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Abstract

One hallmark of human language is its combinatoriality—
reusing a relatively small inventory of building blocks to create
a far larger inventory of increasingly complex structures. In this
paper, we explore the idea that combinatoriality in language
reflects a human inductive bias toward representational effi-
ciency in symbol systems. We develop a computational frame-
work for discovering structure in a writing system. Built on
top of state-of-the-art library learning and program synthesis
techniques, our computational framework discovers known lin-
guistic structures in the Chinese writing system and reveals how
the system evolves towards simplification under pressures for
representational efficiency. We demonstrate how a library learn-
ing approach, utilizing learned abstractions and compression,
may help reveal the fundamental computational principles that
underlie the creation of combinatorial structures in human cog-
nition, and offer broader insights into the evolution of efficient
communication systems.

Keywords: language learning; evolution; phonology; sketch
understanding; bayesian modeling

Introduction
Human language is fundamentally combinatorial, reusing a
relatively small inventory of building blocks to create a far
larger inventory of increasingly complex structures. This struc-
ture is deeply rooted and evident in language’s earliest writ-
ten records, such as cuneiform and oracle bone scripts (Fig-
ure 1A,C). It manifests at multiple levels of structure, from
phonemes to words and sentences, and across various linguis-
tic modalities—spoken, signed, and written—illustrating a
universal trait of human communication systems (Hockett &
Hockett, 1960; Zuidema & De Boer, 2018).

In this paper, we explore the idea that combinatoriality in
language reflects a human inductive bias toward representa-
tional efficiency in symbol systems. Research has recognized
that the evolution and structure of these systems are profoundly
influenced by an inductive bias towards representational effi-
ciency (Kirby, Tamariz, Cornish, & Smith, 2015; Gibson et al.,
2019), which combinatoriality offers (Kirby & Tamariz, 2022).
Empirical support for this notion has come from laboratory ex-
periments (Verhoef, Kirby, & De Boer, 2014; Little, Eryılmaz,
& De Boer, 2017; Hofer & Levy, 2019), as well as qualitative
analyses of emerging sign languages (Sandler, Aronoff, Meir,
& Padden, 2011) and logographic writing systems, posited to
have evolved towards increasing levels of simplicity (Sampson,
1985). Representational efficiency-based methods have been
used for morphology (Goldsmith, 2001) and syntax (Carroll &
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Figure 1: An overview of our library learning model for
writing systems: (A) Parts are frequently reused (marked in
the same color) within and across characters in the multiple
logographic writing systems (e.g., Cuneiform, Chinese). (B) In
our library learning model, we represent characters as stroke
sequences. Learned library functions identify and represent
reused parts (e.g.,木) and relations (e.g., x3, repeating three
times), leading to program compression and the discovery of
structures. (C) The model scales to study the multiple scripts
in the Chinese writing system across time, revealing trends
and adaptations in the use of radicals and other elements.

Charniak, 1992; Kim, Dyer, & Rush, 2019), but structure dis-
covery for these levels of linguistic representation has proven
technically challenging.

Here, we develop an efficiency-based structure discovery
method for a complex logographic writing system, namely Chi-
nese orthography, using the framework of library learning
from the program synthesis literature (Ellis, Albright, Solar-
Lezama, Tenenbaum, & O’Donnell, 2022; Bowers et al., 2023).
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The Chinese orthography presents a unique opportunity for
studying combinatorial structure due to their long evolutionary
history (of over 3,000 years, see, e.g., Kane, 2006) and the
frequent reuse of graphical elements (hundreds of radicals)
within individual characters and across the writing system. The
library learning framework iteratively identifies recurring pat-
terns and stores them in a library of abstractions (Figure 1B).
The characters themselves are then redescribed by reference
to these abstractions, increasing the overall concision of repre-
sentation of the character inventory. Applying library learning
to the Chinese writing system offers two related opportunities:
to validate whether library learning recovers its radical com-
binatorial structure, and to use library learning to analyze the
changes in the system over time.

Reflecting these two opportunities, our investigation con-
sists of two parts. Part I develops a library learning model
as a candidate hypothesis about human inductive biases for
combinatorial structure. We validate the model by showing
that it successfully rediscovers known linguistic structures,
such as radicals, and characters’ hierarchical decomposition,
of the Chinese writing system in its simplified form.

Part II extends this analysis diachronically, investigating
the evolution of Chinese scripts over several representative
historical stages. Previous work in emerging sign languages
has suggested the hypothesis that languages evolve towards
simplification under pressures for representational efficiency
(Motamedi, Schouwstra, Smith, Culbertson, & Kirby, 2019;
Brentari & Goldin-Meadow, 2017). Here, the ancient Chinese
writing system allows us to test this hypothesis at a larger scale.
However, providing quantitative evidence presents significant
challenges, especially when it comes to describing the graphi-
cal components. A recent study by Han, Kelly, Winters, and
Kemp (2022), for instance, aimed to evaluate the evolution of
the Chinese writing system using a simple measure of pictorial
complexity that does not account for internal combinatorial
structure within characters, and reported findings that ostensi-
bly conflict with the expected trend toward the hypothesis and
previous qualitative arguments in the Chinese writing system
(Woon, 1987; Sampson, 1985; Wang, 1973; Geda, Zhao, &
Baldauf, 2010). Our result challenges the pictorial complex-
ity and supports earlier qualitative results, suggesting a trend
towards simplification over time.

Our findings demonstrate how a library learning approach,
utilizing learned abstractions and compression, may help re-
veal the fundamental computational principles that underlie
the creation of combinatorial structures in human cognition,
and offer broader insights into the evolution of efficient com-
munication systems.

Part I: A library learning model for the Chinese
writing system

In this section, we build a library learning-based computational
model for writing systems and present studies on the most
widely used script of the Chinese writing system: simplified
Chinese. Our goal is to leverage library learning to reverse-

engineer the core human inductive biases for combinatorial
structure in language. We will show that our library learning
model can accurately capture the core structural aspects of
simplified Chinese, aligned with prior empirical findings and
theories about hierarchical decomposition and radicals in the
Chinese language.

Methods
We start by describing the computational model designed to
learn library functions for the Chinese writing system. The
high-level goal of the model is to find efficient representations
(good compression in terms of minimal description length, or
MDL) of all the characters in a writing system.

Defining a DSL. We start with defining a domain-specific
language (DSL) for the Chinese writing system. It enables us
to represent individual characters as sequences of primitive
strokes. This approach is founded on three crucial insights:
firstly, Chinese characters consist of strokes; second, these
strokes can be classified into a finite number of basic types;
and third, the spatial relationships between consecutive strokes
are generally consistent.

Our base DSL Lbase (visualized in Figure 2 left) consists of
33 stroke primitives {T, N, H, . . . , HZZP} (six basic strokes
+ 27 turning strokes, as defined in Chinese language au-
thoritative standard (Fu, Liu, Wang, & Wang, 2011)) and
one helper primitive list indicating the beginning of the
stokes sequence1. Each stroke primitive in the DSL repre-
sents a stroke type by its visual form and how it is written.
For modern Chinese characters, we can uniquely encode ev-
ery character to a LISP-style program pchar of the stroke se-
quence based on canonical stroke orderings (Fu, Wang, &
He, 2020). For example, for the two-character word 认知,
which means “cognition”. The corresponding program en-
coding each characters are: p认 := (list D HZT SP N) and
p知 := (list P H H SP N S HZ H).

Objectives for library learning and the measure of pro-
gram complexity. We formalize the process of learning
an efficient representation of a writing system as a library
learning problem. At a high level, the library learning algo-
rithm identifies instances of reuse and abstraction from the
dataset, facilitating efficient data compression. Our algorithm
takes as input a set of (literal) character programs PLbase(W )=
{p认, p知, . . .}, with individual programs p represented with
primitives in Lbase. The algorithm iteratively infers an opti-
mal library of functions L∗ that includes reusable components
(abstractions) learned from the programs in addition to the
base DSL. The programs set PLbase(W ) rewritten with the new
library L yield PL(W ) := {REWRITE(p,L) | p∈PLbase(W )},
where REWRITE(p,L), informally, rewrites the program p in
the most compact way using functions from the library L .

1Following conventions in λ-calculus, (list A B) represents a
list of two elements, and ((list A B) C) is equivalent to a (flat-
tened) list representation (list A B C). We do not consider nested
lists in this paper.
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Figure 2: (Left): Primitives used in the base DSL Lbase, including 33 stroke primitives and one list symbol. (Middle): Character
programs represented in Lbase and the library functions learned by the model. (Right): Visualization of an example character
颢’s hierarchical decomposition discovered, represented as a tree of library functions.

How do we know which library is optimal? When would
the compression algorithm stop? The optimal library L∗ for
all character programs PLbase in a writing system should have a
maximum reduction in description length after being rewritten
with L∗, while keeping the L∗ size overhead small. Follow-
ing previous program synthesis approaches in bootstrap li-
brary learning (i.e., DreamCoder (Ellis et al., 2022) and Stitch
(Bowers et al., 2023)), we define the program (MDL) complex-
ity of writing systems as the description length of the optimal
library and the individual programs rewritten with the optimal
library. This aligns with the concept of minimum description
length (MDL): the description length of the shortest program
that can generate the targeted data.

Formally, we define the description length DLL(W ) of a
writing system W under a specific library L , the description
length of the library itself DL(L), and the program (MDL)
complexity of the writing system, represented as C(W ) as
follows:

DLL (W )=

description length
of the rewritten characters︷ ︸︸ ︷

∑
p∈PLbase (W )

DL(REWRITE(p,L)) +

description length
of the library︷ ︸︸ ︷

DL(L)

DL(L)= ∑
fn∈L

DL(BODY(fn))

C(W )=min
L

DLL (W )

(1)
Here, formally, REWRITE(·, ·) is an operation that seeks the
shortest representation (in terms of DL) to rewrite the literal
program using functions from the new library. BODY(·) is the
program string that defines a library function’s body. DL(·)
is a measure of the description length of a program string
(which generally reflects the number of functions used); we
leverage the exact λ-calculus-based measure of program size
used in Stitch and DreamCoder, specifically the cost(·) defined
in Bowers et al. (2023).

Iterative learning of the library. The library learning
model’s goal is to find the most compressive and concise

L =L∗ for the writing system (i.e., minimizing DLL(W )).
Specifically, as we are running large-scale library learning

on thousands of character programs, we leverage the Stitch
algorithm (Bowers et al., 2023) for efficiently discovering li-
brary functions. Based on state-of-the-art program synthesis
techniques, Stitch iteratively performs top-down searches to
discover λ-abstractions (Alama & Korbmacher, 2023) as li-
brary functions, thereby compressing the programs. Formally,
it gradually grows Lbase to find L∗ by minimizing DLL(W )
(as shown in eq. (1)). Compared to the DreamCoder compres-
sion algorithm, it is three orders of magnitude faster, making
it tractable for us to examine the entire writing system.

Here, a minimal “writing system” containing three char-
acters W = {旦,见,日} will be used as a working example.
The initial programs PLbase(W )= {p旦, p见, p日} are defined
as follows:

p旦 := (list S HZ H H H)

p见 := (list S HZ SP SWG)

p日 := (list S HZ H H)

(2)

In the first iteration, the algorithm discovers a (largest)
reusable part across all three programs (list S HZ), this
part is thus added to the Lbase as a library function, yield-
ing a new library L1 :=Lbase∪{fn 0}, where BODY(fn 0)=
(list S HZ). The character programs in the set PL1(W ),
rewritten with the new library L1, are as follows:

REWRITE(p旦,L1)= (fn 0 H H H)

REWRITE(p见,L1)= (fn 0 SP SWG)

REWRITE(p日,L1)= (fn 0 H H)

(3)

In the second iteration, the algorithm discovers (fn 0 H
H) that is reused and adds it to the library, resulting L2 :=
L1∪{fn 1}, where BODY(fn 1)= (fn 0 H H).

REWRITE(p旦,L2)= (fn 1 H)

REWRITE(p见,L2)= (fn 0 SP SWG)

REWRITE(p日,L2)= fn 1

(4)

In this example, L2 is the optimal library (L∗) for this旦见
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虫　缶　舌　竹　臼　自　血　舟　色　衣　羊　米　聿　艮　羽　糸　

麦　走　豆　酉　辰　豕　里　足　邑　身　釆　谷　豸　角　言　辛　

青　龺　雨　非　齿　黾　隹　金　鱼　革　面　韭　骨　香　鬼　食　

音　首　髟　高　黄　麻　鹿　黑　黍　鼓　鼻　

Discovered and aligned radicals (187 / 201)

Radicals failed to discover (14 / 201)
飞　瓜　肉　齐　赤　卤　龟　阜　隶　鬲　鬥　鼎　鼠　龠

Figure 3: Visualization of the aligned MoE radical–library
function pairs. 201 radicals from the MoE radicals set are
colored in blue, corresponding library functions are colored in
gray on the top left (we omit the fn prefix for brevity). Our
model discovered most of the expert-defined radicals (93.0%).

日 writing system. It is also a hierarchical library, as fn 1 is
defined based on other library functions fn 0. The program
strings in PL∗(W ), rewritten with the optimal library L∗, lead
to a more concise (compressed) description of the writing
system (eq. (4)).

Data. A total of 6,596 simplified Chinese characters were
collected, including their canonical stroke decompositions and
orderings, from the Han character library (Cjklib Developers,
2012). This dataset covers a majority of the official set of sim-
plified Chinese characters (6,596 out of 6,763) specified in the
China National Institute of Standardization (1980) standard.

Results
Learned library captures reuse and hierarchical decompo-
sition in the Chinese writing system. Inspired by previous
work on using library learning to discover geometric shape pat-
terns (Sablé-Meyer, Ellis, Tenenbaum, & Dehaene, 2022) and
object structures (Wong et al., 2022), we applied our model to
analyze the library functions it learned from 6,596 simplified
Chinese characters.

Our model discovered a set of hierarchical library func-
tions for compressing the writing system. In addition to the
34 primitives defined in the base DSL Lbase, 1,805 learned
library functions were found in the optimal library L∗, re-
sulting in a library size of |L∗|= 1,839. Among all the new
library functions learned, 1,717 (95.1%) were hierarchically
defined, meaning that they were not only composed of base
DSL primitives but also incorporated other newly learned li-
brary functions (see Table 1 for examples).

This hierarchical organization facilitated significant com-
pression of the writing system, achieving an overall compres-
sion rate of 4.16×, defined by DLLbase(W )/DLL∗(W ). In
terms of individual characters, the program description length
was drastically reduced. On average, the number of functions

required to encode an individual character was 1/5.63 of the
original amount. As shown in the right of Figure 2,颢 (pro-
nounced as: hào, meaning bright sunlight) is represented by a
program containing only two functions in L∗ compared to the
19 functions required in Lbase before compression. Delving
into the two functions learned to encode颢, fn 1204 resem-
bles 景 and fn 172 页, which are both commonly used in
several other characters (e.g.,惊,影). The fn 1204 (景) and
fn 172 (页) were also hierarchically defined on other func-
tions (i.e.,日,京,贝). This contributes to an explicit hierarchi-
cal representation that captures reuse and structure at a system
level for simplified Chinese.

The example of颢 intuitively demonstrates that our model’s
learned hierarchical decomposition closely resembles the way
humans cognitively break down structures. To assess the valid-
ity of these decompositions, we compared the model’s predic-
tions against a gold standard from the Han character library.
The comparison, based on 3,052 characters, revealed that the
model’s hierarchical representations achieved an overall recall
rate of 76.3% and an F1 score of 61.6 over the spans of the
parsed trees (results are shown in Table 2). It is important to
emphasize the significance of the recall (true positive) rate in
this context, as our model prioritizes maximum compression,
potentially uncovering more fine-grained patterns of reuse
than the ones typically recognized by humans. These find-
ings suggest that our model effectively captures the intrinsic
hierarchical organization of simplified Chinese characters.

Library function discovered #Uses (percentile) Semantic Example usage

fn 0(#0) := (#0 S HZ H) 3342 (100%) 口 口品扣亩
fn 23(#0) := (#0 SP N) 418 (99%) 人 人仄灭认
fn 48(#0) := (#0 H SG) 220 (98%) 夫 撵潜窥肤
fn 105(#0) := (fn 23 (fn 2 #0)) 83 (95%) 寸 夺守尊将
fn 209(#0) := (fn 66 (fn 0 #0)) 38 (90%) 兄 兑兕党况
fn 415(#0) := (fn 20 (fn 3 #0)) 15 (80%) 喜 僖嘻嬉喜
fn 776() := (fn 128 fn 274) 6 (60%) 比 皆比毕毖
fn 1624() := (fn 1233 T) 2 (20%) 禺 愚遇

Table 1: Examples of learned library functions, ordered
according to their frequency of usage. (#·) indicates the pa-
rameter a function takes in.

Model F1 Precision Recall Exact match

Library learning 61.6 51.7 76.3 6.9
Baselines

– Balanced binary tree 34.4 26.5 48.6 2.2
– Random binary tree 28.5 22.0 40.3 1.1
– Left-branching tree 30.8 23.8 43.6 0.5
– Right-branching tree 36.0 27.8 50.9 0.4

Table 2: Quantitative evaluation of the learned structure.
Similar to the evaluations used in constituency parsing (Black
et al., 1991), we report F1 scores, precisions, recalls, and exact
match (%) rates with respect to a gold standard of Chinese
character decomposition.

Library functions resemble expert-defined radicals. Prior
research has shown that computational models of natural lan-
guages as hierarchical programs resemble linguists’ theories in
morphophonology (Goldsmith, 2001; Ellis et al., 2022). Can li-
brary learning models similarly uncover the structural theories
underlying the Chinese language? In this section, we analyze
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Figure 4: Changes in the quantifiable metrics over time. We visualize Left: pictorial complexity (following Han et al. (2022)),
program (MDL) complexity calculated by our model C(W ); Right: description length under the base library DLLbase(W ),
learned library size |L∗|, and compression ratio DLLbase(W )/DLL∗(W ) for the four scripts (oracle bone, seal, traditional, and
simplified) respectively.

the library functions learned by the model and compare them
to expert-defined radicals in simplified Chinese.

Radicals are the graphical components that frequently occur
in Chinese characters and have been used for indexing char-
acters in dictionaries for almost two thousand years. Several
seminal books have defined radical sets throughout history, no-
tably, the Shuowen Jiezi Radicals (說文部首, (Duan, 1821)),
the Kangxi Radicals (康熙部首, (Hanlin Academy, 1885)),
and the Table of Indexing Chinese Character Components (汉
字部首表, (Zhang & Wang, 2009)) developed by the Min-
istry of Education (MoE) in China. These radical sets were
designed for different writing systems and varied in size. In the
scope of this work, we leverage the MoE radicals set, as it is
the only well-recognized radicals definition for the simplified
Chinese writing system.

The MoE radicals set contains 201 radicals: all radicals are
parts of Chinese characters, and every character in Chinese
has at least one identifiable radical from the MoE radicals
set. Intuitively, these radicals can be interpreted as the most
frequent co-occurring components discovered by experts in the
simplified Chinese writing system and are designed to be easy
to identify. Hence, our hypothesis is that our computational
model would be able to rediscover most MoE radicals from
the character programs.

By comparing the library functions learned by the model
and the MoE radicals set, we found that our model discovered
187 (93.0%) radicals in the MoE set. We illustrate the aligned
MoE radical and library function pairs in Figure 3.

Part II: Complexity analysis across time
Our results so far indicate that library learning effectively
discovers structural patterns that link character representa-
tional efficiency and compression to their widely established
prescriptive decompositions. This alignment suggests that
the model may accurately reflect human inductive biases to-
ward combinatorial structure. If this premise holds, the model
should reveal a gradual simplification as systems adapt to these
biases in cultural evolution (Smith, Kirby, & Brighton, 2003).

To test this prediction, the second part of our study presents
a diachronic analysis of the Chinese writing system. To our
knowledge, the only attempt to date to quantify script com-
plexity of the Chinese at different historic stages comes from
Han et al. (2022), which used a simple measure of pictorial

complexity. Contrary to expectations, their findings did not
support a trend towards simplification (Figure 4 left). How-
ever, the reliance on pictorial complexity, which fails to take
into account systematic reuse across and within characters,
could inadvertently inflate perceived character complexity. By
contrast, our model assesses writing system complexity on a
holistic level rather than at the individual character level, capi-
talizing on the advantages of systematic compression through
part reuse, and may thus provide a more accurate picture of
writing system complexity.

Methods and data
Data used for oracle bone, seal, traditional, and simpli-
fied. To test whether the Chinese writing system has in-
deed become simpler when taking combinatorial reuse into
account, we analyze Chinese scripts at four representative his-
torical stages (Kane, 2006): oracle bone (∼1300 B.C.E), seal
(∼200 B.C.E), traditional (∼5th century–present), and simpli-
fied (1956–present). 754 aligned characters were retrieved in
each of these four stages of the Chinese writing system. For
seal scripts, we used the correspondence data from the Uni-
code Seal Script Encoding Project (TCA & China, 2022). For
oracle bone scripts, the殷墟甲骨文字詞表 (Yin Ruins Oracle
Bone Script Lexicon, N. Chen, 2010, 2012) was utilized for
both the correspondence data and character shapes.

Next, we obtained the program representations for all four
scripts. For traditional and simplified Chinese, we adopted
stroke decompositions from the Han character library. Since
there were no off-the-shelf stroke decompositions for seal and
oracle bone characters. Thus, we manually labeled all strokes
with a graphics tablet. Next, following Lake, Salakhutdinov,
Gross, and Tenenbaum (2011) on defining stroke library, the
recorded stroke trajectories were fitted into 2D Cubic Bézier
curves and discretized the strokes into 33 primitives with K-
means clustering, resulting in DSLs of the same size across the
four scripts. Finally, we apply the same compression objectives
and the iterative library learning algorithm as defined in Part I.

Data used for traditional and simplified comparison.
3,762 traditional-simplified Chinese character pairs were col-
lected from標準字與簡化字對照手冊 (Comparison Manual
of Traditional and Simplified Chinese Characters, Ministry of
Education, ROC, 2011) and the Han character library.
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Results
The Chinese writing system has been simplified over time.
We applied the library learning model to the four scripts (or-
acle bone, seal, traditional, and simplified) of the Chinese
writing system, respectively, and compared the program com-
plexity metrics as defined in eq. (1). The results for the writing
system’s complexity C(W ), literal description length DLLbase
(written in the base DSL without library learning), learned li-
brary size |L∗|, and compression rate DLLbase(W )/DLL∗(W )
are shown in Figure 4.

We observed a non-monotonic change in the literal descrip-
tion lengths with an overall trend of decreasing. The literal
description length is practically a measurement of the total
number of strokes used in the writing system. Oracle bone
scripts were observed the largest literal description lengths,
and there was an increase from the transition from seal script
to traditional Chinese.

To validate the simplification hypothesis we proposed ear-
lier in the paper, we analyzed the complexity change over time.
As shown in Figure 4 left, on the contrary to pictorial com-
plexity measurement based on perimetric calculation used in
drawing Han et al. (2022)’s conclusion (a complexity ranking
of seal > traditional > simplified > oracle bone), we generally
found that the writing system’s program complexity C(W )
has shown a monotonic decrease across time (oracle bone >
seal > traditional > simplified), confirming earlier empirical
arguments (Woon, 1987; Sampson, 1985; Wang, 1973; Geda
et al., 2010).

Simplified Chinese is simpler but less systematic compared
to traditional Chinese. The “simplification” from tradi-
tional to simplified Chinese was carried out as a deliberate
process by the People’s Republic of China between 1955 and
1986. Initially designed to ease the difficulty of learning and
improve literacy by reducing strokes in individual charac-
ters (P. Chen, 1999; Rohsenow, 2004), this process may have
disrupted established systematicity and lead to a loss of estab-
lished semantic-phonetic and graphic patterns (Handel, 2013;
Zhao & Baldauf, 2011). It has been suggested that this may
have contributed to recognition and learning behavior differ-
ences (Liu, Chuk, Yeh, & Hsiao, 2016; McBride-Chang, Chow,
Zhong, Burgess, & Hayward, 2005).

Here, our model allows us to directly assess the systematic-
ity of the traditional and simplified Chinese scripts. From the
MDL perspective, systematic-patterned data should be more
compressive. Therefore, the compression ratio can be viewed
as a proxy for the systematicity of a script. By applying our
model to the 3,762 aligned characters on the two scripts sep-
arately, we found (Figure 5) that although traditional has a
noticeably larger description length under the base DSL than
simplified (+16%), the gap was narrowed after compression
(+4%). Further analyzing the compression ratio, we observed
that the traditional Chinese yielded a higher compression rate
than the simplified Chinese, suggesting the simplification pro-
cess from traditional to simplified Chinese did break part of
the systematicity from a computational standpoint.

computation

4.05x
compression 3.64x 

compression

observation

(non-systematic 
rules observed)

(traditional ⇒ simplified)

Figure 5: Comparison of the compression ratio between
traditional and simplified Chinese. The traditional Chinese
script is more compressible than simplified Chinese on the
3,762 aligned characters at a larger scale.

Discussion
In this work, we develop a library learning-based computa-
tional model, positing it as a framework for understanding
the inductive biases behind the emergence and evolution of
combinatorial structures in human language. The model is
centered on the idea that combinatoriality develops from a
MDL perspective of representational efficiency, both by dis-
covering inventories of reusable parts and by compressing the
language using those parts. This validity of this approach is
demonstrated in the first part, where applying our model to the
Chinese writing system uncovers known linguistic primitives
and character decompositions, that align with intuitive human
understandings of these languages. Results from the second
part reveal that these inductive biases, when applied over time,
lead to the development of increasingly simple and efficient
systems, as demonstrated in an analysis of the Chinese writing
system across several stages of historic development.

There are multiple challenges to refining this computational
framework. For instance, we are using canonical decomposi-
tions of modern Chinese scripts (i.e., traditional and simplified)
but manually-parsed sequences for ancient scripts (i.e., oracle
bone and seal), which could lead to less systematic representa-
tions of ancient scripts. Meanwhile, the stroke-based represen-
tation may not faithfully recover spatial layouts. These issues
can be addressed by using unsupervised image parsing algo-
rithms and including spatial templates (Lake, Salakhutdinov,
& Tenenbaum, 2015; Hu, Wu, & Zhu, 2011).

In future work, we intend to further scale our model to ana-
lyze the systematic structure to not only forms but a broader
range of form-meaning mappings. We hope our work can
provide insights into how to build a computational model to
reverse-engineer how compression, efficiency, and structure
shape human languages (Kirby et al., 2015; Gibson et al., 2019;
Tamariz & Kirby, 2015; Zaslavsky, Kemp, Regier, & Tishby,
2018). More broadly, how large-scale library learning can
contribute to theories of the evolution of efficient communica-
tive systems and modeling human cognitive representations of
abstractions.
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