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On Contact Point Motion in the Vibration Analysis of
Elastic Rods?

Nathaniel N. Goldberg1, Oliver M. O’Reilly1

aDepartment of Mechanical Engineering, University of California, Berkeley, CA 94720-1740, USA

Abstract

We present a systematic method for analyzing the vibrations of elastic rods whose ef-
fective length is variable, with particular emphasis on rods in unilateral contact with
rigid surfaces. Problems of this type abound in engineering applications at all length
scales, from the laying of submarine pipelines to the stiction of cantilevers in micro-
electromechanical systems (MEMS). By a careful treatment of boundary conditions,
we elucidate the circumstances under which a rod of variable length can be treated as
one of fixed length for the sake of analyzing small-amplitude vibrations. In applying
our method to a simple free vibration problem, we encounter an unusual singular limit
and observe a close connection between vibration, stability, and existence.

Keywords: rod, beam, variable-length, variable-arc-length, linear vibration, contact,
small-on-large

1. Introduction

In studying the mechanics of elastic rods, one occasionally encounters problems in
which the effective length of the rod is unknown a priori. Such problems are sometimes
referred to as “variable-length” or “variable-arc-length” problems among rod mechani-
cians,1 a simple example being the lifting of a heavy strip of paper from a table by an
upward force applied to one end. Here the effective length is the length of the portion
that is not in contact with the table. For a given upward force, this length (and hence
the mathematical domain) is not immediately known and must instead be found as part
of the solution. The formation of troublesome rucks in rugs and the nesting of rubber
bands are other examples involving variable-length rods [4, 5].

Problems of the aforementioned type belong to the class of free boundary-value
problems in mathematics. Because one cannot simply add functions defined on dis-

?The authors gratefully acknowledge financial support from the United States Department of Defense
through the National Defense Science and Engineering Science Fellowship awarded to N. N. Goldberg.
∗Corresponding author
1The terms “variable-length” and “variable-arc-length” are sometimes used to refer to problems in which

the rod’s length varies as a prescribed function of time [1, 2], for example the ejection of paper from a
photocopier [3]. However, we use these terms exclusively to refer to problems in which the length is variable
and also initially unknown.
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parate domains, free boundary problems are inherently nonlinear and can produce non-
linear effects even if the underlying differential equations are linear. Furthermore, their
solution requires the specification of more boundary conditions than their standard
counterparts do. This is apparent in the case of the Euler-Bernoulli beam: a fixed-
length beam needs four boundary conditions while a variable-length beam needs five.

It is a largely straightforward numerical computation to solve for the static config-
uration of a variable-length rod [6], and closed-form analytical solutions are typically
available for the small-amplitude regime [7]. There is less understanding, however, on
how to appropriately treat small-amplitude vibrations about a statically deformed con-
figuration (both the “small-on-small” and “small-on-large” analyses), even though this
task is well-understood for rods of fixed length [8].

A more fundamental insight into the vibration of variable-length rods is certainly
of interest from a theoretical point-of-view, but it is also relevant to several vibration-
critical engineering applications. Submarine pipelines, flexible risers, and other ma-
rine structures that touch the seafloor are essentially variable-length rods [9, 10], as are
micro-scale cantilever beams when they adhere electrostatically to the substrate of mi-
croelectromechanical systems (MEMS) [11]. Belt-driven transmissions at high speeds
and/or with considerable slack can also be effectively modeled as variable-length (and
axially translating) rods [12].

The principal difficulty in analyzing the vibrations of variable-length rods is readily
illustrated in unilateral contact problems, such as the one illustrated in Fig. 1, in which
the contact point moves left and right over the course of the vibratory motion. Some
authors argue heuristically that the oscillations of this point are “small” in some sense
relative to the overall amplitude of vibrations and proceed to treat the point as being
fixed [13, 14]. Others apply variable transformations to map the free boundary to a
fixed one [9, 11, 15], while others yet apply perturbation methods to the boundary
conditions [10, 16, 17].

The goal of this paper is to clarify the third approach, use it to explain when the
first is applicable, and highlight why the second is an unnecessary complication if only
linear vibrations are considered. We do all this in the context of the foregoing con-
tact problem, but the technique we outline can be readily applied to a number of other
situations involving variable-length rods, such as a roller support or sleeve constraint
[18, 19]. Over the course of our analysis, which we present in considerable detail, we
explain several counter-intuitive results from the literature. We conclude by providing
a thorough numerical exploration of the parameter space for the problem depicted in
Fig. 1. A video animating the first three vibration modes is included in the Supplemen-
tary Material for this article.

2. Small-Amplitude Vibrations Superposed on Small-Amplitude Equilibria

We now study small-amplitude free vibrations about small-amplitude static equilib-
ria of the system illustrated in Fig. 1, which was first introduced by Roy and Chatterjee
[11] and is closely related to a system considered earlier by Demeio and Lenci [9]. In
this section we treat the rod as an Euler-Bernoulli beam of linear density ρ0 and flexural
rigidity EI. It is clamped on its left end at a height a from a frictionless, adhesion-free
horizontal substrate and is subjected to a downward gravitational force per unit length
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Figure 1: Schematic of the problem first considered by Roy and Chatterjee [11].

of magnitude ρ0g. The length ` = `(t) of the non-contacting segment of the beam is
unknown a priori and must be determined as part of the solution. Under static condi-
tions, the non-contacting length is denoted `0. The total length of the beam is L, which
must be greater than `(t) for physically meaningful solutions to exist.

As is usual with Euler-Bernoulli beams, it is permissible to exchange the arc-length
coordinate s with the abscissa x, making y = y(x, t) and ` = `(t) the sole dependent
variables. The dynamics are governed by the familiar equation

ρ0
∂2y
∂t2 + EI

∂4y
∂x4 + ρ0g = 0 , 0 < x < `(t) , t > 0 . (1)

We now nondimensionalize Eq. (1). Scaling all lengths by a, scaling time t by a2
√
ρ0/EI,

and defining w = ρ0ga3/EI, we have

∂2y
∂t2 +

∂4y
∂x4 + w = 0 , 0 < x < `(t) , t > 0 . (2)

We will work in dimensionless terms for the remainder of the paper. Equation (2) is to
be solved subject to the boundary conditions

y(0, t) = 1 ,
∂y
∂x

(0, t) = 0 , (3)

and

y(`(t), t) = 0 ,
∂y
∂x

(`(t), t) = 0 ,
∂2y
∂x2 (`(t), t) = 0 . (4)

Equation (4)3 is a consequence of the lack of adhesion between the beam and the sub-
strate. (If reversible adhesion were present, the right-hand side would be replaced by
a constant M` > 0 related to the adhesive energy between the beam and the substrate
[20, 21].) Notice that five boundary conditions are required rather than the usual four
because `(t) is an additional unknown.

We briefly mention that the solution to the right of x = `(t) is trivial and need not
be given special consideration in the case of an Euler-Bernoulli beam, though this issue
must be revisited in the nonlinear regime. Finally, we note that our interest is entirely
in steady, oscillatory solutions so we do not specify initial conditions.
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2.1. Solution via Variable Transformation
The essence of the method used by Roy and Chatterjee [11] to analyze oscillatory

solutions of Eqs. (2) to (4), first introduced by Demeio and Lenci [9] in a slightly
different context, is to perform a change-of-variable that maps x ∈ (0, `(t)) to a fixed
interval, namely z = x/`(t) ∈ (0, 1). Such a transformation changes the free boundary-
value problem into a standard boundary-value problem with the additional unknown
`(t) pushed into the differential equation itself. It also induces the interesting concept
of an “extended” mode shape of a vibrating system that contains different material
points at different instants in time.

However, the transformation comes at the cost of increased algebraic complexity,
as is evident in the resulting expression for the acceleration operator. Writing y(x, t) =

y(`(t)z, t) =: ỹ(z, t), it can be shown that Eq. (2) becomes

∂2ỹ
∂t2 +

(
2 ˙̀2

`
− ῭

)
z
`

∂ỹ
∂z
−

2 ˙̀z
`

∂2ỹ
∂t∂z

+

( ˙̀z
`

)2
∂2ỹ
∂z2 +

1
`4

∂4ỹ
∂z4 + w = 0 , (5)

where 0 < z < 1 and t > 0. The increased complexity apparent in Eq. (5) does
not make analysis impossible, but it does obscure some critical facets of the problem.
An extensive calculation shows that the natural frequencies ω of small free vibrations
about a static solution of Eq. (5), subject to the appropriate boundary conditions in the
z-domain derived from Eqs. (3) and (4), are governed by

cos(
√
ω`0) cosh(

√
ω`0) − 1 = 0 . (6)

After unraveling the nondimensionalization, it becomes evident that Eq. (6) is exactly
the same as the characteristic equation for the natural frequencies of a fixed-fixed beam
with length equal to the static non-contacting length `0. This unexpected correspon-
dence, first recognized by Roy and Chatterjee [11], seems nothing less than miraculous
from the perspective of the preceding procedure. In the sequel, we demonstrate that the
same result follows transparently from an alternative approach that also elucidates the
conditions under which similarly unexpected correspondences may exist.

2.2. Solution via Regular Perturbation Expansion
Rather than transform the domain to one of a fixed length, we now elect to work

directly with the original statement of the problem in the x-domain, Eqs. (2) to (4). To
begin, we expand y(x, t) and `(t) in regular perturbation series:

y(x, t) = y0(x) + εy1(x, t) + O(ε2) , `(t) = `0 + ε`1(t) + O(ε2) . (7)

We will truncate these series to O(ε) in order to obtain the leading-order dynamics
about the static equilibrium. Inserting Eq. (7)1 into Eq. (2) and grouping powers of ε,
we find

d4y0

dx4 + w = 0 ,
∂2y1

∂t2 +
∂4y1

∂x4 = 0 . (8)

Equation (3) then implies the following boundary conditions at x = 0:

y0(0) = 1 , y1(0, t) = 0 ,
dy0

dx
(0) = 0 ,

∂y1

∂x
(0, t) = 0 . (9)
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It is slightly more complicated to determine the consequences of the perturbation ex-
pansion for Eq. (4), the boundary conditions at the free boundary x = `(t). Starting
with Eq. (4)3 and neglecting terms quadratic or higher in ε,

0 =
∂2y
∂x2 (`(t), t)

=
∂2y
∂x2 (`0 + ε`1(t), t)

=
d2y0

dx2 (`0 + ε`1(t)) + ε
∂2y1

∂x2 (`0 + ε`1(t), t)

=
d2y0

dx2 (`0) + ε

[
d3y0

dx3 (`0)`1(t) +
∂2y1

∂x2 (`0, t)
]
,

(10)

which immediately yields

d2y0

dx2 (`0) = 0 ,
d3y0

dx3 (`0)`1(t) +
∂2y1

∂x2 (`0, t) = 0 . (11)

Carefully applying the same procedure to Eq. (4)2, we obtain

dy0

dx
(`0) = 0 ,

d2y0

dx2 (`0)︸    ︷︷    ︸
=0 by Eq. (11)1

`1(t) +
∂y1

∂x
(`0, t) = 0 . (12)

Finally, we obtain from Eq. (4)1,

y0(`0) = 0 ,
dy0

dx
(`0)︸  ︷︷  ︸

=0 by Eq. (12)1

`1(t) + y1(`0, t) = 0 . (13)

To summarize, we have the following straightforward-to-solve free boundary-value
problem for the static equilibrium:

d4y0

dx4 + w = 0 , (14)

y0(0) = 1 , (15)
dy0

dx
(0) = 0 , (16)

y0(`0) = 0 , (17)
dy0

dx
(`0) = 0 , (18)

d2y0

dx2 (`0) = 0 , (19)

which has the solution

y0(x) =

(
1 −

x
`0

)3(
1 +

3x
`0

)
, `0 =

(
72
w

)1/4

. (20)
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Additionally, y1(x, t) is governed by

∂2y1

∂t2 +
∂4y1

∂x4 = 0 , (21)

y1(0, t) = 0 , (22)
∂y1

∂x
(0, t) = 0 , (23)

y1(`0, t) = 0 , (24)
∂y1

∂x
(`0, t) = 0 . (25)

Finally, `1(t) is determined from the sole remaining piece of information derived from
the original boundary conditions, Eq. (11)2.

Equations (21) to (25) are precisely the equations governing the dynamics of a
fixed-fixed beam of length `0! This transparently shows the same result obtained in
Section 2.1 by way of a clever but substantially more involved computation. In fact,
our result is somewhat more general: it is not just the natural frequencies that are
the same as those for a fixed-fixed beam of appropriate length, but rather the entire
first-order dynamics. The present method also illustrates the interesting fact that the
dynamical effect of the motion of the contact point is negligible to first order and hence
the concept of an “extended” mode shape as introduced in Section 2.1 is superfluous.
Lastly, it is interesting to observe that the neither the static solution, Eq. (20), nor the
dynamics defined by Eqs. (21) to (25) depend on the specific weight w except through
`0.

2.3. Solution to a Modified Problem

Roy and Chatterjee also consider an alternate problem without gravity but with an
adhesive substrate [11]. They find that the equation for the natural frequencies in this
case does not correspond to any well-known formula. Our method makes it easy to see
why this is the case. We will consider the combined effect of gravity and adhesion, but
the results readily degenerate to the adhesion-only case.

When adhesion is present, Eq. (4)3 is replaced by

∂2y
∂x2 (`(t), t) = M` , (26)

where M` > 0 is a specified constant related to the adhesion energy between the rod
and the substrate [20, 21]. Equation (11)1 is then replaced by

d2y0

dx2 (`0) = M` , (27)

whence Eq. (12)2 becomes

M``1(t) +
∂y1

∂x
(`0, t) = 0 , (28)
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Figure 2: Classification of solutions to the static problem in terms of the parameters w and M`, according to
the linear (Euler-Bernoulli) analysis.

or, upon combination with Eq. (11)2,

∂2y1

∂x2 (`0, t)︸      ︷︷      ︸
bending moment

= K
∂y1

∂x
(`0, t)︸     ︷︷     ︸

rotation angle

, K =
1

M`

d3y0

dx3 (`0) . (29)

Notice that Eq. (29) is equivalent to a rotational spring at the boundary x = `0 with
(dimensionless) stiffness K, which in general depends on the constant M` that charac-
terizes adhesion as well as the static configuration {y0(x), `0}. Omitting some minor de-
tails, said configuration can be shown to be governed by Eqs. (14) to (18) and Eq. (27).
The solution is

y0(x) = (`0 − x)2
[
1
2

M` +
1
6

(
1
3

w`0 −
2
`0

M`

)
(`0 − x) −

1
24

w(`0 − x)2
]
, (30)

where the non-contacting length `0 is such that is satisfies

w`4
0 + 12M``

2
0 − 72 = 0 . (31)

Equation (31) is quadratic in `2
0 and hence physically meaningful solutions exist only

if the discriminant is non-negative, which implies the simple constraint M2
` + 2w ≥ 0.

The system can therefore only access a certain region of the (w,M`)-plane.
Where solutions do exist, it is instructive to classify them into two types. We call

a solution gravity-dominant if the vertical force between the beam and the substrate at
x = `0 is compressive. If said force is tensile, we call the solution adhesion-dominant.
The boundary between these two regions in the (w,M`)-plane is characterized by zero
vertical force at x = `0. It can be shown using Eq. (30) and Eq. (31) that points on the
boundary satisfy 2w = 3M2

` . Figure 2 is a graphical classification of the static equilibria
in the parameter space.

The first-order dynamics2 in the case of combined gravity and adhesion are gov-
erned by Eqs. (21) to (24) and Eq. (29), except with the rotational spring stiffness K

2Notice that when w = 0 the dynamics depend on M` only through `0, just as the dynamics depend on w
only through `0 when M` = 0.
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given according to

K =
1

M`

d3y0

dx3 (`0) =
2
`0
−

w`0

3M`
. (32)

Such a set of equations of course describe a beam fixed at x = 0 and restrained by
a rotational spring at x = `0. This specific combination of boundary conditions does
not constitute a standard case and hence it is natural that Roy and Chatterjee [11] did
not recognize the correspondence from the characteristic equation for the natural fre-
quencies of free vibration. It is a mostly elementary exercise to solve for the natural
frequencies and we report the procedure in Appendix A; when w = 0 the results agree
with Roy and Chatterjee’s.3

3. Small-Amplitude Vibrations Superposed on Large-Amplitude Equilibria

Understanding now the general procedure by which one can analyze small-amplitude
vibrations of variable-length Euler-Bernoulli beams about small-amplitude static con-
figurations, it is not a particularly challenging task to pass through to the small-on-large
regime for an inextensible, unshearable, planar elastica of variable length. In this sec-
tion and the next we again specialize our results to the problem considered in the linear
context in Section 2, including the effects of both gravity and adhesion, but the proce-
dure by which one would solve a more general class of problems should be evident.

3.1. General Solution Procedure

Following notation similar to that used elsewhere [8, 13, 22], the dimensionless
governing equations can be expressed in slightly modified form as

∂F
∂s

=
∂2x
∂t2 , (33)

∂G
∂s

=
∂2y
∂t2 + w , (34)

∂m
∂s

= F sin θ −G cos θ , (35)

∂θ

∂s
= m , (36)

∂x
∂s

= cos θ , (37)

∂y
∂s

= sin θ , (38)

all of which hold for 0 < s < `(t) and t > 0. All lengths have been scaled by a, the
forces F and G by EI/a2, the bending moment m by EI/a, and time t by a2

√
ρ0/EI.

As in Section 3.1, w = ρ0ga3/EI.

3Roy and Chatterjee [11] use a different nondimensionalization than we do. Their angular natural fre-
quencies are numerically equivalent to our ω`2

0 .
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Equations (33) and (34) are the horizontal and vertical components of the balance
of linear momentum, respectively, while Eq. (35) is the balance of angular momentum,
neglecting rotary inertia. Equation (36) is the moment-curvature constitutive law. Fi-
nally, Eqs. (37) and (38) are collectively the definition of the angle θ. Equations (33)
to (38) require seven total boundary conditions rather than the usual six, as `(t) is an
additional unknown.

Our derivation follows a recipe only incrementally more complex than that em-
ployed in Section 2.2. It is as follows:

• Assume that each of the seven dependent variables—F, G, m, θ, x, y, and `—can
be written as a static term plus a small dynamic term, e.g., m(s, t) = m0(s) +

εm1(s, t), ε � 1.

• Plug the aforementioned Ansätze into Eqs. (33) to (38) and expand terms in Tay-
lor series as needed to isolate the coefficients of ε0 and ε1. The former yield
the differential equations governing the static terms (e.g., m0(s)), while the lat-
ter yield those governing the dynamic terms (e.g., m1(s, t)), which will depend
parametrically on the static solution.

• Plug the Ansätze into the boundary conditions and again expand in Taylor series
as needed to isolate a hierarchy of boundary conditions, paying special attention
to the conditions at s = `(t). Seven boundary conditions for the static variables
will result as well as seven for the dynamic variables. However, the latter can be
combined in such a way so as to produce just six conditions (the total number
needed to specify the solution for the dynamic problem on the fixed interval
0 < s < `0), as well as an equation for `1(t) in terms of the static and dynamic
solutions.

• Assume that each dynamic term (except for `1(t)) is the product of a function of
s and a sinusoid, e.g., m1(s, t) = m̂1(s) cos(ωt). The collection of the “hatted”
functions constitutes the mode shape of the rod and ω is the natural frequency
that must be determined as part of the solution.

• Obtain boundary conditions for the mode shapes from the boundary conditions
for the dynamic variables.

This procedure is in fact quite general and can be applied to a range of problems.

3.2. Perturbation Expansion of Governing Equations

We now explicitly apply the small-on-large analysis procedure introduced in Sec-
tion 3.1 to the familiar example illustrated in Fig. 1, and for which Eqs. (33) to (38)
govern the solution. After linearization we find the following equations for the static

9



configuration:

dF0

ds
= 0 , (39)

dG0

ds
= w , (40)

dm0

ds
= F0 sin θ0 −G0 cos θ0 , (41)

dθ0

ds
= m0 , (42)

dx0

ds
= cos θ0 , (43)

dy0

ds
= sin θ0 . (44)

The procedure also results in the following equations for the first-order dynamics:

∂F1

∂s
=
∂2x1

∂t2 , (45)

∂G1

∂s
=
∂2y1

∂t2 , (46)

∂m1

∂s
= (F0θ1 −G1) cos θ0 + (G0θ1 + F1) sin θ0 , (47)

∂θ1

∂s
= m1 , (48)

∂x1

∂s
= −θ1 sin θ0 , (49)

∂y1

∂s
= θ1 cos θ0 . (50)

Equations (39) to (44) and Eqs. (45) to (50) are of course the same well-known sets of
equations that govern small-on-large vibrations of fixed-length rods [8, 13].

3.3. Perturbation Expansion of Boundary Conditions
The appropriate boundary conditions at s = 0 are

θ(0, t) = 0 , x(0, t) = 0 , y(0, t) = 1 , (51)

which are readily linearized to yield

θ0(0) = 0 , x0(0) = 0 , y0(0) = 1 , (52)

and
θ1(0, t) = 0 , x1(0, t) = 0 , y1(0, t) = 0 . (53)

Three relatively obvious boundary conditions at the contact point s = `(t) are

m(`(t), t) = M` , θ(`(t), t) = 0 , y(`(t), t) = 0 . (54)

10



Equations (51) and (54) altogether make up six boundary conditions, but seven are
required to fully specify a solution. It is not immediately apparent what the seventh
condition should be, but a hint is provided by the fact that there was no such confusion
in Section 2. The essential effect that the foregoing approach neglects, but that is
present in the small-on-large case, is horizontal momentum. Thus, it is likely that the
missing condition should somehow involve F(`(t), t), the axial force in the rod at the
contact point.

Indeed, the segment `(t) < s < L carries horizontal momentum as it slides left and
right along the frictionless substrate, and this must be reflected in the force F(`(t), t).
A balance of linear momentum quickly yields

− F(`(t), t) = [L − `(t)]
∂2x
∂t2 (`(t), t)− ˙̀(t)

∂x
∂t

(`(t), t) , (55)

which we emphasize is the elusive boundary condition in its dimensionless form. No-
tice that an additional parameter that was not present in the linear analysis has been
introduced, namely the total length of the rod L.4 There are two important limiting
cases for this parameter: L − `(t) → 0+ and L − `(t) → ∞. In the former, the rod
contacts the substrate only over a very small region such that there is effectively zero
axial force to first order acting at s = `(t). In the latter, the inertia of the contacting
segment is so large that it cannot accelerate along the substrate.

Writing the appropriate variables as regular perturbation series in ε, inserting them
into Eqs. (54) and (55), expanding in Taylor series, and grouping like powers of ε, it is
straightforward to show

F0(`0) = 0 , m0(`0) = M` , θ0(`0) = 0 , y0(`0) = 0 , (56)

and

dF0

ds
(`0)︸   ︷︷   ︸

=0 by Eq. (39)

`1(t) + F1(`0, t) + (L − `0)
∂2x1

∂t2 (`0, t) = 0 , (57)

dm0

ds
(`0)`1(t) + m1(`0, t) = 0 , (58)

dθ0

ds
(`0)︸  ︷︷  ︸

=M` by Eqs. (42) and (56)2

`1(t) + θ1(`0, t) = 0 , (59)

dy0

ds
(`0)︸  ︷︷  ︸

=0 by Eqs. (44) and (56)3

`1(t) + y1(`0, t) = 0 . (60)

Combining Eqs. (58) and (59) in order to eliminate `1(t) results in a rotational spring
boundary condition:

m1(`0, t) = Kθ1(`0, t), K =
1

M`

dm0

ds
(`0) . (61)

4We reiterate that physically meaningful solutions only exist when `(t) < L.
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The spring constant K can be simplified somewhat by evaluating Eq. (41) at s = `0 and
taking into account Eq. (56)1,3. Thus

K = −
G0(`0)

M`
, (62)

such that the stiffness of the spring is set by the ratio of the static shear force to the
static bending moment at s = `0.

To summarize, the boundary conditions for the dynamic variables at s = `0 are

F1(`0, t) + (L − `0)
∂2x1

∂t2 (`0, t) = 0 , m1(`0, t) = Kθ1(`0, t) , y1(`0, t) = 0 , (63)

with K as in Eq. (62). We now have six boundary conditions on the dynamic variables,
the correct number required to specify a solution on 0 < s < `0. However, we have
not used all of the information contained in Eqs. (57) to (60). In particular, we can use
Eq. (58) to show

`1(t) =
m1(`0, t)
G0(`0)

, (64)

meaning that once the static and dynamic solutions are known, `1(t) can be computed
with ease. It should be emphasized that `1(t) does not appear anywhere else in the
equations that result from our solution procedure. Furthermore, in contrast to the small-
on-small case discussed in Section 2.2, the boundary conditions at the contact point for
the small-on-large analysis (i.e., Eq. (63)) do not in general represent a spatially fixed
rotational spring but rather a rotational spring plus an attached mass that is free to slide
horizontally.

3.4. Determination of Modes of Free Vibration

At this stage the static problem is fully defined by Eqs. (39) to (44) subject to
Eq. (52) and Eq. (56). The dynamic problem is fully defined by Eqs. (45) to (50)
subject to Eq. (53) and Eq. (63), and we seek solutions in which each of the six dynamic
variables F1, G1, m1, θ1, x1, and y1 is separable into a mode shape and a sinusoid of
angular frequency ω, e.g., m1(s, t) = m̂1(s) cos(ωt). Notice that, unlike previous work
on similar problems (see [9, 11]), we make absolutely no assumption about the nature
of `1(t), most certainly not the severe restriction that it too be sinusoidal with frequency
ω.

It is easy to show from Eqs. (45) to (50) that the ordinary differential equations
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governing the mode shape are

dF̂1

ds
= −ω2 x̂1 , (65)

dĜ1

ds
= −ω2ŷ1 , (66)

dm̂1

ds
= (F0θ̂1 − Ĝ1) cos θ0 + (G0θ̂1 + F̂1) sin θ0 , (67)

dθ̂1

ds
= m̂1 , (68)

dx̂1

ds
= −θ̂1 sin θ0 , (69)

dŷ1

ds
= θ̂1 cos θ0 . (70)

The corresponding boundary conditions are likewise straightforward to obtain. Equa-
tion (53) promptly leads to

θ̂1(0) = 0 , x̂1(0) = 0 , ŷ1(0) = 0 , (71)

while Eq. (63) yields

F̂1(`0) = ω2(L − `0)x̂1(`0) , m̂1(`0) = Kθ̂1(`0) , ŷ1(`0) = 0 . (72)

Equation (72)1, which reflects a sort of spring with frequency-dependent stiffness,
makes apparent two interesting limiting behaviors. For low-frequency oscillations
(ω → 0+), the point s = `0 is connected to a rotational spring that is entirely free
to move horizontally. By contrast, for high-frequency oscillations (ω → ∞), the point
s = `0 is connected to a spatially fixed rotational spring.

Once the static solution, mode shape, and natural frequency have been computed,
one can calculate from Eq. (64) that

`1(t) =
m̂1(`0)
G0(`0)

cos(ωt) , (73)

which shows that m1(s, t) being time-harmonic with angular frequency ω induces the
same in `1(t). We emphasize that this was not assumed a priori.

3.5. Summary of Equations
To summarize, one must first solve Eqs. (39) to (44), subject to Eq. (52) and

Eq. (56), for the static solution: the functions F0(s), G0(s), m0(s), θ0(s), x0(s), and
y0(s) on the interval 0 < s < `0, as well as the constant `0. Then, using said solution,
one solves Eqs. (65) to (70), subject to Eqs. (71) and (72), for the mode shape defined
by the functions F̂1(s), Ĝ1(s), m̂1(s), θ̂1(s), x̂1(s), and ŷ1(s) on the (now) fixed interval
0 < s < `0, as well as for the natural frequency ω. Thereafter `1(t) can be recovered
according to Eq. (73) if so desired.

Just as in standard linear vibration analysis, the mode shape is only unique up
to a scalar multiple; there are seven unknowns but just six boundary conditions. By
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Eq. (73), the amplitude of the contact point oscillations is also indeterminate. For given
values of the specific weight w, adhesive moment M`, and total length L, we use MAT-
LAB’s bvp4c solver to obtain numerical solutions of the standard boundary-eigenvalue
problems for the static configuration, the mode shape, and the natural frequency. Be-
cause the amplitude of the mode shape is inherently indeterminate, it is necessary to
specify an additional “fake” boundary condition that is independent of the others so as
to ensure the numerical problem is not underdetermined.

4. Results

We now present the results of an extensive exploration of the parameter space of
w, M`, and L. For the determination of the static configuration, we need not specify
the total length L so long as we assume it is large enough that L > `0, which we
shall do. However, for the determination of the mode shapes and natural frequencies
it is in fact necessary to specify a particular value of L. In order to limit the scope
of our presentation to the convenient, two-dimensional parameter space (w,M`), we
would like to take the limit L → ∞, in which case we naively expect Eq. (72)1 would
degenerate to a boundary condition akin to a spatially fixed rotational spring. However,
we will demonstrate shortly that said limit is in fact singular in the sense that, if we
first take L → ∞ and then take w → 0+ and M` → 0+, we obtain natural frequencies
that differ by a finite amount from the results of the small-on-small analysis, in which
w → 0+ and M` → 0+ are assumed at the outset. A related singular limit has been
identified in analyzing the vibration of a fixed-length rod about its static configuration
[8], so it is not too surprising that one appears here as well.

4.1. Static Equilibrium

We first study the simple correspondence between the static non-contacting length
`0 and the parameters w and M`. (Recall that L does not affect the static equilibrium
so long as we take it large enough that L > `0.) Figure 3 depicts the parametric depen-
dence of `0 in the gravity-only and adhesion-only cases. We see that the linear analysis
of Section 2.3 provides a satisfactory approximation when w � 1 or M` � 1, but at
the same time `0 → ∞ as w → 0+ and M` → 0+, a first sign that we might be facing a
problem with a singular limit.

As in the beam-theoretic analysis of Section 2.3, there are only certain regions
of the (w,M`)-plane that the rod can occupy. Perhaps surprisingly, solutions to the
nonlinear problem appear only to exist, based purely on our numerical results, subject
to the same condition obtained previously, i.e., M2

` + 2w ≥ 0. The boundary between
the gravity-dominant and adhesion-dominant regions, however, is different, as is easily
seen in Fig. 4, which depicts the various regions in the plane and introduces a color
scheme used in subsequent plots. It also shows how the static non-contacting length `0
varies according to w and M`. Notice that the boundary of the “no solution” region can
be thought of as the contour corresponding to `0 → ∞.
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Figure 3: Dependence of the static non-contacting length `0 on the weight per unit length w and adhesive
moment M` when (a) M` = 0 and (b) w = 0. The dashed lines correspond to the results from the Euler-
Bernoulli analysis, Eq. (31), when M` = 0 and w = 0, respectively.
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Figure 4: Classification of static solutions to the fully nonlinear problem according to the parameters w
and M` and a sample of contours of constant non-contacting length `0. The dotted line is the boundary
determined from the linear analysis of Section 2.3. The reader is referred to the online version of this article
for the figure in full color.
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Figure 5: Dependence of the first two natural frequencies on the weight per unit length w and adhesive
moment M` when (a) M` = 0 and (b) w = 0. The dashed lines correspond to the results for the Euler-
Bernoulli beam, i.e. the first two roots of Eq. (6) and Eq. (A.10), respectively. The reader is referred to the
online version of this article for the figure in full color. Blue curves indicate the first natural frequencies and
red ones the second.

4.2. Mode Shapes and Natural Frequencies

As a first step in understanding the vibration behavior, we focus on the case where
w > 0 and M` = 0, remembering that the parameter L must be reintroduced. We
are interested in examining the natural frequencies in the limit w → 0+ for various L,
and determining how they relate to those obtained via the linear analysis presented in
Section 2.3 and expounded upon in Appendix A.

Recall that L = `0 corresponds to a rod whose tip is just barely touching the sub-
strate and, by Eq. (72)1, F̂1(`0) = 0. For L very large, on the other hand, we expect
(naively) that x̂1(`0) = 0. With reference to Fig. 5a, observe that as L is increased, a
boundary layer develops in the vicinity of w = 0 and, in the limit L→ ∞, the first nat-
ural frequency appears to tend toward zero for all w. However, if we take the boundary
condition x̂1(`0) = 0, then the first natural frequency for any given w is obviously not
zero, but rather some finite value, hence the singular nature of the problem. Said finite
value then serves as the lower bound for the second natural frequency for all L, again
shown in Fig. 5a.

In a certain sense, the limit L → ∞ causes the first mode to “disappear.” Indeed,
there is a marked qualitative difference in the mode shape when one takes as a boundary
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Figure 6: Comparison of typical shapes of the first mode of vibration with the distinct boundary conditions
F̂1(`0) = 0 and x̂1(`0) = 0. We have taken w = 1 and M` = 0. The dashed curves represent the static
equilibrium and the point s = `0 is marked with ×. See the Supplementary Material for an animation of the
first, second, and third mode shapes.

condition Eq. (72)1 with `0 ≤ L < ∞ as compared to when one replaces it by x̂1(`0) = 0.
As illustrated in Fig. 6, the mode shape has one inflection point and does not cross
the static configuration in the former case, while it has two inflection points and does
cross the static configuration in the latter. Additionally, the material point s = `0
slides along the substrate in the former case while it remains stationary in the latter. A
useful heuristic for understanding the singular limit is to envision the vibrating rod as
a single-degree-of-freedom mass-spring system in which the contacting segment is the
mass m ∝ L and the non-contacting segment is the spring with stiffness k. For a fixed k
(i.e. fixed static configuration), the natural frequency

√
k/m tends to zero as m→ ∞.

A similar behavior arises when w = 0 and M` > 0. Referring to Fig. 5b, as L
is increased, the first natural frequency tends to zero for all M`, and the first mode
“disappears” in the same fashion as before. The adhesion-only case contrasts with its
gravity-only counterpart in that the limit L − `0 → 0+ is also singular. To be clear, this
means that if one replaces Eq. (72)1 with F̂1(`0) = 0, the resulting natural frequencies
differ by a finite amount and do not converge as M` → 0+, a fact that the curves labeled
L = `0 in Fig. 5b clearly demonstrate.

Having highlighted the difficulties than can arise with limiting values of the param-
eter L, we now present some results in which both gravity and adhesion are considered,
taking the boundary condition x̂1(`0) = 0 for specificity. Figures 7a and 7b show a few
contours of constant first and second natural frequency, respectively, in the (w,M`)-
plane. In both instances the contours demonstrate a remarkable qualitative similarity.
Focusing on Fig. 7a, the boundary between where solutions exist and where they do not
appears to correspond to ω → 0+. Normally such a behavior would be suggestive of a
divergence instability, but in our case a more direct interpretation is possible. Figure 4
suggests that `0 → ∞ as one approaches the existence boundary such that the rod under
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Figure 7: First two natural frequencies as a function of w and M`. Contours of constant ω are indicated. See
Fig. 4 for an interpretation of the colors.

consideration is one of semi-infinite length. The natural frequency tending to zero then
reflects the well-known fact that a semi-infinite rod can sustain traveling waves.

4.3. Stability
All of the computed natural frequencies being real, the preceding linear vibration

analysis shows the existence of (linearly) stable modes of vibration everywhere in the
phase diagram that a static configuration exists. In other words, the system suffers
neither a flutter- nor divergence-type instability. It is nevertheless instructive to apply
what is known from the stability theory of elastic rods to the same problem.

An energy-based stability criterion for a statically deformed rod where one end is
free to move on a rigid surface was recently formulated [20, 21]. The criterion, summa-
rized in Appendix B, provides a necessary condition for the nonlinear stability of the
system to small perturbations. Application of the criterion shows that configurations
where M` ≥ 0 and w > 0 satisfy the necessary condition. However, configurations
where M` ≥ 0 and w < 0 do not satisfy the criterion, thereby indicating an instability.
However, this conclusion is at odds with the vibration-based analysis and we have been
unable to resolve this discrepancy.

5. Conclusion

In this paper we have proposed a systematic method of analyzing small-amplitude
vibrations about static equilibria of rods whose length is variable, inspired by several
impressive contributions in the existing literature. The essence is to express each quan-
tity as a perturbation series and to expand the boundary conditions in Taylor series
about the material points that correspond to the boundaries of the static configuration.
We have placed special emphasis on unilateral contact, and in particular on the indus-
trially relevant problem of a heavy rod that is clamped at a certain height at one end and
in adhesive contact with a flat, rigid surface at the other. In applying the perturbation
method to this problem in both its “small-on-small” and “small-on-large” flavors, we
have obtained several counterintuititve results.
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It was shown in Section 2.2 that the seemingly mysterious correspondence between
the natural frequencies of the aforementioned small-on-small system with zero adhe-
sion and those of a fixed-fixed beam, as first observed by Roy and Chatterjee [11],
is not so perplexing after all. Indeed, our method makes it clear that it is not just
the natural frequencies that match those of a fixed-fixed beam, but rather the entire
leading-order dynamics. When adhesion is included, as discussed in Section 2.3, the
leading-order dynamics correspond to those of a beam that is clamped at one end and
attached to a spatially fixed rotational spring at the other. (In fact, we showed the more
general and apparently novel result that an adhesion boundary condition is equivalent
to a spatially fixed rotational spring when the motion of the contact point is small.)
Solutions only exist when the dimensionless specific weight w and adhesive moment
M` satisfy a certain necessary condition that leads to a clear classification of solutions
in the (w,M`)-plane.

Sections 3 and 4 concerned the application of the perturbation method to the cor-
responding small-on-large problem. A number of new phenomena arise, owing to the
inclusion of horizontal momentum. It was shown that the total length of the rod L, not
just the length `0 of the non-contacting segment, is a critical parameter in determining
the natural frequencies. In fact, the limits L→ ∞ and L−`0 → 0+ can both be singular.
Numerical evidence suggests that solutions to the small-on-large problem only exist in
the same region of the (w,M`)-plane as do solutions to the small-on-small problem, an
unexpected result. Furthermore, the contour bounding the region where solutions do
not exist appears to correspond to a curve of zero natural frequency.

Our results suggest numerous avenues for further research. An exploration of the
nonlinear vibration effects that arise when terms are retained to O(ε2) or higher is of
interest [10, 23], as is a generalization of our approach to three dimensions. A particu-
larly intriguing aspect of the problem studied in this paper is the nature of the boundary
of the region of the (w,M`)-plane where no solutions exist, and we hope to see future
work on why it is the same for the small-on-small and small-on-large problems, as well
as how it relates to vibration, stability, and existence of static equilibria.
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Appendix A. Small-on-Small Vibrations with Combined Gravity and Adhesion

Recall that the leading-order dynamics of the linearized system are governed by
Eqs. (21) to (24) and Eq. (29), except with the rotational spring stiffness K given by
Eq. (32). Following the standard procedure, we seek solutions of the form y1(x, t) =

Y(x) sin(ωt) with the goal of determining the admissible natural frequencies ω. We
then must solve

− ω2Y +
d4Y
dx4 = 0 (A.1)

subject to

Y(0) = 0 ,
dY
dx

(0) = 0 , Y(`0) = 0 ,
d2Y
dx2 (`0) = K

dY
dx

(`0) . (A.2)

Introducing β =
√
ω, the general solution of Eq. (A.1) is

Y(x) = A cos(βx) + B sin(βx) + C cosh(βx) + D sinh(βx) . (A.3)

Applying Eq. (A.2)1,2 leads to

Y(x) = A
[
cos(βx) − cosh(βx)

]
+ B

[
sin(βx) − sinh(βx)

]
. (A.4)

Equation (A.2)3,4 give rise to an algebraic system of the form[
c1 c2
c3 c4

][
A
B

]
=

[
0
0

]
, (A.5)
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where

c1(β; w,M`) = K
[
sin(β`0) + sinh(β`0)

]
− β

[
cos(β`0) + cosh(β`0)

]
, (A.6)

c2(β; w,M`) = −K
[
cos(β`0) − cosh(β`0)

]
− β

[
sin(β`0) + sinh(β`0)

]
, (A.7)

c3(β; w,M`) = cos(β`0) − cosh(β`0) , (A.8)
c4(β; w,M`) = sin(β`0) − sinh(β`0) . (A.9)

In order for non-trivial solutions of Eq. (A.5) to exist, we must have

c1c4 − c2c3 = 0 . (A.10)

Given the parameters w and M` as well as `0 from the corresponding static solution,
Eq. (A.10) is a transcendental equation for β =

√
ω that is readily solved with a nu-

merical root-finding method.

Appendix B. Nonlinear Stability

For completeness, we present a nonlinear stability criterion for the static equilib-
rium configuration of a heavy elastic rod with one end fixed and the other end con-
tacting a smooth surface with the possible presence of dry adhesion. The criterion was
developed by Majidi et al. [20, 21] and is based on establishing conditions by which
the potential energy functional is minimized with respect to perturbations in θ0(s) and
`0 that preserve the boundary conditions. The version of the criterion for the problem
of interest here is discussed by O’Reilly [22, Section 4.7.2].

For a given static configuration of the rod, θ0(s) and `0 are known. There are two
parts to the criterion. The first part verifies that the rod has not buckled by finding a
bounded solution r(s) to a Ricatti equation:

dr
ds

+ P0 −
r2

EI
= 0 , r(0) = 0 , s ∈ [0, `0) , (B.1)

where P0 = P0(s) is the tangential component of the contact force (or tension) in the
rod:

P0 = F0 cos θ0 + G0 sin θ0 . (B.2)

The second part captures stability with respect to perturbations to `0:

S 0
dθ0

ds
(`−0 ) − ρ0g sin θ0(`−0 ) ≥

[
dθ0

ds

(
`−0

)]2

r(`−0 ) , (B.3)

where

S 0 = −EI
d2θ0

ds2 (`−0 ) , (B.4)

and, for any function f (x),

f (`−0 ) = lim
σ→0

f (`0 − σ) , σ > 0 . (B.5)
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For a given static configuration of the rod, if a bounded solution r = r(s) to Eq. (B.1)
can be found and Eq. (B.3) is satisfied, then the static configuration is said to be non-
linearly stable.

For the problem at hand θ0(`0) = 0 and we can use Eq. (41) to simplify the expres-
sion for S 0: S 0 = G0. Thus, Eq. (B.3) simplifies to

G0 ≥

[
dθ0

ds
(`−0 )

]
r(`−0 ). (B.6)

While G0 is the vertical component of the contact force in the rod, the inequality
Eq. (B.6) has no obvious physical interpretation.
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