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Abstract

A new force-based canonical approach for the accurate generation of multidimensional potential
energy surfaces is demonstrated. Canonical transformations previously developed for diatomic
molecules are used to construct accurate approximations to the 3-dimensional potential energy
surface of the water molecule from judiciously chosen 1-dimensional planar slices that are shown
to have the same canonical shape as the classical Lennard-Jones potential curve. Spline
interpolation is then used to piece together the 1-dimensional canonical potential curves, to obtain
the full 3-dimensional potential energy surface of water molecule with a relative error less than
0.01. This work provides an approach to greatly reduce the computational cost of constructing
potential energy surfaces in molecules from ab initio calculations. The canonical transformation
techniques develop in this work illuminate a pathway to deepening our understanding of chemical

bonding.

* To whom correspondence should be addressed. E-mail: LuisRiveraRivera@ferris.edu



I. Introduction

The concept of the Born-Oppenheimer potential energy surface (PES) has been and continues
to be of central importance for understanding, characterizing, and predicting properties
associated with molecular structure, spectroscopy, and reaction dynamics.'” With advances on
computer power and increasing efficacy of ab initio methods, it is now possible to calculate ab
initio points on the PES with high accuracy, and in most cases within chemical accuracy (1
kcal/mol). However, it still computationally costly to generate a reliable PES from calculated ab
initio points for systems that have more than 4 atoms. The challenge lies on the generation of an
accurate global representation of a multidimensional PES with a minimum number of calculated
ab initio points.

Different approaches have been proposed to generate multidimensional PES from ab initio
points.®'* In general, these approaches can be classified as interpolation methods that ensure that
the PES reproduces all ab initio points, or as fitting methods where the ab initio points are fit to a
multidimensional analytical function. Global interpolations methods are in general of high
accuracy if an adequate number of ab initio points are used, however, they are computationally
prohibited for systems of high dimensions. In contrast, fitting methods are computationally less
expensive and are the normal choice for systems of high dimensions. PES generated by fitting
approaches do not reproduce the ab initio points, but strive to minimize the global error of the
fitting involving a large number of adjustable parameters that in most cases do not have physical
significance. Recently, automatic procedure of PES generation has been proposed,'>'® aiming
minimal human input and effort.

This work presents a new force-based canonical approach to generate highly accurate

multidimensional PES. Canonical approaches'® have been recently developed and extensively



applied to diatomic molecules and multidimensional intermolecular interactions along the
dissociative coordinate. Applications of canonical approaches have led to the discovery of
canonical potentials and to their application to generate highly accurate potential curves of
pairwise interatomic interactions. The term canonical potential refers to dimensionless functions
obtained from each molecule within the defined class by a readily invertible algebraic
transformation. Furthermore, to be deemed canonical, the dimensionless potentials obtained from
all of the molecules within the defined class by the canonical transformation must agree to within
a specified order of high accuracy. The potential curves of pairwise interatomic interactions
generated by canonical approaches do not require the use of adjustable parameter and the quality
of the generated potentials are close to spectroscopy accuracy (1 cm™, 0.0028591 kcal/mol).
Furthermore, the previous adaptions of canonical approaches were then applied to algebraic
forms of the classic Morse, Lennard-Jones, and Kratzer potentials.” Using the classic Morse,
Lennard-Jones, or Kratzer potential as reference, inverse canonical transformations allow the
accurate generation of Born-Oppenheimer potentials for H," ion, neutral covalently bound H,,
van der Waals bound Ar,, and the hydrogen bonded 1-dimensional dissociative coordinate in
water dimer. In addition, an algorithmic strategy based upon a canonical transformation to
dimensionless form applied to the force distribution associated to a potential was developed. This
algorithm lead to accurate approximations to both the force and potential functions
corresponding to a particular diatomic molecule in terms of the force distribution associated with
an algebraic potential energy function, such as the Lennard-Jones function. Now, this
methodology is extended and apply to the 3-dimensional water molecule PES. The 3-
dimensional PES of the water molecule is accurately constructed from judiciously chosen 1-

dimensional planar slices that are shown to have the same canonical shape as the classical



Lennard-Jones potential curve. The highly accurate water potential of Polyansky ez al.”” was

used to generate the necessary data for the analysis presented in this work.

II. Methods

As illustrated in Figure 1, the PES for H,O can be viewed as a 3-dimensional surface
imbedded in 4-dimensional Euclidean space that can be viewed as the graph of real-valued
function of three variables. The three degrees of freedom shown in Figure 1 are 0, the H-O-H
bond angle, R1 and Rz, the two O-H bond lengths. The H>O PES can be constructed as a graph in
4-dimensional space of a potential function of ®, R and R, with 0 < ® < 180 (in degrees), and 0
< Ri, Rz < oo. Planar slices of this PES give 1-dimensional potential curves. One judiciously
chosen family of such planar slices, produces 1-dimensional potential curves that have the same
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canonical shape arising in diatomic molecules as studied previously. To define this judicious

family of planar slices, it is convenient to introduce polar coordinates in the (R1, Rz)-quarter-
plane spanned by 0 < R1, Rz < . Defining ® = arctan(Rz/R1) and R = \/RfTRg , one can
view the full H,O PES as the graph of a function E(R0,P). Appealing to obvious symmetries,
one can restrict attention to E(R,0,®) with 0 < R, 0 < ® < 180 degrees, 0 < ® < 45 degrees.
The desired planar slices are defined by fixing values for both @ and 0. It should be noted in
Figure 1 that this corresponds to fixing the bond angle © and fixing the ratio Rz/R1. These planar
slices yield a family of 1-dimensional curves E(R;0,9), 0 < R < oo with @ and © held constant.
Figure 2 shows examples of these planar slices for ® = 94°. While these curves appear to be
rather different for the five different values of @, they do in fact have the same canonical shape
as the diatomic molecules considered in Refs. 17-26 and as the classical Morse and Lennard-

Jones potential curves.”” One way to understand the canonical shapes of these curves is to view



each of these slices with @ and © constant as behaving like diatomic complexes with the two
hydrogen atoms held in a fixed rigid orientation (Rz/R1 = constant in a coordinate system having
the oxygen atom at the origin) as they move toward or away from the oxygen atom.

Consider a generic potential slice, denoted E(R), with Rz/R; held constant and R? = R? +
RZ. As illustrated in Figure 2, E(R) possesses a unique minimum, denoted — De, representing a
dissociation energy associated with this particular potential slice. Denote by Re the separation
distance at which E(Re) = —De. A sequence of R;values is defined by F(Rj) = —Fn/2/, for j=0,
1, 2, ..., where Fi, the maximum value of the attractive force, that is, F(Ro) = — Fm. In particular,
Ro (also called Rn) is the internuclear separation at which the attractive force is equal to — Fi.

Using the Lennard-Jones potential curve

= 0.((2)" -2 (%)) 0

as a reference potential the generic E(R;0,®) potential curves can be approximate by using the

inverse canonical transformation as

EL] RIT‘]+X(RI."11—R]TI) _EL](RI'“I)
E(R;0,®) = E(R)) +(E(R.) - E(R,.))( ( ]EU<R55>-;U<1U> ’ @
Jt1 Jj
for 0 < x < 1 defined by:
R-R;
X Ry 3)

Eq. (2) is defined for the attractive side of the potential curve, that is, R > Re. The R}‘] values for
the reference potential, Eij(R), are defined in similar fashion as those for the target potential,
Fy (R;“] ) = —F,:“l] /27. Similar constructions can be carried out on the repulsive side of the

potential, that is, 0 < R < Re, only now one defines the sequence of R < Re, j=1,2,..., values by

F(Rrj) = Fn2/ (and similarly for the reference potential). In particular, Ry is the internuclear



separation at which the repulsive force has magnitude equal to Fn, the maximum value of the
attractive force. At successive values of Ry, the repulsive force doubles.

In summary, the canonical nature of the curves E(R;®,®) for fixed values of ® and ®
enables one to construct simple algebraic forms given by Eq. (2) for each potential slice provided
one has good “estimates” for a finite number of R; values and associated energies E;=E(R;0,D).
To fix notation and to emphasize that both R;and Ej depend upon a particular PES slice defined
by fixing both ® and @, we denote: R;=R;(0,D) and E=E;(®,D).

Clearly, one cannot obtain the necessary data to apply the inverse canonical transform Eq. (2)
to every PES slice E(R;0,0) for 0 < ® < 180 degrees, 0 < @ < 45 degrees. In the next section,
we discuss two strategies for obtaining good approximations to all of the desired PES slices from
a finite number of such slices. The first uses direct spline interpolation from a given finite set of
angle pairs {®;, @y, i=1,..,m and k=1,...,n} while the second makes use of a judiciously chosen

canonical transformation of both R(®,®) and E;(®,D).

II1. Results

We divide the results into two subjections in which the spline interpolation and canonical
transformation strategies for approximating the functions R;(®,®) and E;(®,®) from a finite set
of data mentioned above are discussed separately. In both cases, the accuracy of the two different
approximations is judged against values of E(R®,®) obtained from Polyansky et al. >, which
for purposes of this study are considered to be “true”. However, it is important to keep in mind
that most of the range of values (R ®,®) needed for the calculations performed in this paper are

well into the range of values obtained via extrapolation from ab initio results, since these were



calculated for a rather restricted range of energies considerably lower than we used. We shall
return to this crucial point when discussing results.
ITILA. Direct Spline Interpolation Method

A direct spline interpolation approach to approximating the functions R;(®,®) and E;(®,D)
can be implemented by selecting a finite number of values for both ® and ®. The theoretical
bounds on ® and @ are: 0 < ® < 180 degrees, 0 < ® < 45 degrees. To test the direct
interpolation method, we chose the sets of values: {®;, i=1,..,10} = {44, 64, 84, 94, 104, 114,
124, 144, 164, and 180 degrees} for ® and {®y k=1,...,9} = {5, 10, 15, 20, 25, 30, 35, 40, and
45 degrees} for @. Thus, there are 90 pairs of values {(®;,Dx), i=1,...,10, k=1,...9}. For each of
the 90 pairs, we computed values for R(®;®y) and associated energies Ej(®,Dx) from the PES
in Polyansky et al. *’. More specifically, we chose the set of R-values: {Ri6(0,®%), Ris(0;Dy),
R4(0;®k), R3(0;Dk), R2(0;Dx), Ri1(O;Dk), Rm(O;,Dk), Re(©;Dk), Rn(O;, D), R1(O;Dy),
R(0;Dy), R3(0; D), Ri(O®;Dy), and Rs(0;Dy)}. Bivariate spline approximations were then
constructed for each of these functions. Thus, for example, from the set of values: {(®;®D,
Re(©;Dy)), i=1,..,10, k=1,...,.9} one performs standard bivariate spline interpolation to produce
an approximation R, (®,®) to the function Re(®,®). This procedure is repeated for each R~value
and for each associated energy Ej. These interpolated functions are then substituted into the
inverse canonical transformation Eq. (2) to obtain an approximation £ (R,®,®) to the full PES
E(R®,®) which was then compared against the “true” PES in Polyansky et al.”’.

To test the effectiveness of this procedure, the approximate functions ﬁj (0,0), E;(0,®), and
E(R®,D) were compared to the true functions obtained from Polyansky et al.*’ for (®,d) not

occurring among the “training” data {(®; @k Re(®;Px)), i=1,..,10, k=1,...9}. As a typical



example, consider (®,®) = (100°,40°). The goodness-of-fit measure chosen was relative error

define by:
|1?]-(100°,40°)—0R]-(100°,40°)| and |Ej(100°,40°)—15]-(100°,40°)| )
Rj(100°,40°) E;(100°,40°)
for R;(100°,40") and E;(100°,40°), and by:
f§r56|E(R,100°,40°)—E(R,100°,40°)|dR )

f§r56|E(R,100°,40°)|dR
for E(R,100°,40°). The computed relative errors are listed in Table 1. The left-hand graph in
Figure 4 shows the true energy E (R, 100°, 40°) vs. the approximation E (R, 100°,40°). The
relative error for E (R, 100°,40°), defined by Eq. (5), was computed to be 1.9x107.

The accuracy of the direct interpolation method clearly depends upon the “training” data, that
is, the number and distribution of angle pairs {(®;®x), i=1,...,m, k=1,...n} and associated values
of R;(®;®x) and E;(©;®Dx); a higher density of angle pairs leads to increased accuracy. The cost
of increased accuracy through a higher density of angle pairs is the increased number of ab initio
calculations through which the values R}- (0,Px) and E ;(©;Dx) are computed. In the next
subsection, we demonstrate how making use of a certain canonical transformation of the
functions ﬁj (®,D) can greatly reduce the required number of ab initio computations with little
sacrifice of accuracy.

ITI.B. Canonical Transformation Method

Plotting the surfaces ﬁj (O,D) suggests that they have similar “shapes” for different values of
J. This notion of similar shape can be made rigorous by rescaling. In particular, for each value of
J, we define a rescaled version of }?j (0,0), denoted I?j (x,y)for0 < x,y < 1, by:

(Rj(180x+4-4(1—x),45y+5(1—y))—Rj(180x+44(1—x),5))

Ri(x,y) = (6)

(Rj(180x+44(1—x),45)—Rj(180x+44(1—x),5))



which is readily inverted to give:
R;(©,®) = R;(©,5) + R;(x,y) (R;(©,45) - R,(©,5)) (7
with ® = 180x + 44(1 — x) and ® = 45y + 5(1 — y), or equivalently:

_ (0-44) __ (9-5)
X === andy = T (8)

Figure 3 compares the scaled functions Rj (x, y) for two values of x and two values of j. One also
observes that for fixed y, the functions Rj (x,y) are nearly constant for 0 < x < 1. Table 2 gives
the relative errors between Rye(x,y) and R ;(x,y) for a range of other values of j where the
relative error is defined by:

1,1 ~
fo fo |RRe(x»3/)_R](x;3’)|dXdy

Rel Err =
fol follﬁRe (x,y)ldxdy

)
Appealing to Eq. (7) and the relatively small errors in Table 2 and, in particularly, the relative
insensitivity of Rge (X, y) to variations in x, we define the approximate forms ﬁj (O, D) by:

R;j(©,0) = R;(0,5) + Rre(0.5,7) (R;(0,45) - R;(6,5)) (10)
with x and y defined in Eq. (8). Additionally, one defines the associated energies:

E(0,0)=E (ﬁj(@), cD)) (11)
and then an approximation, denoted £ (R®,®) to E(R,0,D) obtained by substitution of E] (0,D)
and ﬁj (0,D) into Eq. (2). The right-hand graph in Figure 4 shows the true energy

E(R,100°,40°) vs. the approximation E (R, 100°,40°). The relative error between
E(R,100°,40°) and E (R, 100°,40°) was computed to be 7.9x10~. While not as good a fit as
was obtained from the direct interpolation method, it is still quite good and requires much less

computation to obtain the required input data.



IV.Discussion

A key factor to consider in assessing the value of a proposed strategy for constructing a PES
approximation is its computational complexity by which we mean to computational effort
required to implement it. As stated in the introduction to this paper, we take the PES constructed
by Polyansky et al.*” to be the “true” PES against which our approximation is compared. It is
helpful to briefly review the strategy employed by Polyansky ef al. and estimate its
computational cost. As stated in Polyansky et al*’, they adopt the standard approach of using
Radau coordinates to calculate the nuclear motion on the H>O PES. They perform calculations
using 25 DVR grid points for each radial variable and 40 angular DVR grid points. Moreover,
their calculated ab initio points on the PES are restricted to energies below 25,000.0 cm™. For
energies beyond 25,000.0 cm™, Polyansky et al. perform a customary extrapolation to a chosen
functional form with a large number of fitting parameters, 246 in this particular case. The
adjustable parameters were fit to 1260 ab initio points below 25,000.0 cm™.

In contrast, the procedures employed here require no adjustable parameters; all necessary
parameter values are computed by explicit formulas appearing in the theory. Moreover, the PES
formulas utilized here are valid for energies well beyond 25,000.0 cm’', without extrapolation,
and require far fewer ab initio points than traditional approaches. These desirable properties of
the PES approximation methods introduced here result from the observation that certain planar
slices through the full H,O PES produce curves with well-defined canonical shapes. The
canonical nature of these advantageous PES slices is revealed readily by adopting a coordinate
system (R,®,D) with ® denoting the angle between the two HO bonds and (R ®) denoting the
polar coordinate system for the (R1,Rz) Cartesian plane of the two HO bond lengths. The first

observation is that the radial slices of the full H,O PES corresponding to fixing the two angular
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variables (O,D) possess the same canonical shape seen in the wide array of diatomic molecules
studied in Refs. 17-26. The direct interpolation method described above (Section II1.A) exploits
the canonical nature of these radial slices to construct an approximation of the full H,O PES (for
44° < ® < 180° and 5° < @ < 45°) that utilizes nine values for @ and ten values for ® along
with fourteen of the special radial values defined by the associated (radial) force. The total
number of ab initio points needed to calculate all of the parameters used in this PES
approximation is 9x10x14 = 1260 points. However, it must be emphasized that this produces a
PES approximation for energies up to 9.0x10° cm™. If attention is restricted to energies below
25,000.0 cm™, the number of required ab initio points is much reduced as gleaned from Figure 5
containing plots of the energy surfaces Ej(®,0)=E(R/(0O,D),0,0) for various values of j. In
particular, Figure 5a shows the set of angular variables (®,®) for which the energy surface
Ee(0,0)=E(R:(0,0),0,d) lies below 25,000.0 cm™', while Figure 5b shows the set of angular
variables (®,®) for which the energy surface En(®,®)=E(Rn(0,0),0,0) lies below 25,000.0
cm’'. Figure 5¢ shows that the entire energy surface Ei(©,0)=E(R1(0,D),0,d) lies above
25,000.0 cm™. Figures 5d, Se, and 5f show on the repulsive side of radial PES slices, one need
only consider the two values Rrm and Rr1. Thus, restricting to energies below 25,000.0 cm’™, one
need use only the four radial values {Rr1, Rim, Re, Rm}. It also follows from Figure 5 that
restricting energies to below 25,000.0 cm™' means that only four values of @ {45, 40, 35, and 30
degrees} are required. Thus, only 126 ab initio points suffice to approximate the H,O PES for
energies below 25,000.0 cm’.

The second method for approximating the H,O PES described above (Section II1.B) exploits
an additional canonical transformation to that applied to radial PES slices in the first method. In

particular, it was shown that the planar PES slices defined by fixing R; and ® have a canonical
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dimensionless shape. Moreover, these canonical curves (to high accuracy) are constant with
respect to ©. It follows that exploiting both this canonical shape behavior plus that for radial PES
slices allows one to approximate the full H,O PES (up to energies on the order of 9.0x10° cm™)
using only 149 ab initio points to evaluate all of the required parameter values. For energies
below 25,000.0 cm™, only 49 ab initio points are required.

Besides providing an approach to greatly reducing the computational cost of constructing
PESs in molecules from ab initio calculations, the canonical transformation techniques utilized
here illuminate a pathway to deepening our understanding of chemical bonding. This aspect of
the canonical transformation methodology was recently extensively explored in the setting of
diatomic molecules (see Refs. 17-26). In particular, it was shown that through consideration of
force (through which the key radial separation distances R; are defined) rather than just potential
energy the canonical structure of diatomic potential curves is revealed. In the present work, a
strategy for generalizing the diatomic canonical transformation paradigm to triatomic molecules
via judiciously chosen planar slicing of the higher dimensional PES was proposed and exploited.
As with the diatomic theory studied in Refs. 17-26, this approach to extending the canonical
transformation method to triatomic molecules offers the potential to deepen our understanding of

chemical bonding in larger molecules.

V. Conclusions

A canonical transformation perspective upon understanding unifying structural properties of
potential energy curves for diatomic molecules was generalized to the triatomic molecule H,O. A
practical application of the resulting canonical transformation decomposition of the H,O PES

was to the development of an algorithm for constructing accurate approximations to the PES
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with no adjustable fitting parameters and requiring one to two orders of magnitude fewer ab
initio data points than traditional PES approximation methods. A key issue to explore concerning
extension of this approach to other triatomic (and possibly larger) molecules is how the results
obtained for the symmetric H,O molecule depend upon that symmetrical structure. For example,
would similar results obtain for triatomic molecules comprised of three different atoms? These

and other questions will be studied in future investigations.
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Table 1. Computed relative errors as defined by Eq. (4).

R;(100°,40°)  E;(100°,40°)

Res 2.5%x10™ 7.3%x107*
Ris 9.9x107 2.3%x10™
Rus 1.2x10°° 6.7x10™*
Ri3 7.5%107 1.0x107
Rz 3.5x107 7.4%x10™
R 5.0x107 5.8x10™*
Rem 2.2x107° 6.2x10™
Re 1.0x10° 6.2x10™
R 2.3x1073 3.5x107
R 5.7x107 3.8x107
R: 6.8x107° 6.6x107
Rs 1.0x10™ 1.2x107
Ra 7.0x10°¢ 2.3%x10
Rs 7.3%x107 4.6x107

Table 2. Computed relative errors as defined by Eq. (9), between Ry, (x,y) and Rj (x,y).

Rel Err
Rre 8.4x10°
Rrs 6.7x107
R4 5.4x107
Ri3 4.5x10°°
Rr2 3.7x1072
R 3.1x10°°
er 2.4)(10-3
Rm 8.4x107
R 7.8x10°
R; 8.2x107
R3 1.1x107
R4 1.4x107

Rs 1.5x107




J., 2 D2 2
" @ "; R — Rl _|_ R2
e "lil
..... ‘ "'
R(I)’
H Rl

Figure 1. Coordinate system used for the H,O PES. Planar slices are taken by fixing values

for ® and &.

600000
500000
400000
300000
200000
100000
0
~100000"

* Slices through H,0 PES

Figure 2. 1-dimensional planar slices curves of E(R;0=94°,®).
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Figure 3. The left graph compares the canonical functions Rge (0.5, y) (solid black curve) and

R, (0.5,y) (red circles), while the right graph compares Ry, (0.25,y) and R,,,(0.25,y).
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Figure 4. The left graph shows the true potential slice E (R, 100°,40°) (solid black curve) vs. the
approximation £ (R, 100°,40°) (red circles) while the right graph shows the true potential vs. the

approximation E (R, 100°,40°).
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