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ABSTRACT: Cities represent a significant and growing portion of
global carbon dioxide (CO2) emissions. Quantifying urban
emissions and trends over time is needed to evaluate the efficacy
of policy targeting emission reductions as well as to understand
more fundamental questions about the urban biosphere. A number
of approaches have been proposed to measure, report, and verify
(MRV) changes in urban CO2 emissions. Here we show that a
modest capital cost, spatially dense network of sensors, the Berkeley
Environmental Air Quality and CO2 Network (BEACO2N), in
combination with Bayesian inversions, result in a synthesis of
measured CO2 concentrations and meteorology to yield an
improved estimate of CO2 emissions and provide a cost-effective
and accurate assessment of CO2 emissions trends over time. We
describe nearly 5 years of continuous CO2 observations (2018−2022) in a midsized urban region (the San Francisco Bay Area).
These observed concentrations constrain a Bayesian inversion that indicates the interannual trend in urban CO2 emissions in the
region has been a modest decrease at a rate of 1.8 ± 0.3%/year. We interpret this decrease as primarily due to passenger vehicle
electrification, reducing on-road emissions at a rate of 2.6 ± 0.7%/year.
KEYWORDS: greenhouse gas emissions, climate change, inverse modeling, carbon dioxide, sensor networks

1. INTRODUCTION
Reversing global trends in carbon dioxide (CO2) emissions
represents one of the greatest challenges facing humankind
today. CO2 is the most important greenhouse gas (GHG) and
limiting warming to 1.5 or 2 °C demands achieving global net-
zero CO2 emissions by the early 2050s or 2070s, respectively.1

These pathways require aggressive changes to the global
energy infrastructure. Cities represent over 70% of global CO2
emissions, a fraction that is projected to grow as people
continue to migrate into urban areas. Many cities have set net-
zero greenhouse gas or other ambitious CO2 targets for the
coming decades, such as Boston (carbon-neutral by 2050),
Copenhagen (carbon-neutral by 2025), New York and London
(80% reductions by 2050), and San Francisco (net-zero by
2040).2 Carbon neutrality goals from different cities may vary
significantly in their definitions of carbon emissions (i.e.,
accounting for only scope 1 emissions or also scope 2 or 3)
and their definition of neutrality (i.e., legitimacy of purchasing
of carbon offsets to reduce net emissions). Consortiums of city
governments are also emerging to help compare goals between
cities and develop common accounting practices. These groups
include C40 cities,3 Local Governments for Sustainability,4 and
Carbon Neutral Cities Alliance.2

As cities set greenhouse gas reduction targets, there is an
emerging need to support them with strategies to monitor and
quantify urban CO2 emissions. Historically, emissions have
been quantified and reported through bottom-up accounting

strategies based primarily on economic activity data or
emissions inventories. However, such strategies have been
shown to have large uncertainties,5 more often in the direction
of under-reporting emissions.6

Given the known inadequacies of activity-based emissions
reporting, there is significant interest in using atmospheric
measurements to constrain emissions of CO2 and other
species.7 Measurements of the CO2 concentrations can be
related to emissions by identifying the location of emissions
that are responsible for that concentration. If a background
CO2 concentration outside the domain of interest can be
defined, a Lagrangian back trajectory model can be used to
compute surface influence footprints that quantify the
contribution of CO2 emissions at each location in the domain
to a measurement of the CO2 concentration. Combining the
footprints with observations of concentrations over time allows
a Bayesian update on an a priori emissions inventory created
from bottom-up accounting methods. The resulting emissions
inventory is an optimized combination of our knowledge of
activity and observed CO2. Bayesian inversions have been
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applied to cities with CO2 observations that are as accurate as
modern technology allows; this method has shown success in
reducing the uncertainty in emissions estimates compared to
traditional emission inventories, especially for monthly or
yearly estimates.8−13 The measurements in these networks
require significant capital investment at each location, and
maintaining the highest accuracy and precision is labor-
intensive.
There are a number of sources of uncertainty when using

atmospheric inversions to constrain emissions, for which
results can be quite sensitive. Instrument error results from the
sensitivity and accuracy of the observational instrument (and
associated calibration and maintenance procedures) used to
measure atmospheric concentrations. Model errors can result
from uncertainty in background concentrations, prior bio-
spheric fluxes, prior anthropogenic fluxes, wind direction, and
planetary boundary layer heights (PBLH), particularly during
the night time.14−17 Representation errors result from the
numerical discretization of the model (i.e., space and time
resolution that is not representative of measurement scales);
for instance, a 1 × 1 km pixel of a model may not be
representative of the measurement within that pixel. Generally,
errors in the instrument, model, and representation are
assumed to be uncorrelated and thus additive (where the
sum is referred to as mismatch error), so error in any of these
terms can dominate the mismatch error and thus the
uncertainty in the resulting posterior flux estimate. Note that
throughout this paper, the terms “emission” and “flux” are used
interchangeably, referring to the mass of carbon exchanged per
unit area over time (measured in units of mass/area/time).
When aggregating emissions for larger regions, we omit the per
area units, presenting certain results in mass/time units.
There have only been a few attempts to provide multiyear

and observationally constrained CO2 emission inventories,
though many other publications have applied this methodology
over shorter time scales. We note the study in Los Angeles, CA
covering the period of 2006−2013 which showed an emission
reduction of 10% during the 2008−2010 recession.18

Emissions were estimated from 2012 to 2015 for the
Indianapolis region19 and from 2013 to 2014 in the Boston
region.20 A recent multiyear inversion in Paris showed a

decreasing trend of around 2%/year in CO2 emissions from
2016 to 2021.21 A comparative analysis of Los Angeles and
Washington, DC/Baltimore Metropolitan areas conducted
inversions in these two cities for 2018−2020 to quantify
COVID-19-related emissions reductions.22 A study of the Salt
Lake Valley used a multiyear CO2 inversion to examine the
relationship between emissions and urban population
density.23 Each of these studies took the approach of using a
relatively small (range: 2−13) number of high-accuracy (∼0.1
ppm) monitoring sites to constrain CO2 fluxes in an urban
area.
The San Francisco Bay Area is an interesting policy

laboratory for GHG reduction. It contains numerous
independent cities and counties as well as a variety of
overlapping regional metropolitan authorities and agencies
(e.g., transportation agencies, air quality management board,
and air resources board). Some California cities have matched
their stated net-zero targets to that of the State of California’s
net-zero by 2045 policy, such as Berkeley24 and Oakland25 but
some seek faster reductions, such as San Francisco, which has
accelerated their net-zero goal to 2040.26 Still, other Bay Area
cities have yet to pass resolutions or publish plans with net-
zero targets. Further, the San Francisco Bay Area is an
interesting region to assess the potential for analyses of
spatially dense sensor networks to provide cost-effective
multiyear constraints on emission trends and policy efficacy.
The region has complex topography (terrain height ranging
from sea level to about 500 m) and diverse land uses. It has
emissions that are dominated by transportation but include
significant heavy industry and also heating from natural gas. A
dense sensor network is well poised to capture the
heterogeneous CO2 concentrations in this diverse area.
Additionally, models that effectively constrain emissions in
the Bay Area have the potential for successful translation to
other urban areas.
Spatially dense, frequent CO2 measurements for a region of

the Bay Area are available from the Berkeley Environmental Air
Quality and CO2 Network (BEACO2N).

27 This network was
designed with a target 2 km node spacing, 1 ppm hourly
measurement uncertainty for CO2, and 5 s sampling frequency
in order to have sensitivity to local emissions. Delaria et al.

Figure 1. Map and time series of BEACO2N network coverage during the study period. (Left) Percentage of hours (out of 5 years) with usable
measurements after quality review for each site. (Right) Daily median CO2 concentration across all sites (purple) and the number of sites with
usable data (orange). Background map credits: © Stadia Maps (stadiamaps.com), © Stamen Design (stamen.com), © OpenMapTiles
(openmaptiles.org), and © OpenStreetMap (openstreetmap.org/copyright).
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analyzed site-to-site variation in the BEACO2N network as an
upper bound on sensor accuracy and found that the network
achieves a total error of 1.6 ppm or less, close to our 1 ppm
goal.28 The network also includes measurements of air quality-
relevant species (CO, NO, NO2, O3, and PM2.5) at every node.
The BEACO2N project also maintains a reference site at the
UC Berkeley Richmond Field Station with calibrated, reference
quality measurements of CO2, CO, CH4, NO, NO2, O3, and
size-resolved measurements of PM. Most of the BEACO2N
nodes are located on school rooftops, with inlet heights
ranging from 1 to 120 m above ground level (median height =
5 m AGL). During the study period (January 2018−July
2022), sensors were located at the 57 sites shown in Figure 1a.
This network provides tremendous additional monitoring
capacity, as the EPA operates only 7 air quality monitoring
stations in the BEACO2N region. Importantly, these EPA sites
do not monitor the level of CO2. Our data set provides the first
opportunity to use ground-based observations to constrain
trends in Bay Area CO2 emissions.
While other multiyear urban CO2 inversion studies have

utilized fewer observation sites with higher sensor accuracy,
our approach uses a higher number of lower-cost, moderate-
accuracy sensors. Turner et al.29 examined the uncertainty in
the derived emissions using simulated observations from
potential Bay Area CO2 measurement networks with varied
sensory precision and node number. That study showed that a
25 site, 1 ppm accuracy, BEACO2N-like network (smaller than
the current BEACO2N network but with the same 2 km
spacing) gave similar error in posterior emissions estimates to a
3 site, 0.1 ppm accuracy network (of comparable total capital
cost). Turner et al.30 demonstrated the use of BEACO2N
measurements in an atmospheric inversion framework to
quantify the drop in emissions during the COVID-19 shelter-
in-place order (March 2020−May 2020), a period of notable
emissions shifts globally.31

In this paper, we extend and modify the methodology of
Turner et al.30 by combining almost 5 years of CO2
observations from BEACO2N with a Bayesian inversion to
quantify interannual trends in Bay Area scope 1 CO2
emissions. Our previous study treated the background
concentration as a known value and used the spatial
distribution of emissions to allocate emissions to different
sectors using the prior distribution of emissions. We update
this methodology to solve dynamically for background
concentrations and employ a linear regression method to
examine emissions by sector. Extending the analysis to a 5-year
time period allows us to examine interannual trends. We find a
decreasing emissions trend of 1.8 ± 0.3%/year over the region
from 2018 to 2022. We use measured traffic data and utility
natural gas distribution data to decompose the sectoral
contributions to the total emissions and understand seasonality
and factors driving interannual trends in emissions.

2. METHODS
For a process flow diagram of the methods and data sets used,
refer to Figure S1.

2.1. BEACO2N Observations. Measurements of ambient
CO2 concentrations were made at BEACO2N locations
throughout the San Francisco Bay Area using a Vaisala
CARBOCAP Carbon Dioxide Probe GMP343. Measurements
were recorded approximately every 5 s.
Concentrations were averaged hourly and calibrated

following procedures outlined in Delaria et al.28 that account

for individual sensor temperature dependence. Sensors are
offset corrected to measurements from a reference-grade
Picarro G2301 gas concentration analyzer located at UC
Berkeley’s Richmond Field Station Campus (yellow star in
Figure 1). The Picarro G2301 has reported 5 min instrument
precision of <25 ppb and reported maximum monthly drift of
500 ppb.32 The instrument calibration was checked approx-
imately every 3 months using a reference gas canister. No
significant drift was observed. Calibrated BEACO2N data were
manually inspected for quality, and time periods with
unreliable data were removed before further analysis. Figure
1 shows the data coverage after quality review. The full study
data set extends from January 2018 through the end of July
2022. The median CO2 concentration across all sites, shown in
Figure 1(right), describes the regional CO2 concentration
changes experienced in this time period. Concentrations are
higher in the winter and lower in the summer. In winter, the
region also frequently experiences large enhancements over
background concentrations. 15.4% of the collected data did not
pass quality assurance: 7.4% due to malfunction of the
colocated temperature/pressure/humidity sensor and 8% due
to malfunction of the CO2 sensor or other suspicious CO2
signals (such as cases where extreme hyperlocal enhancements
from building exhaust were identified).

2.2. Prior Emissions Inventory. The prior emissions used
are a 1 km resolution hourly bottom-up inventory, which
incorporates traffic CO2 emissions from a fuel-based inventory
for vehicle emissions (FIVE), The Bay Area Air Quality
Management District (BAAQMD) 2010 report of large point
sources, and county-level residential fuel usage (from
BAAQMD) scaled to block-level population data from the
2010 US census.29,30,33,34 The prior biosphere fluxes are
derived from measurements of solar-induced fluorescence
(SIF) from The TROPOspheric Monitoring Instrument
(TROPOMI), scaled using the Solar-Induced Fluorescence
to Gross Primary Production (SIF-GPP) relationships
described by Turner et al.35 The prior inventory has CO2
emissions in the region of influence that increase slightly each
year from 496 to 518 tC/h over 2018−2022. The prior
inventory includes diurnal traffic flow patterns (different for
weekdays and weekends) that do not vary with season or year.
There is no diurnal or seasonal cycle in the point source
emissions. Annual scaling is applied to the point source
emissions to match Mangat et al.34 The prior data do not vary
with season due to the temporal resolution of the inputs (the
BAAQMD inventory provides annual estimates with no
monthly breakdown). No information related to changing
emissions due to activity changes during the COVID-19
shelter-in-place (March 16, 2020−May 4, 2020) was included
in the prior.

2.3. Prior Background Concentrations. For prior
background concentrations, we used OCO-2 GEOS (Goddard
Earth Observing System) L3 assimilated data set with global
coverage, 3 h temporal resolution, 0.5 degree horizontal spatial
resolution, and 72 vertical levels.36 The values at each of the
centers of the four domain edges were selected (from the
lowest vertical level of the model to correspond to near-ground
concentrations), and a simple quadratic interpolation was used
to resample the resolution to hourly at each edge. Prior values
are shown in Figure S9a.

2.4. Computation of Footprints. For each BEACO2N
observation (hourly mean concentration at each site), a surface
influence footprint is calculated using the Stochastic Time-
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Inverted Lagrangian Transport Model (STILT)37,38 with
meteorology from NOAA’s High Resolution Rapid Refresh
(HRRR) product.39 HRRR has a 3 km spatial resolution and
hourly temporal resolution. For each BEACO2N measurement
location and time, 1000 hypothetical particles were advected
backward in time and space for 72 h (or until all particles left
the STILT domain extending from 36°N to 40°N and 125°W
to 120°W). The standard assumption in the STILT model is
that particles within one-half the height of the boundary layer
are representative of trajectories of emissions from the surface
that reach the receptor.40 STILT sums the particles within half
of the planetary boundary layer height to compute surface
influence footprints in units of parts per million (parts per
million) (μmol/m2/s) at 1 km resolution. STILT computes
PBLH from HRRR meteorology using a modified Richardson
number.41 The footprints represent the expected enhancement
in observed CO2 concentration due to a mass of emitted CO2
from each grid pixel (a flux). The forward model, eq 1, uses
footprints to relate observed CO2 concentrations to emissions:

=y Hx (1)

where y is an n × 1 column vector of concentrations in units of
ppm, the state vector x is an m × 1 column vector of surface
fluxes in units of μmol/m2/s, and H is an n × m matrix of
STILT footprints (in units of ppm/(μmol/m2/s)) where each
row represents (for one observation in y) the sensitivity of an
observation to each of the fluxes in x. The product of
footprints and fluxes (Hx) gives the concentration enhance-
ment resulting from emissions, not the total concentration. As
such, it is typical to formulate y as a vector of concentration
enhancements by subtracting a background concentration from
each observation. However, in this study, we invert for the
background concentrations directly, rather than treating the
background as known. We therefore formulate H and x with
additional parameters relating to the backgrounds, as described
in additional detail in Section 2.5 and Text S1. As such, our
formulation of y contains the values of total concentrations.

2.5. Inversion Framework. We invert both the fluxes
within the specified domain and the background concentration
at the domain edges. The footprints were coupled with the

emissions prior and an estimate of the background to solve for
posterior fluxes and backgrounds following eq 2:

= + +x x HB HBH R y Hx( ) ( ) ( )a
T T 1

a (2)

where x ̂ is a vector of the posterior fluxes at each hour and
grid-cell, and the background concentrations at each hour and
each of the four domain edges, xa contains the prior value of
the fluxes (emissions inventory) and the prior background
concentrations, H is the operator that connects the
observations to emissions, combining the HRRR-STILT
footprints and indicator values (0 or 1) for which background
concentration to use, B is a prior error covariance matrix, R is
the model-data mismatch error covariance matrix, and y is the
BEACO2N measurements. This equation is derived from
assuming Gaussian distributions of errors and solving for the
probability density function P(x|y), where x ̂ is the expected
value of the probability density function.42 For computational
efficiency we express the prior error covariance matrix B as a
Kronecker product of a spatial prior error covariance matrix
and a temporal prior error covariance matrix, as described by
Yadav and Michalak, 2013.43 We solve eq 2 to generate
posterior fluxes once for each day of the study period using 96
h overlapping windows. See Text S1 for additional details on
the inversion framework.

2.6. Determination of Influence Region. We do not
have sensitivity to all emissions within the 157 km × 127 km
domain of the inversion. Computation of the diagonal of the
averaging kernel matrix is one method to define the region of
interest, but this matrix has dimension m × m, and thus
computing it directly is typically computationally intractable.
In lieu of constructing the full matrix, we calculate the
cumulative influence of the footprints in the region and define
the top 40th percentile as the region to which we are sensitive
(influence region). Posterior fluxes were analyzed only within
the influence region containing 40% of the cumulative
footprint surface influence. See Text S2 for additional details
about the influence region.

2.7. Traffic Flow and Natural Gas Data Sets. Traffic
flow data were obtained from the Caltrans Performance
Measurement System (PeMS).44 Data for 693 PeMS

Figure 2. Five years of prior (black) and posterior (blue) anthropogenic emissions in the region of influence (shown on the right). Prior and
posterior emissions are rolling 6-week averages. Uncertainty in posterior (derived from surface influence) shown in light blue shading. Period of
shelter-in-place order during COVID-19 marked shaded in gray. Background map credits: © Stadia Maps (stadiamaps.com), © Stamen Design
(stamen.com), © OpenMapTiles (openmaptiles.org), © OpenStreetMap (openstreetmap.org/copyright).
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observation sites within the BEACO2N region of influence as
of 2018 were included in our assessments. We calculated
vehicle miles traveled (VMT) as the product of the vehicle
count at each PeMS site and the segment length to the next
PeMS site. At each hour, we summed the VMT across any
PeMS sites in the BEACO2N region of influence. Additional
PeMS sites were added between 2018 and 2022, so the VMT
calculation in all years excluded data from PeMS sites added
after January 2018.
Monthly natural gas distribution data were obtained from

Pacific Gas & Electric (PG&E).45 This data set was reported
by postal zip code. Reported natural gas distributed to each zip
code was scaled by the fraction of the zip code area within the
BEACO2N region of influence.

3. RESULTS AND DISCUSSION
3.1. Interannual Trends in CO2 Emissions. Solving for

posterior emissions for each day within the BEACO2N
footprint yields the result shown in Figure 2 along with the
steadily increasing prior for comparison. Both prior and
posterior are shown as a rolling 6-week average, smoothing any
diurnal and weekly effects. Emissions shown are anthropogenic
emissions only (SIF-GPP-derived biosphere fluxes are
subtracted off). While the biospheric uptake derived from
SIF-GPP can be strong during daytime in the growing season,
on seasonal time scales, the biospheric fluxes derived using
SIF-GPP relationships are found to be small relative to the
anthropogenic fluxes in the region, and the seasonality does
not match the seasonal cycle of the posterior fluxes. Full
posterior emissions before the biosphere subtraction are shown
in Figure S4. There are larger biospheric fluxes found just
outside of the region of influence, but the region of influence
itself is quite urban, and the mean biospheric flux across all
seasons and times is only −7 tC/h in the region. The relative
size of the background, biosphere, and emission contributions
to the total CO2 concentrations is explored further in Figure
S5.
While the prior emissions do not vary seasonally, a notable

seasonal cycle is introduced in the posterior, with posterior
emissions in the winter running about 40% higher than in the
summer. Some of this seasonality could be residual biospheric
fluxes not seen in SIF-GPP (although the seasonality does not
match the SIF-GPP seasonality). However, we do expect to see
seasonal differences in emissions from residential and
commercial natural gas heating in the winter, which is used
by the majority of buildings in the region.46 The Bay Area Air

Quality Management District (BAAQMD) reports residential
fuel usage as the source of 7% of Bay Area GHG emissions.34

However, we expect that some industrial emissions will have a
strong seasonal cycle matching that of home heating from the
heating of commercial facilities. About half of the observed
seasonal trend is explained by the PG&E reported natural gas
consumption alone and the seasonality of reported natural gas
combustion matches the seasonality of our posterior, as
discussed more in the sectoral decomposition (Section 3.3).
The decrease in emissions during the COVID-19 shelter-in-

place order is highlighted in Figure 2 (gray-shaded period).
Emissions were the lowest in April 2020 of any April, the only
full month impacted by the order, which was issued on March
16, 2020 (the strictest restrictions began to be lifted by May 4,
2020). A comparison of April 2019 to April 2020 yields a
13.4% decrease in total emissions (13.3% decrease on
weekdays, 13.9% decrease on weekends).
We observe a decreasing emissions trend at a rate of −1.8 ±

0.3%/year from 2018 levels. This trend was computed using
ordinary least-squares (OLS) on the hourly data after
deseasonalizing the posterior by subtracting the seasonal
component of the time series. The seasonal component is
calculated by detrending the hourly posterior, computing the
mean value of the detrended data for each day of year (mean
across the 5 years), and smoothing with a 90-day rolling mean.
The uncertainty (0.3%/year) in the trend represents the 99.9%
confidence interval in the OLS fitting. The decreasing trend is
found to be statistically significant (p = 0.0005) using a
seasonal Mann−Kendall (MK) trend test on the posterior.47

We can greatly improve the confidence in the posterior using
temporal averaging (see details of this uncertainty analysis in
Section 3.2), so we utilize 6-month averaging of the posterior
emissions (9 time periods) to visualize the emission trends
over our study period. January−June and July−December were
averaged in each year. Six-month averaging removes the
seasonal cycle of natural gas combustion. A hypothetical zero
by 2045 pathway is shown from the beginning of the study
period onward. Figure 3 shows the mean posterior result for
each of the 6-month periods in the inversion, as well as the
fitted −1.8%/year trend. Note that the trend is observed to be
−1.8%/year both when fitted on the 6-month averaged data
and when fitted on the deseasonalized hourly data.
This result is comparable to the results of other studies in

this urban region, although the region of influence studied here
is unique. The city of Oakland’s inventory finds a 21% decrease
in CO2 emissions from 2005 to 2019 (−1.5%/year relative to

Figure 3. Emissions trend from 2018 to 2022 compared to the rate of emissions decrease required to achieve zero emissions by 2045. Each point
represents the average emissions of a 6-month period. Points are plotted on the first day of the 6-month period. Shading depicts 95% confidence
interval in linear fit.
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2005 levels).48 Luqman et al., 2023 reported a −0.7%/year
change in CO2 emissions in the greater SF Bay Area from 1998
to 2018 (relative to midpoint) using The Open-Data Inventory
for Anthropogenic Carbon inventory and taking into account
the changing boundaries of the urban region.49 The SF Bay
Area was one of only 6 urban regions in which Luqman et al.
reported a decreasing emissions trend of 91 urban regions
investigated.
The current rate of emissions changes (−1.8 ± 0.3%/year),

extrapolated to 2045, results in emissions of 225 tC/h (range:
196−264 tC/h) in the year 2045, or about half of 2018 levels.
Achieving net-zero emissions by 2045 (as is the goal stated by
a number of municipalities in the region of influence) will
require an increase in the rate of emissions reductions we
observe in this study or the use of substantial carbon offsets
and/or capture. Importantly, our analysis is limited to scope 1
emissions, and our inversion does not quantify progress on
scope 2 or 3 emissions that occur outside of the region of
influence.

3.2. Uncertainty Analysis. The posterior error covariance
matrix can be used to characterize the uncertainty in large
inverse problems; however, computing this matrix is computa-
tionally intractable in this case. In lieu of directly constructing
the posterior error covariance matrix, we characterize the error
in the posterior area indirectly as a function of the footprint
surface influence. The changing nature of the network and
availability of data (Figure 1) over the 5-year period presents
an additional challenge for error characterization. It was
important to ascribe heteroskedasticity to the errors, such as to
acknowledge the temporally changing network influences. To
do this, we examined the posterior emissions as a function of
the STILT footprint surface influence. We fit an exponential
decay to this function as shown in Figure S6, which shows that
this error is strongly inversely correlated with the number of
nodes operating in the network. Posterior uncertainties shown
in Figure 2 are the sum of the absolute error from surface
influence and an estimated 10% error on the posterior. We
estimate 10% additional error to have the uncertainty
approximately match the standard deviation of the posterior
(6-week rolling sigma of the posterior = 105 tC/h). We assume
that we cannot account for all sources of error and the error is
at least 10% even when surface influence is large enough to

show convergence of the posterior. We find that the error in
the posterior reduces according to the central limit theorem
with the square root of the number of measurements used.
Uncertainties are further explored in Figures S7 and S8. Errors
are reduced substantially with greater than 4 weeks of
averaging in the posterior, likely due to the reduction in
meteorological biases from the HRRR product from averaging.
The described method yields an uncertainty of 74 tC/h on

the posterior. To derive the prior uncertainties using the same
method we use the y-intercept of Figure S6B (because the
emissions are the prior when influence is zero) as the absolute
error and again add an additional 10% error. This yields an
emissions uncertainty of 220 tC/h on the prior. Errors are
therefore reduced from the prior to the posterior by 66%.

3.3. Trends in Vehicle Fleet Fuel Efficiency. To
investigate the changing efficiency of the region’s vehicle
fleet, a simple decomposition of the posterior emissions was
conducted. It is assumed that the majority of posterior
anthropogenic emissions can be roughly decomposed into
seasonally unvarying emissions from point sources (i.e.,
cooking and industrial emissions), emissions with a strong
seasonal cycle (i.e., home and commercial heating), and traffic
emissions. Electricity generation is not a significant source of
direct (scope 1) emissions in the region. The largest electricity-
generating power plant in the region of influence is the Dynegy
Oakland Power Plant, which reports emissions of only 0.25
tC/h.34 We write this decomposition in eq 3:

= + +e e e eanthro seasonal traffic constant (3)

We assume that the overall efficiency of the vehicle fleet is
changing linearly in time as older, less efficient vehicles are
replaced by newer, efficient, and electric vehicles. We assume
that the efficiency of natural gas combustion does not change
on this time scale and that other point source emissions stayed
constant. This yields eq 4:

= + + +e m e m tf m f canthro 1 gas 2 VMT 3 VMT (4)

where t is time, m1egas = eseasonal, m2tf VMT + m3 f VMT = etraffic, and
c = econstant. Two independent data sets, not used to inform the
prior inventory, were used for natural gas combustion in the
region (egas) and vehicle miles traveled in the region ( f VMT).
For seasonally varying emissions, monthly natural gas

Figure 4. Sectoral decomposition of emissions by multiple linear regression.
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distribution data were obtained from the utility PG&E.45

These gas data were converted to emissions using a carbon
intensity of 50.3 g CO2/MJ for natural gas.50 For f VMT, the
PEMS data set was used as a proxy for vehicle miles traveled in
the region.44 Preprocessing of the two data sets is described in
Section 2.7. We conduct a simple multiple linear regression
(MLR) to derive the coefficients m1, m2, m3, and c, using the
posterior derived hourly anthropogenic emissions as emsanthro.
The value of m1 was 2.3, which means about half of the
observed seasonal trend is explained by the PG&E reported
natural gas consumption. The constant emissions (c = econstant)
were 156 tC/h. The term m2t + m3 can be factored out, and
the rate at which this value changes over the 5-year study
period is a reasonable proxy for the rate of change of overall
vehicle fleet efficiency (average CO2 emissions per vehicle mile
traveled). The fitting is conducted on hourly data, and the R2

between the simplified emission model predicted emissions
and the posterior “true” emissions is 0.44, with mean absolute
error of 74 tC/h for the total emissions of the influence region.
The mean absolute error is reduced to 44 tC/h once emissions
are averaged monthly.
Figure 4 shows the result of sectoral decomposition by

multiple linear regression. The traffic emissions have minimal
interannual or seasonal variability aside from the drop in 2020
during the COVID-19 shelter-in-place order. All seasonality in
the posterior is attributed to natural gas combustion after SIF-
GPP-derived biosphere fluxes are subtracted off. We also show
the magnitude and seasonality of the SIF-GPP-derived
biospheric fluxes, which are small compared to the
anthropogenic fluxes in the region. In winter 2019, there is a
2-month lag between the maximum posterior and the
maximum natural gas usage. Winter 2019 is one of the most
uncertain periods for the posterior. In 2020, 2021, and 2022,
the maximum posterior occurs in the same month (±1 month)
as maximum natural gas usage. Differences between the MLR
emissions and posterior anthropogenic emissions may result
from unresolved seasonal biosphere (not captured by SIF) or
from anthropogenic emissions for which these 3 emissions
categories are not reliable proxies.
Solving for the coefficients in eq 4 yields the result that the

overall vehicle fleet CO2 efficiency (emissions per mile
traveled) improved by 11.9% over the nearly 5-year study
period, or 2.6%/year. This result is sensitive to anthropogenic/
biogenic partitioning; hence, better constraints on urban
biospheric fluxes will be important for application of the
method. We tested values of the biosphere in the range of 0.5−
1.5× SIF-GPP derived values for the partitioning to get
uncertainty bounds on the emissions reduction rate of 2.6 ±
0.7%/year. This result is comparable to a previous finding
(using a simplified model to interpret the BEACO2N
observations) of a 7.6% improvement in vehicle fuel efficiency
over the 3-year period from 2018 through 202051 and indicates
the trend of improved vehicle efficiency continuing into 2021−
2022. Our result closely matches the California Air Resources
Board’s Emissions Factors Model (EMFAC) model from 2017,
which predicted a 2.5%/year improvement in overall vehicle
fleet CO2 efficiency for the Bay Area from 2018 to 2022.52

This 11.9% improvement in overall vehicle fleet efficiency
likely results from a combination of adoption of electric
vehicles and hybrids as well as the gradual retirement of the
oldest and least efficient vehicles in the fleet. We show in
Figure S10 that low-emitting and zero-emission vehicles are
being adopted more rapidly in the BEACO2N region of

influence than in the state of California as a whole according to
vehicle registration data obtained from the California Depart-
ment of Motor Vehicles.53 As of January 2022, plug-in hybrid,
battery electric, and hydrogen fuel cell vehicles make up 4.2%
of the fleet in our region of influence (up from 2.1% in
October 2018). For the state of California, these vehicle classes
made up only 2.7% of the fleet in January 2022 (1.4% in
October 2018). As such, we do not expect that the rate of
emission decreases we report here for the SF Bay Area are
representative of the entirety of the state of California.
In this study, we have presented CO2 emissions for a region

of the San Francisco Bay Area as constrained by observations
from the BEACO2N network, the HRRR-STILT model, and
Bayesian inverse modeling from 2018 to 2022. We find that
CO2 emissions in the BEACO2N region are decreasing at a
rate of 1.8 ± 0.3%/year from 2018 levels. Despite this progress,
a projected continuation of these emission reductions only
leads to a 50% reduction of 2018-level emissions by 2045,
falling short of the ambitious zero-emission targets set by
numerous cities in the region. Sectoral decomposition of the
posterior by multiple linear regression allows us to calculate
the rate of change of the fleetwide CO2 emission factors, which
we find to be −2.6 ± 0.7%/year. This study advances the field
of urban interannual CO2 inversions, providing an example of
an effective top-down methodology for carbon monitoring and
management at the city scale. Our findings emphasize the
urgent need for accelerated climate policy and action to
achieve the ambitious zero-emission targets cities seek.
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