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What defines whether the interaction between environment and organism creates a
genetic memory able to be transferred to subsequent generations? Bacteria and the
products of their metabolism are the most ubiquitous biotic environments to which every
living organism is exposed. Both microbiota and host establish a framework where
environmental and genetic factors are integrated to produce adaptive life traits, some of
which can be inherited. Thus, the interplay between host and microbe is a powerful model
to study how phenotypic plasticity is inherited. Communication between host and microbe
can occur through diverse molecules such as small RNAs (sRNAs) and the RNA
interference machinery, which have emerged as mediators and carriers of heritable
environmentally induced responses. Notwithstanding, it is still unclear how the
organism integrates sRNA signaling between different tissues to orchestrate a systemic
bacterially induced response that can be inherited. Here we discuss current evidence of
heritability produced by the intestinal microbiota from several species. Neurons and gut
are the sensing systems involved in transmitting changes through transcriptional and
post-transcriptional modifications to the gonads. Germ cells express inflammatory
receptors, and their development and function are regulated by host and bacterial
metabolites and sRNAs thus suggesting that the dynamic interplay between host and
microbe underlies the host’s capacity to transmit heritable behaviors. We discuss how the
host detects changes in the microbiota that can modulate germ cells genomic functions.
We also explore the nature of the interactions that leave permanent or long-term memory
in the host and propose mechanisms by which the microbiota can regulate the
development and epigenetic reprogramming of germ cells, thus influencing the
inheritance of the host. We highlight the vast contribution of the bacterivore nematode
C. elegans and its commensal and pathogenic bacteria to the understanding on how
behavioral adaptations can be inter and transgenerational inherited.
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INTRODUCTION

Microbes present in the environment are the most ubiquitous
stimuli to which all organisms are exposed. Microbial ancestors
likely shaped the evolution of eukaryotes, establishing mutual
adaptation mechanisms for long-term survival and benefit (1).
Microorganism and multicellular hosts communicate by a
plethora of mechanisms that depend on the nature of their
relationship, whether it is of commensalism, mutualism, or
pathogenic (2). The outcome of a microbe-host relationship
depends on their mutual interaction and cannot be established
a priori based on the separate parts alone (3).

The recognition of the immediate environment is a key step
in the establishment of short and long-term adaptive responses
by all organisms. The duration, intensity, and nature of
environmental stimuli are the parameters that influence the
execution of behavior and its heritability. Brief homeostatic
inputs are dealt with as part of the physiological response and
likely do not leave traces in organisms’ genetic and cellular
memory. Conversely, exposure to persistent threats such as
viral or bacterial pathogens generate heritable responses to
infection in future generations (4–8).
SENSING THE BIOTIC ENVIRONMENT
AND THE CREATION OF A CHEMICAL
MEMORY

The bacterivore nematode Caenorhabditis elegans is an exceptional
model organism to study host microbiota relationships, and
importantly for this review, the interactions that create a
multigenerational memory. Nematodes show preference over
their bacterial food, display olfactory associative learning (9), and
develop transgenerationally inherited strategies to survive
pathogenesis (5–8).

Microbes contribute essential metabolites and produce toxins
that generate disease. Therefore, it becomes essential for the
animal to discriminate between pathogenic versus non-
pathogenic chemical environments to display appropriate
behaviors. Specific olfactory neurons sense soluble and volatile
chemicals from the biotic environment (10, 11) to mediate
attraction or aversion to pathogenic and commensal bacteria
(9, 12–14). Interestingly, a number of potentially pathogenic
bacteria are attractive at first since they also produce attractive
odorants (15) or contain metabolites of high nutritional value
such as vitamin B12 (16). This poses a hard choice for the animal,
having to prioritize escaping damage over the potential benefits
of good nutrition such as the acceleration of development. Thus,
the correct integration of different sensory neuronal circuits
allows for the command of behaviors that likely prioritize
survival. This learned behaviors are maximally effective if they
can be transmitted to the following generations.

C. elegans avoids pathogens by activating different G protein-
coupled receptors (GPCR) in specialized chemosensory neurons
that detect secreted bacterial molecules and orchestrate adaptive
Frontiers in Immunology | www.frontiersin.org 2
behaviors like pathogen avoidance (9, 13, 17–19). Additionally,
sensory neurons are able not only to coordinate behavior but also
to orchestrate immune responses: The activation of the same
GPCR, OCTR-1, in the chemo and thermosensory ASI neuron
triggered avoidance, but in the ASH polymodal nociceptor
caused a cascade that activates neuropeptidergic immune
pathways (20). Sensory neurons thus play a key role in
many diverse and complex processes related with pathogen
responses, from avoidance and immunity to learning and
memory formation.

The gastro-intestinal tract is home to microbes of an immense
variety of genus (21, 22) and enteric sensory neurons located next to
the intestine (23) can detect changes in the composition of
microbe’s metabolic byproducts (24–26). Diverse host’s
physiological responses have shown to be modulated by microbial
metabolites, like short-chain fatty acids, polysaccharides, bile acids,
and others (27), in a bidirectional communication process between
host and microbe that is evolutionary conserved across animals
(28). Chemical information about the intestinal luminal
environment is transmitted to the CNS through the vagus nerve
in mammals (29), and through the recurrent nerve in insects, like
Drosophila (30). In C. elegans, sensory neurons detect microbial
metabolites such as bacterial autoinducers [homoserine lactones
(12), (S)-3-hydroxytridecan-4-one (15), and other virulence factors
like phenazine and pyochelin (19). to coordinate behaviors like
avoidance (12, 13, 19) and attraction (15). However, it is still
unknown how the worm senses intestinal bacterial metabolites.
Mammalian intestinal cells respond to bacterial short-chain fatty
such as acetate and butyrate through the activation of GPCRs (31)
thus suggesting that both neurons and intestinal cells may detect
chemical changes in the intestinal lumen. But, how might
environmental experiences, decoded by sensory neurons distant
from the germline, reprogram the gamete’s genetic memory?

In nematodes, the AWC and AWB chemosensory neurons
coordinate sensing of pathogens and aversive olfactory learning
(17). Recently, these sensory neurons have also been implicated
in promoting intestinal p38 MAPK immune responses to
pathogens (32). From the intestine, environmental information
can be transgenerationally transmitted to the germ cells through
inter-tissue regulation of the expression of ASH-2 and RBR-2
histone-modifiers (33). Taken together these raises the possibility
that the transmission process involves communication between
the brain, the gut and the germline. To add to this idea, the ASI
ciliated chemosensory neuron involved in dauer formation (34, 35)
and bacterial metabolite detection (19), controls transgenerational
pathogen avoidance (6) and germline development (36, 37). These
sensory neurons control germline development by coupling
proliferation/differentiation (37) and apoptosis of the germline
stem cell pool, with sensing of the environment’s quality by the
activation of the DAF-7/TGF-b pathway in parental neurons and
DAF-3/DAF-12 in the progeny (36). This suggests that neurons that
are continually sensing and detecting changes in the external and
internal environment may directly regulate such a delicate process
like reproduction. However, how neurons, intestinal, and germ cells
coordinate the information extracted from the environment to
transmit a long-term behavioral memory associated with changes
May 2021 | Volume 12 | Article 658551
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in the repertoire of local microbe byproducts remain
mostly unknown.

The length of parental exposure to pathogens modulates the
behavior of future generations when exposed to those same
stimuli. For example, the progeny of nematodes exposed to
highly virulent pathogens for short periods of time are
attracted to the bacteria, while progeny of parents exposed for
more extended periods of time inherit pathogenic avoidance,
intergenerationally (8). Is it known that the molecular effectors
mediating the inheritance of this behavior are dependent on the
endo-siRNAs pathway; however, it is not known yet the neuronal
circuits involved in its coordination. In a related paradigm, the
progeny of nematodes exposed for two generations to mildly
virulent pathogens like P. aeruginosa PAO1 or Salmonella
enterica (serovar Typhimurium) enter diapause forming a
stress-resistant larva called dauer that does not feed. This
response is not observed in the first generation, which implies
that the molecular processes that underlie dauer formation under
pathogenesis need to build up to a threshold. This depends on
the accumulation of molecular damage signals that turn on
defensive pathways like FOXO/DAF-16 (5, 38) and RNAi-
dependent molecules (5, 7). Interestingly, a change in the
pathogen’s virulence or the animal immune status dramatically
affects diapause entry (5). This shows that the process of
inherited memory formation depends on the duration of the
threat but also to the pathogen’s virulence determinants. We
propose that the inheritance of a pathogenic memory requires
sensory inputs (e.g., olfactory cues and bacterially-derived
metabolites), to be integrated with internal signaling factors.
These factors include host immunity molecules, and the products
of the local host-microbe interaction. Importantly, the memory
of pathogenic encounters can be inherited by subsequent
generations via mechanisms that involve RNA interference
pathways (5, 6, 8). This supported the idea that these survival
strategies against pathogens maintained for multiple generations
in absence of the threat are inherited through mechanisms based
on RNA molecules.
SMALL RNAs MEDIATE
TRANSGENERATIONAL INHERITANCE
TRIGGERED BY ENVIRONMENTAL
CHANGES

sRNAs can effectively bridge soma and germline throughout
generations. sRNAs are mediators of heritable epigenetic changes
in the offspring (39) and are able to sustain intergenerational (40)
and transgenerational (41) transmission. Among the heritable
sRNAs are short-interference RNAs (siRNAs), microRNA
(miRNA), PIWI-interacting RNA (piRNA), RNAs-derived
from transfer RNAs (tsRNAs), ribosomal RNAs (rRNA), and
circular RNA (circRNA). In germ cells, these sRNAs are key
transcriptional and post-translational regulators and bind to
Argonaute proteins, and Piwi-interacting RNAs (42, 43). In
addition to mRNA silencing, RNA mediated alterations occur
Frontiers in Immunology | www.frontiersin.org 3
at chromatin level (43) and are known as RNA-triggered
chromatin modifications. Endogenous siRNAs direct chromatin
remodeling by inducing the methylation of specific genomic
regions and promoting heterochromatin formation (44). In C.
elegans and Drosophila, siRNAs trigger RNA interference (RNAi)
pathways in germ cells that are amplified in the offspring for several
generations (39, 45–47). Amplification of siRNAs is also essential
for targeting specific genomic loci and inducing histone
modifications, creating a footprint that is transgenerationally
maintained for at least two generations (43, 48).

piRNAs are sRNAs that are highly expressed in germ cells and
are involved in the maintenance of the genome and the initiation of
multigenerational epigenetic inheritance. piRNAs expression have
been also identified in somatic tissues such as follicle cells,
hippocampus, kidney and liver (49) as well as in cancer cells (50,
51). piRNA induce heritable epigenetic modifications to silence
specific loci in the genome (52–54) and mediate heritable responses
to heat stress, toxicants, high-fat diet (54–59) and avoidance to
pathogenic bacteria (6). miRNAs are essential regulators of female
and male gametogenesis (60, 61), and embryonic development (62).
Alterations in spermmiRNA content due to, for example, stress and
metabolic changes, are intergenerationally inherited (63–65). In C.
elegans miRNAs are highly sensitive to pathogenic exposure and
mediate the initiation of transgenerational behaviors like pathogen
induced-diapause (7). tsRNAs are enriched in male germ cells and
known to inhibit translation, regulate transcription and chromatin
modifications (66). tsRNAs can be methylated and have shown to
mediate intergenerational transmission of metabolic disorders (67).
circRNAs regulate transcription and splicing, modulate translation
and post-translational modifications, and act as microRNA
(miRNA) sponges (68, 69). circRNAs have been found in seminal
plasma, suggesting that they can also mediate a soma-germ cell
communication pathway (70). All the above suggests that small
RNAs are sensible communicators of environmental variations such
as changes in microbiota content. But, can the gut microbiota itself
produce sRNAs that reach host tissues beyond the intestine? Or do
they produce intestinal effects that propagate systemically? If they
can reach the host tissues, do they work as initiators, executers or are
they the memory required for behavioral outputs?

Gut microbiota influences siRNA expression in the intestine
and brain, affecting host transcriptional reprogramming and
raising the possibility that microbe-derived RNAs or by-
products communicate with somatic cells (71–79). In mice,
several reports have showed that microbiota influences
transcription of miRNAs in the amygdala and prefrontal
cortex (73). Among these miRNAs, miR-183-5p and miR-182-
5p (73) are of special interest as they are involved in stress- and
fear-related responses (80, 81). Further to this, stress was
previously shown to produce the accumulation of miRNA
membrane vesicles in the epididymis and testes, thus
transmitting an intergenerational response to stress in the
offspring (82).

In C. elegans, neuron-specific synthesis of sRNAs regulates
the amplification of endogenous siRNAs in germ cells, thus
changing germline gene expression for multiple generations
(83, 84). This mechanism opens the possibility that an olfactory
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stimulus elicited by bacteria changes the repertoire of
endogenous neuronal sRNAs, which can later promote
epigenetic changes in germ cells that will affect the offspring’s
behavior and fitness. To date, two sRNAs from bacteria have
been identified that influence inherited behaviors in C. elegans.
P11 from P. aeruginosa PA14 influences avoidance behavior
(85) , whi le the quorum sens ing RNA RsmY from
P. aeruginosa PAO1 is required for diapause formation
under pathogenesis (86). How sRNAs from bacteria might
be reaching the host soma and germline is discussed later.
TRANSPORT OF INTERSPECIES sRNAs
BETWEEN HOST TISSUES

Can bacterial molecules such as RNAs use the host transport
machinery to reach host tissues and eventually the germline?
Much needs to be learned about the import of bacterial
metabolites into host cells, and their selectivity. However, several
mechanisms have been described that can accommodate such
a travel.

There are dedicated mechanisms to export and uptake RNA
molecules from other cells and the extracellular space. In C.
elegans, selective receptors and RNA transporters participate in
the systemic movement of RNA molecules (SID proteins). SID-1
is a conserved channel gated by double stranded RNA (dsRNA),
ref (87), which allows the passage of dsRNA between C. elegans
cells and also in heterologous systems (88). Its human homolog -
SIDT1- is known to mediate bidirectional, sequence-specific and
target-specific small RNA transfer between human cells (89).
Other SIDs like SID-3, a conserved tyrosine kinase is required for
import of dsRNA in worms (90). SID-5 is an endosome-
associated protein (91) with a role in embryonic parental RNAi
in C. elegans (92). A relevant transporter in bacteria-worm
communication is SID-2, which localizes to the intestinal lumen
and potentially serves as a gate between host enterocytes and
intestinal microbes. This protein is required for the import of
ingested dsRNA, through an endocytosis-mediated and energy
dependent mechanism (93). SID-2 shares functional similarities
with Toll-like receptor 3, which in humans localizes to endosomes
and recognizes dsRNA and sRNA (94). Defensive mechanisms
such as pathogen-induced diapause formation (PIDF) require
intact SID-dependent pathways for dsRNA import (5), opening
up the possibility that the bacterial sRNA delivery system into the
host uses a SID-dependent entry. It is however unknown how are
bacterial RNAs found in the intestine. Are they secreted by
selective bacterial exocytic mechanisms? Alternatively, can they
be contained in membrane vesicles or exposed as cytosolic
contents after the explosive stress-induced lysis of bacteria?

Bacterial Outer Membrane Vesicles (OMVs) are able to carry
RNA among other cargoes (95–99). Increasing research has
revealed the importance of OMVs RNA-cargo in bacteria-host
interactions (99–101). Other types of bacterial vesicles are
membrane vesicles produced by explosive lysis of both Gram-
positive and Gram-negative bacteria (102, 103). This, a
Frontiers in Immunology | www.frontiersin.org 4
seemingly stochastic process, generates MV containing specific
cargoes. This raises the possibility that bacterial vesicles use the
host endocytic pathway to deliver cargoes to specific tissues
(104). To induce intergenerational silencing in C. elegans,
injected dsRNA can be transported to the oocyte from the
worms’ body cavity within intracellular vesicles that depend on
the LDL receptor superfamily homolog RME-2 (92). The existing
molecular machinery regulating the inheritance of dsRNA
through RME-2 (92, 105, 106) and the capacity of the bacteria
to generate OMVs with RNA cargoes suggests that bacterial
RNAs present in the intestinal lumen may enter the host cells by
two separate but synergic mechanisms: endocytosis-dependent and
endocytosis-independent pathways (like SIDs RNA transporters).

It has been shown that RNA can be transported from brain to
the germline, and from there inherited to the embryos (107).
This demonstrates that sRNAs are central players in soma to
germline communication pathways. Within this interaction
pathways, sRNAs can be transported through exosomal and
non-exosomal transport via blood and follicular fluid to
oocytes (108, 109), and via seminal and epididymal luminal
fluid to sperms, breast milk, saliva, and cerebrospinal fluid (74,
110). sRNAs can also be loaded onto sperms by extracellular
vesicles present in the outer membrane of epididymal cells (111,
112). Several of them are also transferred through RNA
transporters. That is, in C. elegans, the RNA transporter SID-1
actively participates in transporting extracellular dsRNA into
oocytes and in the inheritance of siRNAs (92). Therefore, RNA
delivery is an active mechanism that allows germ cells to acquire
information from somatic cells. We expect that future work will
shed light onto questions regarding the origin, transport and
systemic internalization of bacterial sRNA in the host.
EPIGENETIC INHERITANCE OF
ENVIRONMENTAL EXPERIENCES: CAN
BACTERIA MODIFY THE GERMLINE?

Any new environmental experience that affects individuals has
the potential to modify the epigenome. When modifications in
the chromatin state and in the RNA content occur in germ cells, the
epigenetic memory could be transmitted across subsequent
generations. A change in the epigenetic profile of germ cells is
therefore a mandatory step to inheritance of environmental
adaptations (111). Direct evidence shows that DNA methylation,
histone modifications, histone variants, and non-coding RNAs
transferred by germ cells can promote phenotypical adaptations
to the offspring for several generations in the absence of the stimulus
that initiated the response (111, 113, 114). But, can bacterial
molecules cause such changes? Until our knowledge, there is no
evidence showing a direct effect of gut bacteria over the germ cells.
However, by considering that it is very hard to demonstrate this
experimentally, we cannot exclude this possibility.

Although the mechanisms that link gut microbiota and the
epigenetic modifications in germ cells are largely unknown, the
May 2021 | Volume 12 | Article 658551
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influence of bacteria in the host epigenome has been
unequivocally demonstrated (115). Microbial signals including
ncRNAs, metabolites and inflammatory molecules interact with
histone writers such as DNA methyltransferases (DNMTs) and
histone deacetylases (HDAC) or regulate the availability of
writer’s substrates such as SAM, the primary methyl donor for
DNMT (115). Interestingly, at least histone modifications and
sRNAs have been shown to be related to a potential gut bacteria-
neural- germ cell cross talk, highlighting the importance of gut
microbiota in the inheritance of phenotypical traits (116, 117).

Recently, a link between gut microbiome, the epigenome of
germ cells and the offspring´s behavior has been suggested in C.
elegans. Intestinal distention produced by bacteria induces
acetylation in histone 4 in germ cells, particularly H4K8ac
(116). This mark could be sufficient to inherit pathogen
avoidance in the offspring, underlying the still unknown
mechanism of crosstalk between sensorial neurons, brain, gut
and germline to control transgenerational phenotypes.
Furthermore, it raises the possibility that mechanical changes
in the intestinal epithelium may also drive the production of
host-derived metabolites and sRNAs, thus allowing inter-tissue
and intergenerational transmission of information.

Histone Post-Translational Modifications (PTM), as well as
histone-writers and reader proteins are critical regulators of the
gene expression programs in both the germline and the zygote.
From C. elegans to the mouse, several PTMs in sperms and
oocytes including mono and di-methylations of histone H3 at
lysine 4 (H3K4me1/me2) and trimethylation of histone 3 at
lysine 9 (H3K9me3), are retained at genomic regulatory elements
(118), imprinted regions and miRNA clusters (119, 120).
Disruptions in the histone retention regions in sperms produced
by environmental stimuli can transgenerationally persist up to the
third generation (121–123). Although the evidence of bacterial-
induced acetylation in germline epigenome needs to be further
supported, the possibility that gut microbiota influence PTM in
germ line provides a hint in how bacteria produce environmental
changes that are sensed and inherited to the progeny. Whether gut
bacteria directly affect PTMs in germ cells or it is a secondary effect
after a mechanical or chemical stimulus needs to be further clarified.
BACTERIAL METABOLITES AND THEIR
EFFECT ON BEHAVIOR

Bacteria are true metabolite factories, producing a large number
of neurotransmitters, vitamins among other essential nutrients.
It is clear that microbial products affect life history traits of the
individuals carrying them. However, can bacterial metabolites
such as amino acids, fatty acids and other, influence the
progenies inter or transgenerationally? Naturally, whether it is
directly or indirectly, the transformation leading to inheritance is
stored in the germline. While the contribution of sRNAs in
inheritance has been widely documented, transmission of life
history traits by metabolites is less clear. Bacterial metabolites
orchestrate epigenetic pathways: Inositol phosphate (IP3)
Frontiers in Immunology | www.frontiersin.org 5
influences histone acetylation in the intestine by regulating
histone deacetylase 3 (HDAC3) activity (124). Other bacterial
metabolites, like folate, had shown to regulate the proliferation of
the germline and the fertility of C. elegans (125). Although the
presence of bacterial genetic material or metabolites has not been
directly observed in tissues other than the intestine, it is formally
possible that they can reach the germline. Bacterial metabolites
and sRNAs stimulate the soma-to germ line communication axis
as well as immune responses that could modulate the epigenetic
programing and even immune priming in germ cells (111, 126–
130). The interactions between histone modifications, sRNAs and
transmissible chromatin domains provide a framework in which
metabolites may produce transgenerational epigenetic effects
in gametes.

The absence of intestinal microbiota is well known to cause
impairment in the development of the brain (131) and the
enteric nervous system (132, 133). Bacteria can synthesize
neurotransmitters like GABA, dopamine, serotonin, melatonin,
histamine and acetylcholine (29, 134, 135), which posses’
receptors in most animals. Germ-free mice showed reduced
enteric contractibility (132) thus suggesting that maybe the
lack of a bacterially produced neurotransmitter underlies the
observed developmental abnormalities. It was in the late 80’s that
Minuk (136) suggested for first time that human mood can be
modulated by bacterial metabolites: the loss of consciousness
seen in patient with total septis or liver disease can be related
with an increase in GABA production from pathogenic bacteria
colonizing the bowel (136). Recently this idea has been retaken
and defined as ‘psychobiotics’, probiotics with ‘mind-altering’
capacities (137). This new concept leads to think that bacterial
metabolites can make their effect directly onto enteric neurons or
intestinal epithelial cells to induce the release of a range of host
modulatory molecules that can regulates diverse processes like
immunity and behavior. Likewise, the intestinal bacterial
metabolome of the honeybee specifically regulates the bee’s
nursing behavior and the host’ circulating metabolites in the
hemolymph/blood (138). How changes in the physiology
provoked by altering the bacterial metabolome profile are
integrated and transmitted to the progeny of complex hosts,
like mammals, are yet remain to be elucidated.
CYTOKINE SIGNALING AS A MECHANISM
TO INFLUENCE TRANSGENERATIONAL
INHERITANCE IN GERM CELLS

The intestinal biota and its metabolites not only modulate the
brain but also the immune system (27, 139). This interaction is a
dynamic process essential in maintaining homeostasis, which
involves the recognition and tolerance against commensal
microbiota, or the battle against pathogens. However, it is still
unknown how changes in the immune system, produced by
variations in the intestinal microbiota composition, may impact
transgenerational memory formation. Research in C. elegans has
recently shed light on the intergenerational maintenance of
May 2021 | Volume 12 | Article 658551
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microbe-induced immune transcriptional changes (6, 7). Thus,
and similarly than the inheritance of the avoidance behavior,
parental encounters with bacteria can lead to primed immune
genes in germ cells that allow robust transcriptional responses
against future infections in the offspring.

Cytokines are circulating factors produced by immune cells
creating a communication pathway between the immune system
and the brain, modifying brain function and behavior (140, 141).
Furthermore, cytokines modulate mammalian germ cell
development and differentiation, in both female and male
gonad function. In females, macrophage secretion of TNF-a
and interferon-g (IFN) stimulate the development and
degeneration of the corpus luteum and, in so doing; regulate
ovarian function (142). In the testis, Sertoli and Leydig cells
produce numerous cytokines (like TNFa, IL1, IL6, and IL18),
which act as a paracrine signal that regulates germ cell
development and function (143–147). In macrophages, IFN
induces chromatin remodeling and inherited transcriptional
immune memory (148), and modifications of histone marks
like H4ac, H3K9ac, and H3K4me3 at IFN-activated promoters
(149). Although these data support the idea that regulation of the
host’s immune system controls some aspects of transgenerational
inheritance, how microbial-induced cytokine production in the
gut may modulate epigenetic changes in germ cells is still mostly
unexplored. Future research will be invaluable in resolving how
microbial-induced cytokine production influences germ cells and
its impact on the host inheritance capacity.
DISCUSSION

Adaptation to changing environments is essential for any living
organism to survive and reproduce. Sensing environmental cues
produces a memory that is inherited across several generations,
granting short and long-term adaptive responses in all organisms.
Inheritance of parental experiences enable behavioral responses
in the offspring that can lead to faster recognition of pathogenic
and non-pathogenic stimuli, even though individuals may have
never been exposed before. Bacteria create a holobiont system
with the host that regulates metabolism, immune responses and
behavioral outcomes that influence transgenerationally-inherited
strategies to survive pathogenesis. Bacteria and gut microbiota
regulate different epigenetic mechanisms in both somatic and
germ cells in the host modulating the genetic and epigenetic
memory that is inherited across generations. To this end, bacteria
modulate the gut-brain-germ cell axis to orchestrate and
stimulate different pathways in which sRNAs carry most of the
transmissible information. Different sRNAs are delivered to germ
cells inducing chromatin changes that create particular genomic
accessibility regions, which in turn regulate the gene expression
program in the offspring (Figure 1). sRNAs are also amplified in
germ cells by a RNAi machinery, allowing the transmission of the
information throughout several generations. Although the
mechanisms by which transgenerational changes are produced
in germ cells are still poorly understood, histone modifications as
well as endogenous and somatic sRNAs are involved in creating a
transmissible memory in animals. Gut bacteria can also directly
Frontiers in Immunology | www.frontiersin.org 6
influence germ cells through bacteria-produced sRNAs and
metabolites. Likewise, microbial-induced cytokines could induce
epigenetic changes in germ cells that impact the phenotypical
traits inherited by the host. Thus, gut bacteria influence the
creation of an epigenetic memory in germ cells through indirect
mechanisms via the gut-brain axis and sRNAs, but may also
directly stimulate gametes through bacteria- derived sRNAs
and metabolites.

The role of bacteria in the inheritance of behavior and memory
for an organism is of great significance in understanding how
phenotypic plasticity, adaptability and transgenerational
inheritance occur in the species. Nevertheless, the precise
mechanisms by which bacteria influence neuronal responses and
reprogram the germline epigenome need to be unraveled.
Understanding the mechanisms will allow us to better
understand how bacteria coordinate the diversity of inherited
behavioral outputs in the organisms and their adaptive responses.
CONCLUDING REMARKS

The dynamic relationship between host and microbe forms a
higher-order organism known as the holobiont (150, 151). The
continuous interaction between them influences each other at
metabolic, physiological, and at genetic levels (Figure 2).

As mentioned before, we hypothesized that for memories to be
transmitted multigenerationally a quantitative threshold must
be reached. Once the threshold is exceeded, the information
must be “stamped” on the germ cells in order to be heritable.
Epigenetics emerged as the main mechanisms from where
information about environmental changes (e.g. toxicants
presence, high fat diet, osmotic and thermal stress, caloric
restriction, among others) is transmitted from parents to
subsequent generations (152, 153). In C. elegans small RNAs
produced by the host (4, 7, 36, 83, 84, 154–156) and bacteria (85,
86, 157) are primary effectors for driving environmentally induced
heritable behaviors. However, how environmental changes are
sensed and then transmitted to the progeny breaching the
germline to soma barrier is still not fully understood.

In summary, in nematodes, priming or sensitivity of the
progeny to a specific bacteria or bacterial byproduct is shaped
by the previous generations experiences in a mechanism first
decoded by sensory neurons, integrated by other neurons and
intestinal cells, and then transmitted to the germ cells before
fertilization. Additional studies are required to determine how
bacterial host composition and microbe-derived byproducts are
sensed by the neurons, integrated and precisely transmitted to the
germline. However, neuronally produced small RNAs are
essential to induce transgenerational gene silencing (83) and
transgenerational behavioral memories (84) thus suggesting
that the molecular signal accumulating over time is likely an
RNA molecule. Future investigation will shed light on how the
length and the virulence of the pathogen modulate the
abundance of derived host and bacterial RNA molecules and
the diversity of observed (and yet still undiscovered) inherited
behavioral outputs in C. elegans (5, 8). However, in the
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contrary, transgenerational epigenetic inheritances in
mammalian systems are only beginning to be unraveled.
Recent work led by scientists in Australia demonstrates that
the progeny of mouse infected with the parasitic protozoan
Toxoplasma gondii exhibited abnormalities in anxiety, working
memory, object recognition, sociability and mating behaviors.
Surprisingly, the behavioral abnormalities displayed by the F1
and F2 were correlated with alterations in the RNA profile of
previously infected F0 male gametes (158), and surprisingly,
Frontiers in Immunology | www.frontiersin.org 7
RNA extracted from infected sperm recapitulates the
behavioral effects of the paternal infection. Thus, and as the
French biologist Jacques Monod once said “What is true for E.
coli is true for the elephant”, what is true for the worm it is also
true for mouse and humans: we are just beginning to
understand the importance of RNAs as key molecules in the
evolution of the organisms as holobionts, a network of
continuous dynamic interactions between and across the
diverse biological levels of complexity that forms it.
FIGURE 1 | Environmental stimuli regulate epigenetic information in germ cells linked to transgenerational inheritance. In both vertebrates and invertebrates
epigenetic changes in the germline lead to intergenerational or transgenerational inheritance. In C. elegans, these changes involve chromatin remodeling through
activation of the H3K4 tri-methyltransferase SET-30, H3K4 demethylase SPR-5, H3K9 tri-methyltransferase SET-26 and the reader of H3K9me3, EAP-1. The
remaining chromatin remodeling mechanisms and the mammalian orthologous involved in the establishment of the active and inactive chromatin domains inherited to
the offspring are still poorly known. sRNAs and their processing machinery are central players in germ cells to inherit phenotypical traits across generations. piRNAs
and PIWI proteins, miRNAs and AGO proteins, circRNAs and tsRNAs present in germ cells mediate transgenerational traits. sRNAs exert their effects via chromatin
remodeling or through RNA amplification. The sRNA endonuclease DICER mediates the metabolism and amplification of sRNAs and the cleavage of tRNAs to
produce tsRNAs. These RNAs are also epigenetic regulators, participate into RNA interference (RNAi) pathway, and directly inherits phenotypical traits across
generations. Both chromatin remodeling processes and RNA pathways in germ cells are modulated by acquisition of somatic sRNAs during germ cell differentiation.
It is also possible that bacteria-derived RNAs, bacterial metabolites and immune signals may also regulate transgenerational epigenetic marks in germ cells.
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FIGURE 2 | Small RNAs regulate transgenerational inheritance of behaviors triggered by previous microbial experience in C. elegans. Neuron to-gut to-germline
signaling is essential to induce the transmission of the memory of previous microbial encounters. Sensory neurons perceive bacterial metabolites through GPCRs,
modulating the DAF-7/TFG-b signaling pathway. Neuronal RDE-4 is necessary for sRNA production involved in transgenerational control of behavior. Neuronal
sRNAs (blue) are transferred into germ cells through the dsRNA transporter SID-1 to induce transgenerational silencing. It is still unknown how these neuronally-
derived sRNAs are secreted into the worms’ body. Sensory neurons (light blue) and neurons adjacent to the intestine (enteric; purple) control intestinal immunity
against pathogens. Whether intestinal responses triggered by bacteria drive sRNAs changes is not known. Bacterial (pink) and host (black) sRNAs are transported
from the lumen to the intestine through SID-2 and systemically through SID-1. RME-2 mediates the endocytosis of sRNAs from the worms’ cavity to oocytes. The
RNAi machinery amplifies sRNAs causing transgenerational silencing. In the germline, the Piwi protein PRG-1, the RNA helicase RRF-1, and the nuclear Argonaute
HDRE-1 are essential for driving transgenerational changes by epigenetic modulation. The transmission of epigenetic information between intestine and germ cells is
mediated by the transcriptional regulation of F08F1.3. Mechanical changes in the intestine triggered by bacterial colonization may induce intergenerational histone
acetylation in the germline.
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