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Abstract of the Thesis Proposal

A Posterior Predictive Model Checking Method

Assuming Posterior Normality for Item

Response Theory

by

Megan Rebecca Kuhfeld

Master of Science in Statistics

University of California, Los Angeles,

Professor Qing Zhou, Chair

This study investigated the violation of local independence assumptions within

unidimensional item response theory (IRT) models. IRT models assume that for

a given value of the latent variable θ, the value of any observed variable is condi-

tionally independent of all other variables. Violation of this assumption can bias

item parameter estimates and latent trait scores. There are two existing classes

of procedures to check for local dependence (LD): (a) frequentist model appraisal

methods that rely on the expected and observed bivariate item frequencies, and

(b) posterior predictive model checking (PPMC) methods, which are a flexible

family of Bayesian model checking procedures. The advantages of the PPMC

method is that it accounts for parameter estimation uncertainty and does not

require asymptotic arguments. Given the current dominance of maximum likeli-

hood approaches for the estimation of IRT models, I propose a posterior predictive

model checking method for evaluating LD in IRT models that can be implemented

using only byproducts of likelihood-based estimation. This approach, which relies

on a posterior normality approximation, was found to be comparable to the fully

Bayesian PPMC approach in terms of the sensitivity to local dependence in IRT

models.
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CHAPTER 1

Introduction

Statistical models are fit to data in an attempt to understand a set of complicated

processes underlying the phenomena of interest. In applications within the social

sciences, it is well known that any model is merely an approximation to reality.

Psychometric models, such as factor analysis and item response theory models,

are constructed around the hypothesis of a parsimonious set of latent factors

that explain the relationship between observed scores or item responses. These

models generally impose a large set of restrictions and assumptions regarding the

distribution of observed variables and how variables are allowed to relate to each

other. Given that these models are simplifications of underlying processes, it is

important to evaluate the fit of the model in terms of the proposed structure of

the data that the model implies. That is to say, the central focus of the assessment

of data-model fit is characterizing the discrepancy between the observed data and

the model-implied structure of the data.

Traditional item response theory (IRT) models specify a single continuous

latent variable θ that explains the probability of endorsing a set of dichotomous

or polytomous item responses, with the goal of representing individual differences

on a psychological, behavioral, or educational construct. Accurate estimation of

item parameters and the inferences made based on the estimates of θ depend on

the degree to which the unidimensionality assumption holds in the observed item

response data. The key implication of unidimensionality within item response

theory is the conditional (or local) independence assumption. Local independence
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means that for a given value of the latent variable θ, the joint probability of correct

responses to an item pair is the product of the probabilities of correct responses

to the two items,

P (yj = 1, yk = 1|θ) = P (yj = 1|θ)P (yk = 1|θ), (1.1)

where j and k index items, yj is the observed response to item j.

However, there are many situations where this assumption is unlikely to hold.

For example, items within a reading assessment that follow the same passage

are likely to exhibit local dependence (LD). Clusters of items with overly sim-

ilar meaning or phrasing may also violate the assumption of unidimensionality.

Additionally, many psychological assessments are designed to measure an overall

dimension (e.g., general health), but also are intended to measure sub-domains

such as eating habits, sleep issues, and depression, which would result in LD if

the sub-dimensions are not explicitly modeled.

The problem with locally dependent items is that ignoring local dependence

can result in biased item parameter estimates (Chen & Thissen, 1997). As a result,

local dependence can lead to poor estimation of the individual latent construct

(Zenisky, Hambleton, & Sireci, 2002) and over estimation of the IRT information

and test reliability (Sireci, Thissen, & Wainer, 1991).

There are two parallel lines of research for detecting local dependence that

are used in the context of the two different IRT parameter estimation methods:

frequentist estimation (e.g., using maximum likelihood) and Bayesian estimation.

A full comparison of the theory, rationale, and assumptions of maximum likelihood

and Bayesian estimation methods is beyond the scope of this paper (see Cai and

Thissen (2015) and Fox (2010) for overviews). Instead, I focus on comparing and

contrasting the model fit procedures specifically related to the examination of

local dependence within each estimation framework.
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Numerous indices and statistics for detecting local dependence have been pro-

posed for IRT models estimated using maximum likelihood. Houts and Edwards

(2013) provide an overview of the commonly-used IRT-based tests of local depen-

dence. These include Yen’s (1984) Q3 statistic, Chen and Thissen’s (1997) use of

the Pearson’s χ2 and the likelihood ratio statistic G2, and Ip’s (2001) suggestion

to use the Mantel-Haenszel (MH) test with multiple testing corrections. These

statistics are estimated based on a process that involves fitting a unidimensional

IRT model to the data, and then comparing the observed responses with the

model-expected responses.

Within Bayesian estimation, there is a promising set of model assessment

techniques involving posterior predictive model checking (PPMC; Meng, 1994;

Gelman, Meng, & Stern, 1996). The PPMC approach investigates the compati-

bility of a posited model to observed data by assessing the features of the observed

data in relation to the model’s implications. Replicated data can be simulated

from a fitted model, and are referred to as posterior predictive data since values

are drawn conditional on the observed data. PPMC compares the observed data

with replicated data using a predefined test quantity, also known as discrepancy

measure, which is a function of both the data and the parameters (Gelman et al.,

1996). The assumption behind PPMC is that any systematic differences between

the two data sets indicate a failure of the model to explain those aspects of the

data.

This model-checking method requires the researcher to simulate draws from

the full posterior distribution of the model parameters, which is straight-forward

when one uses Bayesian sampling-based methods (e.g., Markov chain Monte Carlo

(MCMC) estimation; Gilks, Richardson, & Spiegelhalter, 1996). Sinharay, John-

son, and Stern (2006) and Levy (2006), among others, have demonstrated the

PPMC method to assess local dependence in item response theory models using

various discrepancy measures, including the Pearson’s χ2, Mantel-Haenszel (MH)
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statistic, and the likelihood ratio G2.

While the same general set of discrepancy measures are used in the maximum

likelihood and Bayesian examination of local dependence, the procedures and

underlying assumptions are quite different. Frequentist approaches for assessing

model fit evaluate the discrepancy between the observed data and the hypothe-

sized model when the unknown model parameters are replaced by the best-fitting

point estimates. There are two central problems with this approach. The use of

point estimates for the unknown parameters in model fit assessment understates

the uncertainty in the sampling distributions of discrepancy measures (Meng,

1994). Secondly, the null sampling distributions for most discrepancy statistics in

likelihood model fit approaches are justified only asymptotically, which may not

be tenable in real data situations.

By contrast, the PPMC method is a simulation-based model checking method

that does not require asymptotic arguments. When the plausible values of the data

can be drawn from the posterior predictive distribution, empirically constructing

reference distributions of test quantities does not present a problem. Furthermore,

the PPMC methods integrates parameter uncertainty into model fit assessment

through the use of the posterior predictive distribution.

1.1 Rationale for this study

The PPMC method has multiple advantages over frequentist approaches to check

for the local independence. However, maximum likelihood methods for parameter

estimation and model fit testing currently dominate the field of in item response

theory models, and the adoption of fully Bayesian approaches is likely to introduce

many new complexities for applied users of IRT. Without additional training,

both the specification of prior distributions and convergence monitoring of MCMC

may present large barriers to an applied researcher. The goal of this study is
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develop and evaluate a method that allows researchers to reap benefits of the

(inherently Bayesian) posterior predictive model checking method while using

likelihood estimation.

The current study expands upon an alternative PPMC method that was devel-

oped in the context of structural equation modeling (Lee, Cai, & Kuhfeld, 2016).

This method, termed the Poor Person’s PPMC method (PP-PPMC), employs

only byproducts of maximum likelihood estimation (e.g., the ML parameter esti-

mates and the associated asymptotic covariance matrix) in the estimation of the

replicated data. This method is based on a well-known result in Bayesian liter-

ature that asymptotically the likelihood tends to dominate the posterior shape.

Furthermore, for large samples, the estimated item parameters are approximately

normally distributed around the ML estimates, with the inverse of the Fisher

information matrix as the covariance matrix (Gelman, Carlin, Stern, & Rubin,

2003).

In this thesis, a posterior predictive model checking method assuming posterior

normality is outlined in the context of item response theory modeling, and then

employed in a series of Monte Carlo studies to test for local dependence when the

true data structure is multidimensional but a unidimensional model is fit to the

data. I chose to focus on LD indices, rather than overall model fit discrepancy

measures, because LD indices provide more valuable feedback regarding sources

of misfit than overall fit measures.

This work is significant because it is the first to bridge the disparate fields

of local dependence assessment within maximum likelihood and Bayesian esti-

mation. This study allows for the examination of the conditions under which a

simulation-based model checking method improves upon inferences made about

model fit using classical likelihood statistics. Additionally, I provide a comparison

of the posterior predictive model checking assuming posterior normality (PPMC-

N) method and the fully Bayesian PPMC method to demonstrate the extent to
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which the multivariate normal approximation of the parameter posterior mirrors

the estimated parameter posterior distributions.

The remainder of this thesis is organized as follows. First, item response theory

models for dichotomous item response data are introduced. Next, background on

the Bayesian PPMC method is provided, and two different likelihood-based poste-

rior approximations are introduced. Subsequently, a set of discrepancy measures

that can be used to detect LD within item pairs are described. A simulation

study is outlined to examine the performance of the normality assumption PPMC

approach compared to both a fully Bayesian PPMC approach and a frequentist

approach to detect violations of unidimensionality in the estimation of item re-

sponse theory models. The remaining sections describe and discuss the results and

implications of the simulation study, followed by conclusions and future directions.
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CHAPTER 2

Item Response Theory (IRT) models

In social and behavioral sciences, questionnaires or tests are often used to measure

traits that are not directly observable. Item-level data from surveys and tests

are generally categorical, with either dichotomous (yes/no, correct/incorrect) or

polytomous (for example, strongly disagree, disagree, neither agree nor disagree,

agree, strongly agree) item response formats. When items follow this response

format and the latent (unobserved) variables are assumed to be continuous, item

response theory (IRT) models are a flexible set of models that can be used to make

inferences about the latent variables (Mislevy, 1986; Bock, Gibbons, & Muraki,

1988).

First, some notation that is used throughout the chapter is introduced. Let

there be i = 1, ..., N independent respondents and k = 1, ..., n items. Let the

response from person i to item k be yki. It can be assumed that yki takes integer

values from {0, 1, ..., Ck − 1}, where Ck is the number of response categories for

item k. For this study, I only focus on dichotomous items (C = 2).

Let the n×1 vector of item responses for respondent i be yi = (y1i, ..., yki, ..., yni)
′,

and let Y be the matrix of all observed response patterns.

For this section, we assume that the assumption of unidimensionality holds for

the set of n items. The item response theory (IRT) model specifies the conditional

probability for the response to item k, given the individual’s latent trait level

θi. The two-parameter logistic (2PL) item response model is used specifies the

conditional response probability curve (or traceline) of a correct response as a

7



function of the latent variable θ and the item parameters (a and c):

P (yki = 1|θi, ak, ck) =
1

1 + exp[−(akθi + ck)]
(2.1)

where θi is the latent variable value for individual i, ak is the slope for item k, and

ck is the intercept for item k. The slope parameter ak describes the strength of the

relationship between item k and the latent variable θ. The intercept parameter

represent the boundary between the two response categories. For dichotomous

items, the probability of an incorrect responses is P (yki = 0|θ, ak, ck) = 1−P (yki =

1|θ, ak, ck).

2.1 Local Independence Assumption

Unidimensional item response theory models assume that the trait value explains

an examinee’s performance on a test, so when the latent trait is accounted for

in the model, item responses are independent. Pairwise local dependence can be

expressed as

P (yk = 1, yk′ = 1|θ) = P (yk = 1|θ)P (yk′ = 1|θ). (2.2)

for all k 6= k′, where k and k′ index two different items.

Previous researchers have distinguished between types of LD present among

items, which have differential effects on parameter estimation (Chen & Thissen,

1997). The two types of LD are underlying local dependence (ULD), which results

from unmodeled latent traits, and surface local dependence (SLD), which is due to

highly similar content or placement (Thissen, Bender, Chen, Hayashi, & Wiesen,

1992). Surface LD is defined by the probability πLD that the second item in the

LD pair will have a response identical to the first item. That is to say, for a set

portion of respondents given by πLD, the second response is determined completely
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by the first item within the item pair (y2 = 1 if y1 = 1, y2 = 0 otherwise). SLD is

generally seen as nuisance, while ULD can be seen as nuisance dimensions or as

evidence of the need for latent dimensions to be added to the model.

2.2 Parameter Estimation

The estimation of IRT item parameters is commonly conducted using full-information

estimation methods, which require the observed data to be arranged into a n-way

contingency table, where each of the n dimensions represents in a response to

a given item. Full-information approaches estimate the frequencies of each indi-

vidual response pattern (i.e., the frequencies within each cell of the contingency

table). The central methods for the estimation of IRT item parameters are full-

information maximum likelihood (FIML) estimation and Bayesian estimation.

2.2.1 Full-Information Maximum Likelihood (FIML) Estimation

Full-information maximum likelihood (FIML) method is the most commonly-used

method of estimation for item response theory models, and involves q-dimensional

integration over a multivariate distribution, where q is the number of latent di-

mensions in the model (Bolt, 2005).

For all items, let γ be the vector of all item parameters. The goal of the FIML

method is to find the set of parameters that would maximize the likelihood (or

log-likelihood) given the observed data.

Let Yki be a Bernoulli (0-1) random variable representing individual i’s re-

sponse to item k, where yki is a realization of Yki. The conditional probability of

the event Yki = yki is equal to

P (Yki = yki|θ,γ) = P (θ)yki [1− P (θ)]1−yki , (2.3)
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where P (θ) is the same as P (yki = 1|θ) defined in Equation 2.1. Given the as-

sumption of independence of observations across cases, the probability of response

pattern yi = (y1i, ..., yki, ..., yni)
′ is a product over individual item response prob-

abilities

P (yi|θ,γ) =
n∏
k=1

P (θ)yki [1− P (θ)]1−yki . (2.4)

The joint probability of the observed responses and latent variables θ is equal

to the product of the conditional probability of the observed variables given the

latent variable, multiplied by the prior probability p(θ) of the latent variable

P (yi, θ|γ) =
n∏
k=1

P (θ)yki [1− P (θ)]1−ykip(θ). (2.5)

In IRT applications, it is customary to assume that the latent variable θ follows a

standard normal distribution for parameter estimation, but this is not a require-

ment of the model. If we treat the item responses as fixed, the marginal likelihood

function for all the item parameters in γ, based on observed item response data

can be expressed as:

L(γ|Y) =
N∏
i=1

∫ n∏
k=1

P (θ)yki [1− P (θ)]1−ykip(θ)dθ. (2.6)

Because the marginal likelihood given in Equation 2.6 does not depend on the

unobserved θ values, it may be referred to as the observed data likelihood.

If we treat the item responses as fixed once observed, and also suppose the

latent variable scores were observed, we can write the complete data likelihood as

L(γ|Y,θ) =
N∏
i=1

n∏
k=1

P (θi)
yki [1− P (θi)]

1−ykip(θi), (2.7)

where θ is a vector containing all of the individual latent variable scores.

FIML estimation is typically done using either joint maximum likelihood (JML),
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conditional maximum likelihood (CML), or marginal maximum likelihood (MML)

procedures (Yen & Fitzpatrick, 2006). Of these, Bock and Aitkin’s (1981) marginal

maximum likelihood (MML) procedure is the most widely-used FIML estimation

method, and involves the Expectation-Maximization (EM) algorithm. Bock and

Aitkin (1981) approximate the marginal probability by replacing the integration

with a summation over a set of Q quadrature points

P (yi;γ) =

Q∑
q=1

n∏
k=1

P (θq)
yki [1− P (θq)]

1−ykiWq, (2.8)

where θq is a quadrature point, and Wq is the corresponding weight. If we assume

that the quadrature points are defined at .1 intervals from -6 to 6, the weights

can be estimated as set of normalized ordinates of the quadrature points from the

standard normal population distribution

Wq =
φ(θq)∑Q
q=1 φ(θq)

. (2.9)

In this approach, the latent variables are integrated out so that inferences are made

based on the marginal likelihood function. The Bock-Aitkin approach uses the

Expectation-Maximization (EM) algorithm developed by Dempster, Laird, and

Rubin (1977). Bock-Aitkin alternates between the following two steps from a set

of initial parameter estimates, say γ̂(0), and it generates a sequence of parameter

estimates that converges under some very general conditions to the maximum

likelihood estimate (MLE) of γ as the number of cycles b tends to infinity.

E-step. Given γ̂(b), evaluate the conditional expected complete data log-

likelihood.

M-step. Maximize the conditional expected proportion of individuals to

yield updated parameter estimates γ̂(b+1). Go back to E-step and repeat.
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When the estimates from adjacent cycles have stabilized, the estimation pro-

cess terminates.

2.2.2 Markov Chain Monte Carlo (MCMC) Estimation

Full information estimation may also be performed in a Bayesian framework,

in which a prior distribution is assumed for the parameters being estimated.

Bayesian estimation methods are based on Bayes’ theorem, which states that the

prior information combines with the information from the test (Y) to produce the

posterior distribution. The posterior distribution for θ and γ given the observed

data under the 2PL model is

P (θ,γ|Y) =
p(θ)p(γ)P (Y|θ,γ)∫

θ

∫
γ
p(θ)p(γ)P (Y|θ,γ)dθdγ

. (2.10)

Bayesian estimation is conducted using Markov chain Monte Carlo (MCMC) esti-

mation. MCMC is an iterative method that produces samples (“chain”) that are

drawn from each parameter’s posterior distribution. The most commonly used

MCMC estimation methods for IRT are the Metropolis-Hastings algorithm and

Gibbs sampling (Albert, 1992; Patz & Junker, 1999). Edwards (2010) provides

an overview of both algorithms within the context of item response theory, as well

as a comparison of these estimation methods with MML-EM.
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CHAPTER 3

Posterior Predictive Model Checking (PPMC)

Method

The posterior predictive model checking (PPMC) method is a widely-used Bayesian

model-checking method because it has a strong theoretical basis but is also easy

to implement when conducting Bayesian estimation (Sinharay et al., 2006). The

method primarily consists of comparing the observed data with replicated data

(those predicted by the model) using a number of discrepancy measures. Sys-

tematic discrepancies between the observed data set and the replicated data sets

indicate that the hypothesize model is failing to explain specific aspects of the

observed data.

The observed data is referred to as yobs, while the replicated data is denoted

yrep. In the Bayesian framework, we define the likelihood p(yobs|γ) for a model

applied to the data yobs, where γ denotes the set of parameters in the model. Let

p(γ) denote the prior distribution on the parameters. The posterior distribution

of the parameters given hypothesized model H is

p(γ|yobs, H) ∝ p(yobs|γ, H)p(γ). (3.1)

The hypothetical replicated data can be simulated from the posterior predictive

distribution, which is the conditional distribution of the replicated data yrep given

the observed data yobs and the model being tested, H. The general form of the

13



posterior predictive distribution is

p(yrep|yobs, H) =

∫
p(yrep|γ, H)p(γ|yobs, H)dγ. (3.2)

In Equation 3.2, there are two components: (a) p(yrep|γ, H): the sampling distri-

bution of the replicated data given the hypothesized model and parameters, and

(b) p(γ|yobs, H): posterior distribution of the model parameters under a given

model for the observed data. By integrating over the unknown model parameters

γ, the entire posterior distribution of the model’s parameters is accounted for in

the model fit checking procedures.

A graphical overview of the PPMC procedure can be seen in Figure 3.1. On

the left, we see the posterior distribution of the parameters, from which a large

number (L) of sets of plausible parameters γ1, ...,γL are drawn. For each plausible

parameter vector γ`, we draw one hypothetical replicate data set yrep,`, from the

sampling distribution p(yrep,`|γ, H). We then have L pairs of draws from the joint

posterior distribution of yrep and γ.

In order to measure the degree to which the observed data yobs and the repli-

cated data yrep are discrepant, test quantities T (y,γ), also known as discrepancy

measures, are defined to examine an aspect of discrepancy that is of interest. The

arguments of the discrepancy measure are a data set (observed or replicated) and

the model parameters. The test quantity T (yobs,γ), where the data is fixed to

the observed values but γ is draw from the parameter posterior p(γ|yobs, H), is

referred to as the realized test quantity. The predictive test quantity, T (yrep,γ),

is based on the joint posterior distribution of the replicated data yrep and γ. The

realized and predictive test quantities are compared, with any significant difference

between the test quantities indicating a failure of the model.

The PPMC method is primarily used to do graphical checks to compare the

observed and replicated discrepancy measures. Figure 3.2 is an example scat-
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p(γ|yobs)

p(yobs|γ)

p(γ)

γ1

γ2

...

γL−1

γL

yrep,1 ∼ p(y|γ1)

yrep,2 ∼ p(y|γ2)

...

yrep,L−1 ∼ p(y|γL−1)
yrep,L ∼ p(y|γL)

T(yrep,1,γ1),T(yobs,γ1)

T(yrep,2,γ2),T(yobs,γ2)

...

T(yrep,L−1,γL−1),T(yobs,γL−1)

T(yrep,L,γL), T(yobs,γL)

Plot &/or

PPP-values

Figure 3.1: Graph describing the Posterior Predictive Model-Checking (PPMC)
method, adapted from Sinharay et al. (2006)

terplot of the predictive test quantities (on the Y-axis) against the realized test

quantities (on the X-axis). For correctly specified models, the points are expected

to be spread evenly on either side of the 45-degree line, as seen in this figure. In

the case of a model that fails to explain key features of the data, we would expect

to see most or all of the points below the 45-degree line.

Additionally, a Bayesian counterpart of the classical p-value, known as the

posterior predictive p-value, can be found by calculating the tail area probability

of the distribution in Equation 3.3

P [T (yrep,γ) ≥ T (yobs,γ)|yobs, H] = (3.3)∫
T (yrep,γ)≥T (yobs,γ)

p(yrep|γ, H)p(γ|yobs, H)dyrepdγ.

That is, the Bayesian posterior predictive p-value is defined as the probability

that the replicated data, yrep, are more extreme than the observed data, yobs.

When the fitted model is correct, the posterior predictive p-values (PPP-values)

are not necessarily uniformly distributed, and previous researchers have found the

PPP-values for a correct model tend to be closer to 0.5 (Sinharay & Stern, 2003).

Extremely small probabilities (less than .05 or greater than .95) provide a strong

suggestion that the model is not capturing the necessary features of the data.
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Figure 3.2: Example PPMC plot

3.1 Alternatives to Posterior Distribution in Predictive

Model Checking

Various alternatives have been proposed to the parameter posterior distribution

p(γ|yobs, H) in the construction of the posterior predictive distribution (Gelfand,

1996). Box (1980) suggested the use of the prior distribution (prior predictive

model checking), whereas Bayarri and Berger (2000) proposed the use of the con-

ditional posterior distribution (partial or conditional posterior predictive model

checking method).

Levy (2011) has previously discussed the similarities between posterior pre-

dictive, prior predictive, and partial predictive model checking. Furthermore, Lee

et al. (2016) described a general expression under which all of the previously

suggested predictive distributions can be combined. Building off of this general

expression, these authors made use a well-known result in Bayesian literature that
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asymptotically the likelihood tends to dominate the posterior shape. Furthermore,

for large samples, the estimated item parameters are approximately normally dis-

tributed around the ML estimates, with the inverse of the Fisher information

matrix as the covariance matrix (Gelman et al., 2003). Therefore, a normal ap-

proximation to the posterior was suggested for predictive model checking.

3.2 Posterior Predictive Model Checking - Normality As-

sumption

A predictive model checking method that relies on a posterior normality assump-

tion was proposed by Lee et al. (2016), who referred to as a Poor Person’s PPMC

method. In place of p(γ|yobs, H) in Equation 3.2, this method uses the multivari-

ate normal distribution with its mean vector equal to the MLE γ̂ and dispersion

matrix equal to the asymptotic covariance matrix of the maximum likelihood es-

timate V̂

ϕd(γ) = |2πV̂|−1/2 exp

{
−1

2
(γ − γ̂)′V̂−1(γ − γ̂)

}
, (3.4)

where ϕd(γ) is the multivariate normal distribution with d dimensions. That is to

say, this proposed posterior predictive model checking approach relies on posterior

normality assumption to construct an approximate posterior predictive distribu-

tion using only by-products of full-information maximum likelihood estimation.

For brevity, this proposed approach is subsequently referred to PPMC-N, where

the “N” denotes the posterior normality assumption.

This approach does not require conducting Bayesian data analysis, but still

incorporates parameter uncertainty in model assessment. Figure 3.3 provides a

graphical depiction of the PPMC-N procedure. The only modification from the

PPMC procedure that is displayed in Figure 3.1 comes on the left-most side,
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ϕd(γ)

γ1

γ2

...

γL−1

γL

yrep,1 ∼ p(y|γ1)

yrep,2 ∼ p(y|γ2)

...

yrep,L−1 ∼ p(y|γL−1)

yrep,L ∼ p(y|γL)

T(yrep,1,γ1),T(yobs,γ1)

T(yrep,2,γ2),T(yobs,γ2)

...

T(yrep,L−1,γL−1),T(yobs,γL−1)

T(yrep,L,γL), T(yobs,γL)

Plot &/or

PPP-values

Figure 3.3: Graph describing the Posterior Predictive Model Checking - Normality
approximation (PPMC-N) method

where the parameter posterior distribution is replaced with the multivariate nor-

mal approximation ϕd(γ). The subsequent steps of drawing replicate datasets and

estimating realized and predictive test quantities remain the same.

Using the predictive and realized test quantities estimated with the PPMC-N

approach, the proportion of draws for which the predictive test quantity exceeds

its corresponding realized test quantity can be calculated. These PPMC-N ap-

proximated Bayesian p-values are called PPMC-N predictive p-values:

predictive p-value ≈ 1

L

L∑
`=1

1
{
T (yrep,`,γ`) ≥ T (yobs,γ`)

}
, (3.5)

where 1
{
T (yrep,`,γ`) ≥ T (yobs,γ`)

}
is an indicator function that takes a value

of 1 only if
{
T (yrep,`,γ`) ≥ T (yobs,γ`)

}
is true. This formulation is equivalent to

counting the proportions of points lying above the 45-degree line in the scatterplot

of the predictive and realized test quantities (such as Figure 3.2).

3.3 Posterior Predictive Model Checking - Normality As-

sumption with Re-sampling

A concern with the PPMC-N approach is that it is dependent upon a multi-

variate normality (MVN) assumption for the posterior of the item parameters
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p(γ|yobs, H). It is not clear how realistic this assumption is with real data. The

Sampling Importance Re-sampling (SIR) approach (Smith & Gelfand, 1992) is

proposed as a potential method to address this concern. Importance sampling is

a Monte Carlo method where a target distribution is approximated by a weighted

average of random draws from another distribution. In this scenario, the idea

is to represent the posterior density function by a set of random samples with

associated weights from the normality approximation of the posterior.

The SIR approach necessitates the evaluation of the likelihood function given

in Equation 2.7 based on the current set of γ1, ...,γL draws. For the PPMC-N

method, the SIR approach breaks the posterior predictive simulations into several

steps:

1. Draw L samples from multivariate normal distribution centered at MLE γ̂

and dispersion V̂ equal to inverse Fisher information matrix.

2. Evaluate the shape of the distribution and compute importance ratios.

(a) Evaluate the likelihood L(γ`|yobs) at each of the L draws.

(b) Evaluate the multivariate normal density ϕd(γ
`) at each of the L draws.

(c) Calculate the ratio at each of the L draws.

ω` =
L(γ`|yobs)
ϕd(γ`)

(3.6)

(d) Compute the L importance ratios and normalize

q` =
ω`∑L

m=1 ωm
. (3.7)

3. Draw a new set {γ1∗, ..., γL∗} from the discrete distribution over {γ1, ...,γL}
placing mass q` on γ`. For each re-sampled parameter draw, produce a

predictive draw of replicate data.
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4. Estimate the predictive and realized test quantities.

In this approach, the likelihood L(γ`|yobs) is estimated in the numerator of

Equation 3.6 in place of the posterior p(γ`|yobs). If a uniform prior p(γ) is used,

the posterior density and likelihood are proportional.

3.4 Discrepancy Measures

As was described previously, a set of functions called discrepancy measures are

defined to capture the discrepancy between data and the model. A test quantity

T (y,γ), or measure of discrepancy, is a function of both the data and the param-

eters. The discrepancy measures should be chosen to reflect important features

of the model and reveals useful information about when model assumptions are

violated. Levy (2006) highlighted various bivariate discrepancy measures that

could be potentially used to detect multidimensionality in IRT models, which are

described below.

Discrepancy measures that examine the pairwise association of items can be

used to detect local item dependence. Many of the bivariate discrepancy measures

involve observed and expected frequencies of item responses for two items (k and

k′) at a time (e.g., two-way tables for the frequencies of yk and yk′). The observed

bivariate table for a dichotomous item is

yk
1 0

yk′
1 n11 n10

0 n10 n00

where n11 is the number of examinees with a correct response for both yk and yk′ .

The expected bivariate table is
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yk
1 0

yk′
1 E(n11) E(n10)
0 E(n10) E(n00)

where E(n10) is the expected frequency of a correct response to yk and an incorrect

response to yk′ predicted by the item response theory model. Due to assumptions

of local independence, E(n10) can be estimated as

E(n10) = N

∫
Pk(θ) [1− Pk′(θ)] p(θ)dθ, (3.8)

where Pk(θ) is the traceline for item k, Pk′(θ) is the traceline for item k′, p(θ) is

the population distribution, and N is the total number of examinees. This integral

can be approximated numerically using a set of quadrature points.

The χ2 and G2 discrepancy measures for item-pairs (Chen & Thissen, 1997)

are given, respectively, by

χ2
kk′ =

1∑
c=0

1∑
c′=0

(ncc′ − E(ncc′))
2

E(ncc′)
, (3.9)

G2
kk′ =− 2

1∑
c=0

1∑
c′=0

ncc′ln
E(ncc′)

ncc′
.

Additionally, Yen’s (1984, 1993) Q3 statistic measures the correlation between

a pair of items after accounting for the latent traits. The deviation between the

observed and expected response for the ith examinee is calculated as

dki = yki − Eyki , (3.10)

where yki is the observed response to item k and Eyki is that examinee’s expected

response to item k. For dichotomous items, the expected response can be calcu-

lated as Eyki = P (yki = 1|θi, ak, ck). The local dependence index Q3 is computed
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as the Pearson product-moment correlation between the deviation scores of items

k and k′.

The model-based covariance (MBC) discrepancy measure, which also examines

deviation between observed and expected responses, was proposed by Reckase

(1997)

MBCkk′ =

∑N
i=1

(
yki − Eyki

)(
yk′i − Eyk′i

)
N

. (3.11)

For both Q3 and Reckase’s residual measure, a point estimate θ̂ is needed for each

examinee. The expected a posteriori (EAP), or posterior mean, is a commonly

used Bayesian estimator in IRT (Bock & Mislevy, 1982). The EAP estimator is

calculated by taking the expectation over an individual’s posterior distribution

(e.g., product of the response pattern likelihood with a population distribution

p(θ))

θ̂i =

∫
θ

θf (θ|yi,γ)dθ =
1

f (yi|γ)

∫
θ

θL(yi|θ,γ)p(θ)dθ. (3.12)

Typically, a standard normal distribution is used for p(θ) when estimating θ̂ scores.

The sample covariance is another possible discrepancy measure, and is given by

COVkk′ =

[
(n11)(n00)− (n10)(n01)

]
N2

. (3.13)

Similarly, residual item correlations can be estimated, which compare the observed

covariance with the expected covariance for an item pair

ResidCOVkk′ =

[
(n11)(n00)− (n10)(n01)

]
N2

−
[
E(n11)E(n00)− E(n10)E(n01)

]
N2

.

(3.14)

Lastly, two odds ratio measures can be used as discrepancy measures. The odds

ratio on the (natural) log scale is

ln(ORkk′) = ln

[
(n11)(n00)

(n10)(n01)

]
. (3.15)
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The standardized log ratio residual dependence formula given by Chen and Thissen

(1997) is

STDLN(ORkk′) =

ln

[
(n11)(n00)
(n10)(n01)

]
− ln

[
E(n11)E(n00)
E(n10)E(n01)

]
√

1
n11

+ 1
n10

+ 1
n01

+ 1
n00

. (3.16)

3.5 Previous Research on Local Dependence with IRT Mod-

els

Within the field of PPMC research, Yen’s Q3, the model-based covariance, and

odds-ratio measures have been found to be effective in detecting multidimension-

ality and local dependence among item responses with PPMC (Levy, Mislevy, &

Sinharay, 2009; Sinharay et al., 2006; Levy, 2006). The χ2 and G2 discrepancy

measures, which are widely used in model fit evaluation within FIML estimation,

were not found to be very sensitive to LD. However, many factors were found to

influence the ability of the PPMC approach to detect multidimensionality, includ-

ing the strength of dependence of the items on the nuisance latent dimensions,

proportion of multidimensional items, and sample size (Levy, 2006).

Houts and Edwards (2013) compared the relative performance of a range of

LD indices within FIML estimation by estimating power and Type I error rate,

and found that the G2 displayed both high power and reasonable Type I error

rates across most conditions.

The previous field of work has examined a range of discrepancy measures across

a wide set of LD conditions, but the work has mostly been siloed within the sepa-

rate maximum likelihood and Bayesian fields of research. This study borrows from

the insights of Bayesian predictive model checking with the goal of improving the

detection of LD within a maximum likelihood estimation framework. In order to

accomplish this goal, it is necessary to first establish the PPMC-N method as a vi-

able alternative to the PPMC approach, and then to compare the simulation-based
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predictive model checking methods with classical frequentist model appraisal ap-

proaches that are calculated based solely on observed and expected responses

(calculated based on best-fitting (ML) parameter estimates).

3.6 Research Questions

The goal of the current work is to investigate the ability of the three outlined pre-

dictive model checking approaches to detect the presence of inadequately modeled

multidimensionality under several data-generating conditions. The present study

uses a Monte Carlo study to answer the following three research questions:

• Research Question 1: How do the three predictive model checking ap-

proaches (PPMC, PPMC-N, and PPMC-N with SIR) compare in the detec-

tion of violations of unidimensionality within the 2PL item response theory

model?

• Research Question 2: Are some discrepancy measures more sensitive to

the presence of local dependence than others?

• Research Question 3: Does the PPMC-N approach detect local depen-

dence in situations where the traditional frequentist approach for LD de-

scribed by Chen and Thissen (1997) are not sensitive?
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CHAPTER 4

Methods

The purpose of this thesis is to investigate different predictive model checking

approaches as well as the effectiveness of different discrepancy measures to detect

the model misspecification within the two-parameter logistic (2PL) item response

theory model, specifically focusing on detecting violations of unidimensionality.

There are 3×5 = 15 data generating conditions in this simulation study, which

are as follows:

1. Sample size: 250, 500, 1000

2. Type of local dependence: null condition (no LD), surface LD (SLD; mild

or strong), and underlying LD (ULD; mild or strong).

Fifty replications are conducted within each condition. The three data-generating

models (no LD, SLD, and ULD) considered in this simulation study are summa-

rized in Table 4.1. In all of the conditions, there are 20 items. The path diagrams

for the data-generating models can be seen in Figure 4.1. The analysis model in

each case is the unidimensional model shown in Panel 4.1a.

4.1 Data Generation

True latent ability (θ) were generated from a standard normal distribution in

the unidimensional and SLD conditions, and a multivariate normal distribution
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Table 4.1: Conditions for the Monte Carlo study

Analysis
Model

Data-generating Model Condition
Number

Violated
Assumption

Unidimensional
model

Unidimensional model 1 None

Unidimensional model with cor-
related item pairs

2 Surface LD (SLD)

Case 1 : probability πLD = .5

Case 2 : probability πLD = .8

Bifactor item response model 3 Underlying LD (ULD)

Case 1 : Minor specific factor
slopes (slope ratio: .5)

Case 2 : Strong specific factor
slopes (slope ratio: 1.5)

in third data-generating condition. Item discrimination parameters ranged from

values of 1 to 2, and item intercepts were set to values of -1, -.5, .5, 1, or 1.5.

In the null condition, data were generated following a unidimensional model.

Programs were written in R (version 3.1) to simulate data in the Null, SLD, and

ULD conditions. Surface LD was generated following the deterministic process

outlined in Section 2.1. The probability that the second item within a pair will

have the same response, πLD, is manipulated to vary the degree of LD. The two

values of πLD considered are .5 and .8. There are four LD item pairs in the surface

LD condition, and the remaining 16 items are locally independent.

For the underlying LD condition, data are generated following a bifactor model

(Holzinger & Swineford, 1939). The bifactor model contains a general factor that

explains the overall variance among the items, as well as specific factors that

account for residual variance. The specific factors are uncorrelated with each

other and the general factor. Each specific factor contains five items, with a total

of four specific factors. For items within each specific factor, the degree of LD was

defined by the ratio of the general slope to the specific factor slopes. The specific

factor slopes are either set to be half of the general slopes (Case 1), or set to be
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1.5 times the general factor slopes (Case 2). The variances of all of the latent

variables in the bifactor model are set to 1.

4.2 Maximum Likelihood Estimation and PPMC-N

For the two posterior predictive model checking approaches that rely on normality

approximations, parameters are estimated using Bock-Aitken EM algorithm. A

unidimensional model fit to each simulated dataset using flexMIRT R© (Cai, 2015)

(see Appendix 1 for an example calibration file). flexMIRT R© reports convergence

statistics that check whether the solution is possible local maximum. The es-

timated item parameters γ̂ are reported in the output file, and corresponding

asymptotic covariance matrix of the item parameters is requested as a setting

in calibration. Parameter standard errors are calculated using empirical cross-

product approximation (Houts & Cai, 2015).

To assess the fit of the model using the PPMC-N approach, the following three

steps are repeated L = 100 times for each calibrated model:

1. Generate a draw of parameters γ` from the multivariate normal distribution

given by Equation 3.4.

2. Given the item parameters draw γ`, a replicated data set yrep,` is drawn from

the sampling distribution under the hypothesized modelH (e.g., p(Y|γ`, H)).

3. Compute the predictive T (yrep,`,γ`) and realized T (yobs,γ`) discrepancy

values for each of the specified test quantities.

An R program was written to simulate random normal draws, generate repli-

cate datasets, and calculate the various discrepancy measures. The PPMC-N

predictive p-values defined in Equation 3.5 are recorded within each replication

for all of the discrepancy measures listed in Section 3.4.
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Additionally, PPMC-N-SIR predictive p-values are calculated for each simu-

lated dataset using the item parameters estimated by flexMIRT. As outlined in

Section 3.3, the Sampling Importance Resampling (SIR) method requires a small

additional step to the PPMC-N approach. Following Step 1 in the PPMC-N

approach, the complete data likelihood given in Equation 2.7 is estimated sepa-

rately for each set of item parameters (given the observed data yobs). Weighted

re-sampling from the L draws is conducted, and then steps 2 and 3 of the PPMC-

N approach are resumed. For the SIR approach, an initial sample of L = 1000

parameter sets are drawn, and then using the re-weighting, a final set of L = 100

draws are used for the PPMC-N-SIR procedure.

4.3 Bayesian Estimation and PPMC

Lastly, a fully Bayesian IRT calibration is conducted using WinBUGS (Lunn,

Thomas, Best, & Spiegelhalter, 2000). A unidimensional 2PL model is estimated

in WinBUGS (see Appendix 1 for model code) with the following prior distribu-

tions

θi ∼ N(0.0, 1.0)

bk ∼ N(0.0, 1.0)

ak ∼ N+(1.0, 1.0)

where N+(1.0, 1.0) denotes the normal distribution truncated to the positive real

line. The threshold parameter bk is estimated in the Bayesian model rather than

the intercept ck parameter, which can be easily converted back to the intercept to

match flexMIRT’s parameterization (ck = −ak ∗ bk).

R2WinBUGS, a package in R that calls WinBUGS, was used to call WinBUGS

and store latent proficiency and parameter posterior estimates (Sturtz, Ligges, &
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Gelman, 2005). A total of 2,000 iterative simulations were done per chain (3 total

chains), the first 400 iterations were discarded, and the iterations were thinned

by a value of 2. After discarding burn-in and thinning the chain, the resulting

iterations were pooled to produce 2,400 iterations for use in PPMC. Convergence

of these models were measured using the effective sample size (sample size adjusted

for autocorrelation across simulations) and Gelman and Rubin (1992) convergence

diagnostic (printed in R2WinBUGS as Rhat). Additionally, plots of the MCMC

sequences are examined for the parameter and θ estimates.

L = 100 draws of the item parameters γ and the vector of latent proficiency

estimates θ were sampled from the posterior distribution. Based on these esti-

mates, replicate datasets were drawn and the predictive p-values were estimated

for each of the discrepancy measures.

4.4 Evaluating the Predictive Model Checking Approaches

First, parameter recovery was examined in the null condition to ensure both es-

timation methods are recovering the true parameter estimates. As a part of this

examination, I examine plots of the marginal parameter posterior distributions,

and check for the closeness of the normality approximations.

Three criteria were used to examine the PPMC, PPMC-N, and PPMC-N-SIR

performance during the null condition (e.g., no model misfit). The median pre-

dictive p-value in the null condition was calculated for each discrepancy measure

within each model checking approach. Line plots, such as those seen in Levy

(2006), that compare the distribution of the predictive p-values across replica-

tions for each discrepancy function and predictive model checking approach were

also created. Additionally, the proportion of extreme predictive p-values (e.g.,

p-values < .05 or p-values > .95) was estimated for each method.

For the surface and underlying LD conditions, median and proportion ex-
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treme predictive p-value for the item pairs demonstrating local dependence were

calculated for each discrepancy measure. Additionally, various plots were used

to demonstrate the median predictive p-values for item pairs that are expected

to contain local dependence due to the generating model compared to item pairs

that are not.

4.5 Comparing the Predictive Model Checking Approaches

to Frequentist LD Approaches

Houts and Edwards (2013) have looked at the performance of LD indices using

frequentist methods across a range of simulation conditions to test how sensitive

these indices are to various forms of LD. These simulations focused on the Type

I error rate and the power of the LD indices. Type I error rate is the incorrect

classification of a non-locally dependent pair as being locally dependent. Power

is defined as the correct identification of a LD item-pair by an LD index, and

is reported as the average proportion of correctly flagged pairs out of the total

number of replications. Values higher than 0.80 for power are generally considered

acceptable. For indices with known distribution, observed Type 1 error rates at

the nominal level are desired.

The third component of this study is to compare the performance of the pre-

dictive model checking approaches with the traditional frequentist approach for

detecting LD. While the orientation of many PPMC researchers is to view the pre-

dictive model checking methods as diagnostic rather than as a test of data-model

misfit (see, for example, Stern, 2000), researchers have previously conducted simu-

lations that examine the Type I error and power of the Bayesian item fit measures

for unidimensional IRT models (Sinharay, 2006). Therefore, I examine the Type

I error rate and power of a set of LD indices under frequentist model appraisal

methods and the PPMC-N method.
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For this comparison, I focus on a subset of LD indices that have been com-

monly used in frequentist model appraisal: χ2, G2, and Q3. These indices were

chosen because they have been the focus of prior LD research, and because they

are reported by existing IRT software. The equations for these discrepancy mea-

sures are given in Section 3.4. In the frequentist context, the χ2 and G2 were

calculated based on observed and expected bivariate marginals. For dichotomous

item pairs, χ2 and G2 asymptotically follow a chi-square distribution with 1 degree

of freedom (df=1), and item pairs are flagged as locally dependent if the χ2
df=1 test

is statistically significant at α = .05 level. It does not follow a known distribution,

and a cut-off of .2 is used to flag LD item pairs (Chen & Thissen, 1997).

For the predictive model checking method (PPMC-N), the χ2, G2, and Q3

discrepancy measures were calculated as described in Section 4.2. A (two-tailed)

hypothesis test with significance level α = .05 is performed, where the null hy-

pothesis of data-model fit is rejected if the p-value is less than α/2 or is greater

than 1− α/2.
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(a) Unidimensional model

(b) Surface LD

(c) Underlying LD

Figure 4.1: Data-generating IRT models
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CHAPTER 5

Results

Across all of the conditions, all of the models estimated with flexMIRT converged

to a possible local maximum. The unidimensional IRT model took an average of

0.9 seconds to estimate using flexMIRT, and the estimation time did not vary sub-

stantially by sample size. There were not convergence issues with the WinBUGS

estimation across conditions. The average Gelman and Rubin convergence diag-

nostic (Rhat) across parameters and conditions was 1.00. The average estimation

time was 156 seconds for N = 250, 320 seconds for N = 500, and 655 seconds for

N = 1, 000.

5.1 Comparing the Predictive Model Checking Approaches

The first research question is concerned with the comparability of three predictive

model checking approaches (fully Bayesian PPMC, PPMC assuming posterior

normality (PPMC-N), and PPMC-N with re-sampling method). I first present

results examining the predictive model checking approaches under the null condi-

tion, before turning to the comparison across the misfit conditions.

5.1.1 Unidimensional Condition

Before turning to the results of the LD discrepancy measures, parameter recovery

across the maximum likelihood and Bayesian estimation approaches were com-

pared. There are three null conditions in which the data are unidimensional, cor-

33



responding to the three sample sizes (N = 250, 500, 1000). Plots of the true and

estimated parameters across replications under the null condition from flexMIRT

and WinBUGS for the N = 250 sample condition are shown in Figure 5.1. True

values are plotted as red asterisks, ML estimates from flexMIRT are circles, and

the parameter posterior mean estimates from WinBUGS are triangles. True pa-

rameters are well-recovered, with small variation in estimates across replications.

Figure 5.1: Comparison of parameter estimates with true (generating) parameters,
null condition (N = 250)
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Figure 5.2 displays the estimated marginal posterior distributions and the two

multivariate normal posterior approximations for the 20 item slope parameters

for a single replication under the null condition (N = 250). The true generating

item parameters are shown as a red asterisk on the x-axis, the estimated pos-

terior density is plotted in black, the multivariate normal approximation using

the MLE estimates and standard errors is displayed as a blue dashed line, and
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the re-sampled density using the SIR approach is displayed as a red dotted line.

Similarly, Figure 5.3 displays the estimated marginal posterior and the posterior

approximations for the 20 item intercept parameters. As can be seen in these

figures, the two posterior approximation distributions closely overlap with the

marginal parameter posterior distributions estimated in WinBUGS, and all three

approaches are generally doing an excellent job of recovering the true parame-

ters. In the cases where the posterior and normal approximation are discrepant,

such as the first and fifth slope parameter, the distributions for the SIR approach

fall in between the marginal MVN approximation and the posterior distributions.

Similar results are seen for the unidimensional model in the other sample size con-

ditions, but the distributions are more narrow and peaked, demonstrating higher

precision of the estimates. Given the results in these three figures, it is clear

that maximum likelihood and Bayesian estimation methods are both accurately

recovering the true parameters in the null condition.

The performance of the eight discrepancy measures in the null conditions was

also examined. Given that the data were generated from a unidimensional model,

all item-pairs reflect the same single latent dimension, and we can therefore pool

results across item pairs following an exchangeability assumption (De Finetti,

1964). Given there are 20 items, there are (20 ∗ (20 − 1))/2 = 190 item pairs.

For the null condition, the predictive p-values from the 190 item-pairs for each

bivariate discrepancy measure are pooled within a replication, and the results are

then pooled across the 50 replications. Figure 5.4 contains eight panels, one for

each discrepancy measure examined. In each panel, there are line plots for the

distributions of the pooled p-values showing the relative frequency of each p-value

(ranging from 0 to 1). The black line corresponds to the posterior predictive

method, the blue dashed line corresponds to the PPMC-N method, and the red

dotted line corresponds to the PPMC-N method with SIR. Figure 5.4 displays

the results for the N = 250 condition, and Figure 5.5 displays the results for the
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Figure 5.2: Comparison of three predictive model checking methods in the ap-
proximation of the item parameter marginal posterior distributions within a single
replication, null condition (N = 250)
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Figure 5.3: Comparison of three predictive model checking methods in the ap-
proximation of the item parameter marginal posterior distributions within a single
replication, null condition (N = 250)
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Figure 5.4: Comparison of three predictive model checking methods, null condition
(N = 250)
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N = 1, 000 sample condition.

In both Figures 5.4 and 5.5, all the distributions of p-values for all three meth-

ods are symmetric around .5. The three predictive approaches produce mostly

overlapping distributions, with the exception of χ2, G2, and Q3. For these three

discrepancy measures, the two PPMC-N approaches are shifted slightly closer to 1.

As observed by others (Meng, 1994), the distributions of the predictive p-values

for all of the discrepancy measures are less dispersed than a uniform distribu-

tion. This is seen particularly for χ2, G2, and Q3, where the predictive p-values
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Figure 5.5: Comparison of three predictive model checking methods, null condition
(N = 1000)
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are heavily concentrated between 0.3 and 0.7. The three covariance-based dis-

crepancy measures and the two log-odds ratios perform similarly under the null

condition across sample sizes.

Table 5.1: Median p-values for 8 discrepancy measures based on unidimensional
data, null condition

PPMC method Sample
size

χ2 G2 Q3 Cov MBC Residual
Cov.

Log(OR) Std.
Log(OR)

PPMC-N 250 0.57 0.57 0.56 0.51 0.53 0.50 0.53 0.51
PPMC-N-SIR 250 0.56 0.56 0.56 0.51 0.53 0.50 0.53 0.50
PPMC 250 0.47 0.47 0.47 0.49 0.49 0.48 0.49 0.48
PPMC-N 500 0.54 0.54 0.54 0.52 0.51 0.50 0.51 0.51
PPMC-N-SIR 500 0.54 0.54 0.54 0.50 0.51 0.50 0.51 0.50
PPMC 500 0.49 0.49 0.48 0.51 0.49 0.50 0.49 0.48
PPMC-N 1000 0.52 0.52 0.52 0.51 0.51 0.50 0.51 0.50
PPMC-N-SIR 1000 0.53 0.53 0.53 0.50 0.51 0.50 0.51 0.51
PPMC 1000 0.47 0.47 0.47 0.50 0.48 0.49 0.48 0.48

Table 5.1 shows the median predictive p-value within each predictive model

checking approach across the three samples sizes. Within the null condition,

median values around 0.5 are expected, which is what is observed across all of

the discrepancy measures. The proportions of extreme predictive p-values for

the discrepancy measures for each sample size are shown in Table 5.2. Extreme

predictive p-values are defined as those below .05 or above .95. The results in Table

5.2 can be seen as Type I error rates using .05 and .95 as critical values (i.e., in a

two-tailed test with α = .10). The empirical Type I error rates for the covariance

and residual covariance discrepancy measures are close to the nominal rate of .10.

However, empirical Type I error rates for the other discrepancy measures are below

.10, indicating that use of predictive p-values in hypothesis testing results in a

conservative test. In summary, results from the null condition indicate very similar

performance between the PPMC, PPMC-N, and PPMC-N-SIR approaches.
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Table 5.2: Proportion of replications with extreme p-values (i.e., p-value < .05 or
> .95) based on unidimensional data, null condition

PPMC method Sample
size

χ2 G2 Q3 Cov MBC Residual
Cov.

Log(OR) Std.
Log(OR)

PPMC-N 250 0.00 0.00 0.00 0.08 0.02 0.08 0.02 0.02
PPMC-N-SIR 250 0.00 0.00 0.00 0.09 0.02 0.09 0.02 0.02
PPMC 250 0.00 0.00 0.00 0.08 0.04 0.08 0.04 0.04
PPMC-N 500 0.00 0.00 0.00 0.09 0.02 0.08 0.02 0.02
PPMC-N-SIR 500 0.00 0.00 0.00 0.09 0.02 0.09 0.02 0.02
PPMC 500 0.00 0.00 0.00 0.09 0.03 0.09 0.03 0.03
PPMC-N 1000 0.00 0.00 0.00 0.10 0.02 0.10 0.02 0.02
PPMC-N-SIR 1000 0.00 0.00 0.00 0.10 0.02 0.09 0.02 0.03
PPMC 1000 0.00 0.00 0.00 0.10 0.04 0.10 0.04 0.04

5.1.2 Local Dependence (LD) Conditions

We now turn to the results of the predictive model checking approaches where

LD is present in a subset of items. As with the unidimensional data, predictive p-

values obtained from each discrepancy measure on multiple item-pairs are pooled

following exchangeability assumptions, as well as across the 50 replications within

conditions. However, the p-values are pooled separately depending on whether

the item-pair contains LD in the generating data structure (misfit item-pairs), or

is locally independent (non-misfit item-pairs). In the LD conditions, predictive

p-values near .5 indicate that the predictive model checking approaches have not

detected the LD within item-pairs.

Figures 5.6 and 5.7 present the median predictive p-values across the three

sample sizes for the Surface LD condition for item pairs that display LD and do

not display LD, respectively. The three lines represent the three model check-

ing approaches (PPMC, PPMC-N, and PPMC-N-SIR). The median predictive

p-values for the misfit items in the strong SLD condition (πLD = .8), which can

be seen in the right panel of Figure 5.6, are equal to 1 for all of the discrepancy

measures and across the three model checking approaches. For the mild SLD

condition (left panel), none of the discrepancy measures appear sensitive to the
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local dependence (median values between 0.4 and 0.5). The non-misfit item-pairs

in the mild and strong surface LD conditions showed median predictive p-values

that ranged between 0.4 and 0.6, which is to be expected. This indicates that

the predictive model checking approaches are able to clearly distinguish between

misfit and non-misfit items in the surface LD case.

Similarly, Figures 5.8 and 5.9 present the median predictive p-values for the

Underlying LD condition for item pairs that display LD (misfit) and do not dis-

play LD (non-misfit), respectively. The results for misfit items under the strong

Underlying LD (a = 1.5) condition mirror the strong SLD condition, where the

median predictive p value is close or equal to 1 for all of the plotted discrepancy

measures. However, in the mild ULD condition, the covariance and log-odds ratio

discrepancy measures had median predictive p-values that are closer to 1, indi-

cating that the discrepancy measures have somewhat succeeded in detecting LD

(particularly for the large sample sizes). The median predictive p-values for the

non-misfit items are displayed in Figure 5.9. The mild ULD condition displays me-

dian predictive p-values around .5, correctly indicating lack of local dependence.

However, in the strong ULD case, the median predictive p-values stray from .5 in

the larger sample sizes, indicating that the misfit in the model is affecting the LD

indices for all of the items.

Based on both the unidimensional and the local dependence conditions, it is

clear that the PPMC, PPMC-N, and PPMC-N-SIR approaches are performing

similarly across sample sizes and across discrepancy measures. We now turn to

comparing the performance of the various discrepancy measures in detecting LD.

5.2 Comparing the Discrepancy Measures

Table 5.3 displays the median predictive p-values for the misfit items for all of

the eight examined discrepancy measures across the four LD conditions. The first
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Figure 5.6: Comparison of the median predictive p-values among MISFIT items
for the a set of discrepancy measure, Surface Local Dependence (SLD) conditions
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Figure 5.7: Comparison of the median predictive p-values among NON-MISFIT
items for the a set of discrepancy measure, Surface Local Dependence (SLD)
conditions
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Figure 5.8: Comparison of the median predictive p-values among MISFIT items for
the a set of discrepancy measure, Underlying Local Dependence (ULD) conditions
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Figure 5.9: Comparison of the median predictive p-values among NON-MISFIT
items for the a set of discrepancy measure, Underlying Local Dependence (ULD)
conditions
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two columns list the type of LD misspecification and the predictive model check-

ing method. The performance of the various discrepancy measures within a LD

condition are consistent across sample size and model checking approach. Results

within a condition also appear fairly similar across the discrepancy measures, in-

dicating little is gained by using all eight different discrepancy measures. The

notable exception is that in the mild conditions, the median values of the χ2, G2,

and Q3 discrepancy measures are quite close to one another (and are frequently

equal) and generally the lowest. The results for the covariance, model-based co-

variance (MBC), and the residual covariance are quite similar, and are typically

the highest median p-values.

Table 5.4 displays the proportion of replications with extreme p-values for

the misfit items (p-values < .05 or > .95) for all of the 8 studied discrepancy

measures. Again, the performances of the different discrepancy measures within

a LD condition are consistent across sample size and model checking approach.

The covariance and the residual covariance discrepancy measures demonstrate the

highest proportion extreme p-values within the misfit items, indicating they are

most sensitive to LD misfit.

To compare the various discrepancy measures, it is also useful to compare the

performance within single replications. In Figure 5.10, the estimated predictive p-

values for four different discrepancy measures are plotted for the mild and strong

ULD condition for item-pairs where violations of local independence are to be

expected. In the data generating model for ULD, the first five items are nested

in the first specific factor (see Figure 4.1c). Therefore, a total of 10 item-pairs

are of interest within each specific factor: item 1 with 2, 3, 4, and 5; item 2 with

3, 4, and 5; item 3 with 4 and 5; and item 4 with 5. The estimated p-values are

plotted in the same order for each of the four specific factors. Each specific factor

consists of five items, and p-values are computed for the 10 item pairs.

Figure 5.10a displays the p-values for the forty total items of interest in the
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Table 5.3: Median p-values for 8 discrepancy measures for the misfit items within
the four LD conditions

LD con-
dition

PPMC
method

Sample
size

χ2 G2 Q3 Cov MBC Residual
Cov

Log
(OR)

Std.
Log(OR)

SLD -
mild

PPMC-N 250 0.54 0.54 0.54 0.59 0.55 0.58 0.55 0.55
PPMC-N-SIR 250 0.51 0.51 0.51 0.59 0.60 0.60 0.60 0.60
PPMC 250 0.48 0.48 0.48 0.56 0.46 0.57 0.46 0.46
PPMC-N 500 0.52 0.52 0.52 0.57 0.56 0.57 0.56 0.56
PPMC-N-SIR 500 0.52 0.52 0.53 0.56 0.55 0.56 0.55 0.55
PPMC 500 0.47 0.47 0.48 0.55 0.48 0.55 0.48 0.48
PPMC-N 1000 0.49 0.49 0.49 0.44 0.42 0.43 0.42 0.42
PPMC-N-SIR 1000 0.50 0.50 0.51 0.43 0.41 0.43 0.41 0.41
PPMC 1000 0.47 0.47 0.47 0.40 0.32 0.40 0.32 0.32

SLD -
strong

PPMC-N 250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N-SIR 250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC 250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N-SIR 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N-SIR 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ULD -
mild

PPMC-N 250 0.57 0.57 0.57 0.71 0.67 0.70 0.67 0.67
PPMC-N-SIR 250 0.57 0.57 0.56 0.72 0.68 0.72 0.68 0.66
PPMC 250 0.49 0.49 0.49 0.72 0.67 0.71 0.67 0.68
PPMC-N 500 0.55 0.55 0.55 0.77 0.70 0.77 0.70 0.70
PPMC-N-SIR 500 0.55 0.55 0.55 0.77 0.71 0.77 0.71 0.71
PPMC 500 0.49 0.49 0.50 0.76 0.71 0.76 0.71 0.71
PPMC-N 1000 0.60 0.60 0.60 0.88 0.81 0.88 0.81 0.80
PPMC-N-SIR 1000 0.58 0.58 0.57 0.87 0.80 0.87 0.80 0.79
PPMC 1000 0.55 0.55 0.55 0.87 0.80 0.87 0.80 0.81

ULD -
strong

PPMC-N 250 0.97 0.97 0.98 1.00 0.99 1.00 0.99 0.99
PPMC-N-SIR 250 0.97 0.97 0.98 1.00 0.99 1.00 0.99 1.00
PPMC 250 0.95 0.95 0.96 1.00 1.00 1.00 1.00 1.00
PPMC-N 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N-SIR 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N-SIR 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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mild underlying LD condition. Q3 and the covariance discrepancy measure have

p-values that are furthest from .5, and appear to display the most sensitivity to

misfit. The χ2 and G2 are consistently the least sensitive. Figure 5.10b displays

the p-values in the strong ULD condition, where all of the item p-values are very

close or equal to 1 for every discrepancy measure.

In summary, all of the discrepancy measures behavior similarly in the strong

LD conditions, while the covariance measures appear to be the most sensitive in

the mild LD conditions.

5.3 Comparing the Predictive and Frequentist Approaches

for LD Detection

The results from the third component of this study compare the performance of

the predictive model checking approaches with classical frequentist approach in

terms of power and Type I error rate. In discussing these results, rules of thumb

for power (0.80) and Type I error rates (0.05) are used.

Table 5.5 displays the Type I error rate for all of the model conditions (null and

LD conditions), broken down by sample size and model-checking method. The

overall Type I error rates in the null condition are low for both the frequentist and

PPMC-N approaches. Within the PPMC-N method, only the Q3 displays error

rates at the nominal level. For the misfit conditions, the Type I error rates are

low across the board for the χ2 and G2 discrepancy measures, with the exception

of the ULD (a = 1.5) condition. For the frequentist LD approach, the Type I

error rates are particularly high in this condition, implying that these measures

are flagging a larger percentage of non-misfit items as displaying LD. A similar

pattern of high Type I error is seen within the same ULD condition for PPMC-N

method and Q3 discrepancy measure.

Table 5.6 displays the power for the LD conditions, broken down by sample
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Table 5.4: Proportion of replications with extreme p-values (i.e., p-value < .05 or
> .95) for the misfit items within the four LD conditions

LD con-
dition

PPMC
method

Sample
size

χ2 G2 Q3 Cov MBC Residual
Cov

Log
(OR)

Std.
Log(OR)

SLD -
mild

PPMC-N 250 0.00 0.00 0.00 0.13 0.05 0.15 0.05 0.05
PPMC-N-SIR 250 0.00 0.00 0.00 0.08 0.05 0.13 0.05 0.05
PPMC 250 0.00 0.00 0.00 0.10 0.15 0.10 0.15 0.15
PPMC-N 500 0.00 0.00 0.00 0.15 0.13 0.15 0.13 0.13
PPMC-N-SIR 500 0.00 0.00 0.00 0.18 0.13 0.15 0.13 0.10
PPMC 500 0.03 0.03 0.03 0.15 0.13 0.15 0.13 0.10
PPMC-N 1000 0.00 0.00 0.00 0.15 0.10 0.10 0.10 0.05
PPMC-N-SIR 1000 0.00 0.00 0.00 0.13 0.08 0.13 0.08 0.08
PPMC 1000 0.00 0.00 0.00 0.13 0.08 0.13 0.08 0.08

SLD -
strong

PPMC-N 250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N-SIR 250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC 250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N-SIR 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N-SIR 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ULD -
mild

PPMC-N 250 0.01 0.01 0.01 0.15 0.05 0.14 0.05 0.06
PPMC-N-SIR 250 0.00 0.00 0.00 0.16 0.04 0.15 0.04 0.05
PPMC 250 0.00 0.00 0.00 0.14 0.05 0.14 0.05 0.04
PPMC-N 500 0.02 0.02 0.01 0.16 0.08 0.17 0.08 0.07
PPMC-N-SIR 500 0.02 0.02 0.02 0.20 0.07 0.19 0.07 0.08
PPMC 500 0.01 0.01 0.01 0.18 0.07 0.18 0.07 0.08
PPMC-N 1000 0.03 0.03 0.03 0.29 0.13 0.28 0.13 0.13
PPMC-N-SIR 1000 0.02 0.02 0.03 0.28 0.14 0.28 0.14 0.14
PPMC 1000 0.02 0.02 0.02 0.30 0.13 0.30 0.13 0.15

ULD -
strong

PPMC-N 250 0.63 0.63 0.66 0.94 0.85 0.94 0.85 0.85
PPMC-N-SIR 250 0.60 0.60 0.62 0.93 0.84 0.93 0.84 0.84
PPMC 250 0.47 0.47 0.50 0.94 0.87 0.94 0.87 0.87
PPMC-N 500 0.94 0.94 0.94 1.00 0.99 1.00 0.99 0.99
PPMC-N-SIR 500 0.95 0.95 0.95 1.00 0.98 1.00 0.98 0.99
PPMC 500 0.90 0.90 0.91 1.00 0.98 1.00 0.98 0.98
PPMC-N 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC-N-SIR 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PPMC 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 5.10: Comparison of predictive model checking p-values for the a set of dis-
crepancy measures for a single replication, Underlying Local Dependence (ULD)
condition (N = 500)
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size and model-checking method. The predictive (PPMC-N) and frequentist LD

approaches perform very similarly, with very low levels of power in the mild LD

conditions and very high power in the strong LD conditions. The only notable

difference in the performance of the Q3 discrepancy measure between the PPMC-N

and frequentist method. The Q3 measure performs well in the PPMC-N method,

but has lower power throughout the conditions in using the frequentist measure.

Based on these results, it appears that the PPMC-N and frequentist method

have fairly similar power and Type I error rates for these three focal discrepancy

measures.

Table 5.5: Type I error rates for the null and misfit conditions for the PPMC-N
and frequentist approaches

N=250 N=500 N=1000

Method Degree of LD χ2 G2 Q3 χ2 G2 Q3 χ2 G2 Q3

PPMC-N
method

None 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05
SLD

π = .5 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05
π = .8 0.00 0.00 0.06 0.00 0.00 0.07 0.00 0.00 0.08

ULD
a =0.5 0.00 0.00 0.05 0.00 0.00 0.06 0.00 0.00 0.06
a =1.5 0.00 0.00 0.13 0.01 0.01 0.26 0.04 0.04 0.44

Frequentist
method

None 0.02 0.02 0.00 0.02 0.02 0.00 0.01 0.02 0.00
SLD

π = .5 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.01 0.00
π = .8 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.00

ULD
a =0.5 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.00
a =1.5 0.07 0.06 0.00 0.15 0.15 0.00 0.32 0.32 0.00
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Table 5.6: Power for the misfit conditions for the PPMC-N and frequentist ap-
proaches

N=250 N=500 N=1000

Method Degree of LD χ2 G2 Q3 χ2 G2 Q3 χ2 G2 Q3

PPMC-N
method

SLD
π = .5 0.00 0.00 0.05 0.00 0.00 0.08 0.00 0.00 0.05
π = .8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ULD
a =0.5 0.00 0.00 0.08 0.01 0.01 0.11 0.01 0.01 0.21
a =1.5 0.47 0.49 0.90 0.88 0.90 0.99 1.00 1.00 1.00

Frequentist
method

SLD
π = .5 0.01 0.01 0.00 0.06 0.06 0.00 0.03 0.03 0.00
π = .8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ULD
a =0.5 0.03 0.03 0.00 0.06 0.07 0.00 0.10 0.11 0.00
a =1.5 0.83 0.84 0.34 0.98 0.98 0.32 1.00 1.00 0.31
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CHAPTER 6

Summary and Conclusions

The primary goal of this study was to demonstrate the performance of the Poste-

rior Predictive Model Checking assuming posterior normality (PPMC-N) method

for the detection of model misfit (and more specifically, local dependence) in Item

Response Theory (IRT). The examination of local dependence (LD) in IRT has

a long history in both the frequentist (e.g., Yen, 1984; Chen & Thissen, 1997;

Houts & Edwards, 2013) and Bayesian literature (e.g., Levy, 2006; Sinharay et

al., 2006). The PPMC-N method for IRT models is proposed to take advantage

of the flexibility of the previously-studied Posterior Predictive Model Checking

(PPMC) approach (that is used in tandem with Bayesian estimation) when max-

imum likelihood estimation methods are used. The advantages of the PPMC

method over frequentist approaches include the fact that the PPMC methods

integrates parameter uncertainty into model fit assessment through the use of

the posterior predictive distribution, as well as the fact that it does not rely on

asymptotically-defined distributions for the discrepancy statistics.

Using a set of discrepancy measures that have been previously identified for the

detection of multidimensionality in IRT, this study compared the performance (in

terms of the detection of LD) of the PPMC method with two normality approxima-

tions: (a) the PPMC-N method, in which an the posterior predictive distribution

is approximated using a multivariate normal distribution that is centered around

the maximum likelihood estimates of the parameters, and (b) the PPMC-N-SIR

method, which relies on an additional Sampling Importance Re-sampling step to

54



decrease the reliance on the multivariate normal approximation of the posterior.

The three predictive model checking methods were found to perform very similarly

across a range of LD conditions and sample sizes.

The second research question asked whether any of the studied bivariate dis-

crepancy measures are more useful than others in detecting LD. The studied LD

indices included χ2, G2, Q3, sample covariance, model-based covariance, residual

covariance, log-odds ratio, and the standardized log-odds ratio. All of the discrep-

ancy measures performed similarly in the strong LD conditions, showing excellent

detection of the LD items. The most effective measures in the mild LD condi-

tions were the covariance, model-based covariance, and residual covariance, which

performed almost identically. Additionally, in the null condition, these three dis-

crepancy measures displayed distributions of predictive p-values that are closest

to uniform.

Lastly, I compared the PPMC-N method with the frequentist approach, fo-

cusing on the power and Type I error rates of each method using a subset of

the most commonly-used discrepancy measures. The two approaches were found

to be fairly similar, with high power in the strong LD conditions and low power

in the mild LD conditions. This may seem to imply that nothing is gained by

using a predictive method over frequentist approaches with this specific set of

discrepancy measures. There are two important notes regarding this comparison.

First, it is already well-known that PPMC predictive p-values lead to conservative

inferences, due to the fact that the data is used in predictive model checking for

both estimation and model checking (Sinharay et al., 2006). This has led many

researchers to treat the predictive p-values as pieces of for data-model (mis)fit,

rather than for use in significance tests. Secondly, we do see evidence that the best

performing discrepancy measures within the predictive model checking approach

(specifically, the covariance-based measures) do show some sensitivity to LD in the

mild LD conditions, where the commonly-used discrepancy measures in the fre-
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quentist framework (χ2, G2, and Q3) were not sensitive. These covariance-based

measures are suggested for further study within the PPMC-N framework.

The results from this simulation study are generalizable only to the extent

that the design variables are similar to real world data conditions. Sample sizes

were chosen to be reflective of small to large samples that may be used in IRT

calibration and model appraisal, but the simulated data had no missing responses,

which is likely in real-world applications. Further work is necessary to examine

the PPMC-N approach with shorter item banks and other item response models

(e.g., graded response model for polytomous item responses).

The purpose of this study is to provide additional ways for applied users of

IRT, who typically rely on maximum likelihood methods of estimation available

in widely-used software, to detect violations of model assumptions. However, sub-

jective judgments on the part of the user are still required when deciding whether

the discrepancies between the data and hypothesized are important enough to

address. When misfit is detected, possible actions include (a) retaining the hy-

pothesized model to make inferences but acknowledging the limitations and source

of misfit, (b) discarding locally dependent items and re-testing the model with the

revised data, or (c) using a more general model that accounts for the extra di-

mensionality (such as a bifactor or testlet model). These decisions remain as an

important piece of model appraisal, which can be best made with strong informa-

tion regarding the specific aspects of the model that are discrepant with the data.

The PPMC-N method is a flexible alternative to both frequentist and Bayesian

model checking methods, and retains many of the advantages of the fully Bayesian

approach while remaining a viable options for those who choose the use maximum

likelihood estimation methods.
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APPENDIX A

Program files

Example flexMIRT calibration file:

<Project>

T i t l e = ” Null cond i t i on c a l i b r a t i o n f i l e (N=250 , n=20)”;

Desc r ip t i on = ”True Dim=1; Estimated Dim=1”;

<Options>

Mode = Ca l i b ra t i on ;

Algorithm = BAEM;

Quadrature = 1 2 1 , 6 . 0 ;

Score = EAP;

SaveSCO = YES;

SavePRM = Yes ;

SaveCov = Yes ;

<Groups>

%G%

F i l e = ”2 PL UniD 5 data . dat ” ;

Miss ing = 9 ;

Varnames = v1−v20 ;

N = 250 ;

S e l e c t = v1−v20 ;
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Model ( v1−v20 ) = Graded ( 2 ) ;

Ncats ( v1−v20 ) = 2 ;

Dimensions = 1 ;

<Constra ints>

Example WinBUGS calibration file:

model{
f o r ( i in 1 :N){

f o r ( k in 1 : n){
Y[ i , k ] ˜ dbern ( prob [ i , k ] )

l o g i t ( prob [ i , k ] ) <− a [ k ] ∗ ( theta [ i ] − b [ k ] )

}
theta [ i ] ˜ dnorm ( 0 . 0 , 1 . 0 )

}
## Pr io r s on item parameters

f o r ( k in 1 : n){
b [ k ] ˜ dnorm(m. b , p r e c i s i o n . b)

a [ k ] ˜ dnorm(m. a , p r e c i s i o n . a ) I (0 , )

}
p r e c i s i o n . b <− pow( s . b , −2)

p r e c i s i o n . a <− pow( s . a , −2)

}
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