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Developing Methods to Aid Edge Detection in a Micro-Computed Tomography Based
Subcutaneous Versus Visceral Fat Segmentation Algorithm

Charvi Shetty

Abstract

Micro-computed tomography can be used to provide a precise in-vivo assessment of
adipose tissue quantity and distribution, including information on subcutaneous and
visceral fat volume in mouse models. This study aims to develop methods to aid edge
detection in order to eventually segment out the visceral and subcutaneous fat
compartments automatically. The algorithm detailed in this paper optimizes steps in the
Canny edge detection method and utilizes low-pass filtering and gradient edge detection.
Ten mice (weight range: 19.96 — 57.66 g) were tested with micro-CT scans to verify the
utility of this algorithm. The algorithm demonstrated stability despite the broad range of
body weights and adiposity. Comparisons of the data between unfiltered versus filtered
mice volumes suggest that this algorithm can be used to effectively increase edge
strength for use in separating visceral and subcutaneous fat compartments. The eventual
application of this method would be to assess metabolic disease risk, such as those

associated with central obesity including diabetes, hypertension, and heart disease.
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Introduction

The prevalence of obesity has been increasing in recent years, which has been associated
with increased risk for diabetes, hypertension and heart disease. Moreover, health risk is
associated with the location as well as amount of fat, with fat being situated in areas of
the body such as under the epidermis and around vital organs®. Fat distribution varies
greatly with gender, genetic background, age, disease state, and response to drugs and
hormones. Fat stored closer to the skin is categorized as subcutaneous fat, whereas fat
surrounding organs is part of the visceral fat compartment. Central obesity has a higher
health risk associated with metabolic syndrome as opposed to peripheral obesity.
Clinically, x-ray based computed tomography (CT) is one of the methods used to observe
fat deposition, with other technologies including magnetic resonance imaging (MRI),
dual energy x-ray absorptiometry (DEXA) and quantitative nuclear magnetic resonance
(QMR)?3. Micro-MRI has been used successfully to phenotype mouse models of obesity
but the technology is not readily available to most researchers, and although DEXA and
QMR based scanning effectively characterizes lean and fat volumes in mice, they do not
provide detailed spatial information on fat distribution. It is known that animal models
can model human diseases associated with visceral fat, and that in-vivo micro-CT can
provide spatial information of fat distribution in mice*®.

An image segmentation algorithm that was previously developed at Genentech included a
fully automated method to segment out lean mass, adipose tissue and bone from micro-
CT mice volumes®. Micro-CT has the advantage of being a truly quantitative method, as
different tissue types have defined ranges in Hounsfield Units (HU). Fat is in the lower
range of -190 to -30 HU, lean mass in the middle range from -29 to 150 HU, and bone is

in a higher range of greater than 400 HU®'. Therefore, the Wyatt et al. algorithm takes



advantage of thresholding and morphological filtering to obtain each of the main body
compartments. Three masks are generated from this algorithm, as can be seen in Figure 1
with the axial view of the original micro-CT mouse volume (a), the whole body volume
(b), adipose tissue (c), and bone masks (d). A significant improvement of this algorithm

would be to automatically sub-divide the visceral and subcutaneous fat compartments of

the adipose tissue.

HCT Image Whole Body Vol Adipose lissue Bone

Figure 1. a) Original micro-CT mouse volume, b) whole body mask, ¢) adipose tissue
mask, and d) bone mask generated by the Shelby et al. algorithm’.

The primary demarcation line used to separate the visceral and subcutaneous fat
compartments is the abdominal wall lining. In a density based micro-CT volume, the
abdominal wall layer appears brighter than the surrounding fat tissue due to its higher
density. A recent algorithm has been introduced that segments the total abdominal
adiposity into visceral and subcutaneous fat compartments®. Figure 2 displays the 3D
rendering of the micro-CT data of subcutaneous fat in yellow and visceral fat in red, in
both the sagittal and coronal views of the mouse. The abdominal wall lining is the dark
line separating the visceral (red) and subcutaneous (yellow) fat compartments in the
coronal view. This thesis work focuses on improving on the algorithm described in

Lublinsky et al., which will be described in detail in the later sections.
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Figure 3 (right). Lublinsky et al. implementation of visceral versus subcutaneous fat
compartment segmentation®.

As mentioned previously, proper identification of the abdominal wall is crucial for
segmenting out the two different fat compartments, and so this study aims to optimize the
edge detection algorithm used in the Lublinsky paper. Once the abdominal wall boundary
is properly detected, as in Figure 3, morphological filtering and filling will be performed
to segment the subcutaneous and visceral fat. Nevertheless, the identification of the
abdominal wall boundary is critical, as the steps following this are largely straight-
forward. The major limitation of the Lublinsky paper is that it is not fully automated in
regards to the slice selection in the abdominal region for the compartmentalization, as the
definition for the abdominal volume was manually restricted to the region between L1

and L5 vertebrae. Limiting the abdominal volume of interest might cause inaccuracies in



discriminating visceral and subcutaneous fat, especially in lean mice, in which the total
volume of evaluated fat deposits would be greatly reduced®. The objective of this thesis is
to fully automate the slice selection process so that the algorithm can capture the entire
abdominal region in a standardized way, permitting it to be efficiently applied to
thousands of CT volumes, including both lean and fat mice, for later studies.

The performance criteria for the Canny edge detection includes minimizing the
probability of failing to detect real edge points, minimizing the probability of falsely
marking non-edge points, points marked as edge points being as close as possible to the
center of the true edge, and having only one response to a single edge®. The Canny edge
detection method was used in Lublinsky’s paper to isolate the abdominal wall, with the
goal of my thesis being the refinement and optimization of the approach. The Canny edge
detector is an algorithm optimized for finding step edges in the presence of noise, and
consists of 5 major steps”. This study focuses on the first 2 steps, which includes the low-
pass filtering step and gradient edge detection. The low-pass filtering step serves to
smooth the image in order to reduce noise and the gradient detection step marks where
the gradients of the image have large magnitudes, such as through the application of the
Sobel operator. The remaining Canny steps consist of non-maximum suppression, double
thresholding and edge tracking by hysteresis, which will be implemented during the rest
of my stay at Genentech. The non-maximum suppression step marks only the local
maxima as edges, double thresholding determines potential edges by marking pixels
stronger than the high threshold as strong and those weaker than the low threshold as
weak, and the edge tracking by hysteresis determines final edges by suppressing all edges

that are not connected to a very strong edge.



Materials and Methods

A TriFoil Imaging eXplore CT120 (Northridge, CA) micro-CT scanner was used to
image mice in-vivo in the prone position from the tip of the nose to the base of the tail
with a 70kV tube voltage, 40mA tube current, 4x4 detector bin mode, 20ms exposure
time, 100 um voxel size, 0 gain and 900 views at an approximately 10 minute scan time
for four mice. All animal procedures were approved by Genentech’s Institutional Animal
Care and Use Committee. Two groups of mice from the The Jackson Laboratory (Bar
Harbor, ME) were imaged with microCT: (1) C57BL/6J male mice which have been fed
a high fat (60 kcal%) diet starting at six weeks of age (diet-induced obesity mice, DIO)
and (2) control B6 males fed a 10 kcal% diet containing the same protein content as the
high fat diet. For the duration of the micro-CT imaging, mice were slightly anesthetized
with approximately two percent isoflurane in medical air and body temperature was
maintained at 37°C using warm airflows. As can be seen in Figure 4, four mice can be
scanned at a time with our setup, and scans can be completed within 10 minutes for a

high throughput. The resulting axial slice CT images showing the abdominal region of

each of the four mice is shown in Figure 4b.

Figure 4. a) Four-mouse holder for micro-CT scanning and b) resulting axial slice CT
images of the abdominal region.



All image analysis algorithms were developed using the C++ programming language and
AVW function libraries (AnalyzeDirect, Overland Park, KS). Prior to analysis, the micro-
CT image *.isq files were converted to the required AVW volume data format. The
subcutaneous and visceral fat analysis employed a whole-body mask (WBM) generated
by a fully-automated body composition algorithm (Wyatt et al, unpublished). The WBM
was generated by employing image intensity thresholding and morphological filtering. A
threshold was applied to segment objects in the image from air. The mouse body was
initially segmented from the micro-CT platform, anesthesia tube and noise using an
intensity threshold followed by the application of three morphological filtering steps:
open  (3x3x1), fill, and erode (5x5x1). A  connectivity algorithm,
AVW_FindVolumeComponents, sorted and labeled objects with a connectivity of 6
(AVW_6_CONNECTED), where the largest object is assigned to the WBM (volume and
object).

Three low-pass filters, the adaptive restoration, median, and Gaussian, were individually
applied onto the CT volumes using the Analyze toolkit coded in C. The adaptive
restoration and median filters were evaluated using various 2D kernels of sizes including
3x3, 5x5, 7x7, 9x9, 11x11 and 21x21. Gaussian smoothing was implemented with
variances of 1, 4, 9, 16 and 25. After inspecting the 2D filtering results visually and
quantitatively through region of interest (ROI) analysis, the median filter was then
expanded to the third dimension. For each data set, two ROIs were manually defined
across three slices within the abdominal area, located 50 slices apart from each other. The

ROI values were then averaged across the three slices to calculate the contrast-to-noise



ratio in ten mice, consisting of four lean, two mid-sized, and four obese mice with

corresponding weights described in Table 1.

\MoUse 1086_1 1089_4 2710_1 2712 1 1087_2 1088_4 1090_3 1087_3 1088_1 1089_1
W(eg']g’ht 2458 2461 2017 1996 3512 3421 57.66 5518 544 5266
l\#;:ze Lean Lean Lean Lean Mid Mid Fat Fat Fat Fat

Table 1. Mouse numbers and corresponding weights for mouse type categorization.
The three non-linear smoothing filters were the adaptive restoration (ADR), median and

Gaussian filters. The ADR filter is a low-pass filter that operates on an intensity image
degraded by constant power additive noise using a pixel-wise adaptive method based on
local neighborhood statistics'®. A median filter is a nonlinear filter that removes impulse
noise yet preserves edges and consists of a sliding window encompassing an odd number
of pixels. The center pixel in the window is replaced by the median of the pixels in the
window'. The median filter is useful for removing isolated lines or pixels while
preserving spatial resolution. A Gaussian filter is a linear low-pass filter that results in the
blurring of an image to reduce image noise through the convolution of a Gaussian
function with a defined variance. The employed variance was the square of the Gaussian
distribution standard deviation.

For each mouse, two sets of ROIs were generated on a slice. One ROI was manually
placed on the abdominal wall (red circle in Figure 5) and the other ROl was drawn in the
fat region (green circle in Figure 5). The difference in mean intensities of the two regions
was then divided by the standard deviation of the ROI drawn in the fat region to calculate
the CNR, as can be seen in the equation below. The same approach was applied to a
second set of ROIs drawn on the opposite side of the mouse (yellow circle on abdominal

wall and blue circle in the fat region), and this ROI generation method was performed



across a total of three different slices within the abdominal region, located 50 slices away
from each other. The start slice (Slice 1) was chosen to be at the base of the kidney, as
marked through manual visual inspection, with Slice 2 being 50 slices away on the raw
CT volume from Slice 1, and Slice 3 being 100 slices superior to Slice 1.

Mean of Region 1 —Mean of Region 2
Standard Deviation of Region 2

Contrast-to-noise ratio =

Slice 1 Slice 2 Slice 3

N Q

Figure 5. ROI placement for CNR calculations using Region 1 (red) on abdominal wall
and Region 2 (green) in the fat region shown across three slices.

Results

The adaptive restoration filter results on axial slices are displayed in Figure 6,
qualitatively showing increased levels of smoothing and blurring of edges with increasing
kernel sizes. Quantitative results of the ADR filter at various kernel sizes across all mice

are presented in Table 2.



Mouse Type

Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse
Lean mouse

Mouse
Number
1086 1
1086 1
1086 1
1086 1
1086 1
1086 1
1086 1
1089 4
1089 4
1089 4
1089 4
1089 4
1089 4
1089 4
2710 1
2710 1
2710 1
2710 1
2710 1
2710 1
2710 1
2712 1
2712 1
2712 1

Kernel
Size
3
5
7
9
11
15
21
3
5
7
9
11
15
21
3
5
7

Mean CNR Mouse Type

4.77
6.53
8.23
8.91
9.58
9.71
8.37
4.49
5.65
7.08
8.44
9.51
11.17
11.06
3.91
4.95
5.65
5.76
5.19
3.96
2.44
0.58
0.53
0.82

Mid Mouse
Mid Mouse
Mid Mouse
Mid Mouse
Mid Mouse
Mid Mouse
Mid Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse
Fat Mouse

Mouse
Number
1088 4
1088 4
1088 4
1088 4
1088 4
1088 4
1088 4
1090 3
1090 3
1090 3
1090 3
1090 3
1090 3
1090 3
1087_3
1087_3
1087_3
1087 _3
1087_3
1087_3
1087_3
1088 1
1088 1
1088 1

Kernel
Size
3
5
7
9
11
15
21
3
5
7
9
11
15
21
3
5
7

Figure 6. Adaptive restoration filter performed across 2D kernel sizes including 3x3,
5x5, 7x7, 9x9, 11x11, 15x15 and 21x21.

Table 2. Adaptive restoration filter mean CNR results averaged across three slices for
individual mice.

Mean CNR

7.33
9.88
13.54
17.49
20.52
24.08
22.52
6.72
8.49
10.35
11.77
12.78
13.85
13.42
8.14
10.60
13.33
15.42
16.77
17.67
15.11
6.48
8.64
11.13



Lean mouse 2712 1 9 1.80 Fat Mouse 1088 1 9 13.20

Lean mouse 2712 1 11 2.24 Fat Mouse 1088 1 11 14.70
Lean mouse 2712 1 15 1.03 Fat Mouse 1088 1 15 15.86
Lean mouse 2712 1 21 -3.24 Fat Mouse 1088 _1 21 14.91
Mid Mouse ~ 1087_2 3 6.83 Fat Mouse 1089 1 3 6.04
Mid Mouse 1087 2 5 8.62 Fat Mouse 1089 1 5 7.87
Mid Mouse ~ 1087_2 7 10.60 Fat Mouse 1089 1 7 10.02
Mid Mouse ~ 1087_2 9 12.62 Fat Mouse 1089 1 9 11.77
Mid Mouse ~ 1087_2 11 14.46 Fat Mouse 1089 1 11 12.69
Mid Mouse ~ 1087_2 15 16.93 Fat Mouse 1089 1 15 12.47
Mid Mouse ~ 1087_2 21 16.24 Fat Mouse 1089 1 21 10.83

The median filter results are shown in Figure 7, demonstrating increased smoothing with
increased kernel size, yet still preserving crisp edges even at the larger kernel sizes. This
can be appreciated on the image where kernel sizes of 15x15 and 21x21 are employed.
The largest kernel size was restricted to 21x21 because the thickness of the abdominal
wall at its thinnest point was 11 pixels wide. The size of the kernel should not exceed
double the size of the feature of interest. Quantitative median filter results at various

kernel sizes across all mice can be seen in Table 2.

Figure 7. Median filter results across 2D kernel sizes including 3x3, 5x5, 7x7, 9x9,
11x11, 15x15 and 21x21.
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Table 3. 2D Median filter mean CNR results averaged across three slices for individual
mice.

M Kernel Mean M Kernel Mean
Mouse Type Nu?nuk?:r gizee Clsliz Mouse Type NugqubSSr gizee Clsliz
Lean mouse 1086 1 3 4.44 Mid mouse 1088 4 3 6.94
Lean mouse 1086 1 5 5.93 Mid mouse 1088 4 5 9.08
Lean mouse 1086 1 7 7.31 Mid mouse 1088 4 7 12.03
Lean mouse 1086 1 9 8.14 Mid mouse 1088 4 9 14.98
Lean mouse 1086 1 11 9.13 Mid mouse 1088 4 11 17.84
Lean mouse 1086 1 15 11.86 Mid mouse 1088 4 15 22.59
Lean mouse 1086 1 21 12.54 Mid mouse 1088 4 21 26.49
Lean mouse 1089 4 3 4.49 Fat Mouse 1090_3 3 6.52
Lean mouse 1089 4 5 5.77 Fat Mouse 1090 3 5 8.16
Lean mouse 1089 4 7 7.37 Fat Mouse 1090 3 7 9.95
Lean mouse 1089 4 9 8.99 Fat Mouse 1090_3 9 11.52
Lean mouse 1089 4 11 10.16 Fat Mouse 1090_3 11 12.85
Lean mouse 1089 4 15 11.76 Fat Mouse 1090_3 15 14.42
Lean mouse 1089 4 21 13.89 Fat Mouse 1090 3 21 14.50
Lean mouse 2710 1 3 3.78 Fat Mouse 1087_3 3 7.89
Lean mouse 2710 1 5 4.69 Fat Mouse 1087_3 5 10.06
Lean mouse 2710 1 7 5.52 Fat Mouse 1087_3 7 12.67
Lean mouse 2710 1 9 6.17 Fat Mouse 1087_3 9 14.86
Lean mouse 2710 1 11 6.56 Fat Mouse 1087_3 11 16.63
Lean mouse 2710 1 15 6.14 Fat Mouse 1087_3 15 19.13
Lean mouse 2710 1 21 4.86 Fat Mouse 1087_3 21 19.22
Lean mouse 2712 1 3 0.67 Fat Mouse 1088_1 3 6.28
Lean mouse 2712 1 5 0.84 Fat Mouse 1088 _1 5 8.25
Lean mouse 2712 1 7 1.17 Fat Mouse 1088 1 7 10.61
Lean mouse 2712 1 9 2.06 Fat Mouse 1088 1 9 12.92
Lean mouse 2712 1 11 2.47 Fat Mouse 1088_1 11 14.88
Lean mouse 2712 1 15 3.16 Fat Mouse 1088 _1 15 16.76
Lean mouse 2712 1 21 -0.14 Fat Mouse 1088_1 21 14.66
Mid mouse  1087_2 3 6.54 Fat Mouse 1089 1 3 5.85
Mid mouse 1087 _2 5 8.16 Fat Mouse 1089 1 5 7.52
Mid mouse  1087_2 7 10.19 Fat Mouse 1089 1 7 9.72
Mid mouse  1087_2 9 12.19 Fat Mouse 1089 1 9 11.87
Mid mouse 1087 _2 11 14.01 Fat Mouse 1089 1 11 13.22
Mid mouse 1087 _2 15 17.69 Fat Mouse 1089 1 15 13.41
Mid mouse 1087 _2 21 17.81 Fat Mouse 1089 1 21 11.07

Gaussian smoothing results are shown in Figure 8, with increased levels of smoothing
with increased variance. Noise from the background seems to be reduced at larger

variances, as opposed to the Gaussian with a variance of 1. Streaks and noise are reduced,

11



but small objects and thin layers are blurred out. Quantitative Gaussian filter results can

be seen in Table 3.

Gaussianvar=1 Gaussianvar =4 Gaussian var =9

» N ~

Gaussian var =16 Gaussianvar =25

N N

Figure 8. Discrete Gaussian filter applied across variances of 1, 4, 9, 16 and 25.

Table 4. Discrete Gaussian filter mean CNR results averaged across three slices for
individual mice.
Mouse Mouse  Gaussian Mouse  Gaussian

Type Number  Variance R ENIR | WiLee T2 Number  Variance AU ENIR
Lean 1086 1 1 5.10 Mid 1088 _4 1 7.84
Lean 1086 1 4 7.58 Mid 1088 _4 4 12.57
Lean 1086_1 9 9.14 Mid 1088_4 9 18.69
Lean 1086_1 16 9.854 Mid 1088_4 16 23.85
Lean 1086 1 25 9.75 Mid 1088 _4 25 26.56
Lean 1089 4 1 4.85 Fat 1090 3 1 7.18
Lean 1089 4 4 6.75 Fat 1090 3 4 9.98
Lean 1089 4 9 8.71 Fat 1090_3 9 12.24
Lean 1089 4 16 10.371 Fat 1090_3 16 13.56
Lean 1089 4 25 11.67 Fat 1090 3 25 14.13
Lean 2710 1 1 4.15 Fat 1087_3 1 8.72
Lean 2710_1 4 5.54 Fat 1087_3 4 12.71
Lean 2710_1 9 4.97 Fat 1087_3 9 16.16
Lean 2710_1 16 3.59 Fat 1087_3 16 17.61
Lean 2710 1 25 2.68 Fat 1087_3 25 17.52

12



Lean 2712 1 1 0.62 Fat 1088_1 1 6.99
Lean 2712 1 4 0.57 Fat 1088_1 4 10.55
Lean 2712 1 9 1.06 Fat 1088 _1 9 13.96
Lean 2712 1 16 -0.79 Fat 1088_1 16 16.04
Lean 2712 1 25 -3.02 Fat 1088_1 25 16.76
Mid 1087 2 1 7.22 Fat 1089 1 1 6.48
Mid 1087 2 4 10.19 Fat 1089 _1 4 9.45
Mid 1087 2 9 13.38 Fat 1089 1 9 12.10
Mid 1087_2 16 16.08 Fat 1089_1 16 13.32
Mid 1087 2 25 17.65 Fat 1089_1 25 13.38

Statistics was performed using a 2-tailed, paired t-test for ten mice, showing a significant
increase in CNR for the ADR and median filter at kernel sizes of 7x7 and larger, and at
variances of greater than 4 for the Gaussian implementation, as can be seen in Figure 9.
At larger kernel sizes for ADR and higher variances for the Gaussian filter
implementation, the outer boundary of the mice seems to be degraded, whereas the
median filter keeps the outer boundary intact. The demonstrated preservation of edges

motivated a 3D implementation of the median kernel.
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Figure 9. Mean CNR results across various low-pass filtering methods.
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The 3D median filter results are shown in Figure 10 with various depths of z = 3, 5, 11,
and 21. It can be observed that the abdominal wall thickness increases with increasing
depth of the kernel. The quantitative performance of the 3D median filter is noted in
Table 5.

15x15x1 Median 15x15x3 Median 15x15x5 Median

~ ~ v

15x15x11 Median 15x15x21 Median

'

Figure 10. 3D Median filter applied across 15x15 Median smoothed images at depths of
1,3,5,11, and 21.

Table 5. 3D median filter results for individual mice for 15x15 median kernels of depths
1,3,5,11 and 21.

Mouse Type N'\S(r)nubsgr léeeg:ﬁl Slice Mean Mouse Type NI\S%UbS:r }éigt'ﬁl Slice Mean
Lean Mouse 1086 1 3z 12.18 Mid Mouse 1088 4 3z 22.88
Lean Mouse 1086 1 5z 10.89 Mid Mouse 1088 4 5z 23.58
Lean Mouse 1086 1 11z 10.37 Mid Mouse 1088 4 11z 21.76
Lean Mouse 1086 1 21z 11.56 Mid Mouse 1088 4 21z 23.33
Lean Mouse 1089 4 3z 12.04 Fat Mouse 1090_3 3z 14.06
Lean Mouse 1089 4 5z 11.40 Fat Mouse 1090_3 5z 14.04
Lean Mouse 1089 4 11z 10.70 Fat Mouse 1090 3 11z 14.14
Lean Mouse 1089 4 21z 10.41 Fat Mouse 1090 3 21z 14.49
Lean Mouse 2710 1 3z 5.96 Fat Mouse 1087_3 3z 19.79
Lean Mouse 2710 1 5z 6.84 Fat Mouse 1087_3 5z 20.56
Lean Mouse 2710 1 11z 7.69 Fat Mouse 1087_3 11z 22.23

14



Lean Mouse 2710 1 21z 7.55 Fat Mouse 1087_3 21z 23.61

Lean Mouse 2712 1 3z 2.54 Fat Mouse 1088_1 3z 17.38
Lean Mouse 2712 1 5z 1.08 Fat Mouse 1088_1 5z 17.63
Lean Mouse 2712 1 11z 1.15 Fat Mouse 1088 _1 11z 18.39
Lean Mouse 2712 1 21z 0.82 Fat Mouse 1088_1 21z 18.49
Mid Mouse  1087_2 3z 18.83 Fat Mouse 1089_1 3z 13.69
Mid Mouse  1087_2 5z 18.55 Fat Mouse 1089 1 5z 14.99
Mid Mouse  1087_2 11z 18.78 Fat Mouse 1089 1 11z 15.85
Mid Mouse  1087_2 21z 21.19 Fat Mouse 1089 1 21z 15.82

Figure 11 contains the same graph from a previous section, with the addition of the 3D
median filter results, which perform similarly with 2D 15x15 and 21x21 Median filters.
Therefore, we chose to move forward with the best performing filtered image results
based on CNR and general image appearance, for the next step of the segmentation
algorithm, which is the application of the Sobel operator. There are no significant
differences between these top performing results, which includes the 2D 15x15 and
21x21 Median, 3D Median with depths of 3, 5, 11, and 21, and 2D Gaussian with

variances of 9, 16, and 25.
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Figure 11. Mean CNR of various 2D and 3D filter types and kernel sizes.
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Table 6. Mean CNR of various 2D and 3D filter types and kernel sizes.

11 15 21
Raw 3 ADR 5 ADR 7 ADR 9 ADR ADR ADR ADR 3Med 5Med 7 Med 9 Med

1086_1 395 477 653 823 891 958 970 836 444 593 731 814
1089 4 356 449 565 7.08 844 952 1117 11.06 449 577 737 899
27101 552 391 495 565 576 519 396 244 378 469 5524 6.17
27121 664 058 053 082 180 224 103 -324 067 084 117 2.06
1087_2 3.32 6.83 862 10.60 12.62 1446 1693 16.24 6.54 816 1019 1219
1088_4 1.69 7.33 9.88 1353 1749 2052 24.083 2252 694 9.08 12.03 14.98
1090_3 566 6.72 849 1035 11.77 12,78 13.853 1342 6.52 816 9.95 11.52
1087_3 5.72 8.142 10.60 13.33 1542 16.77 17.67 1511 7.89 10.06 12.67 14.86
1088 1 521 6.482 864 1113 1320 1470 1586 1491 6.28 825 10.61 1292
1089 1 49 6.04 787 10.02 11.77 12,69 1247 1083 585 752 972 1187
Mean 4.62 5532 717 9.0/ 10.72 1185 1267 1117 534 6.85 865 10.37
StdDev 147 219 293 382 462 541 673 731 207 266 343 4.06

Esr;[rgr 046 0692 093 121 146 171 213 231 065 084 1.08 1.28
Ttest 0.38 0.063 0.015 0.0070 0.0059 0.0096 0.036 0.46 0.078 0.017 0.005
11 Gaus Gaus Gaus Gaus Gaus 15x3 15x5 15x11 15x21
Med 1PMed2lMed U ;" " o9 v=16 v=25 Med Med Med Med

1086_1 9.13 1186 1253 510 758 9.13 985 974 1218 10.89 10.37 11.56
1089_4 10.16 11.76 1389 484 6.75 870 1037 11.66 12.04 1140 10.70 1041
2710_1 656 6.13 486 415 554 497 359 267 596 684 769 754
2712_1 247 316 -014 062 056 106 -0.78 -3.02 254 108 115 0.82
1087_2 14.01 17.688 17.81 7.22 10.19 13.37 16.07 17.64 1882 1855 18.78 21.19
1088 4 17.84 2259 2649 7.83 1257 18.69 23.85 26.56 2287 23,57 21.76 23.33
1090_3 12.85 14.414 1450 7.17 9.98 1223 1355 1413 1406 1404 14.14 14.48
1087_3 16.62 19.12 1921 871 1271 16.16 17.60 17.51 19.78 20.55 22.23 23.60
1088 1 14.88 16.75 1466 6.99 10.54 1395 16.03 16.75 17.38 17.63 18.39 18.49
1089 1 13.22 1341 11.07 6.48 945 1210 13.31 13.37 13.69 1499 1584 15.82
Mean 11.77 13.698 13.49 591 859 11.04 1234 1270 1393 1396 1410 14.72
StdDev 473 586 737 234 365 523 7.06 827 624 670 668 733

Esrﬁgr 149 185 233 074 115 166 223 261 197 211 211 231

Ttest 0.003 0.0024 0.0093 0.24 0.021 0.0094 0.014 0.023 0.0028 0.0038 0.0031 0.0036

The Sobel operator is a differential operator used to compute the gradient of the image
intensity function®®. Gradients are found in the x and y direction using kernels such as the
5x5 kernels shown in Figure 12. The absolute magnitude of the gradient and direction of
edges can be determined by combining measurements obtained after applying both

kernels. The edge strength from the Sobel results were calculated in the same way as the
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CNR from the low-pass filtered images, with ROIs manually placed on the abdominal

wall edge and the surrounding tissue, as in Figure 13.

1 2 0 -2 -1 [-1 -4 -6 -4 -1
4 8 0 -8 —4 ~2 -8 -12 -8 -2
s,=[6 12 0 -12 -6/5,=[0 0 0 0 O
4 8 0 -8 -4 2 8 12 8 2
1 20 -2 -1/ |1 4 6 4 1

Figure 12. 5x5 Sobel kernels for x and y gradient direction*2.

Figure 13. ROI placement on the abdominal edge and surrounding tissue for edge
strength measurement.

A median filtered image is shown in Figure 14a, with the Sobel operator results
performed on the raw CT image using a 5x5 kernel displayed in Figure 14b. The Sobel
operator on the raw image seems to capture the edges from the CT gantry and outer
boundary of the mouse, with the abdominal wall edges of interest hidden within the
image noise. Increased Sobel kernel size thickens the edges when applied to low-pass
filtered images, but also makes these abdominal wall lines more continuous. Noise from

the background also seems to be reduced at increased kernel sizes.
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Median Smoothing 5x5 Sobel on Original 5x5 Sobel on Median

N

Figure 14. a) Median filter applied onto a raw CT volume, b) 5x5 Sobel operator applied
onto raw CT volume and Sobel operator of sizes ¢) 5x5, d) 7x7, €) 11x11, and f) 21x21
applied onto 3D 15x15x3 Median filtered volumes.

The Sobel operator was performed using kernel sizes of 5x5, 7x7, 11x11, and 21x21 on
the 2D 15x15 and 21x21 Median, 3D Median with depths of 3, 5, 11, and 21, and 2D
Gaussian at variances of 9, 16 and 25. Statistical results seem to be similar across the
low-pass filtered results. Edge detection does seem to perform better with increased
Sobel kernel sizes, such as with the 11x11 and 21x21 Sobel kernels. The quantitative
performance of the various Sobel kernel sizes performed across different low-pass

filtering methods can be seen in Table 7.
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Figure 15. Edge strength of various unsmoothed and smoothed volumes after Sobel
operator application of various kernel sizes.

Table 7. Edge strength for individual mice for various unsmoothed and smoothed
volumes after Sobel operators of various kernel sizes.

15 15 15 15 21 21 21 21 15x3 15x3 15x3 15x3 15x5 15x5 15x5 15x5

;T)vgl g%vgl ;T)vgl g%vgl Med Med Med Med Med Med Med Med Med Med Med Med Med Med Med Med
5 7 11 21 Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel
5 7 11 21 5 7 11 21 5 7 11 21 5 7 11 21

1086_1 1.21 1.62 332 6.83 3.39 452 586 890 3.19 4.16 6.11 869 526 6.82 9.20 10.66 5.72 7.16 9.28 11.88
1089_4 1.10 1.26 2.72 1258 435 557 874 11.721.89 219 331 9.66 530 6.11 7.53 1211 446 5.64 7.52 1212
2710.1 180 251 449 1278 357 4.73 583 11.56 2.58 3.02 3.99 10.1 3.65 4.74 593 11.37 3.14 3.96 5.92 1091
27121167 229 3.66 4.02 4.08 514 555 484 571 6.93 640 567 458 6.43 746 7.42 349 455 6.04 5.10
1087_2 1.40 2.06 5.37 11.36 2.63 3.64 6.42 7.62 3.53 433 454 6.41 322 432 7.67 983 4.03 560 894 13.49
1088_4 1.88 2.55 4.61 10.19 461 552 697 11.12 3.13 402 7.66 1471549 645 7.99 13.80 3.98 4.37 528 10.23
1090_3 1.22 1.48 237 543 333 336 355 458 3.00 3.09 369 477 3.78 442 520 569 436 4.89 530 5.46
1087_3 2.32 3.40 5.67 4.82 3.26 391 567 416 3.24 3.73 516 452 4.06 4.75 12.87 6.54 3.11 3.59 17.74 6.85
1088_1 1.58 2.17 3.63 9.03 3.13 3.74 6.00 6.79 3.71 4.10 425 546 4.73 594 830 922 421 466 6.78 9.17
1089 1 1.71 2.18 419 6.09 340 393 567 577 3.76 458 574 399 316 420 650 867 3.10 4.13 620 7.41

Mean 159 215 400 831 357 441 6.02 7.71 337 401 508 741 432 542 7.86 9.53 3.96 485 7.90 9.26

Std

Dev 037 0.61 107 329 060 080 129 296 099 125 138 337 0.87 102 211 255 0.81 104 3.72 2.93

Std

Error 011 0.19 033 1.04 019 025 041 094 031 039 043 1.06 0.27 032 066 080 0.26 032 1.17 0.92
8.52E 3.67E 3.35E 0.000 0.000 0.000 1.17E 0.000 1.3E- 2.42E 2.92E 5.21E 8.45E 3.3E- 0.000 2.53E

Ttest -06 -06 -06 145 26 143 05 434 05 -06 -06 -06 -05 05 331 -05
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15x1115x11 15x11
Med Med Med
Sobel Sobel Sobel

5

1086_1 5.80
1089_4 3.19
2710_1 4.27
2712 1 2.53
1087_2 2.91
1088_4 2.29
1090_3 2.41
1087_3 3.01
1088_1 3.64
1089_1 3.16

7

5.74
3.70
4.46
2.98
3.68
2.60
2.81
3.19
3.81
4.02

11

5.50
5.50
6.22
3.69
4.77
3.56
3.89
3.86
5.33
5.92

15x1 15x2 15x2 15x2 15x2

1 1

Med Med Med Med Med
Sobel Sobel Sobel Sobel Sobel

21 3
9.20 3.59
7.74 2.84
10.64 2.10

4.61
6.65
9.43
9.92
6.39
7.96
5.52

2.65
2.46
2.16
2.39
3.98
2.73
3.48

1

7
3.93
3.41
2.46
3.36
2.76
2.33
2.57
3.37
3.27
4.12

1

11
4.55
4.47
8.36
8.38
3.67
2.98
3.10
3.37
5.14
5.78

1

21 O

8.46 4.49
6.02 3.22
12.46 5.10

5.12
5.90
9.05
4.55
7.19
7.52
3.65

4.21
6.98
6.16
3.12
7.90
5.48
6.07

7

4.94
3.72
5.39
4.34
7.30
6.72
3.36
7.73
6.22
6.38

11

6.27
6.26
6.85
4.58
8.66
8.30
4.17
7.19
8.40
7.19

21 5

791 6.55
10.56 6.56
9.96 7.52
4.00 4.64

7

6.79
7.39
7.90
4.47

11

741
9.44
8.98
4.16

21

8.81
9.28
8.33
4.35

7.90 10.98 11.28 12.22 7.68

10.18 9.17

5.40
4.46
6.51
5.76

4.57
7.70
8.96
7.71

9.32
4.65
7.07
8.86
7.51

Gaus Gaus Gaus Gaus Gaus Gaus Gaus Gaus Gaus Gaus Gaus Gaus
var9 var 9 var 9 var9 varl6 varl6 varl6 varl6 var25 var25 var25 var25
Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel Sobel

5 7 11 21

732 738 7.71 10.83
12.25 11.88 11.36 8.30
10.06 9.93 10.07 7.37
452 422 397 523
13.07 11.74 9.38 8.02

10.32 10.02 11.44 11.30 11.51 10.64

5.04
6.18
9.42
6.93

5.32
4.78
5.98
6.42

5.63
5.73
9.74
6.56

5.42
5.32
9.87
6.22

5.40
4.72
7.83
5.62

5.50
4.37
6.47
7.83

Mean 3.32 8.33 7.76 7.46

Std
Dev

Std
Error

370 483 7.81 284 3.16 498 699 527 561 6.79 726 7.44 752 801 7.10 8.63

105 092 100 199 063 061 1.99 256 155 150 1.52 240 1.99 204 250 1.99 3.05 293 276 2.15

0.33 0.29 031 0.63 020 0.19 0.63 0.81 049 047 048 0.76 0.62 0.64 0.79 0.63 0.96 0.92 0.87 0.68

0.001 0.000 1.04E 6.55E 0.000 9.43E 0.000 7.41E 8.99E 3.51E 1.24E 5.96E 5.12E 7.09E 2.54E 1.93E 6.22E 6.52E 8.18E 2.19E
Ttest 3 18 05 -06 20 -05 449 05 -06 -06 -06 -05 -06 -06 -05 -05 -05 -05 -05 -05

The effects of the 5x5 and 21x21 Sobel operator on the various filter types and sizes are
displayed in Figure 16 for comparison with the effects on the original, unsmoothed
image. The smoothing steps helped create more continuous abdominal wall edges and

less image noise as opposed to the original CT volume.
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Figure 16. Sobel operator results using kernel sizes of 5x5 versus 21x21 on raw CT, 2D
Median 15x15 and 21x21, 3D Median 15x15x3, and Gaussian smoothed volumes of
variances 9 and 25.

Discussion

As stated previously, 2D low-pass filtering results demonstrate improved CNR for ADR
and median kernels of 7x7 and greater, and at Gaussian variances of 4 and higher. At
larger kernel sizes for the ADR filter, it can be observed that the outer boundary values
are not preserved fully, such as in Figure 6. This affects lean mice more significantly, as
these mice have lower amounts of fat throughout their bodies, including subcutaneous fat.
Therefore, the abdominal wall was affected in lean mice, such as mouse 2712_1, at larger
kernel sizes, as can be observed in a negative CNR found in Table 2 at the 21x21 kernel

size. This could have resulted due to a partial-volume effect whereby non-abdominal wall
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tissue was averaged into the abdominal wall region for the ROI analysis. The same
phenomena was also observed for the largest 2D median kernel size of 21x21 and the 2D
Gaussian with variance of 25 on the same lean mouse (2712_1). This could be due to the
fact that mouse 2712_1 is the leanest mouse within the sample, weighing at 19.96 g. With
so little fat, it is difficult to discriminate between the outer skin boundary and abdominal
wall, or even find a fat tissue region for the ROI calculation. The 2D 15x15 and 21x21
median, 3D median with depths of 3, 5, 11 and 21, and Gaussian filters of variances 9,16,
and 25 were chosen to be evaluated for the Sobel operator based on both the CNR results
and general image appearance. Higher Sobel kernel sizes demonstrated better results,
with the 11x11 and 21x21 kernel sizes resulting in thicker, more continuous edges along
the abdominal wall. The next steps for the remainder of my time at Genentech will be to
complete the Canny steps with non-maximum suppression, double thresholding and edge
tracking by hysteresis. In addition to completing the remainder of the 5 Canny steps, my
future steps include the application of morphological filtering to segment out the visceral
and subcutaneous fat compartments. In addition, the start and stop slice selection would
be automated in order to fully automate the algorithm.

Conclusion

This study aimed to develop methods to aid edge detection for the proper segmentation of
visceral and subcutaneous fat from micro-CT volumes. The median and Gaussian
smoothed images showed the greatest promise when used in conjunction with larger
Sobel kernel sizes. Future applications of this algorithm would be to automatically assess
fat depots for use in longitudinal studies of adipose development, as central obesity is

associated with increased risk for diabetes, hypertension and heart disease.
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