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Abstract. Heider’s balance theory is ubiquitous in the field of social
networks as an explanation for why we so frequently observe symmetry
and transitivity in social relations. We propose that Simmelian tie the-
ory could explain the same phenomena without resorting to motivational
tautologies that characterize psychological explanations. Further, while
both theories predict the same equilibrium state, we argue that they sug-
gest different processes by which this equilibrium is reached. We develop
a dynamic exponential random graph model (ERGM) and apply it to
the classic panel data collected by Newcomb to empirically explore these
two theories. We find strong evidence that Simmelian triads exist and
are stable beyond what would be expected through Heiderian tendencies
in the data.

1 Heider’s Balance Theory

One of the central questions in the field of network analysis is: How do networks
form? A cornerstone to our understanding of this process from a structural point
of view has been Heider’s (1946) theory of balance[1]. According to this theory,
a person is motivated to establish and maintain balance in their relationships.
What constitutes balance has been the subject of some debate (e.g., [2, 3]), but
the core principle has survived and underlies many of our attempts to model
this process of network formation (see, for example, [4]).

Heider’s (1946) original formulation of balance theory was broad, including
people’s attitudes towards objects and ideas, not just towards other people. The
unifying argument was that people felt comfortable if they agreed with others
whom they liked; they felt uncomfortable if they disagreed with others they liked.
Moreover, people felt comfortable if they disagreed with others whom they dis-
liked; and people felt uncomfortable if they agreed with others whom they liked.
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Heider noted we can represent like and agreement as positive sentiments, and
dislike and disagreement as negative sentiments. Considering all combinations of
such sentiments among “entities”, be they people or objects, Heider simplified
the predictions of the theory. “In the case of two entities, a balanced state exists
if the relation between them is [mutually] positive (or [mutually] negative.... In
the case of three entities, a balanced state exists if all three relations [among the
three entities] are positive..., or if two are negative and one positive” (p. 110).

Even in his first paper, Heider noted that in the case where one was considering
“entities” as people, then two special properties of balance emerge: symmetry
and transitivity. In his terminology, positive affect from one person (p) to another
(o) was indicated by “pLo”. As noted above, Heider affirms symmetry is basic
to balance. His claim for transitivity was more qualified but nonetheless explicit:
“Among the many possible cases [of relations among three people, p, o and q]
we shall only consider one. (pLo) + (oLq) + (pLq)... This example shows ... the
psychological transitivity of the L relation [under conditions of balance]” (p. 110).

The other critical tenet in Heider’s original formulation was that balance
predicted dynamics. Heider’s claim was that balance was a state of equilibrium.
Imbalance was a state of disequilibrium that would motivate an individual to
change something (either a relation or an attitude) that would result in a move
toward balance.

It was Cartwright and Harary[5] who first made explicit the connection be-
tween Heider’s cognitive balance theory and mathematical graph theory. They
demonstrated how the principles of balance could be represented by a signed
directed graph. Further, by applying the principles of graph theory, they demon-
strated how an entire digraph could be characterized as balanced or not depend-
ing on the product of the signs of each of its semicycles (or, equivalently, whether
semicycles had an even number of negative ties). This extension became the seed
for a series of papers and books, each building on Heider’s original ideas to study
social network structures.

In a series of papers by Leinhardt, Holland and Davis, two critical extensions
to this work were developed (see [6], for a spirited review). First, there was the
general recognition that most network data, if not actual relations among a set
of individuals, were restricted to measurements of positive ties and not negative
ties. Thus, they began to look at how balance could be re-thought of as a set of
positive-only relations. The concept of transitivity became the dominant theme
in these papers. Imbalance was viewed as represented by intransitive triples in
the data (cases where i → j and j → k and not i → k), rather than the number
of negative ties in any semicycle. Balance was viewed as holding if the triple was
transitive (or at least vacuously so).

Second, and equally important, they recognized that structures were hardly
ever perfectly balanced. The question, they argued, is not whether structures
were perfectly balanced but rather whether structures tended toward balance,
beyond what one would expect by random chance given certain basic features
of the graph. They developed a set of distributions and statistical tests for as-
sessing these tendencies and discovered that, indeed, most observed structures
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show very high degrees of transitivity, relative to chance [7, 8], 1981). This work
has remained influential to this day, such that new analyses of balance in any
network routinely look at the degree of transitivity (and reciprocity) as measures
of balance [4, 9].

2 Simmelian Tie Theory

Simmel, writing at the very start of the 20th century, had a different view of
the role of relationships in social settings. He began by noting that the dyad,
the fundamental unit of analysis for anyone studying relationships, including
social networkers, was not the best focus for understanding social behavior.
Indeed, he argued that before making any predictions about how two people
in a relationship might behave, it is important to understand their context.
The context, Simmel continues, is determined by the set of third others who
also engage in various relationships with the two focal parties. In other words,
Simmel argued that the triad, not the dyad, is the fundamental social unit that
needs to be studied.

At the turn of the last century, Simmel provides several theoretical rationales
for proffering the triad as the basic social unit ([10]: p. 118-169). Primary among
these is that the dyad in isolation has a different character, different set of expec-
tations and demands on its participants, than the dyad embedded in a triad. The
presence of a third person changes everything about the dyadic relationship. It
is almost irrelevant, according to Simmel, what defines a relationship (marriage,
friendship, colleague); Simmel (p. 126-127) even goes so far as to say that “inti-
macy [the strength or quality of a relationship] is not based on the content of the
relationship” (emphasis his). Rather, it is based on the structure, the panoply of
demands and social dynamics that impinge on that dyad. And those demands
are best understood by locating the dyad within its larger context, by finding the
groups of people (of at least three persons) that the dyadic members belong to.

Simmel articulates several features that differentiate what he terms the “iso-
lated dyad” from the dyad embedded in a threesome. First, the presence of a
third party changes the nature of the relationship itself. Members of a dyad ex-
perience an “intensification of relation by [the addition of] a third element, or
by a social framework that transcends both members of the dyad” (p. 136).

Similarly, members of a dyad are freer to retain their individuality than mem-
bers of a group. “[A dyad by itself] favors a relatively greater individuality of
its members.... [W]ithin a dyad, there can be no majority which could outvote
the individual.” (p. 137). Groups, on the other hand, develop norms of behavior;
they develop rules of engagement. Individuality is less tolerated in a group, and
conformity is more strongly enforced.

Conflict is more easily managed within a triad than in a dyad. Dyadic con-
flict often escalates out of control. The presence of a third party can ameliorate
any conflict, perhaps through mediation, or perhaps simply through diffuse and
indirect connection. “Discords between two parties which they themselves cannot
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remedy are accommodated by the third or by absorption in a comprehensive
whole” (p. 135).

Perhaps most central to Simmel’s idea about triads is that groups develop an
identity, a “super-individual unit” (p. 126). It is a social unit that is larger in
meaning and scope than any of its individual components. A consequence of this
super-individual identity is that it will outlast its members. That is, people may
leave, they may even die, but the group is presumed to carry on. In a triad, the
emergent “super-individual unit ... confronts the individual, while at the same
time it makes him participate in it” (p. 126). In contrast, dyads by themselves
do not reflect this transition to a larger-than-self unit. The dyad’s existence is
dependent on “the immediacy of interaction” of the two members of the dyad
(p. 126). Once one person withdraws from the relationship, the dyad ceases to
exist. “A dyad... depends on each of its two elements alone — in its death, though
not in its life: for its life, it needs both, but for its death, only one” (p. 124).
Thus, he argues, the presence of a third party creates a qualitatively different
unit of identity, one that is more stable over time, and one that is more difficult
to extricate oneself from.

Finally, Simmel also notes that, while triads are the smallest form of group,
increasing group size does not significantly alter its critical features. “[T]he ad-
dition of a third person [to dyads] completely changes them, but ... the further
expansion to four or more by no means correspondingly modifies the group any
further” (p. 138).

Thus, a triad is substantively different from a dyad. The triad is the small-
est form of a group. But its existence transforms the nature of all its dyadic
constituencies in several important ways. It makes the relationships stronger; it
makes them more stable; it makes them more controlling of the behavior of its
members.

2.1 Simmelian Ties and Simmelian Decomposition

The foregoing line of Simmelian reasoning suggests that knowing the specific
content, nature and strength of a relationship between pairs of people is insuffi-
cient to understand the dynamics that might emerge in a social system. Even at
the dyadic level, it is critical to know whether any particular dyad is embedded
in a group.

To explore the implications of Simmel’s theory, Krackhardt[11] proposed using
graph theoretic cliques [12] to identify groups. He then defined a Simmelian tie
as a tie that was embedded in a clique. Formally, given a directed graph R such
that Ri,j = 1 implies the directed arc i → j exists in R, then Ri,j is defined as
a Simmelian tie if and only if the following are all true:

Ri,j = 1

Rj,i = 1

∃k | Ri,k = 1 ∧ Rk,i = 1 ∧ Rj,k = 1 ∧ Rk,j = 1
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Gower [13] and more specifically Freeman [14] developed a method of
decomposing networks into two components: asymmetric (or specifically “skew-
symmetric” in their terminology) and symmetric. Freeman showed that by doing
so one could capture more clearly the hierarchy that existed in the network data.
Krackhardt extended Freeman’s idea by proposing that a directed graph of net-
work ties could be decomposed into three mutually exclusive and exhaustive
types: asymmetric, sole-symmetric and Simmelian[11]. These types are defined
on a directed graph R:

Ri,j =

⎧
⎪⎨

⎪⎩

Asymmetric, if Ri,j = 1 ∧ Rj,i �= 1;
Sole-Symmetric, if Ri,j = 1 ∧ Rj,i = 1 ∧ Ri,j is not Simmelian;
Simmelian, if Ri,j meets definitional conditions above

2.2 Evidence for the Strength of Simmelian Ties

Since this definition of Simmelian Tie was proposed, several studies have emerged
testing various elements of Simmel’s theory. Krackhardt [11] re-analyzed the data
collected by Newcomb[15] to determine the stability of Simmelian ties relative
to asymmetric and sole-symmetric ties. Newcomb had collected network data
among a set of 17 college students assigned to live together in a fraternity house.
In exchange for reimbursement for living expenses, each student filled out a
questionnaire each week for 15 consecutive weeks (except for week 9, where the
data were not collected). The network question asked each student to rank order
all the remaining 16 students based on how much he liked the others.

For purposes of his analysis, Krackhardt[11] dichotomized these rankings at
the median: a relatively high ranking of 1-8 was coded as a 1 (the tie exists);
a relatively low ranking of 9-16 was coded as a 0 (the tie does not exist). He
then asked the question, which ties have a higher survival rate: asymmetric ties,
sole-symmetric ties, or Simmelian ties?

To address this question, he plotted the conditional probabilities that a tie
would appear again after Δ weeks, where Δ ranged from 1 week to 14 weeks. That
is, given that a tie of a particular type (asymmetric, sole-symmetric, Simmelian)
existed at time t, what is the probability that a tie (of any type) will exist at
time t + Δ?

His results are reproduced in Figure 1. As can be seen in the graph, ties
that were initially embedded in cliques (Simmelian ties) were substantially more
likely to survive over time than either asymmetric or sole-symmetric ties. Sim-
melian ties survived at a rate hovering around .9 for up to 4 weeks, and de-
cay to a rate of near .7 over a 14 week gap. In contrast, both asymmetric ties
and sole-symmetric ties survived at a rate of .8 over 1 week’s time, dropping
quickly to a rate of .7 after 3-4 weeks, and continued down to about .5 after
14 weeks. Clearly, Simmelian contexts provided a substantial survival advantage
for ties.

An interesting aside here was that over a large range of time lags (from about
6 to 12 weeks lag), asymmetric ties were considerably more durable than sole-
symmetric ties. One possible interpretation of this is that reciprocity in ties, one
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Fig. 1. Stability of Tie Types

of the key elements in Heider’s balance theory, led to relative stability only when
such ties were embedded in Simmelian triads.

However, Krackhardt did not provide any inferential tests for his results, a
shortcoming we will return to later.

A second study[16] explored how much information was contained in Sim-
melian ties compared to raw ties (un-decomposed ties). The firm being studied

Fig. 2. Role Analysis Based on Raw Ties
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had 36 employees, 15 of which were involved in a unionization effort. Some of
the people involved were in favor of the union; some were against it. Some were
vocal about their positions; some were quiet. He was able to demonstrate that
the dynamics in the union drive and the subsequent defeat of the union was
explained by observing how several key supporters of the union were “trapped”
in Simmelian ties that kept them from freely expressing their views.

As part of this analysis, Krackhardt examined structurally equivalent role
sets for the 36 employees [17]. He noted how clearly these roles emerged in the
analysis of the Simmelian relations. What he failed to do was compare these
roles to what would have been found had he analyzed the roles uncovered in the
raw data.

We have re-analyzed his data (Figures 2 and 3) to make this comparison.
Figure 2 provides the dendrogram for the role analysis for the raw data, as is
typically done in role analysis in network data. The critical values on the left
(vertical axis) represent correlations indicating how similar the roles are that
people occupy at that particular cutoff level. What is clear from the analysis of
the raw data in this figure is that roles are not coherent. To reach even a modest
.3 correlation, the 36 people had to be divided up into 14 different roles. With an
average of only a little over 2 people in each role, we learn very little about how
role constraints based on the raw data may be playing a part in understanding
the union dynamics here.

Fig. 3. Role Analysis Based on Simmelian Ties
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Figure 3 conducts the same analysis on the Simmelian ties. In contrast to the
dendrogram in Figure 2, the correlations show a much better fit with fewer roles.
Indeed, collapsing the 36 employees into 5 roles (an average of over 7 people per
role) yields an average role similarity correlation of .42, a marked improvement
over what was observed in the role analysis for raw data. A reasonable interpreta-
tion of these results suggests that raw data are noisy, making them difficult to see
systematic patterns of roles and role constraints. Simmelian data appear much
cleaner, crisper, suggesting that they could provide the informational backbone
for structural analysis.

Thus, we have evidence that Simmelian ties are more stable, and that they
provide a stronger, clearer picture of certain structural features in the network.
However, again, these are descriptive measures. There is no stochastic model
here, and hence no statistical framwork within which we can assess the extent
to which these results may be statistical artifacts or perhaps not different from
what we would expect by chance. Moreover, these results tell us little about the
dynamics of the process of network formation.

3 Dynamic Model Comparison of Heider and Simmel

We return to the central question we started with. What are the forces that
seem to help us understand how networks form? We have presented two possible
models, competing in their explanations of network dynamics. Both Heider and
Simmel are similar in that they “predict” that one should observe many cliques
(symmetric and transitive subgraphs). But their motivational underpinnings and
their subtle dynamics are radically different.

Heider’s model is a psychologically based one. People are motivated to right an
imbalance (asymmetric pair or pre-transitive triple) to make it balanced (sym-
metric and transitive). Once balance is reached, people are said to have reached
an equilibrium state and are motivated to maintain that balance. Simmel’s the-
ory, by contrast, rests in a sociological, structural explanation for the existence
of symmetric and transitive triples. Cliques, once formed, become strong and
stable; they resist change. However, there is no inherent motivation to form
cliques. It’s just that, once formed, the ties enter a phase that simultaneously
increases their strength and reduces their propensity to decay over time. Thus,
one could easily predict an equilibrium for each model that would be the same
— dominance of symmetric pairs and transitive triples.

To see which model may better represent the real world, we re-analyzed the
Newcomb data. These data provide an opportunity to not only see where the
equilibrium might be headed but also to uncover what the actual dynamics are
that form the pathway to that equilibrium.

We consider exponential random graph (ERG) models for the network. This
class of models allow complex social structure to be represented in an inter-
pretable and parsimonious manner [18, 19]. The model is a statistical exponen-
tial family for which the sufficient statistics are a set of functions Z(r) of the
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network r. The statistics Z(r) are chosen to capture the hypothesized social
structure of the network [20]. Models take the form:

Pθ(R = r) =
exp (θ·Z (r))

∑
s∈R exp (θ·Z (s))

, (1)

where R is the set of all possible networks and θ is our parameter vector. In
this form, it is easy to see that

∑
s∈R exp (θ·Z (s)) normalizes our probabilities

to ensure a valid distribution. Inference for the model parameter θ can be based
on the likelihood function corresponding to the model (1). As the direct com-
putation of the likelihood function is difficult, we approximate it via a MCMC
algorithm [21].

The parameter corresponding to a statistic can be interpreted as the log-
odds of a tie conditional on the other statistics in the model being fixed. It is
also the logarithm of the ratio of the probability of a graph to a graph with
a count one lower of the statistic (and all other statistics the same). Hence a
positive parameter value indicates that the structural feature occurs with greater
frequency than one would expect by chance (all else being fixed). A negative
value indicates that the particular structural feature appears less than one would
expect by chance.

The space of networks R we consider for the Newcomb data are those that
satisfy the definition of Section 2.2. Each student has exactly 8 out-ties. Hence
the density and out-degree distribution of the network are fixed. To capture the
propensity for a network to have Heiderian ties and triads we use two statistics:

Z1(r) = number of symmetric dyads in r (2)

Note that the number of edges in the graph is fixed at 17× 8 = 136 and:

number of edges = Z1 + number of asymmetric dyads (3)

and the total number of dyads is
(
17
2

)
= 136 so

number of asymmetric dyads = 136− Z1

number of null dyads =
1
2
Z1

number of symmetric dyads = Z1

Hence Z1 is sufficient to represent the Heiderian dyad census. To represent Hei-
derian triads we incorporate the statistic:

Z2(r) = number of Heiderian (i.e., transitive) triads in r

To capture the propensity for the network to have Simmelian triads we incorpo-
rate the statistic:

Z3(r) = number of Simmelian triads in r,

that is, the number of complete sub-graphs of size three.
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Fig. 4. Simmelian and Heiderian Statistics for the Newcomb Networks over Time. The
number of Heiderian triads to divided by two to keep it on a common scale.

A model with this sample space R controls for density and for individual
out-degree patterns.

Figure 4 plots the three statistics for each of the 14 networks. The number
of Heiderian triads generally increases over time with a larger rise in the initial
weeks. The number of symmetric dyads jumps up, but is not generally increasing
or decreasing. The number of Simmelian triads rapidly increases for the first five
weeks and then is generally flat pattern. These descriptions can be supported
by the confidence intervals for the parameters these statistics represent (not
shown).

Traditional ERGM models use such parameters as static structural features.
In our case, we are concerned about the transition from a state at time t and
the subsequent state at time t + 1. Thus, we introduce a dynamic variant of the
above model:

Pθ(R(t+1) = r(t+1)|R(t) = r(t)) =
exp

(
θ(t+1)·Z (

r(t+1); r(t)
))

∑
s∈R exp

(
θ(t+1)·Z (

s; r(t)
)) t = 2, . . . , 15,

(4)
where R is still the set of all possible networks with each student having out-
degree four and θ(t+1) is our parameter vector for the t to t + 1 transition.
The network statistics Z

(
r(t+1); r(t)

)
indicate how the network (statistics) at

time t + 1 depend on the state at time t. This general model is adapted to the
Newcomb data via two additional statistics dynamic statistics:
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Z4(r(t+1); r(t)) = number of pre-Heiderian triads in r(t)that are Heiderian
in r(t+1)

Z5(r(t+1); r(t)) = number of Simmelian triads in r(t)that persist in r(t+1)

The first follows the dynamics of pre-Heiderian (imbalanced) triads from time t
to time t+1. If there is a Heiderian process evolving we expect to see an increased
propensity for the formation of Heiderian triads from their pre-Heiderian states
(all else being equal). The second follows the dynamics of Simmelian (complete
triples) triads from time t to time t + 1. If there is a Simmelian process evolving
we expect to see persistence of Simmelian triads (all else being equal). Note
that this allows a distinct process of Simmelian formation not controlled by this
parameter. By including these statistics in the model, we can follow the dynamics
in the Newcomb data to see how states transitioned from a non-balanced state
and the stability of Simmelian state once formed.

Fig. 5. The persistence of Simmelian triads and the formation of Heiderian triads for
the Newcomb Networks over Time

Figure 5 plots the two dynamic statistics over the 14 weeks of data. We clearly
see the increase persistence of Simmelian triads over time and the decreasing
formation of Heiderian triads over time. Both these effects are strongest in the
early weeks with a possible increase in the final weeks.

Both the cross-sectional and dynamic models and figures present overall Hei-
derian and Simmelian effects. To understand the interactions we consider the
joint effects through the parameters of a dynamic model. Consider the model (4)
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Fig. 6. The joint effects of the persistence of Simmelian triads, Heiderian dyadic bal-
ance, and the formation of Heiderian triads for the Newcomb networks over time. The
values plotted are the maximum likelihood estimates of the parameters of model (4)
for t = 2, . . . , 15.

with statistics Z1, Z4 and Z5. These measure the overall level of Heiderian dyads
and the dynamics of the two processes. The maximum likelihood estimator of
the parameter θ(t+1) was estimated for t = 2, . . . , 15.

Figure 6 plots the parameters over the 14 weeks of data. It is important
to note that these measure the simultaneous joint effect of the three factors.
Consider the formation of Heiderian triads. We see that is positive for each time
point indicating that Heiderian formation is substantively higher than due to
chance. It is also modestly increasing over time indicating that the propensity
for formation is modestly increasing even in the presence of the other structural
factors. The pattern for the Simmelian persistence is also positive indicating
substantially more persistence of Simmelian triads than expected due to chance
even adjusting for the Heiderian triadic and dyadic effects. This has an early peak
in the fifth week and appear to be increasing in the last weeks. Both these effects
are confirmed by the confidence intervals for the parameters (not shown). Finally,
the overall presence of Heiderian dyads is not significantly different from the
random process. This is confirmed by the confidence intervals for the symmetric
parameter, and also indicated by the point estimates arranged about zero.

All analyses in this section were implemented using the statnet package for
network analysis [22]. This is written in the R language [23] due to its flexibility
and power. statnet provides access to network analysis tools for the fitting, plot-
ting, summarization, goodness-of-fit, and simulation of networks. Both R and the
statnet package are publicly available (See websites in the references for details).
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4 Conclusion

There have been reams of evidence for the frequent occurrence of symmetric and
transitive structures in naturally occurring networks. Most of this work has been
motivated by Heider’s theory of balance. While Simmel’s work is well-known
among sociologists, little attention has been paid to his possible explanation of
the same phenomena.

We have outlined how Simmel’s theory, without resorting to any psychologi-
cal motivations, can be used to predict the same structures as Heider’s theory.
Indeed, one would expect the same states from each model in equilibrium. But,
the dynamics which reach these final states are substantially different. Statisti-
cal evidence from the Newcomb data suggest that Simmel’s description of the
evolution of these structures is a better fit with the data than Heider’s.

The results of the dynamic modeling of the Newcomb data (Figure 6) indicate
that Simmelian structures are important to the dynamics in the Newcomb data
even when Heiderian dynamics and propensity have been accounted for. Thus
the tendency to form Simmelian ties that persist most strongly and significantly
throughout time is not just a by-product of a Heiderian process, but exists above
and beyond that. The results also indicate that the overall level of Heiderian
balance is a product of the dynamic formation of Heiderian triads from pre-
Heiderian triads (above and beyond that naturally induced by the numbers of
pre-Heiderian triads that exist at that point in time).

The results here are not conclusive. The Newcomb data are limited in their
generalizability. But they are suggestive. Perhaps the dynamics that we have
attributed all these years to Heider and balance theory are at least in part
due to a completely different theory, a structural theory more consistent with
Simmel’s interpretation of structural dynamics.
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