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An Exemplar Model of Classification in Single and Combined Categories.
Fintan Costello (fintan@compapp.dcu.ie)

School of Computer Applications,
Dublin City University,

Glasnevin, Dublin 9, Ireland.

Abstract
This paper describes an exemplar-based model of people’s
classification and typicality judgements in both single and
combined categories.  This model, called the diagnostic
evidence model, explains the observed family resemblance
structure of single categories; the productive nature of
category combination; the observed overextension of
typicality judgments in some combined categories; and the
situations in which that overextension occurs.  The model also
gives a close fit to quantitative results from a representative
single-category classification data-set.

Models of categorisation need to explain two basic aspects
of human cognition: our ability to classify items as
members of single categories such as fish or cat, and our
ability to classify items as members of combinations of
categories such as wild cat or pet fish.  A successful model
should account for the graded structure of classification in
single categories: the fact that people’s judgements of
membership typicality for items in categories are
proportional to the items’ family resemblance to members of
those categories (Rosch, 1978; Rosch & Mervis, 1975).   A
successful model should also account for the productivity of
category combination: the fact that people are able to
understand and judge membership in new combinations of
categories, even if no already-existing examples of those
combinations are known.  This combinatorial productivity is
important because it underlies our ability to think new
thoughts and understand new expressions.  In many
currently popular models of categorisation (e.g. the context
theory; Medin & Schaffer, 1978), an item’s membership in a
category is proportional to its similarity to the stored
exemplars of that category.  While this approach gives a
good account for the graded structure of single categories, it
has difficulty explaining the productivity of category
combination, which involves classification in combinations
for which no stored exemplars are available (Rips, 1995).
This paper describes an exemplar-based model of
classification in single and combined categories which
explains the family resemblance structure of single
categories, the productivity of category combination, and
other specific results in both domains.  The model, called
the diagnostic evidence model, extends a successful earlier
theory (Costello & Keane, 1997, in-pressA, in-pressB).

The first part of the paper presents the diagnostic
evidence model of categorisation in single and combined
categories, and gives its account for family resemblance and
productivity in combination.  The second part demonstrates
the model by showing how it explains the observed
overextension of typicality in some combined categories.

Overextension occurs when people rate an item as a poor
member of both constituents of a combination, but as a
good member of the combination as a whole; for example,
when goldfish are rated as untypical members of the
categories pet and fish, but as typical members of the
combination pet fish (Hampton, 1988).  Overextension has
posed problems for a number of theories of category
combination.  The diagnostic evidence model accounts for
results on overextension, and explains why overextension
occurs in some combinations but not in others.  The third
part of the paper demonstrates this model further by
showing how it gives a good fit to quantitative results from
a representative classification data-set (Nosofsky, Palmeri,
& McKinley, 1994); a fit as close as that given by
exemplar-similarity models such as the context theory.

The diagnostic evidence model
The diagnostic evidence model extends an earlier theory of
the interpretation of noun-noun combined phrases, called
the constraint theory (Costello & Keane, 1997, in-press-A).
That theory set out to explain the diversity of interpretations
which people produce for noun-noun combinations: the fact
that people sometimes interpret combinations by forming
conjunctions between the combining categories (as in the
interpretation "pet bird: a parrot or some other bird which is
also a pet"), sometimes by asserting relations between the
categories (as in “jungle bird: a bird that lives in jungles ”),
and sometimes by transferring properties from one concept
to the other (as in “skunk bird: a bird that smells bad”).
Constraint theory explains this diversity by describing a
combination process that forms mental representations
satisfying three constraints of diagnosticity, plausibility and
informativeness.  Each interpretation type represents a
different way of satisfying these constraints.  The theory has
been tested in a computer program which simulates the
interpretation of noun-noun combinations, producing each
interpretation type and generating results that agreed with
people’s interpretations of those combinations (Costello &
Keane, in-press-A).  Further, Costello & Keane (in-press-B)
have provided direct experimental evidence for
diagnosticity's role in the formation of combined categories.

Where the Constraint theory gave a qualitative account of
noun-noun interpretation, the diagnostic evidence model
aims to give a quantitative account of people’s classification
of items in single and combined categories.  The model
focuses on the diagnosticity constraint.  The model assumes
that people represent categories by storing sets of category
exemplars in memory.  From these sets, diagnostic
attributes for categories are computed: these attributes serve
to identify category members.  An item’s membership



typicality in a single or combined category is a function of
the diagnosticity of its attributes for that category or for the
constituent categories of that combination.  An item has
high membership typicality in a category if it has attributes
that are highly diagnostic for that category.  An item has
high typicality in a combination if it has some attributes
highly diagnostic for one constituent of the combination,
and other attributes highly diagnostic for the other.  Two
novelties in this model are its method for computing
attribute diagnosticity, and its logic for combining the
diagnosticity of multiple attributes to compute membership
in single or combined categories.  I describe these below.

Attribute Diagnosticity
Diagnostic attributes are attributes which occur frequently
in stored instances of a category, but rarely in that
category’s contrast set (the set of stored instances which are
not members of the category).  These attributes serve to
identify members of a category: a new item possessing a
attribute which is highly diagnostic for a given category is
likely to be a member of that category.  The diagnosticity of
attribute x for category C is defined in Equation 1.  Let K be
the contrast set for C.  Let jx be 1 if instance j possesses
attribute x, and 0 otherwise.  D(x|C|K), the diagnosticity of
x for C relative to K, is equal to the number of instances in
C that possess x, divided by the total number of instances in
C (|C|) plus the number of instances in K that possess x:
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If the attribute x occurs in all instances in category C, but
no instances in C’s contrast set, then x is fully diagnostic for
C (D(x|C|K) = 1).  Such an attribute is a perfect guide to
membership of C: every instance possessing x is a member
of C, every instance not possessing x is not a member.   An
attribute which does not occur in all members of C, or
which occurs in some members of C’s contrast set, will be
less diagnostic for the category.  Such an attribute will be a
poorer guide to membership of C: not every instance
possessing x will be a member of C, not every instance not
possessing x will be a non-member.

An important novelty in the diagnostic evidence model is
that the diagnosticity of an attribute for a category can
change depending on whether the category occurs singly or
as part of a category combination.  This change in
diagnosticity arises because the contrast set used for
computing diagnosticity is different in single and combined
categories.  For single categories, the contrast set consists of
all instances which are not members of the category in
question.  For combined categories, however, the contrast
set consists of instances which are not members of any of
the constituents of the combination.  The contrast set for a
combination is thus a subset of the contrast sets for the
single categories which make it up.  This change in contrast
set means that some attributes which are not diagnostic for a
category when it occurs singly (because they occur
frequently in that category’s contrast set), will be diagnostic

Table 1. An illustrative array of exemplars

Exemplar category labels Attributes

FOUND KEPT-IN COLOR HAS-PART

1 lobster sea ------ pink claws
2 lobster aquarium tank pink claws
3 fish goldfish house tank gold scales
4 fish guppy house tank silver skin
5 fish salmon sea ------ silver scales
6 fish shark sea ------ silver skin
7 pet dog spaniel house basket brown tail
8 pet dog doberman house kennel black tail
9 pet dog bulldog house basket brown -----
10 pet terrapin house tank green skin

for that category when it occurs in a combination (if they
occur only rarely in that combination’s contrast set).

The computation of attribute diagnosticity can be
demonstrated using an illustrative set of stored exemplars of
categories such as pet, fish, dog and lobster, shown in Table
1.  These exemplars are described in attribute-value pairs on
four dimensions: FOUND, KEPT-IN, COLOUR, and HAS-PART.
Consider the diagnosticity of the attribute FOUND:HOUSE for
the single category fish, which has 4 stored exemplars
(exemplars 3, 4, 5, 6).  Kfish, the contrast set for the
category fish, contains exemplars 1, 2, 7, 8, 9, 10.
FOUND:HOUSE occurs in 2 of the 4 fish exemplars in Table
1, and in 4 exemplars in the contrast set Kfish.  The
diagnosticity of FOUND:HOUSE for the fish is thus
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This attribute has a low diagnosticity for the single
category fish: FOUND:HOUSE does not identify members of
category fish well.  In the context of the combination pet
fish, however, the attribute has a higher degree of
diagnosticity for fish.  Kpetfish, the contrast set for the
combination pet fish, consists of exemplars that are
members neither of pet nor of fish (exemplars 1 and 2).
FOUND:HOUSE does not occur in any exemplars in the
contrast set Kpetfish.  The diagnosticity of FOUND:HOUSE
for fish relative to the contrast set Kpetfish is thus

5.0
04

2
HOUSE:FOUND )( =

+
=petfish|fish|KD (3)

The attribute thus gives a greater degree of diagnostic
evidence for membership in the fish constituent of pet fish;
in other words, the attribute FOUND:HOUSE is more
diagnostic in identifying an item as a pet fish than it is
intentifying an item as a fish.  This effect of contrast set on
diagnosticity is central to the diagnostic evidence model's
account for overextension in combined categories, and is
discussed in the section on overextension, below.

A Continuous-valued Logic for Evidence
Diagnostic attributes, then, give evidence for an

instance’s classification in a category.  Instances usually



contain a number of different attributes, however, which
may be more or less diagnostic for the category in question,
or diagnostic for other categories.  How is the diagnostic
evidence from an item’s attributes combined to produce an
overall measure of evidence for category membership?  The
diagnostic evidence model uses a continuous-valued logic
to combine diagnostic evidence from multiple attributes.
This logic assumes continuous variables with values
between 0 and 1, and uses the following logical operations:

NOT A =   1- A (4)
A AND B =   AB (5)
A OR B = 1-(1-A)(1-B) (6)

These equations derive from standard probability theory,
and can be justified by considering the operations AND, OR,
and NOT for samples of independently distributed variables.
Suppose variables A and B have 0.75 and 0.5 probability of
being true, respectively.  Then the probability of NOT A
being true is 0.25 (1-0.75).  The probability of A AND B
being true is 0.375 (0.75 X 0.5): of the 75% of cases in
which A is true, 50% of those are cases in which B is also
true.  Finally, the probability of A OR B being true is 0.875
(1-(1-0.75) X (1-0.5)): of the 25% of cases in which A is
false, 50% of those are cases in which B is also false; thus A
OR B is true in 87.5% of cases.  Similar (though often more
complex) logics have been used in various areas (e.g. in
models of evidence-based reasoning; Shafer, 1976).  The
current model is unique in using this approach to compute
the contribution which different attributes make in people’s
classification of items in single or combined categories.

Combining Diagnosticity of Multiple Attributes.
To combine the diagnostic evidence from multiple

attributes for membership in a category, the diagnostic
evidence model uses the equation for OR.  An instance i with
a set of attributes x1, x2, x3, will be a member of category C
if x1 or x2 or x3 serves to identify the instance as a member
of C (if x1 OR x2 OR x3 is diagnostic for C).  This is
formalised in Equation 7, which has the form of the
equation for OR (Equation 6, above).  Let A be the set of
attributes of instance i and D(x|C|K) be the diagnosticity of
attribute x for C. Then E(i|C|K), the overall evidence for
classifying instance i as a member of C, is

∏
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This equation accounts for people’s classification in both
strictly defined and "family resemblance" categories.  If an
attribute x strictly defines a category C (occurs in all
instances of C and never occurs outside C), then x is
perfectly diagnostic of C (D(x|C|K) = 1).  If any item i
possesses attribute x , then by Equation 7 E(i|C|K) will be 1,
and the instance i will definitely be a member of C.  In
categories which have no single perfectly diagnostic
attribute but rather have a range of attributes of medium
diagnosticity, Equation 7 combines evidence from different
attributes in computing evidence for category membership:
the more diagnostic attributes the instance has, the higher its
degree of membership will be.  In other words, the more of
a family resemblance an instance has to the members of a

category, the higher its membership typicality will be.  This
relationship between diagnostic attributes and membership
has specific support in Rosch & Mervis' (1975) finding that
people's judgements of an instance’s typicality in a single
category rose reliably with the number of diagnostic
attributes for that category which the instance possessed.

The combination of diagnostic evidence can be illustrated
using the exemplars in Table 1.  For example, consider the
evidence for exemplar 5 (salmon) as a member of the
category fish.  This exemplar has attributes LIVES:SEA,
COLOUR:SILVER, and HAS-PART:SCALES.  The diagnosticities
of these attributes for fish are relatively high (0.4, 0.75 and
0.5 respectively, as computed from Equation 1).  From
Equation 7, these diagnostic evidence values are combined
to obtain an overall measure of evidence for exemplar
salmon's typicality in category fish as follows:

E(salmon | fish | Kfish )=1-(1-0.4 )(1-0.75)(1-0.5) (8)
                                      = 0.925

The exemplar salmon has good evidence for membership
in the category fish because it possesses highly diagnostic
attributes for that category: in other words, salmon is a
highly typical fish.  Other exemplars have less diagnostic
attributes for the category fish, and thus have lesser degrees
of evidence and are less typical category members.  For
example, the exemplar shark has the less diagnostic
attribute HAS-PART:SKIN and is a less typical member of the
category fish (E(shark | fish | Kfish)= 0.91, computed as
above); the exemplar goldfish has two less diagnostic
attributes LIVES:HOUSE and COLOUR:GOLD and is less
typical again (E(goldfish | fish | Kfish) = 0.813); the
exemplar spaniel has no diagnostic attributes and is a poor
member of the category (E(spaniel | fish | Kfish) = 0.25).

Diagnostic Evidence for Combined Categories
The diagnostic evidence model of classification, then, is

consistent with observed patterns of typicality in single
categories.  The model extends easily to account for
classification in category combinations: an item will be a
member of a combined category if it gives diagnostic
evidence for membership in each constituent in that
combination.  In computing an item’s membership in a
combined category, the model uses the continuous-valued
AND described above (Equation 5) to combine the item’s
evidence for membership in each constituent of the
combination.  An instance i will be classified as a member
of a combined category C1...CN  if it gives evidence for
membership in C1 AND evidence for membership in C2 AND

evidence for membership in C3 and so on.    More formally,
E(i|C1...CN|K1...N), the evidence for classifying i as a
member of combination C1...CN, is

)||()|...|( ...1
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where the contrast set K1...N is the set of instances not in
any of the categories C1...CN.  Note that an instance i will
give evidence for membership in each constituent of a
combination if it has some attributes diagnostic for each
constituent: some attributes diagnostic for one constituent,
other attributes diagnostic for others.



Because the diagnostic evidence model computes
evidence for membership in a combination by combining
evidence for membership in its constituent categories, it can
explain people’s ability to classify items in new
combinations, even if they have no stored exemplars of
those combinations.  An item is classified as a member of a
combination, even one with no stored exemplars, if the item
has diagnostic attributes for each constituent category in the
combination.  For example, in Table 1, there are no stored
exemplars of the combination pet lobster.  However, an
item could be classified as a good member of the
combination pet lobster if it possessed the attribute HAS-
PART:CLAWS (perfectly diagnostic for lobster in Table 1)
and the attribute FOUND:HOUSE (highly diagnostic for pet).

In accounting in this way for the productivity of category
combination, the model goes beyond theories such as the
context theory, in which classification is based on similarity
to stored exemplars of a category.  Such theories cannot
account for classification in new combinations for which
there are no stored exemplars.  For example, in an
exemplar-similarity based model, people would judge
membership in pet lobster by computing an item’s
similarity to stored exemplars of that combination (by
comparing the item to previously seen examples of pet
lobsters).  Since pet lobster has no stored exemplars, this
computation would be meaningless (see Rips, 1995).

Accounting for Overextension
Various studies have examined overextension of

classification in combined categories.  Overextension
occurs when people rate an item as a poor member of both
constituents of a combination, but as a good member of the
combination as a whole.  For example, people might rate
goldfish as typical members of the combination pet fish, but
as untypical members of the single categories pet and fish.
Hampton (1988) found that overextension was more likely
for some combinations than for others: the lower the degree
of overlap between combining categories (the fewer
exemplars the categories had in common) the more likely
the combinations were to be overextended.  For example,
the constituents of pet fish have low overlap (many fish are
not pets; many pets are not fish), and that combination was
often overextended.  By contrast, combinations of
categories with many common members were usually not
overextended.  For example, the constituents of pet dog
have high overlap (most dogs are also pets), and that
combination was usually not overextended.

Overextension poses a challenge for theories of category
combination  (Osherson & Smith, 1981).  In the diagnostic
evidence model, overextension arises because of changes in
attribute diagnosticity: because some attributes may have
low diagnosticity for a category when it occurs singly, but
high diagnosticity for that category when it occurs as part of
a combination.  As we saw earlier, the attribute
FOUND:HOUSE was less diagnostic for the single category
fish, but was more diagnostic for the category in the context
of the combination pet fish (because the attribute occurred
often in the contrast set for the category fish,  but not in the
contrast set for the combination pet fish).  This change in

Table 2. Overextension of exemplar goldfish in pet fish

Evidence for Exemplar Attribute Diagnosticity
membership in FOUND KEPT-IN COLOR HAS-PART

 goldfish: house tank golden scales

pet singly :0.714 0.67 0.14 0 0
fish singly:0.813 0.25 0.33 0.25 0.5
pet fish : 0.89
       pet 1 1.0 0.2 0 0
       fish 0.89 0.5 0.4 0.25 0.5

diagnosticity means that an item with that attribute could
give good evidence for membership in the combination pet
fish (and therefore high typicality in that combination), but
poor evidence for membership in the single categories fish
and pet (low typicality in those single categories).

Table 2 illustrates this account of overextension, showing
computed evidence for the exemplar goldfish as a member
of the single categories pet and fish, and the combination
pet fish. Note that goldfish gives higher evidence for
membership in pet fish (0.89) than in either pet (0.714) or
fish singly (0.813).  Goldfish would thus be judged a highly
typical pet fish but a less typical pet or fish.  This is because
the exemplar’s attributes have higher diagnosticity for the
combination than for the single categories.  For example,
FOUND:HOUSE has a diagnosticity of 0.67 for the single
category pet and of 0.25 for the single category fish.  In the
context of pet fish, however, FOUND:HOUSE has a higher
diagnosticity both for the constituent pet (1.0) and the
constituent fish (0.5).  (In Table 2, evidence for membership
in the single categories is computed by combining attribute
diagnosticity as in Equation 7.  Evidence for membership in
the combination is obtained by computing evidence for
membership in each constituent category as in Equation 7,
and combining that evidence as in Equation 9).

In this account, overextension arises from a difference
between the contrast sets for single categories and those for
a combination, which leads to a difference in diagnostic
evidence for membership in the single categories and the
combination.  If there is little difference between these
contrast sets, overextension won’t occur.  Table 3 illustrates
this for the combination pet dog.  Pet dog is not
overextended: the exemplar spaniel gives more evidence for
membership in the single categories pet (0.96) and dog
(0.98) than in the combination pet dog (0.95).  Because the
categories pet and dog have a high overlap  (in  Table  1,  all

Table 3. Non-overextension of exemplar spaniel in pet dog

Evidence for Exemplar Attribute Diagnosticity
membership in FOUND KEPT-IN COLOR HAS-PART

 spaniel: house basket brown tail

pet singly :0.96 0.67 0.5 0.5 0.5
dog singly:0.98 0.5 0.67 0.67 0.67

pet dog : 0.95
       pet 0.96 0.67 0.5 0.5 0.5
       dog 0.98 0.6 0.67 0.67 0.67



Table 4.  Predicted and observed probability of classification of exemplars in Nosofsky, et al., (1994) Experiment 1.

Exemplar Exemplars Diagnostic evidence Predicted classification probability Classification probability
labels      (C(i | A),W = 8) (linear transform of C(i | A)) observed in Experiment

A1 1 1 1 2 0.69 0.77 0.77
A2 1 2 1 2 0.65 0.74 0.78
A3 1 2 1 1 0.75 0.83 0.83
A4 1 1 2 1 0.52 0.6 0.64
A5 2 1 1 1 0.52 0.6 0.61
B1 1 1 2 2 0.37 0.46 0.39
B2 2 1 1 2 0.37 0.46 0.41
B3 2 2 2 1 0.13 0.23 0.21
B4 2 2 2 2 0.07 0.17 0.15
T1 1 2 2 1 0.45 0.54 0.56
T2 1 2 2 2 0.31 0.4 0.41
T3 1 1 1 1 0.78 0.86 0.82
T4 2 2 1 2 0.31 0.4 0.4
T5 2 1 2 1 0.16 0.26 0.32
T6 2 2 1 1 0.45 0.54 0.53
T7 2 1 2 2 0.07 0.17 0.2

dogs are also pets) there is little difference between the
contrast sets for the single categories pet and dog and the
contrast set for the combination pet dog.  There is thus little
difference in the diagnosticity of attributes for the single
categories and for the combination; hence, there is no
overextension.

This account explains Hampton’s (1988) finding that
overextension is rare for combinations whose constituent
categories have a high degree of overlap.  The greater the
overlap between the constituent categories of a
combination, the less of a difference there is between the
contrast sets for those categories occurring singly, and the
contrast set for that combination.  The less of a difference
between contrast sets, the less of a difference between
diagnostic evidence for membership in the single categories
and in the combination; the less chance of overextension.

Fitting Classification Data-sets
As described above, the diagnostic evidence model can
explain various results in natural-language categorisation
and category combination.  In this section I fit the model to
results obtained in a study of classification in artificial
laboratory-learned categories: Nosofsky, Palmeri, &
McKinley's (1994) replication of Medin & Schaffer's (1978)
study.  In Nosofsky, Palmeri, & McKinley's experiment,
participants learned to classify drawings of rocketships as
coming from planet A (category A) or planet B (category
B).  The rocketships varied on four dimensions (shape of
tail, wings, nose, and porthole) each with two values,
represented by 1 and 2.  Rockets from planet A had values
of 1 on most dimensions, while rockets from planet B had
values of 2.  An abstract representation of this category
structure is shown in Table 2.  In an initial training phase,
participants learned 9 training items: A1…A5 from category
A and B1…B4 from category B.  In the test phase

participants categorised the 9 training items and 7 new test
items T1…T7.  Test item T3 was the prototype for category
A (having a value 1 on all dimensions).

In this experiment participants classified items into one of
only two possible categories (A or B).  Classification in this
two-category task is different from classification in natural-
language categories: when only two categories are
available, an item’s membership in a category depends both
on evidence that the item is a member of the category, and
on evidence that the item is not a member of the other
category.  In applying the diagnostic evidence model to this
two-category task, the model was extended (using the
continuous-valued logic described above) to take account of
both sources of evidence: an item was classified in category
A if it gave evidence for membership in A, OR did NOT give
evidence for membership in B.  Formally, C(i|A), the
classification score for  i as a member of category A, is

C(i | A)  = E(i | A | KA) OR (NOT E(i | B | KB)) (10)

            = 1-(1-E(i | A | KA)W)(1-(1-E(i | B | KB))

where E(i|A|KA) and E(i|B|KB) give measures of evidence
for membership in A and B respectively (computed
according to Equation 7), and where parameter W represents
the relative importance of evidence for membership in A
versus evidence for membership in B in classification.

The diagnostic evidence model was applied to the data-set
using only the training stimuli (exemplars A1…A5 and
B1…B4).  These training exemplars were used to compute
the diagnosticity of the values 1 and 2 on each dimension
for the categories A and B.  These diagnosticities were then
used to compute the diagnostic evidence score C(i|A) for
both training and test exemplars as members of category A.
These scores are shown in the “diagnostic evidence”
column in Table 4.  These scores are those for the value of
W for which the correlation between predicted and observed



classification was highest (W = 8; r = .99, %var = 98%).
The model’s predicted classification probabilities (shown in
the next column in Table 4) were obtained by a linear
transformation of the diagnostic evidence scores, mapping
the mean diagnostic evidence score onto the mean observed
classification probability, and the standard deviation of the
diagnostic evidence score onto the standard deviation of
observed classification probabilities.  (This transformation
introduces no extra degrees of freedom into the model's fit
to the data; it simply allows direct comparison between
computed evidence for classification and the classification
probabilities observed in the experiment).   The diagnostic
evidence model’s computed classification scores for items
closely follow people’s classifications of those items, as
comparison of the predicted and observed classification
probability columns in Table 4 shows.  The model accounts
for the qualitative finding that the test exemplar T3 (the
prototype for category A) gets a higher classification
probability than all other test exemplars.  The percentage of
variance explained by the diagnostic evidence model (98%)
is in the same range as that produced by other models (the
context model explains 96% of variance in these results; the
Rulex model explains 98%; see Nosofsky, Palmeri, &
McKinley, 1994).  However, those models used four free
parameters to fit the data (varying the selective attention
paid to the 4 dimensions on which exemplars were
described), as opposed to the single parameter used by the
diagnostic evidence model.

Conclusions and Future work
The diagnostic evidence model of classification described
here goes beyond other theories of classification in giving
an account for both single and combined categories.  The
model explains the family resemblance structure of single
categories, the productivity of category combination, and
the occurrence of overextension in some combined
categories.  That the model is exemplar-based is significant:
a number of results have shown that exemplars are
important both for simple and combined categories (e.g.
Gray & Smith, 1995).  Some argue that exemplar-based
models cannot account for the productivity of combination
(Rips, 1995); the current model provides evidence against
this argument.  The model fits a representative classification
data set as closely as Medin & Schaffer’s (1978) context
theory, while using fewer free parameters.

There are, however, various classification results which
the diagnostic evidence model cannot currently explain.
Because the model does not provide a mechanism for
learning, it cannot address the role of learned attribute
correlations in classification.  A number of studies (e.g.
Medin, Altom, Edelson, & Freko, 1982) show that people
learn to associate correlated pairs of attributes with
categories, and to use those correlated attributes in
classification.  The diagnostic evidence model as it
currently stands cannot account for this result because it
treats all attributes independently.  Extending the model
with a learning mechanism which can recognise attribute
correlations and use those correlations to form new
"composite" attributes may allow the model to account for

the role of correlation in classification.  In an initial test of
this approach, in which composite attributes where hard-
coded into the representation used, the diagnostic evidence
model was able to give a good fit to Medin et al.'s results.
In future work I aim to develop the diagnostic evidence
model in this direction.
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