, and activated CD8) (Table 5-3, Table 5-4), with the 

exception of senescent CD8 T cells at Visit B.  Furthermore, there were still significant 

differences (for both absolute counts and percentages) at visit D (post ART visit) in 5 out of 

those 6 T cell subsets (namely, CD4 and CD8, naïve CD4, senescent CD8, and activated CD8) 

(Table 5-3, Table 5-4).  Correlations between absolute counts of different T cell subsets, and 

between each T cell subset and the five epigenetic measures, are shown in Tables S3A-E.  

Similarly, correlations between percentages of T cell subsets within live lymphocytes are shown 

in Tables S4A-E. 

Utilizing various combinations of T cell subsets as described in the Methods, a 

consensus model was identified for this mixed model, showing the best fit across all five of the 

epigenetic measures.  This model consisted of 5 T cell subsets, as the following covariates: 

natural log-transformed T cell percentages of live lymphocytes for naïve CD4, naïve CD8, 

senescent CD8, and activated CD8, and natural log-transformed absolute T cell count for total 
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CD8.  This model analyzed the possible contributions of changes in T cell numbers over time, 

as well as changes in HIV infection and ART utilization status, to the observed values for each 

epigenetic measure (Table 5-5, Table S5).  Significant associations were observed between T 

cell subset percentages and one or more of the epigenetic measures; however, the absolute 

total CD8 T cell count was not significantly associated with any epigenetic measures, although 

aaDNAmTL was marginally significant (p= 0.084).  Notably, when these five T cell subsets were 

considered, the three of the four epigenetic measures that showed significant relationships in 

our initial mixed model with demographics (namely, EEAA, PEAA, and aaDNAmTL), still 

exhibited a statistically significant relationship to the interaction of study visit*HIV serostatus 

group; in addition, AAR was still marginally significant (p=0.09). 

 
Efficacy of HAART in achieving undetectable status in short-term does not associate 
with complete reversal of HIV-induced age acceleration 
 

Given the persistent significant associations between four of the epigenetic measures 

and the study visit*HIV serostatus group interaction, representing the HIV infection event at Visit 

B in the SC group, a natural question would be to ask whether the effectiveness of ART in 

controlling viral replication is associated with the age acceleration induced by HIV infection.   

PLWH were stratified by whether or not they were undetectable (< 50 copies/ml) at Visit D. 

To assess if being undetectable at Visit D was associated with reversing the age 

accelerating effects of HIV, regression analyses were performed.  Figure 5-3 illustrates the 

stratified regression by Visit Number.  As expected, PLWH who had detectable viremia had 

higher age acceleration versus their age-matched controls.  However, the age acceleration was 

not significantly different from PLWH who were undetectable, although the trend was that 

people who had undetectable levels of HIV at Visit D showed greater age rejuvenation versus 

those with uncontrolled viremia. Table 5-6 lists the parameters of the model. 

 

DISCUSSION 
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While other longitudinal studies have previously explored accelerated aging in HIV 

seroconverters (Breen, et al., 2022; Leung, et al., 2017; Sehl, et al., 2021), and in perinatally 

HIV-infected youth years after HIV infection (Shiau, et al., 2021), and cross-sectional studies 

suggest that persons living with HIV (PLWH) may be aging at a faster rate (Gross, et al., 2016; 

Horvath and Levine, 2015; Rickabaugh, et al., 2015), the study described here stands out as 

one of the largest studies of seroconverters with four well-described longitudinal time points. 

This study follows individuals from before they contract HIV through initiation of ART, 

documenting epigenetic changes that align with accelerated biologic aging.  We utilized five 

well-validated epigenetic measures based on methylation patterns of genomic DNA, each 

estimating biological age acceleration relative to chronologic age alongside a DNA methylation-

based proxy for telomere length, which typically shortens with age and cell division. 

Over three time periods during which age-matched HIV-uninfected men showed stable 

changes in epigenetic measures of aging, men who became infected with HIV at Visit B showed 

highly significant age acceleration in three out of four of the epigenetic clocks (AAR, EEAA, and 

PEAA) as well as accelerated estimated telomere shortening (Figure 5-1, Figure 5-2), and this 

association became stronger by Visit C.  In mixed models that include demographic 

characteristics, age acceleration in specific epigenetic measures (AAR, EEAA, PEAA, and 

aaDNAmTL) continues to show a strong and significant association with initial HIV infection (see 

Table 5-2). Furthermore, when accounting for T-cell counts and percentages (referenced in 

Table 5-5), these associations persist, though the link with AAR becomes only marginally 

significant. This suggests that changes in T-cell metrics during the initial phase of HIV infection 

have a notable impact on epigenetic aging. The results suggest that there is an early and 

substantial impact of HIV infection on the epigenetic aging process, which also continues if 

viremia remains uncontrolled, linked to changes in the T-cell subtypes and overall immune 

system dynamics.  The results seen in the different epigenetic measures are not just a reflection 
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of the correlations observed among them. Each clock was independently developed to assess 

distinct aspects of aging. Therefore, it is anticipated that multiple epigenetic indicators would 

point to age acceleration as a consequence of HIV infection. 

Notably, PEAA indicated significant age acceleration associated with initial HIV infection, 

with an expected increase in biological age acceleration of 5.39 years in SC relative to SN, 

when comparing Visits B vs. A, after adjusting for chronologic age (Figure 5-1).  PEAA is a 

recently-developed epigenetic clock that predicts lifespan by measuring mortality from 513 

CpGs (Levine, et al., 2018).  In populations not infected with HIV, a one-year increase in PEAA 

age acceleration is associated with a 4.5% increase in all-cause mortality risk (Levine, et al., 

2018).  The significant HIV-associated acceleration that was priorly stated suggests that being 

infected with HIV and living with uncontrolled HIV for approximately three years or less is 

already associated with a relative increased risk of about 25% for a shortened lifespan.  

Furthermore, AAR, EEAA, and PEAA indicated significant age acceleration associated with 

living with uncontrolled HIV over a longer period of time, with an expected increase in biological 

age acceleration of 5.72 years, 5.40 years, and 10.78 years, respectively, in SC relative to SN, 

when comparing Visits C vs. A, after adjusting for chronologic age (Figure 5-1). 

On the other hand, initial HAART utilization was also associated with some reversal of 

epigenetic outcomes.  When comparing Visits D vs. C, after adjusting for chronologic age, 

EEAA and PEAA signs were significantly reversed with ART initiation, with an expected 

decrease in biological age acceleration of 2.68 years and 4.45 years, respectively, in SC relative 

to SN (Figure 5-1).  This is somewhat remarkable of an effect size from only utilizing HAART for 

approximately three years or less, but it is not a complete reversal of age acceleration 

associated with long-term uncontrolled HIV infection.  To examine the cumulative effect of both 

HIV infection and initial HAART utilization, we compared Visits D vs. A, and found that some 

age acceleration remained in almost every epigenetic clock.   After adjusting for chronologic 

age, AAR, EEAA, and PEAA still indicated significant age acceleration, with an expected overall 



 

 33 

increase in biological age acceleration of 4.68 years, 2.73 years, and 6.24 years, respectively, in 

SC relative to SN (Figure 5-1).  Due to the limitations of this study design, it is unknown whether 

this “rejuvenating” effect of ART would continue to the point of complete age acceleration 

reversal, but the magnitude of ART-associated age deceleration was not significantly associated 

with the efficacy of ART in completely controlling HIV VL to undetectable levels (< 50 copies.ml) 

(Figure 5-3).  Specifically, cumulative age acceleration was not significantly different in PLWH 

who were detectable vs. undetectable at Visit D, although the trend was that people who had 

undetectable levels of HIV at Visit D showed greater age rejuvenation versus those with 

uncontrolled viremia. 

The age-adjusted DNAm-based estimate of telomere length (aaDNAmTL) (Lu, et al., 

2019), characterizes accelerated biological aging in the opposite direction of the epigenetic 

clocks, as telomeres become shorter with repeated cellular divisions, yielding a lower value and 

a negative direction of change over time. Similar to acceleration in the PEAA epigenetic clocks, 

aaDNAmTL showed accelerated telomere shortening over the course of initial HIV infection in 

SC participants relative to SN participants, comparing Visits B vs. A (Figure 5-1).  Moreover, the 

trend continued when comparing Visits C vs. A, consistent with the accelerations observed in 

AAR, EEAA, and PEAA.  Furthermore, aaDNAmTL showed decelerated, rejuvenated telomere 

shortening over the course of initial HAART initiation, comparing Visits D vs. C, again consistent 

with the decelerations observed in EEAA and PEAA.  All of these aforementioned observations 

were validated in continuous time model variants, in which time was modeled as the number of 

years since Visit A, rather than according to study design Visit letters (Figure 5-2). 

The Grim Clock (GEAA) (Lu, et al., 2019), which focuses on predicting mortality and 

lifespan, showed no differences over time regardless of changes in HIV infection status, or ART 

initiation status. At visit A, there was a trend towards a difference between participants who 

would go on to acquire HIV versus those that did not.  GEAA continued to demonstrate a 

marginal difference throughout time. This suggests that the Grim Clock includes factors that 
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predict mortality but are less affected by changes detected by other epigenetic measures when 

an individual first acquires HIV or starts ART.  

It is important to highlight that in this retrospective study, which examines the effects of 

acquisition of HIV on epigenetic markers and following the initiation of ART.  These initial 

findings at the point of HIV acquisition highlight the necessity for further research to explore 

whether these epigenetic markers can forecast the development of health complications, 

mortality and frailty. The findings that age acceleration begins shortly after HIV acquisition 

provides yet another compelling reason to aim for the rapid suppression of viremia in PLWH as 

soon as possible after infection.  In this study, we confirm the previous findings that ART can 

partially reverse the age-acceleration effects caused by HIV acquisition. 

The MACS/MWCCS is a comprehensive longitudinal cohort study that began in 1984 

and continues to the present. A key strength of this cohort is its inclusion of both HIV-infected 

and uninfected participants from the same at-risk demographic, along with the collection of an 

extensive repository of biological samples every six months. Combined with a detailed 

demographic and clinical dataset, this creates a valuable resource for investigating a spectrum 

of questions relating to the basic science, clinical science, and epidemiology of HIV infection in 

the U.S., with a focus on comorbidities among men and women living with HIV.  

This study assessed biological aging in over sixty individuals from the onset of HIV 

infection, alongside a matched cohort who remained HIV-negative. Results from this study 

highlights the need to understand the mechanisms behind the rapid age acceleration aging 

seen upon HIV acquisition as well as the mechanisms behind the less than total recovery in the 

rate of aging once the viral replication is controlled. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  

Human Subjects 
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Participants for the study reported here represent a subsample of subjects from 

previously reported studies and selected from among participants of the Multicenter AIDS 

Cohort Study (MACS), now part of the MACS/WIHS Combined Cohort Study (MWCCS). The 

MACS is a continuing longitudinal study that investigates the progression and treatment of 

Human Immunodeficiency Virus (HIV) infection in men who have sex with men (Kaslow, et al., 

1987).  For this specific substudy, participants were selected from MACS participants who were 

part of a larger biomarker study, previously detailed elsewhere (Breen, et al., 2022; Sehl, et al., 

2021; Wada, et al., 2015).  The MWCCS adheres to all applicable ethical guidelines, including 

securing informed consent for research from all participants. The MACS/MWCCS substudy was 

granted exempt status. by the University of California, Los Angeles Medical Institutional Review 

Board IRB#15001179. 

A total of 60 men who had experienced documented initial HIV infection and 

seroconversion (SC) after joining the MACS were selected, alongside 60 age and hepatitis C 

matched men who persistently tested HIV-negative (SN) who had data on all for four visits.  The 

selection criteria are detailed in the section below.  Clinical and demographic information is 

provided in Table 5-1.  Figure 5-4 illustrates the overall study design. 

For this re-examination of existing data, there were only 60 matched pairs that had 

complete data for all four visits (Visits A-D), thus reducing our effective sample size to 120. 

 

METHOD DETAILS 

Participant Selection and Samples 

Viably-frozen peripheral blood mononuclear cells (PBMC) were obtained from the 

national repository of the MACS/MWCCS.  MACS study visits typically occur at 6-month 

intervals, clinical and questionnaire data are collected, and peripheral blood samples are 

processed and frozen.    
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SC participants were selected who had PBMC samples available in the repository from 

two time periods: (1) up to 1.5 years prior to the first HIV-seropositive study visit (pre-HIV 

infection, Visit A), and (2) up to 2.5 years after the first seropositive visit (post-HIV infection, Visit 

B).  The pre-HIV PBMC sample was required to be from a visit that was both HIV antibody 

seronegative and with undetectable plasma HIV RNA.  All post-HIV infection PBMC samples 

were required to be before initiation of HAART; if multiple PBMC samples were available post-

HIV infection, the visit closest to 3 years after the pre-HIV visit was selected. 

Matched persistently HIV seronegative (SN) controls were then selected among MACS 

participants for each SC.  SN were selected matched by age (± 2 years) and Hepatitis C Virus 

(HCV) status (HCV RNA positive/negative) at all visits, as well as by availability of PBMC at two 

visits (Visits A and B) with comparable time interval between visits (± 0.75 years).  60 matched 

SN controls were identified, but a PBMC sample matched on age and HCV status within a 

comparable time interval was not available from one control at Visit A (equivalent to pre-HIV 

infection in the matched SC). 

HIV serostatus, plasma HIV viral load (VL), Hepatitis B Virus (HBV) status, and other 

demographic and clinical data were available from the MWCCS database, and are summarized 

in Table 5-1 and Figure 5-4 above.  Where data are missing from any parameter, the exact n is 

shown in Table 5-1.  An estimated date of HIV infection for each SC was calculated utilizing HIV 

serostatus (HIV antibody and Western Blot) and HIV VL data from all MACS study visits.  Date 

of HIV infection was estimated as the midpoint between the last MACS study visit at which the 

participant was HIV seronegative and HIV VL undetectable (if VL data were available) and the 

first MACS study visit with either HIV-positive serostatus or detectable HIV VL, whichever came 

first.  For 10 SC for whom VL data were missing at Visit B, the VL from the MACS visit 

immediately prior was used (0.3-0.5 years prior, approximately 3-6 months).  For post-HIV 

infection visits with undetectable VL, a value equal to the lower limit of detection of the VL assay 

was assigned; 4 SC had VL <400 copies/mL (Roche Amplicor 2nd generation assay, Roche 
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Molecular Systems, Branchburg, NJ, USA), and 1 had <50 copies/mL (ultra-sensitive Roche 

Amplicor assay).  HBV status at each visit was categorized as positive (HBV surface antigen 

[HBsAg] positive) or negative (HBsAg negative), and smoking history was evaluated by 

cumulative pack years reported. 

 

DNA Methylation Arrays 

Methylation status at more than 850,000 potential methylation sites (CpGs) were 

measured using the Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA), by the 

UCLA Neuroscience Genomics Core (https://www.semel.ucla.edu/ungc).  DNA methylation 

levels (beta values) were determined by calculating the ratio of intensities between methylated 

(signal A) and unmethylated (signal B) sites as previously described (Sehl, et al., 2020).  

 

QUANTIFICATION AND STATISTICAL ANALYSES 

Epigenetic Age Acceleration Measures 

Five measures of epigenetic age acceleration were estimated for each of the 120 PBMC 

samples in total, representing samples from all participants at all visits, using the online 

epigenetic clock software (http://dnamage.genetics.ucla.edu).  Each of these DNA methylation-

based estimates was calculated using methylation beta values obtained from the Infinium 

MethylationEPIC BeadChip, on all samples at the same time without linkage to HIV serostatus 

group. There were no adjustments for multiple comparisons, as each epigenetic measure was 

developed taking this into account.  Features of each clock examined are provided in Table S1.  

Briefly, Age Acceleration Residual (AAR) is based on the DNAm age estimated from 353 CpGs 

of Horvath’s original epigenetic clock (Horvath, 2013), which is then regressed on chronologic 

age.  AAR captures epigenetic age acceleration (i.e., older epigenetic or biologic age than 

chronologic age), is valid for a wide range of tissue types, and is known to be accelerated in 

disease states. Extrinsic epigenetic age acceleration (EEAA) is based on 71 CpGs of Hannum 
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(Hannum, et al., 2013), and was constructed to be positively correlated with senescent T 

lymphocytes and negatively correlated with naive T lymphocytes (Chen, et al., 2016; Hannum, 

et al., 2013).  This measure captures both intrinsic methylation changes and extrinsic blood cell 

composition changes.  Second generation clocks, including Phenotypic Age and Grim Age, 

were examined as they are much stronger predictors of mortality. Phenotypic Epigenetic Age 

Acceleration (PEAA), based on 513 CpGs, was developed by regressing a phenotypic measure 

of mortality risk on CpGs (Levine, et al., 2018). Grim Epigenetic Age Acceleration (GEAA), 

based on 1030 CpGs, was developed by regressing time-to-death on DNAm-based surrogate 

biomarkers of smoking pack-years and a selection of plasma proteins previously associated 

with mortality or morbidity (Lu, et al., 2019).  Finally, a DNA methylation-based estimator of 

Telomere Length adjusted for chronologic age (aaDNAmTL) was examined in our analyses to 

evaluate whether HIV infection causes accelerated shortening of telomeres with increased age 

and/or rate of cellular replication (Lu, et al., 2019). 

In this study, there are three time points occurring post-seroconversion to examine the 

difference between HIV-infected and uninfected, so it is not possible to determine exactly when 

and over what period of time the observed elevation in epigenetic age occurs.  However, 

“epigenetic age acceleration” measures are compared, defined as the residual that results from 

regression of epigenetic age on chronologic age, at all visits for the SC and SN groups.  

Because these measures are age-adjusted, they are technically termed “accelerations” in the 

epigenetic clock literature, rather than elevations or advancements, even though the time 

course and rate of acceleration is unknown. 

 

Absolute Counts of T Cell Subsets 

Absolute total CD4 and total CD8 T cell counts (cells/mm3) for each sample were 

available from the MACS/MWCCS database, which had been determined by standardized 
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protocols on the day each blood sample was originally obtained (Giorgi, et al., 1990; Hultin, et 

al., 2007).  Percentages of naïve, activated, and senescent T cells among CD4 or CD8 T cells in 

thawed viable PBMC were utilized in combination with absolute total CD4 and CD8 T cell counts 

to calculate absolute cell counts for naïve, activated, and senescent CD4 and CD8 T cells in 

each sample. 

Summary analyses were performed on the absolute counts of T cell subsets (Table 5-3) 

and percentages of T cell subsets within live lymphocytes (Table 5-4), comparing SC vs SN at 

Visits A through D. 

 

Statistical analyses 

No data were excluded from the analyses.  Simple linear mixed models were used to 

compare HIV serostatus groups (SC vs. SN) on each age-adjusted epigenetic measure at visit 

A (all participants HIV-uninfected), visits B and C (post-HIV infection in SC, time interval-

matched uninfected SN), and visit D (post-HAART initiation in SC, time interval-matched 

uninfected SN).  Fitted values for each serostatus group, and 95% confidence bands, are shown 

for this model in Figure 5-1. 

Because of the high variation in time difference between Visits B and C among subjects, 

we fitted a model which used continuous time since Visit A rather than discrete Visit numbers.  

LOESS (locally estimated scatterplot smoothing) models were used to accomplish this.  For 

each of the five epigenetic outcome measures, we stratified the data by SN only and SC only, 

and two LOESS models were trained, for a total of ten.  Fitted values for each serostatus group, 

and 95% confidence bands, are shown for this model in Figure 5-2. 

Pairwise correlation analyses were performed for each of the absolute T cell subsets 

counts as well as all of the epigenetic measures, for all participants at Visit A, for SC at Visit B, 

and for SN at Visit B.  The analyses were repeated for percentages of T cell subsets.  Pearson 

correlation coefficients (rho) and p values are shown in Tables S3A-E, and Tables S4A-E. 
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Potential contributions of covariates (study visit, HIV serostatus group, interaction 

between study visit*HIV serostatus group, race [non-white vs. white], Body Mass Index [BMI], 

and smoking cumulative pack years) to the changes in each age-adjusted epigenetic measure 

between the four visits were analyzed in linear mixed effects models using random intercepts, 

with all participants in the same model.  Due to missing data for some demographic covariates, 

n=100 samples for these mixed models.   The F-values and p-values from the mixed effect 

models for all five epigenetic measures are shown in Table 5-2; individual parameter estimates 

and p-values from fixed effects analyses are reported in Table S2. 

Potential contributions of absolute counts of T cell subsets (total CD4, total CD8, naïve 

CD4, naïve CD8, activated CD4, activated CD8, senescent CD4, senescent CD8) to the 

changes in each age-adjusted epigenetic measure between the four visits were analyzed in 

linear mixed effects models using random intercept, with all participants in the same model.  All 

absolute T cell counts were natural log-transformed (log(cells/mm3)) before inclusion into mixed 

models.  Due to missing data for some flow cytometry variables, n=72 samples for these mixed 

models.   We selected a consensus model to be used across all five epigenetic measures, 

which consisted of the following covariates: absolute counts of total CD8, percentage of naïve 

CD4, percentage of naïve CD8, percentage of senescent CD8, and percentage of activated 

CD8.  The F-values and p-values from the mixed effect models for all five epigenetic measures 

are shown in Table 5-5; individual parameter estimates and p-values from fixed effects analyses 

are reported in Table S5. 

The consensus model was selected in part using multivariate adaptive regression spline 

(MARS) models.  MARS is a machine learning algorithm that can be used to aid model selection 

and fits flexible adaptive b-splines (Friedman, 1991). This allows the model to capture changes 

to epigenetic measures and T cell subset composition over time due to two highly exogenous 

events among SC subjects (i.e., HIV infection and HAART initiation).  The consensus model 

was selected in three steps, as follows: 
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1. We fitted multivariate adaptive regression spline (MARS) models for each of the five 

epigenetic measures, using all 16 possible T cell measurements as covariates (8 

absolute counts, 8 percentages, all natural log-transformed), along with serostatus group 

(SC vs. SN) and time since visit A (and an interaction term).  Based on the MARS 

models’ reports of estimated variable importance, removed exactly half of the T cell 

variables from our candidate model, keeping either an absolute count or a percentage 

for each of the 8 T cell subsets.  The majority of the time, the percentage measurements 

were ranked higher in importance than the absolute count measurements, with the 

exception of total CD8 cells. 

2. We examined the correlation of each covariate with each epigenetic measure, among 

only SC samples from Visit B, C, or D.  From this, we found two T cell subsets, 

senescent CD4 and activated CD4, to be not significantly correlated (positively or 

negatively) with any of the epigenetic measures, and removed them from the candidate 

model. 

3. We examined co-linearity between the remaining 6 covariates, and found total CD4 to be 

correlated with almost all of the other 5 covariates, and thus removed it from the 

candidate model. 

 

These MARS models (above) were also used as the basis for identifying T cell cut-points 

that are shown in Figure S1.   We curated said figure to show cut-points and epigenetic 

measures for which their final fitted splines (in the respective MARS models) had noticeably 

high-magnitude slopes, or had sharp changes in slope. 

For the analyses with HIV detectability at Visit D, the mixed model is essentially the 

same as the one shown in Figure 5-1, except replacing the dichotomous variable for serostatus 

group (SC vs. SN) with a trichotomous variable for HIV detectability (ID vs. IU vs. UU).  Fitted 

values for each HIV detectability group, and 95% confidence bands, are shown for this model in 
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Figure 5-3; individual parameter estimates and p-values from fixed effects analyses are reported 

in Table 5-6. 



 

 43 

APPENDIX 
 
Table S1: Features of Epigenetic Measures of Biologic Aging that apply to the Illumina 450 and EPIC array platforms, related 
to Figures 1, 2, and 3, Tables 2 and 4 
 

Epigenetic 
measure 

Pan-tissue age clock 
(Horvath) 

Extrinsic age clock Phenotypic age clock Grim age clock 
DNA methylation-based 

estimate of telomere length 

Age-adjusted 
measure used in 

analyses 

Age Acceleration 
Residual 

(AAR) 

Extrinsic Epigenetic Age 
Acceleration 

(EEAA) 

Phenotypic Epigenetic 
Age Acceleration 

(PEAA) 

Grim Epigenetic Age 
Acceleration 

(PEAA) 

Age-adjusted 
DNAmTL 

(aaDNAmTL)  

Number of CpGs 353 71 513 1030 140 

Tissue(s) in which 
the measure was 

developed 

Many human 
tissues 

and cell types 
Peripheral blood Peripheral blood Peripheral blood 

Leukocytes, adipose, liver, 
monocytes 

Methodology of 
development 

Estimator of 
chronologic age 
developed on the 
basis of a wide 
spectrum of human 
tissues and cell 
types. It applies to 
all tissues and 
nucleated cell types. 

Estimator of chronologic age 
for blood methylation data. It is 
defined as a weighted average 
of the Hannum clock and 3 cell 
types known to change with 
age: naïve and senescent T 
cells, and plasmablasts. 

Methylation-based 
estimator of "phenotypic 
age" which was defined 
as a linear combination of 
several clinical 
parameters. While it is 
less predictive of 
chronologic age than the 
pan tissue clock, it is 
more predictive of 
mortality risk and many 
age-related conditions. 

Methylation-based 
predictor of mortality risk, 
developed as an estimator 
of log transformed hazard 
ratio from Cox regression 
model analysis of time-to- 
death. Covariates include 
chronologic age, sex, and 
methylation-based 
surrogate biomarkers of 
smoking pack-years and 
plasma proteins. 

Methylation-based estimator 
of leukocyte telomere length. 
It correlates negatively (i.e., 
shorter telomere length) with 
increasing age and obesity in 
blood and other tissues. Its 
correlation to actual telomere 
length is relatively weak 
(r=0.35). 

Special features Widely used in 
epidemiologic 
studies. Accelerated 
in HIV, obesity, 
neurodegenerative 
disease, and many 
disease states. 
Weakly predictive of 
mortality risk.  Weak 
association with 
blood cell 
composition. Not 
related to smoking.  

Captures both cell-intrinsic 
methylation changes and age-
related changes in blood cell 
composition.  Strongly 
correlated with blood cell 
counts: positively correlated 
with senescent T lymphocytes 
and negatively correlated with 
naïve T lymphocyte counts. 
Reflects aspects of 
immunosenescence, 
underlying age-related decline 
in the protective immune 
response.   

Strongly predictive of 
healthspan and lifespan. 
Correlated with multi-
morbidity, frailty. 
Correlated with smoking 
and markers of 
immunosenescence.  

Strong predictor of 
mortality risk.  Predictive of 
time to cancer. Associated 
with age at menopause, 
frailty, heart disease, 
metabolic syndrome, fatty 
liver. Correlated with 
markers of 
immunosenescence. 
Statistical analysis needs 
to adjust for chronologic 
age and sex as these 
variables are in the 
definition.  

Reflects cell replicative 
history.  Useful marker of 
age-related pathologies.  
Outperforms measured 
leukocyte telomere length in 
predicting time to death, time 
to coronary heart disease, 
time to congestive heart 
failure, and association with 
smoking history.  Associated 
with physical functioning, 
dietary variables, education 
and income. 

 
  



 

 44 

Table S2: Individual parameter estimates and p values from mixed effects models incorporating demographic factors for all 
five epigenetic measures, related to Table 5-2 
 

Regression Fixed Effects 

Coefficient Estimates (Standard Errors) a 

AAR EEAA PEAA GEAA aaDNAmTL 

(Intercept) -3.3 (2.25) -2.6 (2.26) -2.72 (3.19) 1.4 (1.37) 0.22 (0.12) 

Study Visit, Visit B vs A 0.18 (0.58) -0.08 (0.55) -1 (0.86) -0.56 (0.33) -0.01 (0.03) 

Study Visit, Visit C vs A -0.56 (0.6) -0.92 (0.58) -1.61 (0.9) -0.83 (0.35) 0.06 (0.03) 

Study Visit, Visit D vs A -1.12 (0.61) -0.96 (0.59) -2.14 (0.91) -1.07 (0.35) 0.08 (0.03) 

HIV Serostatus Group, SC vs SN b -0.07 (1.06) -0.53 (1.09) 1.31 (1.48) 1.75 (0.66) -0.03 (0.06) 

Visit B vs A * SC vs SN 1.21 (0.85) 0.61 (0.81) 4.99 (1.26) 0.28 (0.49) -0.22 (0.04) 

Visit C vs A * SC vs SN 5.07 (0.85) 4.85 (0.81) 9.57 (1.27) 0.14 (0.49) -0.45 (0.04) 

Visit D vs A * SC vs SN 4.3 (0.85) 2.58 (0.82) 5.96 (1.28) 0.57 (0.49) -0.29 (0.04) 

Race, white vs non-white -1 (1.23) -1.16 (1.29) -0.38 (1.67) -2.01 (0.79) -0.04 (0.07) 

BMI, kg/m2 0.11 (0.08) 0.11 (0.08) 0.03 (0.11) -0.04 (0.05) 0 (0) 

Smoking, cumulative pack years 0.02 (0.03) 0.05 (0.03) 0.04 (0.04) 0.1 (0.02) 0 (0) 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length, BMI = Body Mass Index 

a: Coefficient values and standard errors for fixed effects (bold if Wald test p-value <0.01) from mixed models (n=400 out of 480 total observations due to 
missing data for some covariates, 54 SN and 46 SC) in a single model 
b: HIV serostatus groups classified as SC (became HIV infected and seroconverted between visits A and B) vs SN (persistently HIV uninfected and seronegative 
at visits A through D) 
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Table S3A: Pairwise correlations of absolute T cell counts to each other, and to each of the epigenetic clocks (AAR, EEAA, PEAA, 
GEAA) and estimated telomere length (aaDNAmTL), among SN participants at all Visits (all HIV-uninfected), related to Table 5-3 
 

Visits A-D, 
SN 

Pearson Correlation Coefficient 
(p-value) 

n a 

CD4 CD8 
Naïve 
CD4 

Naïve 
CD8 

Senescent 
CD4 

Senescent 
CD8 

Activated 
CD4 

Activated 
CD8 

AAR EEAA PEAA GEAA aaDNAmTL 

CD4 1.00 
0.46 

<0.001 
234 

0.78 
<0.001 

231 

0.47 
<0.001 

231 

0.21 
0.0012 

231 

0.24 
<0.001 

231 

0.74 
<0.001 

226 

0.11 
0.095 
226 

0 
0.97 
234 

-0.05 
0.49 
234 

-0.16 
0.012 
234 

0.07 
0.28 
234 

0.09 
0.17 
234 

CD8 — 1.00 
0.23 

<0.001 
231 

0.5 
<0.001 

231 

0.5 
<0.001 

231 

0.77 
<0.001 

231 

0.34 
<0.001 

226 

0.56 
<0.001 

226 

0.25 
<0.001 

234 

0.15 
0.019 
234 

0.01 
0.88 
234 

0.19 
0.0031 

234 

-0.29 
<0.001 

234 

Naïve CD4 — — 1.00 
0.62 

<0.001 
231 

-0.15 
0.019 
231 

0.05 
0.42 
231 

0.71 
<0.001 

225 

0.04 
0.57 
225 

-0.15 
0.026 
231 

-0.32 
<0.001 

231 

-0.43 
<0.001 

231 

-0.09 
0.18 
231 

0.38 
<0.001 

231 

Naïve CD8 — — — 1.00 
-0.07 
0.32 
231 

0.05 
0.47 
231 

0.34 
<0.001 

225 

0.12 
0.064 
225 

-0.12 
0.069 
231 

-0.41 
<0.001 

231 

-0.44 
<0.001 

231 

-0.05 
0.42 
231 

0.42 
<0.001 

231 

Senescent 
CD4 

— — — — 1.00 
0.54 

<0.001 
231 

0.1 
0.15 
225 

0.15 
0.027 
225* 

0.38 
<0.001 

231 

0.41 
<0.001 

231 

0.31 
<0.001 

231 

0.21 
0.0012 

231 

-0.36 
<0.001 

231 

Senescent 
CD8 

— — — — — 1.00 
0.25 

<0.001 
225 

0.5 
<0.001 

225 

0.44 
<0.001 

231 

0.41 
<0.001 

231 

0.23 
<0.001 

231 

0.16 
0.016 
231 

-0.49 
<0.001 

231 

Activated 
CD4 

— — — — — — 1.00 
0.34 

<0.001 
226 

0.05 
0.47 
226 

-0.05 
0.49 
226 

-0.14 
0.037 
226 

-0.05 
0.44 
226 

0.06 
0.35 
226 

Activated 
CD8 

— — — — — — — 1.00 
0.24 

<0.001 
226 

0.2 
0.0021 

226 

0.09 
0.19 
226 

0.11 
0.11 
226 

-0.36 
<0.001 

226 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length 

a: Cell in bold if p-value < 0.01 
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Table S3B: Pairwise correlations of absolute T cell counts to each other, and to each of the epigenetic clocks (AAR, EEAA, PEAA, 

GEAA) and estimated telomere length (aaDNAmTL), among SC participants at Visit A (all HIV-uninfected), related to Table 5-3 

 

Visit A, SC 

Pearson Correlation Coefficient 
(p-value) 

n a 

CD4 CD8 
Naïve 
CD4 

Naïve 
CD8 

Senescent 
CD4 

Senescent 
CD8 

Activated 
CD4 

Activated 
CD8 

AAR EEAA PEAA GEAA aaDNAmTL 

CD4 1.00 
0.59 

<0.001 
53 

0.65 
<0.001 

53 

0.42 
0.0016 

53 

0.3 
0.03 
53 

0.25 
0.067 

53 

0.52 
<0.001 

51 

0.09 
0.52 
51 

0.1 
0.46 
53 

-0.03 
0.83 
53 

-0.14 
0.33 
53 

0.02 
0.87 
53 

0.16 
0.24 
53 

CD8 — 1.00 
0.49 

<0.001 
53 

0.53 
<0.001 

53 

0.32 
0.021 

53 

0.73 
<0.001 

53 

0.03 
0.85 
51 

0.3 
0.034 

51 

0.37 
0.0059 

53 

0.12 
0.4 
53 

-0.02 
0.87 
53 

0.04 
0.78 
53 

-0.08 
0.58 
53 

Naïve CD4 — — 1.00 
0.68 

<0.001 
53 

0.02 
0.88 
53 

0.22 
0.11 
53 

0.35 
0.012 

51 

0.03 
0.83 
51 

-0.16 
0.24 
53 

-0.48 
<0.001 

53 

-0.45 
<0.001 

53 

-0.26 
0.057 

53 

0.52 
<0.001 

53 

Naïve CD8 — — — 1.00 
0.04 
0.76 
53 

0.16 
0.27 
53 

0.14 
0.34 
51 

-0.01 
0.92 
51 

-0.07 
0.6 
53 

-0.37 
0.0061 

53 

-0.42 
0.0018 

53 

-0.2 
0.15 
53 

0.54 
<0.001 

53 

Senescent 
CD4 

— — — — 1.00 
0.25 
0.074 

53 

0.2 
0.15 
51 

0.04 
0.8 
51 

0.31 
0.026 

53 

0.24 
0.081 

53 

0.15 
0.29 
53 

0.08 
0.59 
53 

-0.21 
0.14 
53 

Senescent 
CD8 

— — — — — 1.00 
-0.16 
0.25 
51 

0.25 
0.075 

51 

0.36 
0.0085 

53 

0.24 
0.089 

53 

-0.06 
0.66 
53 

0.05 
0.7 
53 

-0.24 
0.079 

53 

Activated 
CD4 

— — — — — — 1.00 
0.25 
0.077 

51 

-0.24 
0.095 

51 

-0.19 
0.18 
51 

-0.24 
0.093 

51 

-0.23 
0.11 
51 

0.18 
0.2 
51 

Activated 
CD8 

— — — — — — — 1.00 
0.03 
0.82 
51 

-0.03 
0.82 
51 

-0.03 
0.85 
51 

-0.09 
0.51 
51 

-0.16 
0.25 
51 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length 

a: Cell in bold if p-value < 0.01 
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Table S3C: Pairwise correlations of absolute T cell counts to each other, and to each of the epigenetic clocks (AAR, EEAA, PEAA, 

GEAA) and estimated telomere length (aaDNAmTL), among SC participants at Visit B (recently HIV-infected), related to Table 5-3 

 

Visit B, SC 

Pearson Correlation Coefficient 
(p-value) 

n a 

CD4 CD8 
Naïve 
CD4 

Naïve 
CD8 

Senescent 
CD4 

Senescent 
CD8 

Activated 
CD4 

Activated 
CD8 

AAR EEAA PEAA GEAA aaDNAmTL 

CD4 1.00 
0.08 
0.56 
59 

0.74 
<0.001 

59 

0.29 
0.027 

59 

0.29 
0.024 

59 

0.11 
0.4 
59 

0.35 
0.0081 

57 

-0.14 
0.28 
57 

-0.12 
0.38 
59 

-0.12 
0.35 
59 

-0.28 
0.034 

59 

-0.13 
0.34 
59 

0.24 
0.072 

59 

CD8 — 1.00 
0.02 
0.9 
59 

0.05 
0.71 
59 

0.34 
0.0075 

59 

0.72 
<0.001 

59 

0.35 
0.0082 

57 

0.75 
<0.001 

57 

0.34 
0.0081 

59 

0.43 
<0.001 

59 

0.42 
<0.001 

59 

0.14 
0.3 
59 

-0.52 
<0.001 

59 

Naïve CD4 — — 1.00 
0.55 

<0.001 
59 

-0.03 
0.85 
59 

0.13 
0.33 
59 

0.09 
0.53 
57 

-0.19 
0.17 
57 

-0.17 
0.2 
59 

-0.23 
0.086 

59 

-0.31 
0.017 

59 

-0.15 
0.24 
59 

0.42 
<0.001 

59 

Naïve CD8 — — — 1.00 
-0.02 
0.86 
59 

0.05 
0.71 
59 

-0.18 
0.18 
57 

-0.25 
0.059 

57 

-0.14 
0.28 
59 

-0.21 
0.1 
59 

-0.27 
0.038 

59 

-0.07 
0.6 
59 

0.45 
<0.001 

59 

Senescent 
CD4 

— — — — 1.00 
0.28 
0.029 

59 

0.5 
<0.001 

57 

0.3 
0.024 

57 

0.18 
0.16 
59 

0.13 
0.31 
59 

0.13 
0.32 
59 

0.05 
0.72 
59 

-0.29 
0.024 

59 

Senescent 
CD8 

— — — — — 1.00 
0.13 
0.35 
57 

0.35 
0.0074 

57 

0.35 
0.0074 

59 

0.39 
0.0025 

59 

0.27 
0.036 

59 

0.09 
0.51 
59 

-0.35 
0.0073 

59 

Activated 
CD4 

— — — — — — 1.00 
0.58 

<0.001 
57 

-0.03 
0.8 
57 

0.05 
0.72 
57 

0.06 
0.66 
57 

-0.06 
0.67 
57 

-0.22 
0.11 
57 

Activated 
CD8 

— — — — — — — 1.00 
0.14 
0.3 
57 

0.23 
0.091 

57 

0.35 
0.0075 

57 

0 
0.99 
57 

-0.5 
<0.001 

57 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length 

a: Cell in bold if p-value < 0.01 
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Table S3D: Pairwise correlations of absolute T cell counts to each other, and to each of the epigenetic clocks (AAR, EEAA, PEAA, 

GEAA) and estimated telomere length (aaDNAmTL), among SC participants at Visit C (living with uncontrolled HIV), related to Table 5-3 

 

Visit C, SC 

Pearson Correlation Coefficient 
(p-value) 

n a 

CD4 CD8 
Naïve 
CD4 

Naïve 
CD8 

Senescent 
CD4 

Senescent 
CD8 

Activated 
CD4 

Activated 
CD8 

AAR EEAA PEAA GEAA aaDNAmTL 

CD4 1.00 
0.03 
0.84 
59 

0.87 
<0.001 

57 

0.3 
0.023 

57 

0.05 
0.72 
57 

-0.12 
0.39 
57 

0.46 
<0.001 

57 

-0.03 
0.83 
57 

-0.34 
0.0076 

59 

-0.29 
0.027 

59 

-0.35 
0.0065 

59 

-0.1 
0.44 
59 

0.48 
<0.001 

59 

CD8 — 1.00 
-0.1 
0.45 
57 

0.25 
0.056 

57 

0.35 
0.0076 

57 

0.72 
<0.001 

57 

0.26 
0.052 

57 

0.69 
<0.001 

57 

0.29 
0.027 

59 

0.41 
0.0014 

59 

0.27 
0.036 

59 

-0.11 
0.39 
59 

-0.56 
<0.001 

59 

Naïve CD4 — — 1.00 
0.51 

<0.001 
57 

-0.19 
0.17 
57 

-0.2 
0.14 
57 

0.13 
0.34 
56 

-0.2 
0.13 
56 

-0.36 
0.006 

57 

-0.38 
0.0037 

57 

-0.44 
<0.001 

57 

-0.15 
0.25 
57 

0.57 
<0.001 

57 

Naïve CD8 — — — 1.00 
-0.14 
0.3 
57 

-0.04 
0.78 
57 

-0.16 
0.24 
56 

-0.03 
0.83 
56 

-0.06 
0.67 
57 

-0.23 
0.08 
57 

-0.23 
0.087 

57 

-0.13 
0.33 
57 

0.29 
0.03 
57 

Senescent 
CD4 

— — — — 1.00 
0.55 

<0.001 
57 

0.19 
0.16 
56 

0.17 
0.21 
56 

0.03 
0.84 
57 

0.12 
0.37 
57 

0.04 
0.75 
57 

0.01 
0.94 
57 

-0.14 
0.3 
57 

Senescent 
CD8 

— — — — — 1.00 
0.09 
0.51 
56 

0.34 
0.0095 

56 

0.25 
0.066 

57 

0.4 
0.0018 

57 

0.23 
0.088 

57 

-0.1 
0.46 
57 

-0.48 
<0.001 

57 

Activated 
CD4 

— — — — — — 1.00 
0.61 

<0.001 
57 

-0.12 
0.37 
57 

-0.08 
0.56 
57 

0.08 
0.53 
57 

0.12 
0.37 
57 

0.01 
0.95 
57 

Activated 
CD8 

— — — — — — — 1.00 
0.21 
0.12 
57 

0.16 
0.24 
57 

0.3 
0.024 

57 

0.04 
0.78 
57 

-0.41 
0.0015 

57 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length 

a: Cell in bold if p-value < 0.01 
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Table S3E: Pairwise correlations of absolute T cell counts to each other, and to each of the epigenetic clocks (AAR, EEAA, PEAA, 

GEAA) and estimated telomere length (aaDNAmTL), among SC participants at Visit D (recently receiving HAART), related to Table 5-3 

 

Visit D, SC 

Pearson Correlation Coefficient 
(p-value) 

n a 

CD4 CD8 
Naïve 
CD4 

Naïve 
CD8 

Senescent 
CD4 

Senescent 
CD8 

Activated 
CD4 

Activated 
CD8 

AAR EEAA PEAA GEAA aaDNAmTL 

CD4 1.00 
-0.03 
0.82 
60 

0.85 
<0.001 

59 

0.2 
0.13 
59 

0.11 
0.4 
59 

-0.16 
0.24 
59 

0.48 
<0.001 

59 

-0.32 
0.014 

59 

-0.28 
0.028 

60 

-0.27 
0.037 

60 

-0.38 
0.003 

60 

-0.32 
0.013 

60 

0.3 
0.019 

60 

CD8 — 1.00 
-0.1 
0.47 
59 

0.35 
0.0064 

59 

0.01 
0.97 
59 

0.76 
<0.001 

59 

0.03 
0.83 
59 

0.65 
<0.001 

59 

0.33 
0.01 
60 

0.19 
0.14 
60 

0.17 
0.2 
60 

0.01 
0.96 
60 

-0.42 
<0.001 

60 

Naïve CD4 — — 1.00 
0.41 

0.0014 
59 

-0.11 
0.4 
59 

-0.26 
0.047 

59 

0.42 
0.0011 

59 

-0.28 
0.03 
59 

-0.33 
0.011 

59 

-0.38 
0.0032 

59 

-0.45 
<0.001 

59 

-0.42 
<0.001 

59 

0.46 
<0.001 

59 

Naïve CD8 — — — 1.00 
-0.14 
0.28 
59 

0.01 
0.96 
59 

0.11 
0.41 
59 

0 
0.98 
59 

0.01 
0.95 
59 

-0.35 
0.0073 

59 

-0.22 
0.094 

59 

-0.19 
0.16 
59 

0.28 
0.03 
59 

Senescent 
CD4 

— — — — 1.00 
0.15 
0.25 
59 

0.1 
0.43 
59 

-0.14 
0.28 
59 

0.13 
0.31 
59 

0.08 
0.54 
59 

0.16 
0.21 
59 

0.08 
0.55 
59 

-0.23 
0.078 

59 

Senescent 
CD8 

— — — — — 1.00 
-0.08 
0.55 
59 

0.49 
<0.001 

59 

0.26 
0.045 

59 

0.21 
0.1 
59 

0.07 
0.58 
59 

-0.02 
0.9 
59 

-0.37 
0.0034 

59 

Activated 
CD4 

— — — — — — 1.00 
0.15 
0.26 
59 

-0.14 
0.3 
59 

-0.15 
0.26 
59 

-0.09 
0.49 
59 

-0.15 
0.26 
59 

0.15 
0.27 
59 

Activated 
CD8 

— — — — — — — 1.00 
0.14 
0.3 
59 

0.09 
0.51 
59 

0.14 
0.29 
59 

0.09 
0.5 
59 

-0.24 
0.062 

59 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length 

a: Cell in bold if p-value < 0.01 
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Table S4A: Pairwise correlations of percentages of T cell subsets within live lymphocytes to each other, and to each of the epigenetic 

clocks (AAR, EEAA, PEAA, GEAA) and estimated telomere length (aaDNAmTL), among SN participants at all Visits (all HIV-uninfected), 

related to Table 5-4 

 

Visits A-D, 
SN 

Pearson Correlation Coefficient 
(p-value) 

n a 

CD4 CD8 
Naïve 
CD4 

Naïve 
CD8 

Senescent 
CD4 

Senescent 
CD8 

Activated 
CD4 

Activated 
CD8 

AAR EEAA PEAA GEAA aaDNAmTL 

CD4 1.00 
-0.97 

<0.001 
204 

0.46 
<0.001 

204 

-0.19 
0.0061 

204 

-0.14 
0.044 
204 

-0.59 
<0.001 

204 

0.28 
<0.001 

204 

-0.53 
<0.001 

204 

-0.26 
<0.001 

204 

-0.16 
0.018 
204 

-0.14 
0.041 
204 

-0.08 
0.24 
204 

0.43 
<0.001 

204 

CD8 — 1.00 
-0.41 

<0.001 
204 

0.2 
0.0035 

204 

0.18 
0.011 
204 

0.66 
<0.001 

204 

-0.24 
<0.001 

204 

0.58 
<0.001 

204 

0.27 
<0.001 

204 

0.18 
0.011 
204 

0.14 
0.043 
204 

0.12 
0.079 
204 

-0.44 
<0.001 

204 

Naïve CD4 — — 1.00 
0.47 

<0.001 
207 

-0.25 
<0.001 

207 

-0.17 
0.014 
207 

0.46 
<0.001 

204 

-0.17 
0.013 
204 

-0.18 
0.0094 

207 

-0.4 
<0.001 

207 

-0.48 
<0.001 

207 

-0.13 
0.062 
207 

0.48 
<0.001 

207 

Naïve CD8 — — — 1.00 
-0.21 

0.0021 
207 

-0.13 
0.07 
207 

0.05 
0.51 
204 

0.02 
0.74 
204 

-0.11 
0.11 
207 

-0.54 
<0.001 

207 

-0.5 
<0.001 

207 

-0.14 
0.039 
207 

0.47 
<0.001 

207 

Senescent 
CD4 

— — — — 1.00 
0.37 

<0.001 
207 

-0.03 
0.66 
204 

0.03 
0.67 
204 

0.41 
<0.001 

207 

0.42 
<0.001 

207 

0.32 
<0.001 

207 

0.02 
0.8 
207 

-0.29 
<0.001 

207 

Senescent 
CD8 

— — — — — 1.00 
0.04 
0.6 
204 

0.5 
<0.001 

204 

0.48 
<0.001 

207 

0.44 
<0.001 

207 

0.31 
<0.001 

207 

0.12 
0.099 
207 

-0.53 
<0.001 

207 

Activated 
CD4 

— — — — — — 1.00 
0.18 
0.012 
204 

-0.04 
0.62 
204 

-0.07 
0.3 
204 

-0.16 
0.021 
204 

-0.16 
0.022 
204 

0.08 
0.27 
204 

Activated 
CD8 

— — — — — — — 1.00 
0.2 

0.0047 
204 

0.17 
0.015 
204 

0.15 
0.032 
204 

0.15 
0.031 
204 

-0.39 
<0.001 

204 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length 

a: Cell in bold if p-value < 0.01 
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Table S4B: Pairwise correlations of percentages of T cell subsets within live lymphocytes to each other, and to each of the epigenetic 

clocks (AAR, EEAA, PEAA, GEAA) and estimated telomere length (aaDNAmTL), among SC participants at Visit A (all HIV-uninfected), 

related to Table 5-4 

 

Visit A, SC 

Pearson Correlation Coefficient 
(p-value) 

n a 

CD4 CD8 
Naïve 
CD4 

Naïve 
CD8 

Senescent 
CD4 

Senescent 
CD8 

Activated 
CD4 

Activated 
CD8 

AAR EEAA PEAA GEAA aaDNAmTL 

CD4 1.00 
-0.97 

<0.001 
53 

0.36 
0.0085 

53 

-0.13 
0.36 
53 

-0.06 
0.64 
53 

-0.58 
<0.001 

53 

0.46 
<0.001 

53 

-0.26 
0.065 

53 

-0.26 
0.062 

53 

-0.26 
0.062 

53 

-0.17 
0.24 
53 

-0.1 
0.49 
53 

0.4 
0.0026 

53 

CD8 — 1.00 
-0.29 
0.037 

53 

0.22 
0.12 
53 

0.08 
0.59 
53 

0.6 
<0.001 

53 

-0.5 
<0.001 

53 

0.19 
0.16 
53 

0.27 
0.052 

53 

0.24 
0.084 

53 

0.11 
0.43 
53 

0.08 
0.55 
53 

-0.36 
0.0085 

53 

Naïve CD4 — — 1.00 
0.47 

<0.001 
56 

-0.27 
0.041 

56 

-0.1 
0.47 
56 

0.14 
0.33 
53 

-0.05 
0.71 
53 

-0.34 
0.0098 

56 

-0.64 
<0.001 

56 

-0.56 
<0.001 

56 

-0.39 
0.0033 

56 

0.63 
<0.001 

56 

Naïve CD8 — — — 1.00 
-0.07 
0.6 
56 

-0.04 
0.77 
56 

-0.08 
0.57 
53 

-0.15 
0.28 
53 

-0.2 
0.15 
56 

-0.39 
0.0032 

56 

-0.46 
<0.001 

56 

-0.22 
0.11 
56 

0.51 
<0.001 

56 

Senescent 
CD4 

— — — — 1.00 
0.16 
0.23 
56 

0.05 
0.74 
53 

-0.03 
0.85 
53 

0.21 
0.12 
56 

0.17 
0.2 
56 

0.15 
0.28 
56 

0.07 
0.62 
56 

-0.18 
0.19 
56 

Senescent 
CD8 

— — — — — 1.00 
-0.31 
0.026 

53 

0.24 
0.087 

53 

0.24 
0.069 

56 

0.21 
0.12 
56 

-0.07 
0.6 
56 

0.01 
0.97 
56 

-0.34 
0.011 

56 

Activated 
CD4 

— — — — — — 1.00 
0.27 
0.055 

53 

-0.44 
<0.001 

53 

-0.33 
0.015 

53 

-0.26 
0.064 

53 

-0.27 
0.052 

53 

0.25 
0.072 

53 

Activated 
CD8 

— — — — — — — 1.00 
-0.09 
0.53 
53 

-0.07 
0.63 
53 

0.02 
0.91 
53 

-0.09 
0.53 
53 

-0.21 
0.14 
53 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length 

a: Cell in bold if p-value < 0.01 
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Table S4C: Pairwise correlations of percentages of T cell subsets within live lymphocytes to each other, and to each of the epigenetic 

clocks (AAR, EEAA, PEAA, GEAA) and estimated telomere length (aaDNAmTL), among SC participants at Visit B (recently HIV-infected), 

related to Table 5-4 

 

Visit B, SC 

Pearson Correlation Coefficient 
(p-value) 

n a 

CD4 CD8 
Naïve 
CD4 

Naïve 
CD8 

Senescent 
CD4 

Senescent 
CD8 

Activated 
CD4 

Activated 
CD8 

AAR EEAA PEAA GEAA aaDNAmTL 

CD4 1.00 
-0.99 

<0.001 
52 

0.77 
<0.001 

52 

0.4 
0.0032 

52 

0.03 
0.82 
52 

-0.45 
<0.001 

52 

0.17 
0.23 
52 

-0.64 
<0.001 

52 

-0.41 
0.0027 

52 

-0.44 
0.0012 

52 

-0.52 
<0.001 

52 

-0.16 
0.26 
52 

0.73 
<0.001 

52 

CD8 — 1.00 
-0.74 

<0.001 
52 

-0.39 
0.0046 

52 

-0.02 
0.88 
52 

0.44 
0.001 

52 

-0.18 
0.2 
52 

0.65 
<0.001 

52 

0.39 
0.0046 

52 

0.4 
0.0031 

52 

0.49 
<0.001 

52 

0.17 
0.22 
52 

-0.7 
<0.001 

52 

Naïve CD4 — — 1.00 
0.62 

<0.001 
54 

-0.16 
0.25 
54 

-0.22 
0.11 
54 

0.02 
0.86 
52 

-0.5 
<0.001 

52 

-0.36 
0.0074 

54 

-0.42 
0.0017 

54 

-0.48 
<0.001 

54 

-0.16 
0.24 
54 

0.65 
<0.001 

54 

Naïve CD8 — — — 1.00 
0 

0.98 
54 

-0.2 
0.16 
54 

-0.21 
0.13 
52 

-0.49 
<0.001 

52 

-0.17 
0.23 
54 

-0.38 
0.0045 

54 

-0.41 
0.0023 

54 

-0.17 
0.21 
54 

0.52 
<0.001 

54 

Senescent 
CD4 

— — — — 1.00 
0.16 
0.25 
54 

0.25 
0.069 

52 

-0.02 
0.89 
52 

0.2 
0.14 
54 

0.08 
0.55 
54 

-0.01 
0.97 
54 

-0.01 
0.96 
54 

-0.1 
0.45 
54 

Senescent 
CD8 

— — — — — 1.00 
-0.09 
0.53 
52 

0.13 
0.34 
52 

0.37 
0.0063 

54 

0.35 
0.0094 

54 

0.21 
0.13 
54 

0.01 
0.96 
54 

-0.32 
0.018 

54 

Activated 
CD4 

— — — — — — 1.00 
0.4 

0.0035 
52 

-0.24 
0.091 

52 

-0.19 
0.19 
52 

-0.18 
0.19 
52 

-0.08 
0.59 
52 

0.14 
0.33 
52 

Activated 
CD8 

— — — — — — — 1.00 
0.06 
0.67 
52 

0.12 
0.4 
52 

0.27 
0.057 

52 

0.02 
0.91 
52 

-0.5 
<0.001 

52 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length 

a: Cell in bold if p-value < 0.01 
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Table S4D: Pairwise correlations of percentages of T cell subsets within live lymphocytes to each other, and to each of the epigenetic 

clocks (AAR, EEAA, PEAA, GEAA) and estimated telomere length (aaDNAmTL), among SC participants at Visit C (living with 

uncontrolled HIV), related to Table 5-4 

 

Visit C, SC 

Pearson Correlation Coefficient 
(p-value) 

n a 

CD4 CD8 
Naïve 
CD4 

Naïve 
CD8 

Senescent 
CD4 

Senescent 
CD8 

Activated 
CD4 

Activated 
CD8 

AAR EEAA PEAA GEAA aaDNAmTL 

CD4 1.00 
-0.98 

<0.001 
52 

0.83 
<0.001 

52 

0.1 
0.47 
52 

-0.09 
0.51 
52 

-0.49 
<0.001 

52 

0.32 
0.021 

52 

-0.39 
0.0039 

52 

-0.44 
0.001 

52 

-0.45 
<0.001 

52 

-0.39 
0.0041 

52 

-0.06 
0.69 
52 

0.71 
<0.001 

52 

CD8 — 1.00 
-0.8 

<0.001 
52 

-0.14 
0.33 
52 

0.1 
0.49 
52 

0.49 
<0.001 

52 

-0.29 
0.04 
52 

0.44 
0.0011 

52 

0.42 
0.0017 

52 

0.45 
<0.001 

52 

0.38 
0.006 

52 

0.03 
0.81 
52 

-0.71 
<0.001 

52 

Naïve CD4 — — 1.00 
0.41 

0.0027 
52 

-0.2 
0.15 
52 

-0.38 
0.0053 

52 

0.13 
0.35 
52 

-0.34 
0.013 

52 

-0.39 
0.0047 

52 

-0.5 
<0.001 

52 

-0.47 
<0.001 

52 

-0.27 
0.051 

52 

0.63 
<0.001 

52 

Naïve CD8 — — — 1.00 
-0.21 
0.14 
52 

-0.28 
0.046 

52 

-0.27 
0.053 

52 

-0.27 
0.055 

52 

-0.08 
0.59 
52 

-0.38 
0.0056 

52 

-0.3 
0.033 

52 

-0.11 
0.44 
52 

0.34 
0.013 

52 

Senescent 
CD4 

— — — — 1.00 
0.41 

0.0029 
52 

0.07 
0.62 
52 

0.03 
0.83 
52 

-0.1 
0.47 
52 

0.05 
0.71 
52 

-0.03 
0.85 
52 

-0.07 
0.64 
52 

-0.04 
0.8 
52 

Senescent 
CD8 

— — — — — 1.00 
-0.11 
0.45 
52 

0.19 
0.19 
52 

0.29 
0.039 

52 

0.39 
0.004 

52 

0.23 
0.097 

52 

-0.14 
0.31 
52 

-0.53 
<0.001 

52 

Activated 
CD4 

— — — — — — 1.00 
0.54 

<0.001 
52 

-0.15 
0.29 
52 

-0.22 
0.12 
52 

0 
0.99 
52 

0.02 
0.89 
52 

0.13 
0.36 
52 

Activated 
CD8 

— — — — — — — 1.00 
0.21 
0.13 
52 

0.07 
0.61 
52 

0.33 
0.019 

52 

0.03 
0.82 
52 

-0.34 
0.014 

52 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length 

a: Cell in bold if p-value < 0.01 
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Table S4E: Pairwise correlations of percentages of T cell subsets within live lymphocytes to each other, and to each of the epigenetic 

clocks (AAR, EEAA, PEAA, GEAA) and estimated telomere length (aaDNAmTL), among SC participants at Visit D (recently receiving 

HAART), related to Table 5-4 

 

Visit D, SC 

Pearson Correlation Coefficient 
(p-value) 

n a 

CD4 CD8 
Naïve 
CD4 

Naïve 
CD8 

Senescent 
CD4 

Senescent 
CD8 

Activated 
CD4 

Activated 
CD8 

AAR EEAA PEAA GEAA aaDNAmTL 

CD4 1.00 
-0.98 

<0.001 
52 

0.81 
<0.001 

52 

0.02 
0.9 
52 

0.03 
0.83 
52 

-0.6 
<0.001 

52 

0.56 
<0.001 

52 

-0.51 
<0.001 

52 

-0.35 
0.011 

52 

-0.31 
0.024 

52 

-0.32 
0.019 

52 

-0.23 
0.1 
52 

0.45 
<0.001 

52 

CD8 — 1.00 
-0.78 

<0.001 
52 

0 
0.98 
52 

-0.03 
0.84 
52 

0.6 
<0.001 

52 

-0.58 
<0.001 

52 

0.5 
<0.001 

52 

0.32 
0.02 
52 

0.27 
0.051 

52 

0.27 
0.05 
52 

0.21 
0.13 
52 

-0.41 
0.0028 

52 

Naïve CD4 — — 1.00 
0.28 
0.045 

52 

-0.08 
0.56 
52 

-0.41 
0.0024 

52 

0.47 
<0.001 

52 

-0.38 
0.0049 

52 

-0.32 
0.02 
52 

-0.37 
0.0065 

52 

-0.38 
0.0059 

52 

-0.35 
0.012 

52 

0.46 
<0.001 

52 

Naïve CD8 — — — 1.00 
-0.01 
0.96 
52 

-0.13 
0.34 
52 

-0.09 
0.52 
52 

-0.26 
0.06 
52 

0.04 
0.8 
52 

-0.36 
0.0085 

52 

-0.21 
0.13 
52 

-0.15 
0.27 
52 

0.34 
0.012 

52 

Senescent 
CD4 

— — — — 1.00 
0.2 
0.15 
52 

0.09 
0.51 
52 

-0.08 
0.55 
52 

0.12 
0.4 
52 

0.07 
0.64 
52 

0.15 
0.29 
52 

0.06 
0.67 
52 

-0.22 
0.12 
52 

Senescent 
CD8 

— — — — — 1.00 
-0.24 
0.087 

52 

0.45 
<0.001 

52 

0.27 
0.049 

52 

0.21 
0.13 
52 

0.14 
0.33 
52 

0 
0.97 
52 

-0.37 
0.0077 

52 

Activated 
CD4 

— — — — — — 1.00 
0.05 
0.7 
52 

-0.31 
0.027 

52 

-0.36 
0.0087 

52 

-0.15 
0.28 
52 

-0.17 
0.22 
52 

0.32 
0.022 

52 

Activated 
CD8 

— — — — — — — 1.00 
-0.02 
0.88 
52 

-0.02 
0.9 
52 

0.08 
0.55 
52 

0.08 
0.59 
52 

-0.18 
0.21 
52 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length 

a: Cell in bold if p-value < 0.01 
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Table S5: Individual parameter estimates and p values from mixed effects models incorporating natural log-transformed absolute T cell 

subset counts and percentages of T cell subsets within live lymphocytes for all five epigenetic measures, related to Table 5-5 

 

Regression Fixed Effects 

Coefficient Estimates (Standard Errors) a 

AAR EEAA PEAA GEAA aaDNAmTL 

(Intercept) -1.34 (4.95) 0.55 (4.6) 12.12 (6.17) 0.11 (2.67) 0.23 (0.21) 

Study Visit, Visit B vs A -0.41 (0.81) -0.23 (0.76) -1.6 (1.01) -0.63 (0.41) 0.02 (0.04) 

Study Visit, Visit C vs A -1.1 (0.82) -1.34 (0.76) -2.52 (1.01) -1.26 (0.41) 0.09 (0.04) 

Study Visit, Visit D vs A -1.38 (0.83) -1.05 (0.77) -3.41 (1.03) -1.19 (0.42) 0.12 (0.04) 

HIV Serostatus Group, SC vs SN b -2.58 (1.17) -1.82 (1.08) -1.73 (1.47) 1.17 (0.82) 0.02 (0.05) 

Visit B vs A * SC vs SN 0.49 (1.22) -0.11 (1.14) 3.25 (1.52) 0.27 (0.62) -0.08 (0.05) 

Visit C vs A * SC vs SN 2.89 (1.38) 2.83 (1.28) 5.07 (1.71) 0.36 (0.7) -0.16 (0.06) 

Visit D vs A * SC vs SN 2.02 (1.2) 0.43 (1.11) 4.47 (1.49) 0.82 (0.61) -0.13 (0.05) 

Absolute Count CD8 T cells, log(cells/mm3) c 0.62 (0.79) 0.84 (0.73) -0.79 (0.98) 0.25 (0.42) -0.07 (0.03) 

% Naïve (CD45RA+CCR7+) CD4 T cells, log(%) -24.9 (6.13) -17.08 (5.69) -35.86 (7.67) -6.66 (3.48) 1.45 (0.26) 

% Naïve (CD45RA+CCR7+) CD8 T cells, log(%) 3.53 (11.64) -62.49 (10.8) -50.5 (14.59) -6.56 (6.78) 2.25 (0.5) 

% Senescent (CD28-CD57+) CD8 T cells, log(%) 29.4 (7.94) 30.51 (7.37) 17.7 (9.91) -0.75 (4.39) -1.98 (0.34) 

% Activated (HLA DR+CD38+) CD8 T cells, log(%) -0.52 (10.46) -18.31 (9.7) 24.82 (12.99) -4.15 (5.44) -0.87 (0.46) 

AAR = Age-Acceleration Residual, EEAA = Extrinsic Epigenetic Age Acceleration, PEAA = Phenotypic Epigenetic Age Acceleration, aaDNAmTL = age-adjusted 
DNA methylation-based estimate of Telomere Length 

a: Coefficient values and standard errors for fixed effects (bold if Wald test p-value <0.01) from mixed models (n=288 out of 480 total observations due to 
missing data for some covariates, 34 SN and 38 SC) in a single model 
b: HIV serostatus groups classified as SC (became HIV infected and seroconverted between visits A and B) vs SN (persistently HIV uninfected and seronegative 
at visits A through D) 
c: Absolute counts of T cell subsets as described in STAR Methods and Table S6; all cell counts and percentages were natural log-transformed (log) for analyses 
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Table S6:  Multicolor flow cytometry panels for determination of total CD3 T cells, and CD4, CD8, naïve CD4 or CD8, 
senescent CD4 or CD8, and activated CD4 or CD8 T cell subsets, related to STAR Methods 
 

Flow Cytometry Panel 

Attune NxT Flow Cytometer Channel 
Antibody Label 

BL-2 RL-1 RL-3 VL-1 VL-2 VL-3 YL-1 YL-3 

PerCP AF647 APC-Cy7 V450 
Zombie 
Aqua BV605 PE PE-Cy7 

Naïve and Senescent tube (antibody 
volume/tube) 

CD3 
(20 µL) 

CCR7 (20  
µL) 

CD8 
(5 µL) 

CD4 
(5 µL) 

Zombie 
Aqua 

(100 µL) 

CD57 
(5 µL) 

CD28 
(20 µL) 

CD45RA 
(5 µL) 

Activated tube (antibody volume/tube) 
CD3 

(20 µL) ---- 
CD8 

(5 µL) 
CD4 

(5 µL) 
Zombie 
Aqua 

(100 µL) 

HLA-DR 
(5 µL) 

CD38 
(20 µL) ---- 

Isotype tube (antibody volume/tube) 
CD3 

(20 µL) 
IgG2a 
(5 µL) 

CD8 
(5 µL) 

CD4 
(5 µL) 

Zombie 
Aqua 

(100 µL) 

IgG2a 
(2.5 µL) 

IgG1 
(20 µL) 

IgG1 
(5 µL) 

PerCP = Peridinin-Chlorophyll-Protein, AF647 = Alexa Fluor 647, APC-Cy7 = Allophycocyanin-Cyanine7 tandem, V450 = horizon V450, BV605 = Brilliant Violet 

605, PE = Phycoerythrin, PE-Cy7 = Phycoerythrin-Cyanine7 tandem 
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Figure S1: Multiple epigenetic measures demonstrate significant differences in aging across specific cut-
points in specific T cell subset compositions, among all subjects, related to Table 5-5.  The differences in 
epigenetic measures across specific cut-points are shown for: a) AAR, b-d) EEAA, e-f) PEAA, g-h) GEAA, and i-j) 
aaDNAmTL.  All subjects with complete T cell subset data are used (namely, the same set of subjects used in Table 
5-5).  Each panel shows two or more boxplots (heavy line = median, box = 25th-75th percentile, whiskers = 5th-95th 
percentile) which in total show all n=72 subjects at all visits; data in boxplots are defined based on T cell subset cut-
point criteria displayed on x-axis titles.  38 SC and 34 SN subjects were evaluated.
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