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Magnetic damping of jet flows in quasi-two-dimensional Rayleigh-Bénard convection

Ashna Aggarwal * and Jonathan M. Aurnou
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095, USA

Susanne Horn
Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 5FB, United Kingdom

(Received 1 March 2022; accepted 12 August 2022; published 13 October 2022)

The mechanism responsible for the damping of the large-scale, azimuthally directed jets observed at Jupiter’s
surface is not well known, but electromagnetic forces are suspected to play a role as the planet’s electrical
conductivity increases radially with depth. To isolate the jet damping process, we carry out a suite of direct
numerical simulations of quasi-two-dimensional, horizontally periodic Rayleigh-Bénard convection with stress-
free boundary conditions in the presence of an external, vertical magnetic field. Jets, punctuated by intermittent
convective bursts, develop at Rayleigh numbers (Ra, ratio of buoyancy to diffusion) beyond 105 when the
magnetic field is relatively weak. Five primary flow regimes are found by varying 103 � Ra � 1010 and the
Chandrasekhar number (Ch, ratio of Lorentz to viscosity) 0 � Ch � 106: (i) steady convection rolls, (ii) steady
magneto-columns, (iii) unsteady to turbulent magneto-plumes, (iv) horizontally drifting magneto-plumes, and
(v) jets with intermittent turbulent convective bursts. We parse the parameter space using transitions derived
from the interaction parameter (N , ratio of Lorentz to inertia). The transition to the regime dominated by jets
has the most immediate applications to the magnetic damping of Jovian jet flows, where the separation between
jets and a magnetically constrained system occurs at a jet-based interaction parameter value of NJ ≈ 1. We
approximate the value of the Jovian interaction parameter as a function of depth, and find that the jets may brake
at ≈6000 km below the surface, which is deeper than recent estimates from NASA’s Juno mission. This suggests
that mechanisms in addition to electromagnetic forces are likely required to fully truncate the jets.

DOI: 10.1103/PhysRevE.106.045104

I. INTRODUCTION

Turbulent flows in planetary and stellar interiors, often
driven by convection, are controlled by the complex interplay
of stratification, rotation, and magnetic forces. One canonical
setup used to understand the fundamental processes behind
such flows is Rayleigh-Bénard convection (RBC), in which a
fluid is heated from below and cooled from above. RBC stud-
ies also often include additional forces such as rotation or an
applied magnetic field to gain further insight into geophysical
and astrophysical flows [1–10].

Zonal winds, or azimuthally directed large-scale flows
(also called “jets”), are one type of flow structure often ob-
served in planetary and stellar systems, such as at the surfaces
of Jupiter and Saturn [11–14]. On these planets, the electrical
conductivity increases as a function of spherical radius as the
outer hydrodynamic molecular envelope transitions to a liquid
metal [15–19]. It is the increase in electrical conductivity, and
thus electromagnetic effects, that may act as a resistive brake
on the azimuthally directed zonal flows through a mechanism
known as “magnetic braking.” Furthermore, the fundamental
question of electromagnetic impact on large-scale flows is
relevant to a variety of other systems, including the solar
tachocline [20–22] and plasmas in tokamaks [23,24].

*aggarwal01@ucla.edu

Magnetic braking is a magnetohydrodynamic (MHD) phe-
nomenon in which a strong magnetic field suppresses motions
in a conducting fluid [25]. In the braking process, motion
across magnetic field lines induces electric current, which
gives rise to Joule dissipation [26]. In turn, Joule dissipation
subtracts from the kinetic energy present in the system, thus
usually damping the flow speed, though the induction of mag-
netic field can complicate the damping effect [27]. Zonal flow
in the conducting regions of Jupiter and Saturn could also
induce current, leading to Joule dissipation and a decrease
in total energy available to the zonal winds [28–32]. Thus,
constraints on the zonal wind depth have been made [33], but
are based on a specific and unconfirmed set of magnetic field
and flow configurations [34].

Spherical shell hydrodynamic models of deep convection
that reproduce many of the key jet characteristics have been
carried out [35,36]. However, the geometry of each model is
truncated at the bottom boundary with a free-slip condition.
This serves as a proxy for MHD drag, but does not apply
friction on the flow as the electromagnetic effects should.
Idealized models that include MHD drag can help quantify
the interplay between magnetic forces and jets, which can
elucidate the jet-truncation mechanism on planets, such as
Jupiter.

We leverage the work of Goluskin et al. [37], where it was
shown that two-dimensional, horizontally periodic Rayleigh-
Bénard convection (RBC) with free-slip boundary conditions
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FIG. 1. Instantaneous nondimensional temperature field for a
case with zonal jets (Ra = 108, Ch = 102, Pr = 1, � = L/H = 2,
where H is height and L is length of the domain). See Sec. II A
for additional parameter definitions. The domain is periodic in the
x̂ direction, and has fixed temperature and stress-free top and bottom
boundary conditions. Gravity points downwards in the negative ŷ
direction, and a magnetic field is imposed in positive ŷ direction,
such that B = B0ŷ.

can lead to the development of zonal flows, in which the hor-
izontal motion is stronger than the vertical motion by several
orders of magnitude. Similar two-dimensional simulations
have been carried out by Aubert et al. [38], Calkins et al.
[39], Gastine [40] in rotating annuli or by Scott and Dritschel
[41] and Wang et al. [42] in a Cartesian domain, producing
zonal flows similar to the ones found here. Three-dimensional,
rapidly rotating convection simulations in periodic boxes
resulting in alternating, unidirectional jets have also been con-
ducted [43,44], as well as rotating spherical shell models with
convective bursts [45,46]. Numerous studies have also been
carried out to explore the effects of stable stratification on tur-
bulence [47,48], which have implications for the interaction
between stable stratification and zonal flows.

Furthermore, rotating convection models have been studied
extensively to not only elucidate the process behind planetary
zonal flows [31,49–51] but also how planetary magnetic fields
are generated and sustained [52–56]. To isolate the MHD
braking effects, we consider nonrotating RBC and apply a
magnetic field perpendicular to the horizontally directed zonal
flows. Figure 1 shows the setup considered in this study for a
case with zonal flows in the x̂ direction and the magnetic field
in the ŷ direction. The purpose of this simplified Cartesian
model is to investigate the fundamental magnetic damping
mechanism in a system where jets are generated self consis-
tently.

The rest of the paper is organized as follows: the governing
equations and the numerical methods are given in Sec. II. Sec-
tion III gives a theoretical framework to separate the regimes
based on the properties of the Lorentz force and the interaction
parameter. In Sec. IV, we use flow properties such as length
scale, momentum transport, and time-dependence to distin-
guish between the differing flow regimes, and in Sec. V we
derive interaction transition laws based on length and velocity
data to separate these regimes. We conclude in Sec. VI, and
discuss the implications of our results for the depth of zonal
winds on Jupiter.

II. GOVERNING EQUATIONS AND
NUMERICAL METHODS

We present the framework for understanding MHD flows
under the presence of a strong, uniform magnetic field, before
introducing the governing equations specific to the setup used
here. Configurations with a strong mean magnetic field have
been the focus of a number of studies [1,8,57–65]. A simpli-
fication often made is to apply the quasistatic approximation
(QSA), which states that the induced magnetic field, b, is neg-
ligible, and ∂b/∂t ≈ 0 [25,66–68]. QSA is typically invoked
when the magnetic Reynolds number, Rm = (UL)/η, is sig-
nificantly lower than 1 (where U is a characteristic velocity
scale, L is a characteristic length scale, and η the magnetic
diffusivity). QSA can be used to simplify the Lorentz force

FL = j × B, (1)

where B is the magnetic field and j is the current density.
In previous studies this simplification has been done in two
different ways: using Ohm’s Law to find the current density,
which is known as the potential formulation, or by using the
induction formulation [64]. We demonstrate here that both
frameworks are equivalent, which allows us to utilize the
potential formulation to calculate the Lorentz force in our
model. We employ the induction formulation to demonstrate
the tendency for the Lorentz force to dampen velocity gra-
dients parallel to the magnetic field. This MHD formalism
applies to both 3D and 2D setups with a uniform vertical
magnetic field defined by

B = B0ŷ + b, (2)

where B0ŷ is the applied field and b is the induced field.

A. Potential formulation

The Lorentz force is given by Eq. (1). We can use Faraday’s
Law to write the electric field E in terms of the magnetic
vector potential A,

∇ × E = − ∂

∂t
B = ∂

∂t
(∇ × A) = 0, (3)

which gives an equation for the electric field

E = −∇φ − ∂

∂t
A. (4)

Under QSA, ∂A/∂t = 0. Thus, the electric field can be ex-
pressed purely using a scalar potential, φ,

E = −∇φ. (5)

Using Ohm’s Law for the current density and taking its curl
yields

∇ × j = σB0
∂u
∂y

, (6)

where u is the fluid velocity and σ is the electrical conductiv-
ity. Taking the curl of the curl of Eq. (1), the gradient of the
divergence of Eq. (1), and using Eq. (6) allows us to express
the Lorentz force as

∇2FL = ∇
(
σB2

0
∂uy

∂y

)
− σB2

0

(∂2u
∂y2

)
. (7)
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B. Induction formulation

We define the current density by

j = 1

μ
(∇ × B). (8)

The Lorentz force density (1) becomes

FL = 1

μ
(∇ × B × B) = −∇

(
1

2μ
B2

)
+ 1

μ
(B · ∇)B. (9)

Equation (9) can be simplified by substituting B = B0ŷ + b
and neglecting terms O(b2) to give

FL = −∇
(

1

μ
B0by

)
+ 1

μ

(
B0

∂b
∂y

)
. (10)

The first term on the right-hand side of Eq. (10) is irrotational
and represents a magnetic pressure [66]. The second term is
the rotational component of the Lorentz force. Under QSA
with a uniform vertical magnetic field, the magnetic induction
equation reduces to

B0
∂u
∂y

= −η∇2b. (11)

Solving Eq. (11) for the induced field, b, gives

b = −B0

η
�−1 ∂u

∂y
, (12)

where �−1 is the inverse Laplacian operator. The Lorentz
force simplifies to

FL = ∇
(

B2
0

μη
�−1 ∂uy

∂y

)
− B2

0

μη
�−1 ∂2u

∂y2
. (13)

Taking the Laplacian of both sides, we find

∇2FL = ∇
(

σB2
0
∂uy

∂y

)
− σB2

0

(
∂2u
∂y2

)
, (14)

where σ = 1/(μη). This is identical to Eq. (7), which shows
that the potential formulation and the induction formulation
for the current density yield the same Lorentz force. We ob-
serve an important characteristic of the Lorentz force under
QSA. Namely, following Eq. (13), the Lorentz force tends
to dampen velocity gradients parallel to the magnetic field
[58,64,68–70].

Next, we present the quasi-2D Cartesian Navier-Stokes
equations for Rayleigh-Bénard convection (RBC) under the
Oberbeck-Boussinesq approximation. We include a qua-
sistatic magnetic field parallel to the direction of buoyancy.
The horizontally periodic domain has stress-free velocity
boundary conditions and fixed temperature boundary condi-
tions. The dimensional governing equations for the velocity
u(x, y, t ) and temperature T (x, y, t ) fields are

∇ · u = 0, (15)

∇ · B = 0, (16)

∂u
∂t

+ (u · ∇)u = − 1

ρ0
∇p + αg(T − T0)ŷ + ν∇2u

+ 1

ρ0
( j × B), (17)

∂T

∂t
+ (u · ∇)T = κ∇2T, (18)

where where u is the fluid velocity, p is the pressure, ρ0

is the constant mass density, α is the coefficient of thermal
expansion, g is gravitational acceleration, T0 is the reference
temperature, ν is the viscosity, and κ is the thermal diffusivity.

In the quasi-2D configuration, forces are permitted in the
third, ẑ direction, though u and T remain independent of z.
Furthermore, we apply the additional condition, uz = 0. This
allows us to calculate the cross-product of the Lorentz term in
Eq. (17). The Lorentz force density, fL, is given by

fL = FL

ρ0
= 1

ρ0
( j × B). (19)

We can apply the potential formulation (3)–(5) in this quasi-
2D setup to find

fL = σ

ρ0
((u × B) × B) = −σB2

0

ρ0
uxx̂. (20)

Equations (15)–(18) are integrated in the vorticity-stream
function formulation. The vorticity, ω, is defined as the curl of
the velocity field, where

ω = ∇ × u = ωz ẑ. (21)

The stream function ψ can be used to describe the velocity
field via

ux = − ∂

∂y
ψ, uy = ∂

∂x
ψ = −ωz. (22)

The vorticity is related to the stream function with

∇2ψ = −ωz. (23)

The vorticity evolution equation is found by taking the curl of
Eq. (17). Since all the terms in the vorticity equation are in the
z direction, the scalar vorticity equation for the ẑ component
is

∂ω

∂t
+ (u · ∇)ω = αg

∂T

∂x
+ ν∇2ω + σB2

0

ρ0

∂2ψ

∂y2
, (24)

where we have set ω ≡ ωz.

C. Numerical method

The approach used to numerically solve the governing
equations in the direct numerical simulations (DNS) is given
here. First, to nondimensionalize the system, the length is
scaled by the height of the domain, H ; time by the free-fall
timescale, τff = H/

√
αg�T ; temperature by the temperature

difference from the hot bottom to the cold top boundary in the
static state, �T ; and magnetic field by B0. Under these scales
the free-fall velocity is given by

uff =
√

αg�T H . (25)
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The quasi-2D nondimensional equations for quasistatic
magnetoconvection in the vorticity-stream function formula-
tion are

∂ω

∂t
+ (u · ∇)ω = ∂T

∂x
+

√
Pr

Ra
∇2ω +

√
Ch2Pr

Ra

∂2ψ

∂y2
, (26)

∂T

∂t
+ (u · ∇)T = 1√

Ra Pr
∇2T, (27)

along with (23) and (22). The Rayleigh number (Ra, ratio of
buoyancy to diffusion), Prandtl number (Pr, ratio of viscous
to thermal diffusion), and Chandrasekhar number (Ch, ratio
of Lorentz to viscosity) are given by

Ra = αg�T H3

νκ
, Pr = ν

κ
, Ch = σB2

0H2

ρ0ν
. (28)

The aspect ratio of our horizontally periodic domain is defined
by � = L/H where L is the length and H is the height. We
vary 103 � Ra � 1010 and 0 � Ch � 106. For most cases,
we fix Pr = 1. A discussion of magnetic braking at varying
Prandtl is given in Sec. V A.

Wang et al. [42] carried out a comprehensive study of zonal
flow dependence on � in horizontally periodic 2D RBC with
stress-free and isothermal top and bottom boundary condi-
tions. It was shown that zonal flows cannot be sustained when
� is larger than a critical value that also depends on Ra, Pr.
Both Wang et al. [42] and Goluskin et al. [37] found that zonal
flows develop readily at � = 2 when Ch = 0. Thus, we choose
to fix � = 2 for this study that seeks to isolate the magnetic
damping mechanism on zonal flows.

Our main output parameters are the Nusselt number, Nu,
which defines the heat transfer across the layer, and the
Reynolds number, Re, which defines the momentum transport.
The Nusselt number is

Nu = 1 + H〈uyT 〉x,y

κ�T
, (29)

where 〈〉x,y refers to the area average. The Reynolds number
is

Re = UH

ν
, (30)

where U is a characteristic velocity scale. In particular, we
will measure

Rex = 〈|ux|〉x,yH

ν
, Rey = 〈|uy|〉x,yH

ν
. (31)

We have developed an MPI parallelized, pseudo-spectral
solver that numerically integrates the governing Eqs. (26) and
(27) at each time step. It first calculates the linear terms of
Eqs. (26) and (27). Then it transforms the solution to physical
space to calculate the nonlinear terms, updates the temperature
field and vorticity field, and solves the Poisson equation for
the stream function based on the vorticity field. Finally, it up-
dates the velocity field. The code utilizes M Fourier modes in
the periodic x direction and solves the resulting equations for
each Fourier mode m using a second-order accurate finite
difference scheme in y [71].

The grid-spacing is nonuniform with Chebyshev mapping
for finer resolution at the top and bottom boundaries defined

by

yk = 1

2

[
1 − cos

(kπ

ny

)]
for k = 1, ....ny, (32)

where yk is vertical location at each grid point k and ny is
the total number of vertical grid points [71]. The nonlinear
terms are calculated using a spectral-transform method, and
the solution is advanced in time using a second-order Adams-
Bashforth time integration scheme.

The open-source pseudospectral DNS code DEDALUS
[72] is used to carry out the most numerically challeng-
ing cases with turbulent intermittent convective bursts (Ra �
109). Both codes are benchmarked to Goluskin et al. [37], as
shown in Appendix B.

D. Marginal stability analysis

Marginal stability analysis for magnetoconvection with a
uniform vertical magnetic field and stress-free, isothermal ver-
tical boundary conditions has been carried out by Glatzmaier
[71] and Chandrasekhar [73]. We follow these studies to find
Ramar, the marginally unstable Rayleigh number as a function
of aspect ratio and horizontal Fourier mode number, m,

Ramar(m, Ch, �) = π2Ch

[
(�2 + m2)

m2

]
+ π4

[
(�2 + m2)2

�4m2

]
.

(33)

We have assumed that structures that extend from bottom to
top of the box are the most unstable such that the vertical mode
number is equal to 1. The critical horizontal mode number, mc,
found by setting the derivative of Eq. (33) with respect to m to
zero, is given by

mc = �

√
χ4/3 + π4/3 − (πχ )2/3

2(πχ )2/3
, (34)

where

χ =
√

Ch +
√

Ch + π2. (35)

Substituting Eq. (34) into Eq. (33) gives the critical Rayleigh
number, Rac(Ch). If Ch is too large at a given Ra such that
Ra < Rac, then convection is suppressed, and at Ra = Rac

magnetoconvection motions begin.
In the hydrodynamic limit where Ch = 0, Eq. (33) be-

comes the well-known relationship [71,73]

Ramar(m, Ch = 0, �) = π4

[
(�2 + m2)2

�4m2

]
. (36)

Following Eq. (36), the Rayleigh number is minimal for � =√
2, where mc = 1 and Rac = 657.5, which is also the infinite

plane layer solution [73].
In the limit Ch → ∞,

m∞
c → �

(
Ch

2π2

)1/6

, (37)

and

Ra∞
c → π2Ch, (38)
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FIG. 2. The critical horizontal length scale lc as predicted by pla-
nar linear theory. The solid black line gives the length scale following
Eq. (41), and the solid purple line gives the result of Eq. (41) for
Ch = 0, the hydrodynamic case. The black dashed line shows the
asymptotic behavior given by Eq. (42).

in agreement with Refs. [62,71,73–75]. The critical horizontal
wave number is given by

kc = πmc

�
. (39)

Using kc, the critical horizontal wavelength λc is inversely
related to mc by

λc = 2π

kc
= 2�

mc
, (40)

The critical length scale of the convective structures, or half
the wavelength, is given by

lc = �

mc
. (41)

In the limit of Ch → ∞, l∞
c is given by

l∞
c =

(
Ch

2π2

)−1/6

. (42)

Figure 2 shows lc and its asymptotic behavior as Ch → ∞.
Length scales found in this study will be compared to these
values, where mc is taken to the nearest integer.

III. THE INTERACTION PARAMETER

The magnetic field modifies convection by changing the
dominant perpendicular length scale and suppressing flow
perpendicular to the applied field. The underlying theory relies
on one of the most notable characteristics of magnetohydro-
dynamics: the ability for flows to generate electrical currents.
The currents lead to Joule dissipation, which in addition to
viscous dissipation, contributes to the total energy loss in the
system [26,68,76].

Joule dissipation plays a key role in the magnetic braking
process and has been discussed in depth in previous studies
[58,64,68,70]. To demonstrate how the Lorentz force results
in Joule dissipation, we first separate the Lorentz force into
rotational and irrotational components. We can absorb the
irrotational component into the reduced pressure [70], which
leaves only the rotational component of the Lorentz force in

Eq. (13),

fL,R = −σB2
0

ρ0
�−1 ∂2u

∂y2
. (43)

The vorticity Eq. (24) can be rewritten to include the curl of
Eq. (43),

∂ω

∂t
+ (u · ∇)ω = αg

∂T

∂x
+ ν∇2ω − σB2

0

ρ0
�−1 ∂2ω

∂y2
. (44)

Assuming that the viscous and Lorentz terms of Eq. (44) are
in balance with the unsteady term, we have

∂ω

∂t
= ν∇2ω − σB2

0

ρ0
�−1 ∂2ω

∂y2
. (45)

Local viscous and Joule dissipation timescales can be esti-
mated using Eq. (45). We estimate the gradients as

∂2

∂y2
∼ 1

l2
‖
,

∂2

∂x2
∼ 1

l2
⊥

, (46)

where the subscripts ‖ and ⊥ denote quantities parallel and
perpendicular to the direction of the applied magnetic field
respectively. The vorticity ω will then decay on one of two
timescales. The viscous timescale is τν = l2

‖/ν according to
the first term on the right-hand side of Eq. (45). The Joule
dissipation timescale, τ j is given by the second term on the
right-hand side of Eq. (45). Thus, for a given eddy of size
�−1 ∼ l2

⊥, the Lorentz term can be thought of as a diffusion
term similar to the viscous term [58]. The Joule dissipation
timescale can be written as

τ j = ρ0

σB2
0

(
l‖
l⊥

)2

, (47)

where the dominant term from �−1 reduces to l2
⊥ under the

assumption that gradients parallel to the magnetic field have
been suppressed. Taking the ratio of Eq. (47) to an eddy
turnover time, τU = l⊥/U leads to a local interaction parame-
ter

Nl = τU

τ j
= σB2

0l⊥
ρ0U

(
l⊥
l‖

)2

. (48)

Equation (48) has been shown to capture the Lorentz force
relative to inertia in experimental studies of MHD channel
flows [70,77]. Rewriting Eq. (48) in terms of Ch, Re, which
will be utilized in Sec. V, gives

Nl = Ch

Re

(
l⊥
H

)3

. (49)

In cases where flow gradients parallel to the magnetic field are
not suppressed and l⊥ ∼ l‖, Eq. (47) reduces to

τ j = ρ0

σB2
0

. (50)

Comparing this simplified Joule dissipation time to an eddy
turnover time leads to the large-scale interaction parameter

N = τU

τ j
= σB2

0l⊥
ρ0U

= Ch

Re

(
l⊥
H

)
, (51)

where l‖ ≈ H . Equations (49) and (51) give two representa-
tions of the interaction parameter that can be used to treat the
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FIG. 3. Instantaneous temperature fields for 104 � Ra � 109 and 10 � Ch � 106. The gray boxes are subcritical, while the black lines
correspond to regime boundaries. For some cases in the burst-jet regime (v), the left half of the domain shows a snapshot in the convective
burst phase (image truncated at x = �/2), and the right half of the domain shows a snapshot in the jet phase (image truncated at x = �/2).
The thick black line under each snapshot gives lc as predicted by Eq. (41) with mc to the nearest integer.

end-member flows expected in this system. Equation (49) is
used for flows controlled by the applied magnetic field B0 and
Eq. (51) for flows with large-scale jets and strong shear in the
direction of the magnetic field.

IV. REGIME CHARACTERISTICS

The regimes in this study are distinguished quanti-
tatively by their length scale, momentum transport, and
time-dependence. They are

(i) steady convection rolls,
(ii) steady magnetocolumns,
(iii) unsteady to turbulent magnetoplumes (“magneto-

plumes”),
(iv) horizontally drifting magnetoplumes (“drifting

plumes”),
(v) jets with intermittent turbulent convective bursts

(“burst-jet”).
These regimes have distinct morphological behaviors sim-

ilar to those found in prior studies of magnetoconvection
[62,78] and rotating convection [7,79–82].

Figure 3 presents instantaneous temperature fields for an
array of cases between 3 × 104 � Ra � 109 and 0 � Ch �
106. Cases in the steady convection roll regime (i) have one
steady convection roll. The perpendicular length scale of the
roll is given by l⊥ = 1, and in this regime the strength of the
magnetic field relative to buoyancy is small enough such that
the weakly nonlinear dynamics characteristic of steady RBC
are not drastically modified [10,83,84]. Analysis of a similar
2D RBC system with stress-free horizontal boundaries shows
that the steady roll arises through a pitchfork bifurcation
[85,86].

Cases in the steady magnetocolumns regime (ii) are char-
acterized by a series of narrow, steady convective columnar

structures. The width of these columns closely follows linear
theory as predicted by Eq. (41) with mc to the nearest integer
and demonstrated by the thick black line under each snapshot.
This regime includes cases that are steady and where l⊥ < 1.
Similar to RBC, the transition to this stationary regime of
magnetoconvection is given by a pitchfork bifurcation [3].

In the magnetoplumes regime (iii), the buoyancy forcing
is stronger relative to the Lorentz force. Convective plumes
transfer heat efficiently and have a mushroom-like shape
[87–90]. The Lorentz force stabilizes the flow, which is ap-
proximately aligned with the vertical magnetic field.

In the drifting plume regime (iv), asymmetries exist in
the flow field such that convective plumes drift horizontally.
However, the horizontal flow is not strong enough to disperse
the plumes. Finally, (v) gives cases in the burst-jet regime,
which are characterized by two distinct phases. Over the
evolution of a case, a period of high heat transport where con-
vective plumes cross the fluid layer (“burst”) are interrupted
by quiet phases of weak heat transport, where strong zonal
flows (“jets”) disperse thermal plumes and inhibit convection
[91]. The left (right) side of the snapshots corresponds to the
burst (jet) phases. As shown in Rucklidge and Matthews [85],
Paul et al. [86], Cross and Greenside [92], the transitions to
these time-periodic flows from the steady regimes are known
to occur through a Hopf bifurcation.

Figure 4 shows a time series of the Nusselt number Nu
(left column) and a time series of the vertical and horizon-
tal Reynolds numbers, Rey, Rex (right column). It is used
to quantitatively distinguish the regimes from one another.
Figure 4(a) shows Nusselt for a case in the steady convection
roll regime at Ra = 3 × 105, Ch = 10 where Nu remains
constant at 16.30. Figure 4(b) shows the Reynolds num-
bers for the same case, where the horizontal and vertical
Reynolds numbers are nearly equivalent. Figure 4(c) gives
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FIG. 4. The left column shows the times series of Nu, and the
right column Rex (purple), Rey (orange). Each row corresponds to
Ra = 3 × 105, Ch = 10 [[(a), (b)] steady convection roll regime],
Ra = 7 × 106, Ch = 106 [[(c), (d)] magnetocolumns regime], Ra =
108, Ch = 104 [[(e), (f)] magnetoplume regime], Ra = 108, Ch =
102 [[(g), (h)] drifting plumes regime], and Ra = 108, Ch = 10 [[(i),
(j)] burst-jet regime]. In the left column, the green and red markers
correspond to points separated into the burst or jet phase based on
Eq. (52).

Nusselt for a case in the steady magnetocolumns regime at
Ra = 7 × 106, Ch = 105 where Nu remains constant at 8.42.
Figure 4(d) shows that the vertical Reynolds number exceeds
the horizontal Reynolds number, because flows that are per-
pendicular to the applied vertical magnetic field are damped.

Figures 4(e) and 4(f) show the Nusselt number and
Reynolds numbers for a case in the magnetoplumes regime
at Ra = 108, Ch = 104, where small temporal oscillations
in each quantity are observed. Furthermore, it is clear from
Fig. 4(f) that the vertical Reynolds number exceeds the hor-
izontal Reynolds number. Cases are placed in these regime
if they are unsteady or turbulent, and if 〈Rex〉t � 〈Rey〉t . The

unsteadiness of the flow is quantified by the variance of the
vertical velocity in time, or var(Rey).

Figures 4(g) and 4(h) show the Nusselt number and
Reynolds numbers for a case in the drifting plumes regime
at Ra = 108, Ch = 102. In contrast to the previous regime,
the horizontal Reynolds number now exceeds the vertical
Reynolds number. Therefore, one characteristic of this regime
is that it is unsteady or turbulent, and 〈Rex〉t > 〈Rey〉t .

Figures 4(i) and 4(j) show the Nusselt number and
Reynolds numbers for a case in the burst-jet regime at Ra =
108, Ch = 10, where strong temporal periodicity is observed
in each parameter. We choose to separate the burst and jet
phases based on a threshold value of the instantaneous Nusselt
number compared to its mean. If

Nu(t )

〈Nu〉t
<

1

2
, (52)

then the data point is placed in the jet phase; otherwise, it is
placed in the burst phase. The time spent in each phase is
averaged for each case, yielding values for tjet/τff = τjet and
tburst/τff = τburst, respectively. Values of τjet > 0 are unique
to the burst-jet regime. Therefore, cases are placed in these
regime if they are unsteady or turbulent, 〈Rex〉t > 〈Rey〉t ,
and τjet > 0. If τjet = 0, then it is placed in the prior drift-
ing plumes regime. Further discussion of the time-averaged
Nusselt number in each regime is given in Appendix C.

A. Length and velocity scales

It is necessary to measure perpendicular length scales,
l⊥, and velocity scales to find where in (Ra, Ch) parameter
space regime transitions occur using interaction parameter
arguments.

Figure 5 shows the time average of horizontal spectra
where the temperature field has been vertically averaged
(〈〈̃T 〉y(m)〉t ). Here, T̃ distinguishes the spectra of the temper-
ature from its representation in physical space. An example
from each regime is shown. The mode number that corre-
sponds to the spectra peak, mpeak is used to calculate l⊥ =
�/(mpeak), which is equivalent to the wavelength of a structure
in a system with periodic sidewall boundary conditions.

Figure 5(a) gives the spectra for a case in the steady con-
vection roll regime where mpeak = 1 corresponds to l⊥ = 1.
Figure 5(b) gives an example of a case in the steady magne-
tocolumns regime where Ch = 106, Ra = 108. The vertical
black line denotes the horizontal mode number predicted by
linear theory, mc. The spectral peak, mpeak, occurs close to
mc, which shows that the width of the columns is given by
l⊥ ∼ Ch−1/6H . A similar behavior is found for the magneto-
plume regime as given in Fig. 5(c) at Ch = 105, Ra = 109.
The spectral peak, mpeak occurs near mc, again demonstrating
that the width of the plumes closely follows l⊥ ∼ Ch−1/6H .

Figure 5(d) gives the spectra for a case in the drifting
plumes regime at Ch = 103, Ra = 108. A change in the per-
pendicular length-scale behavior is observed. There is an
increase in mpeak relative to mc. As Ra is increased for a given
Ch, the plumes begin to merge and their horizontal width
increases. Finally, Fig. 5(e) shows the spectra for a case in
the burst-jet regime at Ch = 10, Ra = 108, where mpeak is 1
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FIG. 5. Examples of spectra (〈〈̃T 〉y(m)〉t ) from each regime that compare the mode numbers to the spectra peak, mpeak to the critical
horizontal mode number, mc, to the nearest integer (denoted by a solid black line). (a) Steady convection roll, (b) steady magnetocolumns,
(c) magnetoplumes, (d) drifting plumes, and (e) burst-jet. The measured perpendicular length scale l⊥ is then given by l⊥ = �/(2mpeak)
following Eq. (41).

demonstrating that the flow is dominated by the lowest mode
numbers.

Figure 6 shows the measured l⊥ normalized by lc predicted
by theory (using mc rounded to the nearest integer) in colored
contours versus (Ra, Ch). The symbols correspond to each

FIG. 6. Measured perpendicular length scale, l⊥ normalized by
the critical length scale predicted by magnetoconvection linear the-
ory, lc (using mc to the nearest integer) against all values of Ra, Ch.
The horizontal length scale is measured by inverting the peak wave
number of the vertically and temporally averaged temperature fields.

case’s regime. Cases in the magnetocolumnar regime have
l⊥/lc ≈ 1, which is shown by the blue contour lines. The
same holds for the magnetoplume regime, where the width
of the plumes is also well predicted by linear theory. Based
on Fig. 6, the following behavior holds: l⊥/lc ≈ 1, allowing
l⊥ ∼ Ch−1/6H for the magnetocolumnar and magnetoplume
regimes. Figure 6 also shows that l⊥/lc begins to increase
beyond 1 as plumes merge and increase in horizontal scale
in the drifting plumes regime.

Figure 7 shows measurements of the velocity, quantified
by the time-averaged vertical and horizontal Reynolds number
(〈Rey〉t and 〈Rex〉t , respectively) as a function of Ra, Rac for
different values of Ch, denoted by various colors. The symbols
correspond to each case’s regime. Figure 7(a) shows the verti-
cal velocity as a function of Ra. In the steady convection roll,
steady magnetocolumns, and magnetoplumes regimes, 〈Rey〉t

grows with increasing Ra. However, for the drifting plumes
and burst-jet regimes, the growth of 〈Rey〉t with Ra slows, and
for some cases there is a depression in 〈Rey〉t with increasing
Ra. This is due to the manifestation of strong zonal flows,
which limit convective velocities in the vertical direction.

Figure 7(b) shows 〈Rex〉t versus Ra, and a different trend
is found. Each value of Ch has a slightly lower value of 〈Rex〉t

at a given Ra as increasing magnetic field suppresses flows
perpendicular to the field. However, at a fixed value of Ch,
〈Rex〉t grows monotonically with Ra.

We follow Sommeria and Moreau [58], Yan et al. [62]
to find a scaling law for the velocity in the steady mag-
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FIG. 7. Horizontal and vertical flow speeds. (a) Time-averaged horizontal Reynolds number, 〈Rex〉t versus the Rayleigh number. (b) 〈Rex〉t

versus Ra/Rac, where the black dashed line gives the power-law fit of the data. (c) Time-averaged vertical Reynolds number, 〈Rey〉t versus the
Rayleigh number. (d) 〈Rey〉t versus Ra/Pr j , where the black dashed line gives the power-law fit of the data, and Pr j is defined in Sec. IV A.

netocolumns regime, and suggest that the Joule dissipation
acts as an “effective” viscosity. The Joule dissipation, when
formulated as a viscous term that damps the flow speed, leads
to a “Joule-Prandtl” number (Pr j),

Pr j = τκ

τ j
, (53)

where τκ = H2/κ and τ j is given by Eq. (47), where the
parallel length scale has been scaled by H . Substituting these
definitions for Pr j gives

Pr j = σB2
0H2

ρκ

(
l⊥
H

)2

. (54)

Equation (54) can be simplified using l⊥ ∼ Ch−1/6H , which
holds for the steady magnetocolumns regime. This leads to

Pr j = Ch2/3Pr. (55)

Using Pr j as the effective Prandtl number for this system
yields a velocity scaling law relevant to a flow constrained
by the imposed field is given by

Re ∼ Ra/Pr j . (56)

This is similar to a scaling law found by balancing the viscos-
ity and buoyancy terms of Eq. (17), which yields Re ∼ Ra/Pr.
In this case, the Joule dissipation, through the Lorentz force,
acts like a viscosity damping the flow.

Figure 7(c) gives 〈Rey〉t versus Ra/Pr j . We find a good
collapse of the cases in the magnetocolumnar regime (de-
noted by triangles) using Ra/Pr j . This agrees with Yan et al.

[62], who by balancing the Lorentz force with buoyancy, also
found Re ∼ Ra/Pr j for convection constrained by an imposed
vertical magnetic field. This scaling, Re ∼ Ra/Pr j , gives us
a behavior that can be used in conjunction with the perpen-
dicular length scale data for the steady magnetocolumns and
magnetoplume regimes to construct an interaction parameter-
based transition between these two regimes.

Figure 7(d) gives 〈Rex〉t against Ra/Rac. The ratio Ra/Rac

estimates the relative strength of buoyancy given a certain
value of Ch. The following collapses the data well (for Pr =
1),

〈Rex〉t = 5.39 ± 1.17(Ra/Rac)0.61±0.01. (57)

This fit matches closely with Wang et al. [42], who carried
out a study in a similar setup, namely 2D RBC with free-slip
boundary conditions. Wang et al. [42] found Re ∼ Ra0.60 for
jet-dominated flows (with fixed Pr = 10). This scaling law for
the velocity will be used for the drifting plumes and burst-
jet regimes, where the horizontal velocity exceeds the vertical
velocity.

V. INTERACTION PARAMETER-BASED TRANSITIONS

We use the trends found in our data along with the interac-
tion parameter definitions given in Sec. III to construct three
interaction parameter-based transition lines which can be used
to predict where one regime transitions to the next in (Ra, Ch)
space. Table I gives a summary of the five regimes, their main
characteristics, and the length and velocity scalings that will
be utilized here.
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TABLE I. Summary of the five regimes and their characteristics. Each column gives the regime name, the ratio of horizontal to vertical
velocities, the variance of the vertical velocity, the value of τ j (the average time spent in the jet phase), and the scaling laws used for the
perpendicular length scale and velocity (l⊥, Re) when building interaction parameter transition lines between the regimes as discussed in
Sec. V.

Regime name Horizontal to vertical velocity ratio var(Rey ) τ j l⊥ ∼ Re ∼
Steady convection roll 〈Rex〉t ≈ 〈Rey〉t 0 0 1
Steady magnetocolumns 〈Rex〉t � 〈Rey〉t 0 0 Ch−1/6 Ra/Pr j

Magnetoplumes 〈Rex〉t � 〈Rey〉t >0 0 Ch−1/6

Drifting plumes 〈Rex〉t > 〈Rey〉t >0 0 (Ra/Rac )3/5

Burst-jet 〈Rex〉t > 〈Rey〉t >0 >0 � = 2 (Ra/Rac )3/5

The first transition line separates the steady magneto-
columns regime from the magnetoplumes regime, which are
both “magnetically dominated” flows in which gradients par-
allel to the applied field are limited. In both regimes, the data
revealed l⊥ ∼ Ch−1/6H . To find where the magnetoplumes
regime transitions to the steady magnetocolumns regime, we
note that only in the latter, inertial effects are neglected to
yield the velocity scale Re ∼ Ra/Pr j . The magnetoplumes
regime then transitions to the steady magnetocolumns regime
along an interaction parameter line given by Eq. (48) using
Re ∼ Ra/Pr j , in addition to l⊥ ∼ Ch−1/6H . This substitution
yields

NMD = Ch

Re

(
l⊥
H

)3

∼ Ch7/6Pr

Ra
. (58)

The second transition is between the two “intermediate”
regimes (magnetoplumes and drifting plumes) rather than the
end-member flows (steady magnetocolumns and burst-jet).
In the magnetoplumes regime, the structures have a perpen-
dicular length scale that, as previously stated follows l⊥ ∼
Ch−1/6H . The distinguishing characteristic between the these
two regimes is that the horizontal velocity dominates the
vertical velocity in the drifting plumes regime, as defined
in Sec. IV. Therefore, the crossover to the drifting plumes
regime from the magnetoplumes regime will occur once the
velocity follows Re ∼ (Ra/Rac)0.61 ≈ (Ra/Rac)3/5 as found

in Sec. IV A. Using Eq. (48)

NI = Ch

Re

(
l⊥
H

)3

∼ Ch1/2Pr

(Ra/Rac)3/5
. (59)

The final transition is between the drifting plumes regime
and burst-jet regime, which is characterized by strong,
domain-filling zonal flows, or jets (J). In such flows, l⊥/H ∼
� = 2, though the velocity scale continues to follow Re ∼
(Ra/Rac)3/5. For this transition line, Eq. (51) is used, since
the system is not constrained by the magnetic field and strong
vertical shears exist in the flow. The transition to the jet regime
is

NJ = Ch

Re

(
l⊥
H

)
∼ 2 Ch Pr

(Ra/Rac)3/5
. (60)

Figure 8(a) gives NMD against var(Rey) for cases only in
these two regimes, where values greater than zero are used
to separate the steady magnetocolumns to the magnetoplume
regime. This transition occurs at NMD ≈ 0.01. Figure 8(b)
shows NI against 〈Rex〉t/〈Rey〉t , the ratio that separates the
two intermediate regimes (the magnetoplume and the drift-
ing plumes) from one another with a transition occurring
at NI ≈ 1. Figure 8(c) shows NJ against τjet, where values
greater than zero are used to parse the drifting plumes to the
burst-jet regime. There is a reasonable collapse of the data at
NJ ≈ 0.1–1.

Figure 9 outlines the values of (Ra, Ch) over which
we have run simulations. The colors and symbols corre-

FIG. 8. Shows how the scaling laws derived in Sec. III collapse the quantities used to separate the regimes. (a) The variance of Rey,
which characterizes unsteadiness, against the scaling law derived for the transition from the magnetocolumnar to the magnetoplume regime,
NMC. Only cases in these two regimes are shown for clarity. (b) The ratio of the horizontal and vertical velocities 〈Rex〉t and 〈Rey〉t , used to
distinguish between the magnetoplumes and drifting plumes regime, against the scaling law derived for NMP. (c) The measured value of τjet,
where values greater than 0 are reserved for the burst-jet regime, against the scaling law derived for Nj .
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FIG. 9. The Rayleigh and Chandrasekhar number ranges (at
fixed aspect ratio and Prandtl number) over which we have found
steady convection rolls (green circles), steady magnetocolumns (pur-
ple triangles), unsteady to turbulent magnetoplumes (blue crosses),
drifting magnetoplumes (orange squares), or jets with intermittent
turbulent convective bursts (red stars). The solid black line indicates
the critical Rayleigh number, and the dotted, dashed, and dash-dot
lines give the interaction parameter transitions between the regimes,
discussed further in Sec. III.

spond to regime classifications and the three lines (dotted,
dashed, dash-dot) give approximate regime transitions, based
on Eqs. (58), (59), and (60). These transition lines provide
adequate estimates for where regime transitions occur in our
data.

A. Dependence on the Prandtl number

The interaction parameter-based transition line given by
Eq. (60) will be used in Sec. VI to predict the truncation
depth of Jupiter’s large-scale jets. We test this transition line
further by varying Pr, which may be relevant to Jupiter where
Pr ≈ 0.1 [35]. Four additional cases are run at fixed Ra =
7 × 106, Ch = 102, � = 2 where Pr ∈ {0.1, 0.3, 3, 10}. De-
tails of the cases, including the value of NJ , are given in
Table II. Over this range, 0.177 � NJ � 17.71. In all four
cases, the flows are unsteady and 〈Rex〉t > 〈Rey〉t . However,
at Pr = 0.1, 0.3, the average time spent in the jet phase is
larger than zero with values tjet = 98.57, 12.39, respectively.
We then follow the definitions detailed in Table I to classify
each case into a regime. Figure 10(a) shows NJ as a function of
Pr where the markers denote which case the regime is in. The
transition between the burst-jet and drifting plumes regime
occurs at NJ ≈ 1, consistent with the transition observed in
Fig. 9 for Pr = 1 and over a range of Ch, Ra.

TABLE II. Details of the DNS for fixed Ra = 7 × 106 and Ch =
102 as we vary Pr. Each row gives Pr, NJ according to Eq. (60),
vertical resolution ny, horizontal resolution nx , the time average of the
Nusselt number (〈Nu〉t ), and the area-time averages of the horizontal
Reynolds number and vertical Reynolds number (〈Rex〉t , 〈Rey〉t ),
respectively.

Pr NJ ny nx 〈Nu〉t 〈Rex〉t 〈Rey〉t

0.1 0.177 360 720 11.37 6406.65 1910.06
0.3 0.531 360 720 15.50 2305.52 895.99
1 1.77 168 452 23.35 754.72 546.60
3 5.31 360 720 26.51 237.67 220.48
10 17.7 360 720 24.28 60.61 57.00

VI. GEOPHYSICAL IMPLICATIONS

We have conducted a systematic survey of quasistatic mag-
netoconvection in a quasi-2D, horizontally periodic Cartesian
geometry with stress-free velocity and fixed temperature
boundary conditions. Five primary flow regimes are found:
(i) steady convection rolls, (ii) steady magnetocolumns, (iii)
unsteady to turbulent magnetoplumes, (iv) horizontally drift-
ing plumes, and (v) jets with intermittent turbulent convective
bursts. The regimes have unique length scale, momentum
transfer, and time-dependence characteristics. regime transi-
tion lines are derived based on interaction parameter theory.
The regime transition relevant to the magnetic damping of
Jovian jet flows is that between the drifting plumes to burst-jet
regimes. This occurs at a jet-based interaction parameter of
NJ ≈ 1. We now seek to find the depth at which the Jovian
interaction parameter crosses this threshold in the semicon-
ducting region of Jupiter.

The quasi-steady azimuthal component of the vorticity
equation in cylindrical coordinates (ŝ, ẑ, φ̂) controlling the
dynamics in the bulk of Jupiter’s outer molecular envelope is
[93–95] (

[u · ∇ω]φ + 2�
∂uφ

∂z

)
� αg

∂T

∂s
, (61)

FIG. 10. The interaction parameter-based transition line,
Eq. (60), tested by varying Pr while Ra = 7 × 106, Ch = 102. The
markers correspond to the case’s regime and the horizontal dash-dot
line demarcates where NJ ≈ 1.
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where we have simplistically adopted the Boussinesq approx-
imation to treat the density [96,97]. Equation (61), neglecting
the first term on the left-hand side, is known as thermal wind
balance [98–100]. The left-hand side of Eq. (61) are the iner-
tial terms in the system, where the first represents advection
and the second represents vortex stretching. We can take the
ratio of these terms to one another, which gives

[u · ∇ω]φ

2�
∂uφ

∂z

∼ U

2�L = Ro, (62)

where Ro is known as the Rossby number, L is a characteristic
length scale, U is a characteristic velocity scale, and � is
the planetary rotation rate. We can estimate Ro for Jupiter’s
molecular envelope jets using a typical jet velocity of U = 50
m/s, a large-scale jet width of L = 104 km, and planetary
rotation rate of � = 1.74 × 10−4 1/s, which gives [101]

Ro = U

2�L ∼ 0.01 � 1. (63)

Furthermore, strong convective turbulence could homogenize
the large-scale temperature anomalies such that ∂T/∂s is
small. For the low Rossby jets, this implies that the velocity
field may vary weakly along the axial coordinate such that
∂uφ/∂z in Eq. (61) is also small [102].

Jupiter’s electrical conductivity increases with radius, pos-
sibly leading to a larger Lorentz force at the base of the jets
compared to the molecular envelope. Then, the hydrodynamic
thermal wind balance is replaced by the thermomagnetic wind
balance [103](

[u · ∇ω]φ + 2�
∂uφ

∂z

)
� αg

∂T

∂s
+ 1

ρ0
[∇ × (J × B)]φ.

(64)
In the limit of strong thermal mixing, this simplifies to(

[u · ∇ω]φ + 2�
∂uφ

∂z

)
≈ 1

ρ0
[∇ × (J × B)]φ. (65)

Further, by assuming Rm � 1 at the base of the jets [16], we
can use J = σ (u × B) to recast this expression as(

[u · ∇ω]φ + 2�
∂uφ

∂z

)
� 1

ρ0
[∇ × (σu × B × B)]φ. (66)

The right-hand side of Eq. (66) can be simplified by allowing
u = u⊥ + u‖, where ⊥, ‖ denote directions relative to the
magnetic field B. It becomes(

[u · ∇ω]φ + 2�
∂uφ

∂z

)
� −|B|2|

ρ0
[σ (∇ × u⊥) + (∇σ ) × u⊥]φ. (67)

We reduce Eq. (67) further by allowing u⊥ = usŝ + uφφ̂ +
uz ẑ. Noting that velocity field varies weakly along the axial
coordinate for low Rossby flows, and σ only varies in radius
gives(

[u · ∇ω]φ + 2�
∂uφ

∂z

)
� −|B|2|

ρ0

[
σ

(
∂uz

∂s

)
+

(
uz

∂σ

∂s

)]
.

(68)

We can scale both terms on the right-hand side of Eq. (68),
and from left to right they are

B2
0σuz

ρ0Ljet
,

B2
0σuz

ρ0Lσ

, (69)

where B0 is a characteristic magnetic field strength in the
semiconducting region, uz is a characteristic meridional ve-
locity scale, Ljet is a characteristic jet scale, and

Lσ = 1

σ

∣∣∣∣∂σ

∂s

∣∣∣∣−1

(70)

is an electrical conductivity scale height. This can be calcu-
lated using the results of French et al. [17] and Jones [105].
The terms in Eq. (69) only differ by the length scales in
their denominators. Comparing the characteristic values Lσ ≈
350 km and Ljet ≈ 10 000 km we find

Lσ � Ljet. (71)

The second term on the right-hand side of Eq. (68), controlled
by the planet’s radially increasing electrical conductivity, is
the largest term, and we are left with(

[u · ∇ω]φ + 2�
∂uφ

∂z

)
� |B|2

ρ0

(
uz

∂σ

∂s

)
. (72)

We can balance the two inertial terms with the Lorentz term
in Eq. (72) to construct two interaction parameter functions.
For the first, we take the ratio of the Lorentz to the advection
term in Eq. (66) and note that ωφ ∼ uz/Ljet to arrive at an
interaction parameter

N = B2
0σ (r̃)L2

jet

uφ (r̃)ρ0 Lσ

, (73)

where r̃ = r/r j is radial position normalized by Jupiter radius
r j = 69, 894 km, ρ0 is the mean density averaged over 0.90 <

r̃ < 1.0, and σ (r̃) is the electrical conductivity as a function
of nondimensional radial position.

For the second interaction parameter, we take the ratio of
the Lorentz to the Coriolis term in Eq. (72), which gives a
Coriolis-based interaction parameter (also known as the El-
sasser number, �) [56,106–109]:

N� = � = B2
0σ (r̃)

2ρ0 �

(
uz

uφ

)(Ljet

Lσ

)
. (74)

Though our simple model differs greatly from the fully
3D, anelastic, spherical Jovian system, based on Eq. (61) the
low Rossby jets may extend into the molecular interior with
little variation in the direction of the axis of rotation. Thus, we
choose to extrapolate the transitions found in our 2D model,
and naively assume that magnetodamping may slow the jets
when the Lorentz force is greater than inertia, or the depth at
which N and N� exceed 1.

To calculate the local values of N and N�, values for
σ (r̃), ρ0, and Lσ are found by employing the results of
French et al. [17] and Jones [105]. The density is averaged
over 0.90 < r̃ < 1.0, which gives ρ0 = 267 kg/m3. To esti-
mate B0 in the semiconducting region, the Juno surface field
model is extrapolated to 3000 km in depth [110] and averaged
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FIG. 11. (a) Estimated zonal flow decay with nondimensional
radius (top axis) or depth from the surface (bottom axis) for two
functions. Green is based on Kaspi et al. [104], with uφ (r̃) = Aer̃/H0

and A a constant to fix the cloud level zonal-flow magnitude to 125
m/s. Blue is an error function which yields a cloud level zonal-flow
magnitude of 125 m/s and decays sharply once σ = 1 demarcated by
a black line. (b) Electrical conductivity with nondimensional radius
(top axis) or depth from the surface (bottom axis). The red points
show data from French et al. [17] and the purple line shows the
polynomial fit to these points carried out by Jones [105]. The black
line gives the depth at which σ = 1.

at 50 degrees latitude, which gives ≈7.92 Gauss. The veloc-
ity scale uz ≈ 1 m/s is found using zonal-mean meridional
velocity data from Cassini spacecraft observations [111,112].

We use two different functions for the zonal velocity, uφ (r̃).
For the first, we employ the exponential decay model from
Kaspi et al. [104] derived using anelastic thermal wind bal-
ance

uφ (r̃) = Aer̃/H0 , (75)

where A is a constant fixed to yield a sensible cloud-level
zonal flow of 125 m/s [14], and H0 = H/r j is the e-folding
depth. According to Kaspi et al. [104], the e-folding depth
that yields a best fit to the Juno odd gravity harmonic data
is H = 1471 km. The green curve in Fig. 11(a) gives this
constructed zonal flow profile in the semiconducting region
from r̃ ranging from about 0.90 (8000 km in depth) to 1.0.

However, the exact shape of the zonal flow decay remains
ambiguous [100]. We construct an additional zonal flow pro-
file where uzonal(r̃) only decays after the planet’s electrical
conductivity exceeds 1 S/m. The profile meets the criteria
that in the highly conducting region of Jupiter with electrical
conductivity greater than 1000 S/m, the zonal flow is likely

FIG. 12. (a) Value of N based on Eq. (73) with nondimensional
radius (top axis) and depth from the surface (bottom axis). The green
and blue lines correspond to the exponential and error functions,
respectively. The purple box indicates the range of truncation depths
from the Juno mission Kaspi et al. [104]. (b) Value N� given by
Eq. (74). In both panels, the black dashed line indicates where the
interaction parameter crosses 1, and the black dash-dot line corre-
sponds to the truncation depth, dT .

on the order of 1 cm/s or less [19,113,114] and is defined by

uφ (r̃) = B {1 + erf[C(D + r̃)]}, (76)

where B = 64.0, C = 49.1, and D = −0.946 yield a cloud-
level zonal flow on the order of 125 m/s. The blue curve in
Fig. 11(a) shows this profile. Figure 11(b) shows Jupiter’s
estimated electrical conductivity with radius, and we mark the
depth at which σ = 1 with a solid black line.

Figure 12(a) gives N against nondimensional radius (top
axis) and depth from the surface (bottom axis) using these
approximations. A value of N = 1 (black dashed line) cor-
responds to a depth at which the jet truncation process may
commence at about dT = 3600, 4200 km for the exponential
and error velocity functions respectively (black dash dot line,
the average between the two is shown).

Figure 12(b) gives N� against nondimensional radius (top
axis) and depth from the surface (bottom axis). A value of
N� = 1 (black dashed line) is not reached until a depth of
about dT = 6000, 6300 km for the exponential and error
functions respectively. Recent studies based on Juno measure-
ments of the odd gravity harmonics have constrained the zonal
flow depth to about 3000 km [104,115].

Extrapolating our 2D results suggests that Lorentz force
likely cannot solely brake the jets on Jupiter, and additional
mechanisms are needed to fully truncate them [19,33,46]. For
instance, Christensen et al. [103] carried out axisymmetric
shell models that included both electromagnetic drag and a
stably stratified layer extending upward into the region of low
electrical conductivity, which may exist on the Gas Giants
[98,116,117]. They found that without this stable layer, the
Lorentz force could not truncate the jets. Thus, the exact
braking process of Jovian jets remains an open question.
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TABLE III. Details of the DNS for Ch = 0, 10, 102, 103 where Pr = 1, � = 2. Each row gives Ch, Ra, its ratio above onset Ra/Rac,
vertical resolution ny, horizontal resolution nx , the time average of the Nusselt number (〈Nu〉t ), and the time averages of the horizontal Reynolds
number and vertical Reynolds number (〈Rex〉t , 〈Rey〉t ), respectively.

Ch Ra Ra/Rac ny nx 〈Nu〉t 〈Rex〉t 〈Rey〉t

0 3 × 103 4.56 96 356 3.08 10.14 9.99
0 7 × 103 10.64 96 356 4.34 19.23 18.86
0 3 × 104 45.62 96 356 7.57 52.19 51.87
0 7 × 104 1.06 × 102 96 356 10.32 91.94 91.71
0 3 × 105 4.56 × 102 120 380 17.31 241.76 241.62
0 7 × 105 1.06 × 103 120 380 4.33 309.68 35.28
0 3 × 106 4.56 × 103 132 404 3.46 584.80 36.38
0 7 × 106 1.06 × 104 132 404 3.58 1030.43 60.53
0 3 × 107 4.56 × 104 168 452 4.03 2214.02 83.24
0 1 × 108 1.52 × 105 516 1032 4.73 7030 120.1
0 1 × 109 1.52 × 106 1024 2048 6.85 25240 251.1
0 1 × 1010 1.52 × 107 3072 6144 8.61 118270 500.20
10 3 × 103 3.25 96 356 2.78 8.39 8.29
10 7 × 103 7.58 96 356 3.99 16.34 15.94
10 3 × 104 32.5 96 356 7.04 44.42 43.96
10 7 × 104 75.8 96 356 9.66 77.88 77.59
10 3 × 105 3.25 × 102 120 380 16.30 203.76 203.61
10 7 × 105 7.58 × 102 120 380 9.64 390.77 79.37
10 3 × 106 3.25 × 103 132 404 13.78 973.89 153.56
10 7 × 106 7.58 × 103 132 404 8.99 1115.95 115.44
10 3 × 107 3.25 × 104 168 452 9.06 2295.66 148.98
10 1 × 108 1.08 × 105 360 720 9.14 4656.67 159.79
10 1 × 109 1.08 × 106 1536 3072 22.3 23497 2200.4
10 1 × 1010 1.08 × 107 2048 4096 41.2 101131 1347
102 3 × 103 1.13 96 356 1.17 1.54 1.54
102 7 × 103 2.64 96 356 2.55 7.11 6.96
102 3 × 104 11.3 96 356 4.703 14.10 28.22
102 7 × 104 26.4 96 356 5.61 35.41 30.35
102 3 × 105 1.13 × 102 120 380 10.30 96.46 89.38
102 7 × 105 2.64 × 102 120 380 13.48 168.51 154.96
102 3 × 106 1.13 × 103 132 404 19.94 441.64 375.33
102 7 × 106 2.64 × 103 168 452 23.35 754.73 547.60
102 3 × 107 1.13 × 104 192 500 28.97 1900.81 843.33
102 1 × 108 3.77 × 104 256 636 32.88 4149.99 758.15
102 1 × 109 3.77 × 105 768 1536 43.06 15246 1123.95
102 1 × 1010 3.77 × 106 3072 6144 61.05 59423 2214.6
103 3 × 104 1.97 96 356 2.35 4.52 9.23
103 7 × 104 4.60 96 356 3.96 10.18 19.99
103 3 × 105 19.7 120 380 7.48 23.94 71.96
103 7 × 105 46.0 120 380 9.28 49.11 84.79
103 3 × 106 1.97 × 102 132 404 13.25 123.31 171.07
103 7 × 106 4.60 × 102 168 452 16.23 218.0 247.99
103 3 × 107 1.97 × 103 168 452 24.56 576.78 543.45
103 1 × 108 6.58 × 103 252 636 36.25 1294.93 1199.18
103 1 × 109 6.58 × 104 984 1964 79.403 6136.48 5936.12
103 1 × 1010 6.58 × 105 1536 3072 165.22 27012 26218

APPENDIX A: DATA TABLES

In this study, we conducted a survey of quasistatic mag-
netoconvection in a quasi-2D, horizontally periodic Cartesian
geometry which stress-free velocity and fixed temperature
boundary conditions. For a majority of the cases, we fixed the
aspect ratio to � = 2. The details of the DNS are provided in
Tables III and IV.

APPENDIX B: BENCHMARKING THE CODES

A set of Ch = 0 cases for this study (TS) and Dedalus (D)
were benchmarked to [37] (G). The time-averaged Nusselt
number, 〈Nu〉t was calculated for seven different Rayleigh
numbers at � = 2, Pr = 1. In addition, this study and Dedalus
were benchmarked to one another for a set of eight different
Ch �= 0 with varying Ra. Differences in the three codes yield
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TABLE IV. Details of the DNS for Ch = 104, 105, 106 where Pr = 1, � = 2. Each row gives Ch, Ra, its ratio above onset Ra/Rac, vertical
resolution ny, horizontal resolution nx , the time average of the Nusselt number (〈Nu〉t ), and the area-time averages of the horizontal Reynolds
number and vertical Reynolds number (〈Rex〉t , 〈Rey〉t ), respectively.

Ch Ra Ra/Rac ny nx 〈Nu〉t 〈Rex〉t 〈Rey〉t

104 3 × 105 2.50 120 380 3.17 5.47 23.17
104 7 × 105 5.84 120 380 5.78 12.33 50.96
104 3 × 106 25.0 132 404 10.30 34.72 131.55
104 7 × 106 58.4 192 380 14.48 58.97 205.67
104 3 × 107 2.50 × 102 192 452 23.61 167.38 471.86
104 1 × 108 8.34 × 102 216 472 31.09 384.21 775.10
104 1 × 109 8.34 × 103 576 1172 59.03 1786.98 1988.51
104 1 × 1010 8.34 × 104 1536 3072 112.7 7924.37 7441.40
105 3 × 106 2.78 132 404 4.04 6.45 48.73
105 7 × 106 6.49 168 452 8.42 14.06 122.81
105 3 × 107 27.8 168 452 16.38 39.03 362.61
105 1 × 108 92.73 192 500 26.01 78.90 714.50
105 1 × 109 9.27 × 102 360 692 58.89 516.79 2112.05
105 1 × 1010 9.27 × 103 1536 3072 115.50 2520.92 4850.22
106 1 × 108 9.72 96 356 14.47 23.49 332.0
106 1 × 109 97.2 384 764 38.36 103.37 1689.52
106 1 × 1010 9.72 × 103 1536 3072 108.34 621.39 5870.90

errors less than 0.15%. Both this study and Dedalus converged
to the values listed in the table as the resolution was increased
and the simulations were run for longer periods of time. Ta-
ble V gives the results.

APPENDIX C: HEAT TRANSFER DISCUSSION

Each regime has distinct heat transport behaviors. The time
variation of these characteristics was given in Sec. IV. Here,
we carry out a more comprehensive discussion of how 〈Nu〉t

varies with Ra and Ra/Rac. Similar analysis of heat transfer is
done in many studies of convection, rotating convection, and
magnetoconvection [7,9,37,62,78–82].

TABLE V. Comparison of the time-averaged Nusselt number for
this study (TS), Dedalus (D), and Goluskin et al. [37] (G). Each
row gives the set of input parameters, and the time-averaged Nusselt
number from each code.

� Ra Ch 〈Nu〉t (T S) 〈Nu〉t (D) 〈Nu〉t (G).

2 104 0 4.988 4.988 4.993
2 1.75 × 104 0 6.184 6.183 6.188
2 2 × 104 0 6.505 6.505 6.509
2 105 0 11.740 11.736 11.738
2 5 × 105 0 3.553 0 3.530
2 106 0 3.710 0 3.714
2 2.5 × 106 0 3.584 0 3.540
2 3 × 105 10 16.300 16.299 −
2 3 × 105 102 10.293 10.297 −
2 3 × 105 104 3.170 3.173 −
2 1 × 108 106 14.486 14.478 −
2 3 × 106 10 13.169 13.779 −
2 3 × 107 102 29.025 28.973 −
2 3 × 106 103 13.234 13.250 −
2 1 × 108 105 25.983 26.012 −

Figure 13(a) gives 〈Nu〉t versus Ra. In the steady con-
vection roll, steady magnetocolumns, and magnetoplumes
regimes, 〈Nu〉t grows as Ra is increased. However, in the

FIG. 13. Time-averaged heat transfer. (a) Time-averaged Nus-
selt number, 〈Nu〉t , versus the Rayleigh number. (b) 〈Nu〉t versus
Ra/Rac. Each line gives a power law fit of the data for the five
different regimes. The solid black line gives the steady convection
rolls regime, dotted line gives the steady magnetocolumns regime
and dash-dot line gives the burst-jet regime. Power law fits for the
magnetoplumes and drifting plumes regimes are similar to the steady
convection rolls regime and are not displayed in the figure.
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drifting plumes and burst-jet regimes, the growth of 〈Nu〉t

with Ra slows, and for some cases there is a depression in
〈Nu〉t with increasing Ra. The zonal flows in these cases limit
convective velocities and thus heat transport across the layer.

Figure 13(b) gives 〈Nu〉t versus Ra/Rac. We provide a
power law fit to the cases in each regime. In the steady convec-
tion roll regime, the power law fit yields Nu ∼ (Ra/Rac)0.331

(black solid line), which is similar to the behavior found in
Goluskin et al. [37]. Similar laws are found in the magne-
toplumes [Nu ∼ (Ra/Rac)0.327] and drifting plumes [Nu ∼
(Ra/Rac)0.319] regimes, likely due to the ability for the con-

vective plumes in both regimes to transfer heat efficiently
across the layer. In the latter, the coefficient is slightly lower
than the scaling found in the steady convection roll regime
due to the manifestation of relatively weak zonal flows. The
steepest fit comes from the magnetocolumns regime where
Nu ∼ (Ra/Rac)0.583 (dotted line). The columnar flows are
able to efficiently transfer heat as it moves across the layer
with limited horizontal mixing [62]. In the burst-jet regime,
we find Nu ∼ (Ra/Rac)0.160 (dash-dot line), similar to the
results of Ref. [37]. The zonal flows sweep the near-wall
thermal plumes and inhibit heat transport across the layer.
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