
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Developing Methods to Aid Edge Detection in a Micro-Computed Tomography Based 
Subcutaneous Versus Visceral Fat Segmentation Algorithm

Permalink
https://escholarship.org/uc/item/999656wt

Author
Shetty, Charvi

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/999656wt
https://escholarship.org
http://www.cdlib.org/




 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 ii 



Acknowledgements 

 

I would like to thank Dr. Richard Carano for his guidance during the course of this work 

and serving as an excellent mentor during my stay at Genentech. I am also grateful for 

having him and Kai Barck being patient enough to teach me how to write code in C, a 

programming language I had to pick up quickly in order to develop the algorithm to 

complete this work. This project would not have been possible without Shelby Wyatt, 

who has continuously offered her assistance in helping in any way possible and for 

making edits to the earlier drafts of this paper, along with Dr. Carano.  

I would also like to thank my thesis committee at UCSF, especially my committee chair, 

Dr. Alastair Martin, for facilitating the project in collaboration with industry. It has been 

a great pleasure working with Dr. Mark Wilson and Dr. Thomas Lang for their advice 

and encouragement.  

Last but certainly not the least, I would like to thank Dr. Pratik Mukherjee for his 

continued guidance and training, as it has been an extreme pleasure working with him for 

the past couple of years, and I couldn’t be in the position I am in right now without his 

help. Words alone cannot capture the gratitude I have for his efforts and invaluable 

advice.  

I am also truly grateful for my family and friends who have morally supported me 

throughout this work, and for always believing in me.  

 

 

  

 iii 



Developing Methods to Aid Edge Detection in a Micro-Computed Tomography Based 

Subcutaneous Versus Visceral Fat Segmentation Algorithm 

Charvi Shetty 

 

Abstract 

Micro-computed tomography can be used to provide a precise in-vivo assessment of 

adipose tissue quantity and distribution, including information on subcutaneous and 

visceral fat volume in mouse models. This study aims to develop methods to aid edge 

detection in order to eventually segment out the visceral and subcutaneous fat 

compartments automatically. The algorithm detailed in this paper optimizes steps in the 

Canny edge detection method and utilizes low-pass filtering and gradient edge detection. 

Ten mice (weight range: 19.96 – 57.66 g) were tested with micro-CT scans to verify the 

utility of this algorithm. The algorithm demonstrated stability despite the broad range of 

body weights and adiposity. Comparisons of the data between unfiltered versus filtered 

mice volumes suggest that this algorithm can be used to effectively increase edge 

strength for use in separating visceral and subcutaneous fat compartments. The eventual 

application of this method would be to assess metabolic disease risk, such as those 

associated with central obesity including diabetes, hypertension, and heart disease.   
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Introduction 

The prevalence of obesity has been increasing in recent years, which has been associated 

with increased risk for diabetes, hypertension and heart disease. Moreover, health risk is 

associated with the location as well as amount of fat, with fat being situated in areas of 

the body such as under the epidermis and around vital organs1. Fat distribution varies 

greatly with gender, genetic background, age, disease state, and response to drugs and 

hormones. Fat stored closer to the skin is categorized as subcutaneous fat, whereas fat 

surrounding organs is part of the visceral fat compartment. Central obesity has a higher 

health risk associated with metabolic syndrome as opposed to peripheral obesity. 

Clinically, x-ray based computed tomography (CT) is one of the methods used to observe 

fat deposition, with other technologies including magnetic resonance imaging (MRI), 

dual energy x-ray absorptiometry (DEXA) and quantitative nuclear magnetic resonance 

(QMR)2,3. Micro-MRI has been used successfully to phenotype mouse models of obesity 

but the technology is not readily available to most researchers, and although DEXA and 

QMR based scanning effectively characterizes lean and fat volumes in mice, they do not 

provide detailed spatial information on fat distribution. It is known that animal models 

can model human diseases associated with visceral fat, and that in-vivo micro-CT can 

provide spatial information of fat distribution in mice4,5. 

An image segmentation algorithm that was previously developed at Genentech included a 

fully automated method to segment out lean mass, adipose tissue and bone from micro-

CT mice volumes5. Micro-CT has the advantage of being a truly quantitative method, as 

different tissue types have defined ranges in Hounsfield Units (HU). Fat is in the lower 

range of -190 to -30 HU, lean mass in the middle range from -29 to 150 HU, and bone is 

in a higher range of greater than 400 HU6,7. Therefore, the Wyatt et al. algorithm takes 
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advantage of thresholding and morphological filtering to obtain each of the main body 

compartments. Three masks are generated from this algorithm, as can be seen in Figure 1 

with the axial view of the original micro-CT mouse volume (a), the whole body volume 

(b), adipose tissue (c), and bone masks (d). A significant improvement of this algorithm 

would be to automatically sub-divide the visceral and subcutaneous fat compartments of 

the adipose tissue. 

 

Figure 1. a) Original micro-CT mouse volume, b) whole body mask, c) adipose tissue 
mask, and d) bone mask generated by the Shelby et al. algorithm7. 

The primary demarcation line used to separate the visceral and subcutaneous fat 

compartments is the abdominal wall lining. In a density based micro-CT volume, the 

abdominal wall layer appears brighter than the surrounding fat tissue due to its higher 

density. A recent algorithm has been introduced that segments the total abdominal 

adiposity into visceral and subcutaneous fat compartments5. Figure 2 displays the 3D 

rendering of the micro-CT data of subcutaneous fat in yellow and visceral fat in red, in 

both the sagittal and coronal views of the mouse. The abdominal wall lining is the dark 

line separating the visceral (red) and subcutaneous (yellow) fat compartments in the 

coronal view. This thesis work focuses on improving on the algorithm described in 

Lublinsky et al., which will be described in detail in the later sections.  
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As mentioned previously, proper identification of the abdominal wall is crucial for 

segmenting out the two different fat compartments, and so this study aims to optimize the 

edge detection algorithm used in the Lublinsky paper. Once the abdominal wall boundary 

is properly detected, as in Figure 3, morphological filtering and filling will be performed 

to segment the subcutaneous and visceral fat. Nevertheless, the identification of the 

abdominal wall boundary is critical, as the steps following this are largely straight-

forward. The major limitation of the Lublinsky paper is that it is not fully automated in 

regards to the slice selection in the abdominal region for the compartmentalization, as the 

definition for the abdominal volume was manually restricted to the region between L1 

and L5 vertebrae. Limiting the abdominal volume of interest might cause inaccuracies in 

Figure 2 (top). Sagittal and coronal  
views of a micro-CT 3D rendering  
of a mouse, showing the  
subcutaneous fat compartment (red)  
and visceral fat compartment (yellow) separated by the abdominal wall lining5.  
 
Figure 3 (right). Lublinsky et al. implementation of visceral versus subcutaneous fat 
compartment segmentation5.  



discriminating visceral and subcutaneous fat, especially in lean mice, in which the total 

volume of evaluated fat deposits would be greatly reduced3. The objective of this thesis is 

to fully automate the slice selection process so that the algorithm can capture the entire 

abdominal region in a standardized way, permitting it to be efficiently applied to 

thousands of CT volumes, including both lean and fat mice, for later studies. 

The performance criteria for the Canny edge detection includes minimizing the 

probability of failing to detect real edge points, minimizing the probability of falsely 

marking non-edge points, points marked as edge points being as close as possible to the 

center of the true edge, and having only one response to a single edge8. The Canny edge 

detection method was used in Lublinsky’s paper to isolate the abdominal wall, with the 

goal of my thesis being the refinement and optimization of the approach. The Canny edge 

detector is an algorithm optimized for finding step edges in the presence of noise, and 

consists of 5 major steps9. This study focuses on the first 2 steps, which includes the low-

pass filtering step and gradient edge detection. The low-pass filtering step serves to 

smooth the image in order to reduce noise and the gradient detection step marks where 

the gradients of the image have large magnitudes, such as through the application of the 

Sobel operator. The remaining Canny steps consist of non-maximum suppression, double 

thresholding and edge tracking by hysteresis, which will be implemented during the rest 

of my stay at Genentech. The non-maximum suppression step marks only the local 

maxima as edges, double thresholding determines potential edges by marking pixels 

stronger than the high threshold as strong and those weaker than the low threshold as 

weak, and the edge tracking by hysteresis determines final edges by suppressing all edges 

that are not connected to a very strong edge. 
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Materials and Methods 

A TriFoil Imaging eXplore CT120 (Northridge, CA) micro-CT scanner was used to 

image mice in-vivo in the prone position from the tip of the nose to the base of the tail 

with a 70kV tube voltage, 40mA tube current, 4x4 detector bin mode, 20ms exposure 

time, 100 µm voxel size, 0 gain and 900 views at an approximately 10 minute scan time 

for four mice. All animal procedures were approved by Genentech’s Institutional Animal 

Care and Use Committee. Two groups of mice from the The Jackson Laboratory (Bar 

Harbor, ME) were imaged with microCT: (1) C57BL/6J male mice which have been fed 

a high fat (60 kcal%) diet starting at six weeks of age (diet-induced obesity mice, DIO) 

and (2) control B6 males fed a 10 kcal% diet containing the same protein content as the 

high fat diet. For the duration of the micro-CT imaging, mice were slightly anesthetized 

with approximately two percent isoflurane in medical air and body temperature was 

maintained at 37ºC using warm airflows. As can be seen in Figure 4, four mice can be 

scanned at a time with our setup, and scans can be completed within 10 minutes for a 

high throughput. The resulting axial slice CT images showing the abdominal region of 

each of the four mice is shown in Figure 4b. 

 

Figure 4. a) Four-mouse holder for micro-CT scanning and b) resulting axial slice CT 
images of the abdominal region.  

a           b 
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All image analysis algorithms were developed using the C++ programming language and 

AVW function libraries (AnalyzeDirect, Overland Park, KS). Prior to analysis, the micro-

CT image *.isq files were converted to the required AVW volume data format. The 

subcutaneous and visceral fat analysis employed a whole-body mask (WBM) generated 

by a fully-automated body composition algorithm (Wyatt et al, unpublished). The WBM 

was generated by employing image intensity thresholding and morphological filtering. A 

threshold was applied to segment objects in the image from air. The mouse body was 

initially segmented from the micro-CT platform, anesthesia tube and noise using an 

intensity threshold followed by the application of three morphological filtering steps: 

open (3x3x1), fill, and erode (5x5x1). A connectivity algorithm, 

AVW_FindVolumeComponents, sorted and labeled objects with a connectivity of 6 

(AVW_6_CONNECTED), where the largest object is assigned to the WBM (volume and 

object).  

Three low-pass filters, the adaptive restoration, median, and Gaussian, were individually 

applied onto the CT volumes using the Analyze toolkit coded in C. The adaptive 

restoration and median filters were evaluated using various 2D kernels of sizes including 

3x3, 5x5, 7x7, 9x9, 11x11 and 21x21. Gaussian smoothing was implemented with 

variances of 1, 4, 9, 16 and 25. After inspecting the 2D filtering results visually and 

quantitatively through region of interest (ROI) analysis, the median filter was then 

expanded to the third dimension. For each data set, two ROIs were manually defined 

across three slices within the abdominal area, located 50 slices apart from each other. The 

ROI values were then averaged across the three slices to calculate the contrast-to-noise 
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ratio in ten mice, consisting of four lean, two mid-sized, and four obese mice with 

corresponding weights described in Table 1.  

Mouse 
Number 1086_1 1089_4 2710_1 2712_1 1087_2 1088_4 1090_3 1087_3 1088_1 1089_1 

Weight 
(g) 24.58 24.61 20.17 19.96 35.12 34.21 57.66 55.18 54.4 52.66 

Mouse 
Type Lean Lean Lean Lean Mid Mid Fat Fat Fat Fat 

Table 1. Mouse numbers and corresponding weights for mouse type categorization.  
The three non-linear smoothing filters were the adaptive restoration (ADR), median and 

Gaussian filters. The ADR filter is a low-pass filter that operates on an intensity image 

degraded by constant power additive noise using a pixel-wise adaptive method based on 

local neighborhood statistics10. A median filter is a nonlinear filter that removes impulse 

noise yet preserves edges and consists of a sliding window encompassing an odd number 

of pixels. The center pixel in the window is replaced by the median of the pixels in the 

window11. The median filter is useful for removing isolated lines or pixels while 

preserving spatial resolution. A Gaussian filter is a linear low-pass filter that results in the 

blurring of an image to reduce image noise through the convolution of a Gaussian 

function with a defined variance. The employed variance was the square of the Gaussian 

distribution standard deviation.  

For each mouse, two sets of ROIs were generated on a slice. One ROI was manually 

placed on the abdominal wall (red circle in Figure 5) and the other ROI was drawn in the 

fat region (green circle in Figure 5). The difference in mean intensities of the two regions 

was then divided by the standard deviation of the ROI drawn in the fat region to calculate 

the CNR, as can be seen in the equation below. The same approach was applied to a 

second set of ROIs drawn on the opposite side of the mouse (yellow circle on abdominal 

wall and blue circle in the fat region), and this ROI generation method was performed 
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across a total of three different slices within the abdominal region, located 50 slices away 

from each other. The start slice (Slice 1) was chosen to be at the base of the kidney, as 

marked through manual visual inspection, with Slice 2 being 50 slices away on the raw 

CT volume from Slice 1, and Slice 3 being 100 slices superior to Slice 1. 

 

 

Figure 5. ROI placement for CNR calculations using Region 1 (red) on abdominal wall 
and Region 2 (green) in the fat region shown across three slices.  

Results 

The adaptive restoration filter results on axial slices are displayed in Figure 6, 

qualitatively showing increased levels of smoothing and blurring of edges with increasing 

kernel sizes. Quantitative results of the ADR filter at various kernel sizes across all mice 

are presented in Table 2. 
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Figure 6. Adaptive restoration filter performed across 2D kernel sizes including 3x3, 
5x5, 7x7, 9x9, 11x11, 15x15 and 21x21.  
 
Table 2. Adaptive restoration filter mean CNR results averaged across three slices for 
individual mice.  

Mouse Type Mouse 
Number 

Kernel 
Size Mean CNR Mouse Type Mouse 

Number 
Kernel 

Size Mean CNR 

Lean mouse 1086_1 3 4.77 Mid Mouse 1088_4 3 7.33 
Lean mouse 1086_1 5 6.53 Mid Mouse 1088_4 5 9.88 
Lean mouse 1086_1 7 8.23 Mid Mouse 1088_4 7 13.54 
Lean mouse 1086_1 9 8.91 Mid Mouse 1088_4 9 17.49 
Lean mouse 1086_1 11 9.58 Mid Mouse 1088_4 11 20.52 
Lean mouse 1086_1 15 9.71 Mid Mouse 1088_4 15 24.08 
Lean mouse 1086_1 21 8.37 Mid Mouse 1088_4 21 22.52 
Lean mouse 1089_4 3 4.49 Fat Mouse 1090_3 3 6.72 
Lean mouse 1089_4 5 5.65 Fat Mouse 1090_3 5 8.49 
Lean mouse 1089_4 7 7.08 Fat Mouse 1090_3 7 10.35 
Lean mouse 1089_4 9 8.44 Fat Mouse 1090_3 9 11.77 
Lean mouse 1089_4 11 9.51 Fat Mouse 1090_3 11 12.78 
Lean mouse 1089_4 15 11.17 Fat Mouse 1090_3 15 13.85 
Lean mouse 1089_4 21 11.06 Fat Mouse 1090_3 21 13.42 
Lean mouse 2710_1 3 3.91 Fat Mouse 1087_3 3 8.14 
Lean mouse 2710_1 5 4.95 Fat Mouse 1087_3 5 10.60 
Lean mouse 2710_1 7 5.65 Fat Mouse 1087_3 7 13.33 
Lean mouse 2710_1 9 5.76 Fat Mouse 1087_3 9 15.42 
Lean mouse 2710_1 11 5.19 Fat Mouse 1087_3 11 16.77 
Lean mouse 2710_1 15 3.96 Fat Mouse 1087_3 15 17.67 
Lean mouse 2710_1 21 2.44 Fat Mouse 1087_3 21 15.11 
Lean mouse 2712_1 3 0.58 Fat Mouse 1088_1 3 6.48 
Lean mouse 2712_1 5 0.53 Fat Mouse 1088_1 5 8.64 
Lean mouse 2712_1 7 0.82 Fat Mouse 1088_1 7 11.13 
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Lean mouse 2712_1 9 1.80 Fat Mouse 1088_1 9 13.20 
Lean mouse 2712_1 11 2.24 Fat Mouse 1088_1 11 14.70 
Lean mouse 2712_1 15 1.03 Fat Mouse 1088_1 15 15.86 
Lean mouse 2712_1 21 -3.24 Fat Mouse 1088_1 21 14.91 
Mid Mouse 1087_2 3 6.83 Fat Mouse 1089_1 3 6.04 
Mid Mouse 1087_2 5 8.62 Fat Mouse 1089_1 5 7.87 
Mid Mouse 1087_2 7 10.60 Fat Mouse 1089_1 7 10.02 
Mid Mouse 1087_2 9 12.62 Fat Mouse 1089_1 9 11.77 
Mid Mouse 1087_2 11 14.46 Fat Mouse 1089_1 11 12.69 
Mid Mouse 1087_2 15 16.93 Fat Mouse 1089_1 15 12.47 
Mid Mouse 1087_2 21 16.24 Fat Mouse 1089_1 21 10.83 

The median filter results are shown in Figure 7, demonstrating increased smoothing with 

increased kernel size, yet still preserving crisp edges even at the larger kernel sizes. This 

can be appreciated on the image where kernel sizes of 15x15 and 21x21 are employed. 

The largest kernel size was restricted to 21x21 because the thickness of the abdominal 

wall at its thinnest point was 11 pixels wide. The size of the kernel should not exceed 

double the size of the feature of interest. Quantitative median filter results at various 

kernel sizes across all mice can be seen in Table 2. 

 

Figure 7. Median filter results across 2D kernel sizes including 3x3, 5x5, 7x7, 9x9, 
11x11, 15x15 and 21x21.  
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Table 3. 2D Median filter mean CNR results averaged across three slices for individual 
mice.  

Mouse Type Mouse 
Number 

Kernel 
Size 

Mean 
CNR Mouse Type Mouse 

Number 
Kernel 

Size 
Mean 
CNR 

Lean mouse 1086_1 3 4.44 Mid mouse 1088_4 3 6.94 
Lean mouse 1086_1 5 5.93 Mid mouse 1088_4 5 9.08 
Lean mouse 1086_1 7 7.31 Mid mouse 1088_4 7 12.03 
Lean mouse 1086_1 9 8.14 Mid mouse 1088_4 9 14.98 
Lean mouse 1086_1 11 9.13 Mid mouse 1088_4 11 17.84 
Lean mouse 1086_1 15 11.86 Mid mouse 1088_4 15 22.59 
Lean mouse 1086_1 21 12.54 Mid mouse 1088_4 21 26.49 
Lean mouse 1089_4 3 4.49 Fat Mouse 1090_3 3 6.52 
Lean mouse 1089_4 5 5.77 Fat Mouse 1090_3 5 8.16 
Lean mouse 1089_4 7 7.37 Fat Mouse 1090_3 7 9.95 
Lean mouse 1089_4 9 8.99 Fat Mouse 1090_3 9 11.52 
Lean mouse 1089_4 11 10.16 Fat Mouse 1090_3 11 12.85 
Lean mouse 1089_4 15 11.76 Fat Mouse 1090_3 15 14.42 
Lean mouse 1089_4 21 13.89 Fat Mouse 1090_3 21 14.50 
Lean mouse 2710_1 3 3.78 Fat Mouse 1087_3 3 7.89 
Lean mouse 2710_1 5 4.69 Fat Mouse 1087_3 5 10.06 
Lean mouse 2710_1 7 5.52 Fat Mouse 1087_3 7 12.67 
Lean mouse 2710_1 9 6.17 Fat Mouse 1087_3 9 14.86 
Lean mouse 2710_1 11 6.56 Fat Mouse 1087_3 11 16.63 
Lean mouse 2710_1 15 6.14 Fat Mouse 1087_3 15 19.13 
Lean mouse 2710_1 21 4.86 Fat Mouse 1087_3 21 19.22 
Lean mouse 2712_1 3 0.67 Fat Mouse 1088_1 3 6.28 
Lean mouse 2712_1 5 0.84 Fat Mouse 1088_1 5 8.25 
Lean mouse 2712_1 7 1.17 Fat Mouse 1088_1 7 10.61 
Lean mouse 2712_1 9 2.06 Fat Mouse 1088_1 9 12.92 
Lean mouse 2712_1 11 2.47 Fat Mouse 1088_1 11 14.88 
Lean mouse 2712_1 15 3.16 Fat Mouse 1088_1 15 16.76 
Lean mouse 2712_1 21 -0.14 Fat Mouse 1088_1 21 14.66 
Mid mouse 1087_2 3 6.54 Fat Mouse 1089_1 3 5.85 
Mid mouse 1087_2 5 8.16 Fat Mouse 1089_1 5 7.52 
Mid mouse 1087_2 7 10.19 Fat Mouse 1089_1 7 9.72 
Mid mouse 1087_2 9 12.19 Fat Mouse 1089_1 9 11.87 
Mid mouse 1087_2 11 14.01 Fat Mouse 1089_1 11 13.22 
Mid mouse 1087_2 15 17.69 Fat Mouse 1089_1 15 13.41 
Mid mouse 1087_2 21 17.81 Fat Mouse 1089_1 21 11.07 

Gaussian smoothing results are shown in Figure 8, with increased levels of smoothing 

with increased variance. Noise from the background seems to be reduced at larger 

variances, as opposed to the Gaussian with a variance of 1. Streaks and noise are reduced, 
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but small objects and thin layers are blurred out. Quantitative Gaussian filter results can 

be seen in Table 3. 

 

Figure 8. Discrete Gaussian filter applied across variances of 1, 4, 9, 16 and 25.  
 
Table 4. Discrete Gaussian filter mean CNR results averaged across three slices for 
individual mice.  

Mouse 
Type 

Mouse 
Number 

Gaussian 
Variance Mean CNR Mouse Type Mouse 

Number 
Gaussian 
Variance Mean CNR 

Lean 1086_1 1 5.10 Mid 1088_4 1 7.84 
Lean 1086_1 4 7.58 Mid 1088_4 4 12.57 
Lean 1086_1 9 9.14 Mid 1088_4 9 18.69 
Lean 1086_1 16 9.854 Mid 1088_4 16 23.85 
Lean 1086_1 25 9.75 Mid 1088_4 25 26.56 
Lean 1089_4 1 4.85 Fat 1090_3 1 7.18 
Lean 1089_4 4 6.75 Fat 1090_3 4 9.98 
Lean 1089_4 9 8.71 Fat 1090_3 9 12.24 
Lean 1089_4 16 10.371 Fat 1090_3 16 13.56 
Lean 1089_4 25 11.67 Fat 1090_3 25 14.13 
Lean 2710_1 1 4.15 Fat 1087_3 1 8.72 
Lean 2710_1 4 5.54 Fat 1087_3 4 12.71 
Lean 2710_1 9 4.97 Fat 1087_3 9 16.16 
Lean 2710_1 16 3.59 Fat 1087_3 16 17.61 
Lean 2710_1 25 2.68 Fat 1087_3 25 17.52 
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Lean 2712_1 1 0.62 Fat 1088_1 1 6.99 
Lean 2712_1 4 0.57 Fat 1088_1 4 10.55 
Lean 2712_1 9 1.06 Fat 1088_1 9 13.96 
Lean 2712_1 16 -0.79 Fat 1088_1 16 16.04 
Lean 2712_1 25 -3.02 Fat 1088_1 25 16.76 
Mid 1087_2 1 7.22 Fat 1089_1 1 6.48 
Mid 1087_2 4 10.19 Fat 1089_1 4 9.45 
Mid 1087_2 9 13.38 Fat 1089_1 9 12.10 
Mid 1087_2 16 16.08 Fat 1089_1 16 13.32 
Mid 1087_2 25 17.65 Fat 1089_1 25 13.38 

 
Statistics was performed using a 2-tailed, paired t-test for ten mice, showing a significant 

increase in CNR for the ADR and median filter at kernel sizes of 7x7 and larger, and at 

variances of greater than 4 for the Gaussian implementation, as can be seen in Figure 9. 

At larger kernel sizes for ADR and higher variances for the Gaussian filter 

implementation, the outer boundary of the mice seems to be degraded, whereas the 

median filter keeps the outer boundary intact. The demonstrated preservation of edges 

motivated a 3D implementation of the median kernel. 

 

Figure 9. Mean CNR results across various low-pass filtering methods.  
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The 3D median filter results are shown in Figure 10 with various depths of z = 3, 5, 11, 

and 21. It can be observed that the abdominal wall thickness increases with increasing 

depth of the kernel. The quantitative performance of the 3D median filter is noted in 

Table 5. 

 

Figure 10. 3D Median filter applied across 15x15 Median smoothed images at depths of 
1, 3, 5, 11, and 21.  

Table 5. 3D median filter results for individual mice for 15x15 median kernels of depths 
1, 3, 5, 11 and 21.  

Mouse Type Mouse 
Number 

Kernel 
Depth Slice Mean Mouse Type Mouse 

Number 
Kernel 
Depth Slice Mean 

Lean Mouse 1086_1 3z 12.18 Mid Mouse 1088_4 3z 22.88 
Lean Mouse 1086_1 5z 10.89 Mid Mouse 1088_4 5z 23.58 
Lean Mouse 1086_1 11z 10.37 Mid Mouse 1088_4 11z 21.76 
Lean Mouse 1086_1 21z 11.56 Mid Mouse 1088_4 21z 23.33 
Lean Mouse 1089_4 3z 12.04 Fat Mouse 1090_3 3z 14.06 
Lean Mouse 1089_4 5z 11.40 Fat Mouse 1090_3 5z 14.04 
Lean Mouse 1089_4 11z 10.70 Fat Mouse 1090_3 11z 14.14 
Lean Mouse 1089_4 21z 10.41 Fat Mouse 1090_3 21z 14.49 
Lean Mouse 2710_1 3z 5.96 Fat Mouse 1087_3 3z 19.79 
Lean Mouse 2710_1 5z 6.84 Fat Mouse 1087_3 5z 20.56 
Lean Mouse 2710_1 11z 7.69 Fat Mouse 1087_3 11z 22.23 
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Lean Mouse 2710_1 21z 7.55 Fat Mouse 1087_3 21z 23.61 
Lean Mouse 2712_1 3z 2.54 Fat Mouse 1088_1 3z 17.38 
Lean Mouse 2712_1 5z 1.08 Fat Mouse 1088_1 5z 17.63 
Lean Mouse 2712_1 11z 1.15 Fat Mouse 1088_1 11z 18.39 
Lean Mouse 2712_1 21z 0.82 Fat Mouse 1088_1 21z 18.49 
Mid Mouse 1087_2 3z 18.83 Fat Mouse 1089_1 3z 13.69 
Mid Mouse 1087_2 5z 18.55 Fat Mouse 1089_1 5z 14.99 
Mid Mouse 1087_2 11z 18.78 Fat Mouse 1089_1 11z 15.85 
Mid Mouse 1087_2 21z 21.19 Fat Mouse 1089_1 21z 15.82 

 
Figure 11 contains the same graph from a previous section, with the addition of the 3D 

median filter results, which perform similarly with 2D 15x15 and 21x21 Median filters. 

Therefore, we chose to move forward with the best performing filtered image results 

based on CNR and general image appearance, for the next step of the segmentation 

algorithm, which is the application of the Sobel operator. There are no significant 

differences between these top performing results, which includes the 2D 15x15 and 

21x21 Median, 3D Median with depths of 3, 5, 11, and 21, and 2D Gaussian with 

variances of 9, 16, and 25. 

 
Figure 11. Mean CNR of various 2D and 3D filter types and kernel sizes.  
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Table 6. Mean CNR of various 2D and 3D filter types and kernel sizes.  

 Raw 3 ADR 5 ADR 7 ADR 9 ADR 11 
ADR 

15 
ADR 

21 
ADR 3 Med 5 Med 7 Med 9 Med 

1086_1 3.95 4.77 6.53 8.23 8.91 9.58 9.70 8.36 4.44 5.93 7.31 8.14 
1089_4 3.56 4.49 5.65 7.08 8.44 9.52 11.17 11.06 4.49 5.77 7.37 8.99 
2710_1 5.52 3.91 4.95 5.65 5.76 5.19 3.96 2.44 3.78 4.69 5.524 6.17 
2712_1 6.64 0.58 0.53 0.82 1.80 2.24 1.03 -3.24 0.67 0.84 1.17 2.06 
1087_2 3.32 6.83 8.62 10.60 12.62 14.46 16.93 16.24 6.54 8.16 10.19 12.19 
1088_4 1.69 7.33 9.88 13.53 17.49 20.52 24.083 22.52 6.94 9.08 12.03 14.98 
1090_3 5.66 6.72 8.49 10.35 11.77 12.78 13.853 13.42 6.52 8.16 9.956 11.52 
1087_3 5.72 8.142 10.60 13.33 15.42 16.77 17.67 15.11 7.89 10.06 12.67 14.86 
1088_1 5.21 6.482 8.64 11.13 13.20 14.70 15.86 14.91 6.28 8.25 10.61 12.92 
1089_1 4.96 6.04 7.87 10.02 11.77 12.69 12.47 10.83 5.85 7.52 9.72 11.87 
Mean 4.62 5.532 7.17 9.07 10.72 11.85 12.67 11.17 5.34 6.85 8.65 10.37 

Std Dev 1.47 2.19 2.93 3.82 4.62 5.41 6.73 7.31 2.07 2.66 3.43 4.06 
Std 

Error 0.46 0.692 0.93 1.21 1.46 1.71 2.13 2.31 0.65 0.84 1.08 1.28 

Ttest  0.38 0.063 0.015 0.0070 0.0059 0.0096 0.036 0.46 0.078 0.017 0.005 

 
11 

Med 15 Med 21 Med Gaus 
v=1 

Gaus 
v=4 

Gaus 
v=9 

Gaus 
v=16 

Gaus 
v=25 

15x3 
Med 

15x5 
Med 

15x11 
Med 

15x21 
Med 

1086_1 9.13 11.86 12.53 5.10 7.58 9.13 9.85 9.74 12.18 10.89 10.37 11.56 
1089_4 10.16 11.76 13.89 4.84 6.75 8.70 10.37 11.66 12.04 11.40 10.70 10.41 
2710_1 6.56 6.13 4.86 4.15 5.54 4.97 3.59 2.67 5.96 6.84 7.69 7.54 
2712_1 2.47 3.16 -0.14 0.62 0.56 1.06 -0.78 -3.02 2.54 1.08 1.15 0.82 
1087_2 14.01 17.688 17.81 7.22 10.19 13.37 16.07 17.64 18.82 18.55 18.78 21.19 
1088_4 17.84 22.59 26.49 7.83 12.57 18.69 23.85 26.56 22.87 23.57 21.76 23.33 
1090_3 12.85 14.414 14.50 7.17 9.98 12.23 13.55 14.13 14.06 14.04 14.14 14.48 
1087_3 16.62 19.12 19.21 8.71 12.71 16.16 17.60 17.51 19.78 20.55 22.23 23.60 
1088_1 14.88 16.75 14.66 6.99 10.54 13.95 16.03 16.75 17.38 17.63 18.39 18.49 
1089_1 13.22 13.41 11.07 6.48 9.45 12.10 13.31 13.37 13.69 14.99 15.84 15.82 
Mean 11.77 13.698 13.49 5.91 8.59 11.04 12.34 12.70 13.93 13.96 14.10 14.72 

Std Dev 4.73 5.86 7.37 2.34 3.65 5.23 7.06 8.27 6.24 6.70 6.68 7.33 
Std 

Error 1.49 1.85 2.33 0.74 1.15 1.66 2.23 2.61 1.97 2.11 2.11 2.31 

Ttest 0.003 0.0024 0.0093 0.24 0.021 0.0094 0.014 0.023 0.0028 0.0038 0.0031 0.0036 

The Sobel operator is a differential operator used to compute the gradient of the image 

intensity function10. Gradients are found in the x and y direction using kernels such as the 

5x5 kernels shown in Figure 12. The absolute magnitude of the gradient and direction of 

edges can be determined by combining measurements obtained after applying both 

kernels. The edge strength from the Sobel results were calculated in the same way as the 
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CNR from the low-pass filtered images, with ROIs manually placed on the abdominal 

wall edge and the surrounding tissue, as in Figure 13. 

 

Figure 12. 5x5 Sobel kernels for x and y gradient direction12.  

     

Figure 13. ROI placement on the abdominal edge and surrounding tissue for edge 
strength measurement.  

A median filtered image is shown in Figure 14a, with the Sobel operator results 

performed on the raw CT image using a 5x5 kernel displayed in Figure 14b. The Sobel 

operator on the raw image seems to capture the edges from the CT gantry and outer 

boundary of the mouse, with the abdominal wall edges of interest hidden within the 

image noise. Increased Sobel kernel size thickens the edges when applied to low-pass 

filtered images, but also makes these abdominal wall lines more continuous. Noise from 

the background also seems to be reduced at increased kernel sizes. 

1 

2 
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Figure 14. a) Median filter applied onto a raw CT volume, b) 5x5 Sobel operator applied 
onto raw CT volume and Sobel operator of sizes c) 5x5, d) 7x7, e) 11x11, and f) 21x21 
applied onto 3D 15x15x3 Median filtered volumes.  

The Sobel operator was performed using kernel sizes of 5x5, 7x7, 11x11, and 21x21 on 

the 2D 15x15 and 21x21 Median, 3D Median with depths of 3, 5, 11, and 21, and 2D 

Gaussian at variances of 9, 16 and 25. Statistical results seem to be similar across the 

low-pass filtered results. Edge detection does seem to perform better with increased 

Sobel kernel sizes, such as with the 11x11 and 21x21 Sobel kernels. The quantitative 

performance of the various Sobel kernel sizes performed across different low-pass 

filtering methods can be seen in Table 7. 
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Figure 15. Edge strength of various unsmoothed and smoothed volumes after Sobel 
operator application of various kernel sizes. 
 

Table 7. Edge strength for individual mice for various unsmoothed and smoothed 
volumes after Sobel operators of various kernel sizes. 
 

 

Raw 
Sobel 

5 

Raw 
Sobel 

7 

Raw 
Sobel 

11 

Raw 
Sobel 

21 

15 
Med 
Sobel 

5 

15 
Med 
Sobel 

7 

15 
Med 
Sobel 

11 

15 
Med 
Sobel 

21 

21 
Med 
Sobel 

5 

21 
Med 
Sobel 

7 

21 
Med 
Sobel 

11 

21 
Med 
Sobel 

21 

15x3 
Med 
Sobel 

5 

15x3 
Med 
Sobel 

7 

15x3 
Med 
Sobel 

11 

15x3 
Med 
Sobel 

21 

15x5 
Med 
Sobel 

5 

15x5 
Med 
Sobel 

7 

15x5 
Med 
Sobel 

11 

15x5 
Med 
Sobel 

21 

1086_1 1.21 1.62 3.32 6.83 3.39 4.52 5.86 8.90 3.19 4.16 6.11 8.69 5.26 6.82 9.20 10.66 5.72 7.16 9.28 11.88 
1089_4 1.10 1.26 2.72 12.58 4.35 5.57 8.74 11.72 1.89 2.19 3.31 9.66 5.30 6.11 7.53 12.11 4.46 5.64 7.52 12.12 
2710_1 1.80 2.51 4.49 12.78 3.57 4.73 5.83 11.56 2.58 3.02 3.99 10.1 3.65 4.74 5.93 11.37 3.14 3.96 5.92 10.91 
2712_1 1.67 2.29 3.66 4.02 4.08 5.14 5.55 4.84 5.71 6.93 6.40 5.67 4.58 6.43 7.46 7.42 3.49 4.55 6.04 5.10 
1087_2 1.40 2.06 5.37 11.36 2.63 3.64 6.42 7.62 3.53 4.33 4.54 6.41 3.22 4.32 7.67 9.83 4.03 5.60 8.94 13.49 
1088_4 1.88 2.55 4.61 10.19 4.61 5.52 6.97 11.12 3.13 4.02 7.66 14.71 5.49 6.45 7.99 13.80 3.98 4.37 5.28 10.23 
1090_3 1.22 1.48 2.37 5.43 3.33 3.36 3.55 4.58 3.00 3.09 3.69 4.77 3.78 4.42 5.20 5.69 4.36 4.89 5.30 5.46 
1087_3 2.32 3.40 5.67 4.82 3.26 3.91 5.67 4.16 3.24 3.73 5.16 4.52 4.06 4.75 12.87 6.54 3.11 3.59 17.74 6.85 
1088_1 1.58 2.17 3.63 9.03 3.13 3.74 6.00 6.79 3.71 4.10 4.25 5.46 4.73 5.94 8.30 9.22 4.21 4.66 6.78 9.17 
1089_1 1.71 2.18 4.19 6.09 3.40 3.93 5.67 5.77 3.76 4.58 5.74 3.99 3.16 4.20 6.50 8.67 3.10 4.13 6.20 7.41 
Mean 1.59 2.15 4.00 8.31 3.57 4.41 6.02 7.71 3.37 4.01 5.08 7.41 4.32 5.42 7.86 9.53 3.96 4.85 7.90 9.26 
Std  
Dev 0.37 0.61 1.07 3.29 0.60 0.80 1.29 2.96 0.99 1.25 1.38 3.37 0.87 1.02 2.11 2.55 0.81 1.04 3.72 2.93 
Std  
Error 0.11 0.19 0.33 1.04 0.19 0.25 0.41 0.94 0.31 0.39 0.43 1.06 0.27 0.32 0.66 0.80 0.26 0.32 1.17 0.92 

Ttest 
    

8.52E
-06 

3.67E
-06 

3.35E
-06 

0.000
145 

0.000
26 

0.000
143 

1.17E
-05 

0.000
434 

1.3E-
05 

2.42E
-06 

2.92E
-06 

5.21E
-06 

8.45E
-05 

3.3E-
05 

0.000
331 

2.53E
-05 
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15x11 
Med 
Sobel 

5 

15x11 
Med 
Sobel 

7 

15x11 
Med 
Sobel 

11 

15x1
1 

Med 
Sobel 

21 

15x2
1 

Med 
Sobel 

5 

15x2
1 

Med 
Sobel 

7 

15x2
1 

Med 
Sobel 

11 

15x2
1 

Med 
Sobel 

21 

Gaus 
var9 
Sobel 

5 

Gaus 
var 9 
Sobel 

7 

Gaus 
var 9 
Sobel 

11 

Gaus 
var9 
Sobel 

21 

Gaus 
var16 
Sobel 

5 

Gaus 
var16 
Sobel 

7 

Gaus 
var16 
Sobel 

11 

Gaus 
var16 
Sobel 

21 

Gaus 
var25 
Sobel 

5 

Gaus 
var25 
Sobel 

7 

Gaus 
var25 
Sobel 

11 

Gaus 
var25 
Sobel 

21 

1086_1 5.80 5.74 5.50 9.20 3.59 3.93 4.55 8.46 4.49 4.94 6.27 7.91 6.55 6.79 7.41 8.81 7.32 7.38 7.71 10.83 
1089_4 3.19 3.70 5.50 7.74 2.84 3.41 4.47 6.02 3.22 3.72 6.26 10.56 6.56 7.39 9.44 9.28 12.25 11.88 11.36 8.30 
2710_1 4.27 4.46 6.22 10.64 2.10 2.46 8.36 12.46 5.10 5.39 6.85 9.96 7.52 7.90 8.98 8.33 10.06 9.93 10.07 7.37 
2712_1 2.53 2.98 3.69 4.61 2.65 3.36 8.38 5.12 4.21 4.34 4.58 4.00 4.64 4.47 4.16 4.35 4.52 4.22 3.97 5.23 
1087_2 2.91 3.68 4.77 6.65 2.46 2.76 3.67 5.90 6.98 7.30 8.66 7.90 10.98 11.28 12.22 7.68 13.07 11.74 9.38 8.02 
1088_4 2.29 2.60 3.56 9.43 2.16 2.33 2.98 9.05 6.16 6.72 8.30 10.18 9.17 9.32 10.32 10.02 11.44 11.30 11.51 10.64 
1090_3 2.41 2.81 3.89 9.92 2.39 2.57 3.10 4.55 3.12 3.36 4.17 5.40 4.57 4.65 5.04 5.32 5.63 5.42 5.40 5.50 
1087_3 3.01 3.19 3.86 6.39 3.98 3.37 3.37 7.19 7.90 7.73 7.19 4.46 7.70 7.07 6.18 4.78 5.73 5.32 4.72 4.37 
1088_1 3.64 3.81 5.33 7.96 2.73 3.27 5.14 7.52 5.48 6.22 8.40 6.51 8.96 8.86 9.42 5.98 9.74 9.87 7.83 6.47 
1089_1 3.16 4.02 5.92 5.52 3.48 4.12 5.78 3.65 6.07 6.38 7.19 5.76 7.71 7.51 6.93 6.42 6.56 6.22 5.62 7.83 
Mean 3.32 3.70 4.83 7.81 2.84 3.16 4.98 6.99 5.27 5.61 6.79 7.26 7.44 7.52 8.01 7.10 8.63 8.33 7.76 7.46 
Std  
Dev 1.05 0.92 1.00 1.99 0.63 0.61 1.99 2.56 1.55 1.50 1.52 2.40 1.99 2.04 2.50 1.99 3.05 2.93 2.76 2.15 
Std 
Error 0.33 0.29 0.31 0.63 0.20 0.19 0.63 0.81 0.49 0.47 0.48 0.76 0.62 0.64 0.79 0.63 0.96 0.92 0.87 0.68 

Ttest 
0.001
3 

0.000
18 

1.04E
-05 

6.55E
-06 

0.000
20 

9.43E
-05 

0.000
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7.41E
-05 

8.99E
-06 

3.51E
-06 

1.24E
-06 

5.96E
-05 

5.12E
-06 

7.09E
-06 

2.54E
-05 

1.93E
-05 

6.22E
-05 

6.52E
-05 

8.18E
-05 

2.19E
-05 

The effects of the 5x5 and 21x21 Sobel operator on the various filter types and sizes are 

displayed in Figure 16 for comparison with the effects on the original, unsmoothed 

image. The smoothing steps helped create more continuous abdominal wall edges and 

less image noise as opposed to the original CT volume. 
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Figure 16. Sobel operator results using kernel sizes of 5x5 versus 21x21 on raw CT, 2D 
Median 15x15 and 21x21, 3D Median 15x15x3, and Gaussian smoothed volumes of 
variances 9 and 25.  

Discussion 

As stated previously, 2D low-pass filtering results demonstrate improved CNR for ADR 

and median kernels of 7x7 and greater, and at Gaussian variances of 4 and higher. At 

larger kernel sizes for the ADR filter, it can be observed that the outer boundary values 

are not preserved fully, such as in Figure 6. This affects lean mice more significantly, as 

these mice have lower amounts of fat throughout their bodies, including subcutaneous fat. 

Therefore, the abdominal wall was affected in lean mice, such as mouse 2712_1, at larger 

kernel sizes, as can be observed in a negative CNR found in Table 2 at the 21x21 kernel 

size. This could have resulted due to a partial-volume effect whereby non-abdominal wall 
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tissue was averaged into the abdominal wall region for the ROI analysis. The same 

phenomena was also observed for the largest 2D median kernel size of 21x21 and the 2D 

Gaussian with variance of 25 on the same lean mouse (2712_1). This could be due to the 

fact that mouse 2712_1 is the leanest mouse within the sample, weighing at 19.96 g. With 

so little fat, it is difficult to discriminate between the outer skin boundary and abdominal 

wall, or even find a fat tissue region for the ROI calculation. The 2D 15x15 and 21x21 

median, 3D median with depths of 3, 5, 11 and 21, and Gaussian filters of variances 9,16, 

and 25 were chosen to be evaluated for the Sobel operator based on both the CNR results 

and general image appearance. Higher Sobel kernel sizes demonstrated better results, 

with the 11x11 and 21x21 kernel sizes resulting in thicker, more continuous edges along 

the abdominal wall. The next steps for the remainder of my time at Genentech will be to 

complete the Canny steps with non-maximum suppression, double thresholding and edge 

tracking by hysteresis. In addition to completing the remainder of the 5 Canny steps, my 

future steps include the application of morphological filtering to segment out the visceral 

and subcutaneous fat compartments. In addition, the start and stop slice selection would 

be automated in order to fully automate the algorithm. 

Conclusion 

This study aimed to develop methods to aid edge detection for the proper segmentation of 

visceral and subcutaneous fat from micro-CT volumes. The median and Gaussian 

smoothed images showed the greatest promise when used in conjunction with larger 

Sobel kernel sizes. Future applications of this algorithm would be to automatically assess 

fat depots for use in longitudinal studies of adipose development, as central obesity is 

associated with increased risk for diabetes, hypertension and heart disease.  
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