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Abstract

Optical Characterization of Plasmonic Metamaterials
by
David Jaeyun Cho
Doctor of Philosophy in Physics
and the Designated Emphasis in Nanoscale Science and Engineering
University of California, Berkeley
Professor Yuen-Ron Shen, Co-Chair

Professor Feng Wang, Co-Chair

Optical metamaterials are artificially engineered structures composed of subwavelength
units. They exhibit exotic optical properties that are unobserved or unattainable in nature.
Recent efforts have led to the observation of many interesting phenomena and as well as
promising applications such as super-resolution imaging and transformation optics. At optical
frequencies, the functionalities of metamaterials are achieved through excitation of plasmons as
most structures are metal-dielectric composites. The objective of this dissertation is to provide
the tools and study the unique properties and novel phenomena of plasmonic metamaterials.

We first theoretically study a pair of nanobars to properly understand artificial
magnetism which is important in most metamaterials. Then we experimentally investigate the
optical properties of the “fishnet” metamaterial using a variety of spectroscopic techniques.
First, we probe the plasmonic band structure using angle- and polarization- resolved linear
spectroscopy. Most interestingly, we observe dark magnetic modes and their coupling to bright
modes leading to avoid-crossing behavior typical of quantum systems. The k-dependent
effective optical constants are measured through phase measurements confirming the dispersion
of the magnetic resonance. Second, second-harmonic generation spectroscopy is carried out
showing significant resonance enhancement achieved through the excitation of plasmons. The
observations are substantiated with theory to validate our physical understanding of nonlinear
wave-mixing processes in metamaterials. Finally, we carry out pump-probe spectroscopy to
understand the dynamic behavior. The optical responses are shown to be modulated in
femtosecond time scale. The modulation magnitude is greatly enhanced while the dynamics is
mainly determined by the constituting dielectric medium.
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Chapter 1

Introduction

1.1 Introduction

Light-matter interaction has been always of great importance in condensed matter
physics. This is because materials with unique optical properties lead to novel optical
phenomena of physical interest and also many useful applications. In previous years, much
research has focused on engineering materials to control the light-matter interaction. For
example, research on quantum well structures show that absorption properties can be tuned by
controlling the thickness of thin semiconductor layers [1]. Studies on photonic crystals show
that the diffraction of light can be precisely controlled by repeating regions of high and low
dielectric constant materials [2].

More recently metal nanostructures have been in the spotlight. One reason is that metal
nanostructures can have extremely strong coupling with light due to their large free electron
density. This allows the scattering cross section to be several times larger than its geometrical
size at the plasmon resonance [3]. A second more practical reason is that advances in
nanofabrication techniques such as e-beam lithography and focused-ion beam milling have
opened up the possibility of fabricating arbitrary shapes of nanostructures [4, 5]. This
advancement realized the concept of metamaterials where light-matter interaction can be
controlled in a highly desired way.

1.2 Optical metamaterials

Metamaterials can be defined as artificial structures composed of units with dimensions
smaller than the wavelength of interest. The subwavelength feature size allows one to apply
the effective medium approximation and homogenize the response [6]. As a result, the
assembly of individual units can be assigned effective material properties at a macroscopic
level. The individual units can be considered as artificial “atoms” or “molecules” interacting
with electromagnetic waves. The effective material properties arising from the interaction is
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determined by the shape of the subwavelength units rather than the intrinsic properties of the
constituting materials. Particularly, at optical frequencies, the units are metal-dielectric
composites in order to excite plasmons.

It is well known that the electric permittivity and magnetic permeability are useful
optical constants that describe light-matter interaction. Maxwell equations’ govern the response
of the electromagnetic field in a medium. Physically, one can understand that the permittivity (¢)
relates the material response to the electric field and the permeability (p) relates the response to
the magnetic field. The “material parameter space” shown in Fig. 1.1 is informative to grasp the
set of all materials possible. The first quadrant (region 1) represents most common dielectric
materials where € and p are both positive. For region 2, p is positive but € is negative. Metals
and doped semiconductors fall in this region below their plasma frequency. Region 4 includes
several ferrites but only at below microwave frequencies. Our focus is on Region 3 when both €
and p are negative. No natural material is known to exist; thus it is very intriguing to obtain
materials in this region. Particularly at optical frequencies, all conventional materials are
confined to an extremely narrow line at p=1. However, recent developments in metamaterials
have allowed us to reach effective material parameters in region 3.

K
A

2 e<0 >0 e>0p>0 1
Electric plasma Transparent
(metals, doped | dielectrics
semiconductors)

> &
<0 pu<0 >0 u<0
No natural Magnetic plasma
materials (some ferrites)
3 4

Figure 1.1 Materials parameter space

1.3 Artificial magnetism

One of the main challenges in designing artificial materials is to induce negative
permeability. This is particularly difficult because the magnetic response of natural materials
fades away above gigahertz frequencies [7]. There are only a few materials such as MnF; and
EuO that have magnetic response above microwave frequencies [8, 9].
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In metamaterials, artificial magnetism is obtained by carefully designing the shape of
the individual units. This is achieved by creating a structure where the electromagnetic field
can induce a current distribution resembling a loop. Thus, the induced current loop acts as a
magnetic moment. This moment can be quite strong when the response is dramatically
enhanced through a resonance. Historically, the split ring resonator (SRR) was first proposed
and elucidates this key idea very well [10]. The structure composes of two concentric rings
with openings as depicted in Fig. 1.2. It is shown that they can be equivalently considered as a

LC circuit with a resonant frequency at @, =1/+/LC where L and C is the inductance and
capacitance of the SRR. Detailed derivations [10] show that the effective permeability is given
by

=1 _F—a)2 (1 1)
He o —w} +iTw '
where the resonant frequency is
3dc,”
o, = 2 03
o, (1.2)
the filling ratio F , and damping factor I is
r2
F="" and =29 (1.3)
a riy
N\,
d
\
—
a

Figure 1.2 Split ring resonator with artificial magnetism

As an example, with I = 2x107°m, a=5x10"m, d =1x10°m, and & = 20hm, the
effective permeability is calculated using Eq. (1.1). As seen in Fig. 1.3, the Lorentzian
resonance can be clearly identified by the real and imaginary parts of s, . With a sufficiently



strong resonance, the effective permeability becomes negative (Re(,, ) < 0) in the range of

o, <o<ao,, . Here, o is defined as the effective magnetic plasma given as

I 1.4
= (14)

at which the effective permeability becomes zero.

6 Re(p’eff) L
[
||I - m(p )
4 1 ] !
\
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\
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Figure 1.3 The effective permeability of a split ring resonator at microwave frequencies.

The exact resonant frequency and oscillator strength is determined by the dimensions of
the SRR. This allows one to tune the range of the effective permeability to be negative. Later
on, by using variant forms of the SRR, researchers have successfully pushed the resonant
frequency to be at optical frequencies [11, 12]. It has now become common to use designs
which are variants of a pair of bars; current loops can be obtained by exciting asymmetric
modes in the pair. Detailed discussion of these properties will follow in Chapter 2.

1. 4 Negative index materials

The previous section discussed how artificial magnetism and negative effective
permeability (L) is achieved in metamaterials. On the other hand, obtaining negative effective
permittivity (&) is simpler because metal exhibits a strong negative permittivity below its
plasma frequency. To achieve specific negative values at a certain frequency range, one only
needs to design thin metal wires; they act as diluted metal with a red-shifted plasma frequency
due to the reduced free electron density [13]. By overlapping thin wire arrays with negative &g
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and metamaterial units with negative s, one can obtain a final metamaterial structure with
both negative e.rand pesr. This approach was confirmed to be successful by Smith [14].

Having simultaneous negative values of permittivity and permeability leads to quite
interesting phenomena. The refractive index becomes negative and the directions of phase
advance and energy flow become anti-parallel. This can be understood by considering
Maxwell’s equations

V.D = P, Vx E= —%
0 (1.5)
VeB=0, VxH=j+—
ot
with the constitutive equations
D=¢E
_ - (1.6)
B=uH

Considering a propagating monochromatic plane wave with E(w, IZ) = EO exp(ilz -F—iwt) and

H(w,k) = I:|0 exp(ilz -F —imt) , the equations can be simplified as
IZXE:,ua)I-T and kxH =—cwE . (1.7)

It can be easily seen that K , E,and H forma right-handed triplet of vectors when & >0 and
4> 0. On the contrary, when & <0 and u <0, they form a left-handed triplet. In this case, the
energy flow, described by the Poynting vector (S = E x H ) is anti-parallel to the wavevector K .
Veselago [15] proved that in this case, the refractive index must be taken the negative sign so

that causality is conserved. This is the reason why negative-index materials are also called as
left-handed materials.

Negative-index materials exhibit many counter-intuitive phenomena as discussed in
Veselago’s paper [15]. The study was limited theoretically as there was no material available
exhibiting simultaneous negative values. One interesting result is that when light is incident
from a positive-index material to a negative-index material, the light is refracted to the negative
angle direction with respect to the interface normal. Snell’s law,

n,sing, =n,siné, (1.8)

indeed shows that the angle of refraction is negative; if n, and n, have opposite signs, then 6

and @, also have opposite signs. Furthermore, it was also predicted that the Doppler effect and
Cherenkov effect are reversed in a negative-index medium [16].

Experimentally, negative-index medium was demonstrated at microwave frequencies
using a combination of metallic wires and SRRs [14]. Continued interest and advance in
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nanofabrication techniques have allowed researchers to develop negative-index materials at
optical frequencies using a variety of structures such as paired nanorods, fishnet, and silver
nanowires [17-19].

1.5 Thesis highlights

The potential implications of metamaterials are not just limited to having a negative
refractive index. The true potential lies in the freedom to obtain desired values of the effective
permittivity and permeability. Moreover, it is possible to control these values in frequency-
domain as well as in the spatial-domain. This enables fascinating applications such as sub-
diffraction limited imaging [20-25] and transformation optics [26-32]. Thus, the aim of this
dissertation is to provide tools for characterization and fundamental understanding to facilitate
the study of future metamaterials for these exciting applications.

The dissertation is organized as the following.

In Chapter 2, we theoretically study the artificial magnetism in a pair of nanobars. The
various multipole components contributing to the magnetic resonance is discussed. We point
out that the electric quadrupole has been incorrectly neglected in previous studies. The findings
may serve as a ground work to understand the interaction between individual units.

In Chapter 3, we study the plasmonic band structure of a fishnet metamaterial. The
structure is designed by electromagnetic simulation and fabricated through nanoimprint
lithography. The experiment is carried out using an angle- and polarization-resolved
spectroscopy technique. Our measurements allow us to identify multiple magnetic bands and
understand their coupling behavior in the fishnet structure. In addition, phase measurements are
carried out to deduce the k-dependent effective optical constants.

Chapter 4 describes our second-harmonic generation (SHG) spectroscopy study in
optical metamaterials over the magnetic resonance. The result shows a strong enhancement of
the nonlinear signal due to excitation of a plasmon resonance. Furthermore, we carried out
theoretical calculations and successfully reproduce the results quantitatively confirming our
physical understanding of nonlinear wave-mixing processes in metamaterial structures.

Finally, in Chapter 5, we study the dynamic response of a metamaterial through pump-
probe spectroscopy. We find that optical pumping can induce drastic changes of the linear
properties in femtosecond time scale. The modulation dynamics is mainly determined by the
constituting dielectric medium, but the modulation magnitude is greatly enhanced through the
plasmon resonance.



Chapter 2

Contribution of the electric quadrupole in artificial

magnetism

2.1 Motivation

A major focus in research is designing metamaterials with negative refractive index. It
was first demonstrated in microwave range [10, 33-37] and later extended to infrared and
optical frequencies [11, 12, 17, 38-46]. As described in Sec. 1.4, having the effective
permittivity (& ) and permeability ( ££) to be simultaneously negative leads to a negative index

[10, 15, 47]. It is straightforward to obtain a negative ¢, which occurs naturally for metals at
optical frequencies. However, negative 4 is nonexistent in nature. Only recently, it was

achieved in artificial metamaterials using strong magnetic resonances in suitably designed
metal plasmonic nanostructures [11, 12, 19, 38, 43-45, 48]. It is usually considered as to be
associated with a magnetic dipole resonance and the contribution from electric quadrupole is
neglected. However, similar to the magnetic dipole radiation, the electric quadrupole radiation
can also be greatly enhanced by plasmon resonances and it is typically of comparable strength
at optical frequencies. Therefore, one might expect electric quadrupole to play as important a
role as magnetic dipole. In most previous studies, electric quadrupole contributions to the
plasmon resonance are not carefully investigated [42, 43]. Here, we show by simulation that the
electric quadrupole contribution is actually comparable to that from magnetic dipole and
therefore may not be ignored.

2.2 Approach
2.2.1 Parallel nanobar structure

Several metamaterial designs have been proposed for achieving negative refraction in
the optical range. However, many are variants of the parallel metallic nanobar structure (Fig.
2.1) [19, 40, 42-45]. Therefore, we focus on this structure. The incident electric field polarized
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along the bar can resonantly induce symmetric (Fig. 2.1(b)) or asymmetric (Fig. 2.1(c))
electron oscillations depending on the driving frequency. As illustrated in the figure, the

symmetric mode is characterized by a net electric dipole (P), while the asymmetric mode,
arising from a current distribution with the currents in the two metal bars out of phase, is a
mode of mixed magnetic-dipole and electric-quadrupole character. Generally, however, a
structure may have separate resonance modes with, respectively, dominating magnetic-dipole
and electric-quadrupole character.

(b) Symmetric mode  Electric dipole

i

(c) Asymmetric mode  Magnetic Dipole  Electric Quadrupole

M

Figure 2.1 Coordinates and plasmon resonances of a pair of bars: (a) Relative coordinates of
incident light with respect to the pair of bars. The incident light is propagating on the z-axis and
linearly polarized along the x-axis being parallel to the long axes of the bars. (b) Symmetric
electron oscillation is characterized as a net electric dipole (P). (c) Asymmetric electron
oscillation is characterized as a sum of magnetic dipole (M) and electric quadrupole (Q). The
arrows refer to currents and the “+” and “*- signs to the charge distribution.

2.2.2 Numerical calculation

We numerically calculate the scattering intensity spectrum and the internal electric field
of a single unit of parallel bar structure using the Discrete Dipole Approximation (DDA)
method [49, 50]. In this method, interaction of the incoming light with the structure is described
by an assembly of point dipoles distributed throughout the volume of the structure. The dipoles
are induced by the local field, which is the sum of the incident field and the field created by the
induced dipoles themselves. This generates a set of linearly coupled equations which are solved
self-consistently. Solution of the equations yields both the local electric field distribution and
far field scattering intensity in different directions. We consider two silver bars in air with cross
section of 135nm x 80nm and thickness of 30nm and the bars are separated by a 25nm thick
Si0, layer. The optical constants of silver were taken from Ref. [51].



2.3 Results and analysis
2.3.1 Far-field radiation pattern of multipoles

Fig. 2.2 shows the light scattering spectra along several directions in the x-z plane
(¢=0). The beam geometry is illustrated in Fig. 2.1. The spectra exhibit two resonances at

580nm and 685nm, corresponding to symmetric and asymmetric modes, respectively. The
calculated local field distribution inside the metal structure allows us to obtain the current

density distribution and the multipole components of P , M , Q, etc., on the structure. We can
then calculate separately the complex far fields, E,, E,, and EQ , generated by P, M and Q,

and compare their relative strengths [52]. For the 580 nm resonance, we found that the currents
in the two bars are in phase and the electric dipole radiation E, dominates. For the 685nm

resonance, the currents are largely out of phase as expected from an asymmetric mode. The
corresponding field ratio in the forward direction (€ =0") is ‘EPO‘ : ‘ EMO‘ : ‘EQU‘ =1:0.81: 0.62.
EMO‘ and ‘EQO‘ decrease rapidly while ‘EP(,‘

As the wavelength moves away from 685nm,
changes only slightly. Therefore we attribute the electrical dipole field E% to the nonresonant

contribution from the tail of the 580 nm resonance. The relative magnitude of EMO and EQO

shows that the contribution of the electric quadrupole is comparable to that of the magnetic
dipole.

% 15 ' v
- | —.—0

o - -45

; | | R

£ 10} o] 35
v

: -r"ﬂ"'-,. | \

= A A

? e : .‘. L\- '
g s

=

@ 0.0k

600 700 800
Wavelength (nm)

Figure 2.2 Scattering intensity spectra in the x-z plane (¢ =0") for 8 =0°, 45°, 90°, 135° of a
pair of parallel silver bars. @ is the angle between the incident light and the scattered light
propagation directions as in Fig. 2.1. Arrow at 580nm denotes the symmetric mode resonance;
arrow at 685nn denotes the asymmetric mode resonance.
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We also find that other multipoles also have negligible contribution to the far field

radiation. This can be seen by comparing the coherent sum of radiation from P, M and Q

with that directly obtained from the DDA simulation which inherently includes radiation from
all orders of multipoles. Fig. 2.3 shows the comparison for scattered radiation at 580 and

685nm in the x-z plane versus angle & . The curves are sums of radiation calculated from P,
M and Q and the dots are directly from the DDA simulation. The agreement is almost perfect.
Apparently, higher order multipoles have much weaker radiation strengths that are negligible

for these nanoscale structures. It is then possible to deduce P, M and Q unambiguously from
the polarization-dependent and angle-resolved scattering spectra.

(@ (b)
% scattering pattern from multipoles ‘g scattering pattem from multipoles |
; ¢ farfield scattering pattern pr e farfield scattering pattern
n n
R = 10
2 2
n 7]
e c
- E_
= ¥
o 0.5 = 05} a
= =
= i = A
] o :
£ =
g 8 \/
S oo , S oo} ) :
0 90 180 270 360 0 90 180 270 360
Theta (degree) Theta (degree)

Figure 2.3 Comparison of the far field scattering pattern in the x-z plane calculated from
multipoles (P, M, and Q) and directly from DDA calculation: (a) symmetric mode at 580nm,
(b) asymmetric mode at 685nm. The solid curve corresponds to the scattering intensity
calculated from P, M and Q. Dots are the scattering intensity calculated directly from the

DDA simulation. 8 is the angle between the incident light and the scattered light propagation
directions. The excellent agreement between curves and dots shows that the radiation from the

parallel bar structure is dominated by p , M , and Q

In experiment, for nanostructures with certain symmetry, the multipole components can
be easily determined by measuring the far field radiation pattern along specific planes. For

example, for the parallel bar structure in Fig. 2.1, the far fields generated from P, M, and Q
and propagating along f in the x-z plane are EPO cosd, EMO , and EQO cos 26, respectively, with

EPO , EMO , and EQO being complex. The total scattered electric field is
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B = (‘EPO ‘cosH+‘EMo‘ei¢M +‘I§QO‘E% c0s 20)0, where the phases ¢, and ¢, are relative to
E% . The measured scattering spectra with their polarization dependence can be fitted by the

— 2 — — —
total intensity ‘E to obtain E, , E, ,and Eq

total

- e = et 4 |E. |ei*
= |E; |cos 0 +|E,, | +|Eg [€ cos 20

and hence P , M ,and Q. To demonstrate this, we fit the far field scattering pattern directly
obtained from DDA method to retrieve ‘EPO‘ : ‘ EMO‘ : ‘ EQ”‘ =1: 0.88: 0.67 whereas explicit

calculation of P, M, and Q gives ‘EP(, ‘ :‘EMO‘ :‘EQU‘ =1:0.81: 0.62. The agreement shows that

indeed it is possible to deduce separately the multipole contributions in a scattering experiment.

2.3.2 Relation of multipoles to optical constants

We examine the contribution of Q to the effective & and 4 of a metamaterial. For the
parallel bar structure, E,, and EQ have the same phase in the forward and backward direction

at the asymmetric resonance, and may appear indistinguishable for light propagation in the
corresponding metamaterial. Therefore, one may anticipate that electrical quadrupole Q plays a

similar role as magnetic dipole M and both contribute to the effective 4.

In the case of metamaterials, one often uses K -independent effective ¢ and x to
describe electric dipole and magnetic dipole contributions of the responses, respectively.
Therefore, we investigate the description with k -independent effective & and  with non-

negligible electric quadrupole term so that simple Fresnel coefficients for transmission and
reflection are still valid. To be more rigorous, we examine the effective ¢ and g ofa

metamaterial with reference to the Maxwell equations.

We consider the simple case of an isotropic bulk metamaterial. In this case, the electric
quadrupole tensor is described by Q; =ia, (kE; +k;E;) where «, is a constant and k; and E,

are the components of wavevector K and incoming electric field E. The macroscopic Maxwell
equations are typically written in the form,

V-D=0, V-B=0
vxE:_la_E’ ) @.1)
c ot c ot
where
D=E+47(P-V-0Q)=e(k)E, H=B-4zM = uB (2.2)

are the electric displacement and magnetic field, respectively. However, as we mentioned
above, D and H are not uniquely defined [7, 53-55]. The macroscopic Maxwell equations are
11



invariant if we replace D and H in Eq. (2.2) by D'=E +47P and H'=B—4xz(M + |\7|Q)

with Vx M 0= —%gv -Q. For an isotropic material, we find MQ = (%)2 an . Together with

the materials response relations of P = X E, M= In B, it yields
e=1+4my, it =(-dry, )~ 412 ay, 2.3)
c

where both ¢ and u are K -independent and the latter contains electric quadrupole

contribution. This electric quadrupole contribution can be viewed as a resonance enhanced
spatial dispersion in the metamaterial. We show in [56] that the same conclusion can be
reached by considering inclusion of electric quadrupole contribution in the derivation of
transmission and reflection coefficients and matching them with the known Fresnel coefficients
in terms of £ and . In this derivation, boundary conditions have to be treated with great care

[53].

Although our description is shown to be valid for an isotropic material, it also holds true
for light propagation in high symmetry directions in non-isotropic materials, which is often the
experimental case. For instance, it applies to normal incidence of light in a fishnet metamaterial,
where negative refractive index has been reported.

2.4 Conclusions

In summary, we have shown that metamaterials consisting of a pair of metal bars or
similar nanostructures may have electric quadrupole resonances comparable to magnetic dipole
resonances in strength at the resonant frequency. Light scattering spectroscopy on a unit
nanostructure should allow separate determination of the different multipole components at
various resonant frequencies and hence the nature of the resonances. In an isotropic
metamaterial or anisotropic metamaterial with wave propagating along high symmetry
directions, the nonnegligible electric quadrupole appears to contribute to the effective . This

implies that electric quadrupole contribution may also yield a negative 4 near its resonance in

a metamaterial. Generally, electric quadrupole resonance can appear at a different frequency
from the magnetic dipole resonance and may alone give rise to negative . It is incorrect to

neglect the electric quadrupole in describing artificial magnetism in optical metamaterials.
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Chapter 3

Probing the plasmonic band structure of optical
metamaterials

3.1 Motivation

At optical frequencies, metamaterials achieve their functionality by excitation of
plasmon resonances [19]. The individual units can be considered as meta-atoms. Since the units
are typically arranged in a lattice, a plasmonic band structure appears in analogy to the
electronic band structure of solids. Here, the excited plasmon modes take the role of the
electronic orbitals. The shape of the Brillouin Zone (BZ) will be defined by the lattice
arrangement of the meta-atoms. Understanding the plasmonic band structure of a given
metamaterial is important because applications such as sub-diffraction imaging [20-22, 24] and
cloaking [26-32] require precise control of the optical responses depending on the wave
propagation direction, i.e., the wavevector in the BZ. In this respect, theoretical and
experimental studies have investigated the oblique response of metamaterials with much
attention to the magnetic split ring resonator (SRR) [57-60]. It has been shown that they can
exhibit non-dispersive responses at terahertz or lower frequencies and thus could be used for
imaging and cloaking applications. At optical frequencies, similar attempts have been carried
out [61-63] to report that the optical responses exhibit strong angle-dependence and therefore
the dispersion cannot be ignored. However, the studies are limited as only high symmetry
directions of the dispersion are probed and do not consider all the involved plasmon modes.
Therefore, here we study the plasmon band structure of a metamaterial in several directions of
its BZ to fully characterize its plasmon resonances. By doing so, we are able to identify
previously unobserved magnetic resonances and also interesting coupling behavior between
adjacent modes. The approach we provide can be generally applied to investigate metamaterial
structures.

In this chapter, we focus on the “fishnet” structure due to its importance in achieving
negative refractive index at optical frequencies [17, 64]. Most works have focused on studying
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the well known magnetic resonance only at normal incidence. More recently, it was reported
that the previously overlooked higher energy resonance is also magnetic [65, 66]. But the
understanding is lacking because only the normal incidence is probed and no clear physical
description is provided except that the currents are antiparallel for the top and bottom metal
layer. Ref. [67] measured the angle-dependent transmission spectra of the fishnet but the
characterization is incomplete as only the lower energy magnetic resonance is discussed due to
their limited spectra range. However, as we will show, the fishnet exhibits other magnetic
modes that previous studies were unable to probe. The plasmon band structure of the fishnet
requires better understanding through a systematic characterization by probing several
directions of the BZ with extended spectral range.

Here, we utilize an angle- and polarization- resolved spectroscopy technique to identify
the excited plasmon resonances from the spectral features of transmission, reflection, and
absorption. This allowed us to observe the excitation of various plasmon resonances and their
evolution with the in-plane wavevector and light polarization. In addition, we carry out phase
measurements using an interferometry scheme to obtain the transmission and reflection
coefficients and retrieve the k-dependent effective optical constants. From our results, we
identify multiple magnetic bands and show that optically dark modes can couple to the bright
bands resulting in unusual dispersion behavior. The deduced effective optical constants confirm
that the plasmon dispersion is originating from the shift of the magnetic resonance.

3.2 Fishnet design and preparation

The studied fishnet structure is depicted in Fig. 3.1 with a schematic of its three
dimensional structure (Fig. 3.1(a)) and a scanning electron microscope image (Fig. 3.1(b)). It is
composed of top and bottom metal layers separated by a dielectric layer [64]. We choose the
multilayers to be Ag/Si0O,/Ag with 28/35/28nm thickness. The structure is a square lattice with
a periodicity of a =600 nm. Therefore, the BZ in reciprocal space is also a square. Our
structure is fabricated by the nanoimprint lithography (NIL) technique [68]. It involves two
major steps. First step is to prepare the NIL mold by patterning the fishnet on a Si substrate
using electron-beam lithography. Second step is to fabricate the actual sample using this mold
as a template. A double-layer UV-curable NIL process is utilized and followed by an e-beam
evaporation and lift-off process. The final result is the multilayer structure as presented in Fig.
3.1. Detailed description of the fabrication process is elaborated in Ref. [69].
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(b)
28 nm

35nm

28 nm

Figure 3.1 Fishnet structure (a) 3-dimensional schematic of the fishnet showing the metal-
dielectric-metal multilayers of Ag(28nm)/ Si0, (35nm)/ Ag(28nm). (b) Scanning electron
microscope image. The thin and thick wires compose of a square lattice with a periodicity of
600nm.

3.3 Plasmonic band structure of fishnet
3.3.1 Experimental scheme

To characterize the fishnet structure, we used a broadband super-continuum fiber laser
providing a spectral range of 0.5-1.6pm with Sps pulses at 20MHz repetition rate. Fig. 3.2(a)
shows the experimental scheme we developed to measure the transmitted and reflected light
from the sample. A half-ball lens is employed which enables us to probe the sample with an in-
plane wavevector (K, ) given by

kt = ng k0 Sin(ein)
(3.1

where N, is the refractive index of the half-ball lens, K, is the wavevector in free space, and 6,

is the incident angle. The half-ball lens is rotated to choose &,,. The incident light is chosen to
be either s- or p-polarized.
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Figure 3.2 (a) Experimental scheme employing a half-ball lens on rotational stage. (b) Five
directions (¢=0°, 22.5°, 45°, 67.5°, and 90°) of the in-plane wavevector ( Izt) that are probed.

In the measurement, the sample is rotated in the XY plane of the experimental setup

(Fig. 3.2(a)). We first choose the sample orientation angle (¢ ) (Fig. 3.2(b)) and align it to be
parallel to the XY plane. This fixes the direction we probe in the BZ. The rotation angle
determines 6, and the magnitude of k, according to Eq. (3.1). For a given set of ¢ and 6

in»

w¢e

obtain the transmission (T) and reflection (R) spectra and deduce the absorption (A) spectra.
The resonant modes can be identified from the spectral features of the obtained spectra. The
resonant frequencies are deduced from the dip minima of T and peak maxima of R and A
which are correlated in frequency with each other. For example, the sets of dips of T and peaks
of R and A in Fig. 3.3(a) indicate the excited modes. Fig. 3.2(b) shows the five directions, i.e.,

¢=0",22.5°,45%,67.5°, and 90", that we chose to probe the BZ of the fishnet.

3.3.2 Results and discussion
3.3.2a Experimental results

The experimental linear spectra are presented in Fig. 3.3. Incident light is s-polarized
for ¢ =0, 22.5°, 45", and p-polarized for ¢=67.5", 90" so that the incident electric field has a

component perpendicular to the thick wires. In this section, we only report the observed modes
and defer detailed discussions to later sections. In Fig. 3.3, we mark each of the identified

modes as Ri with a dash line where ¢ indicates the direction and # is the assigned mode
name. For simplicity, we only mark the modes on the T spectra as the dips of T and peaks of R

and A are correlated. First, for ¢ =0°, as shown in Fig. 3.3(a), we observe two modes RS and
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Rg with energies changing from 0.85eV to 0.88eV and 1.14eV to 1.02eV, respectively. We
observe the mode strength of RS to decrease as its absorption reduces from 60% to 55% and
that of Rg to increase as its absorption grows from 30% to 45%. Second, for ¢=90°, we
observe modes R}”, R’, RY’, and Riusio. as marked in Fig. 3.3(b). Both R}’ and R}’, which
appears at 0.85e¢V and 1.14eV, respectively, vanishes with increasing k; . On the other hand,

Rgo and Ri%/sm are unobservable for k, =0 but appears at finite k-vector. Finally, for

o . o Y p T
$=22.5", 45, and 67.5", the spectra commonly exhibit R, and R]; (¢ indicating the

respective direction) to show avoid-crossing behavior with increasing K,; RfA starting at

¢

1B starts to

0.85€V initially shifts to higher energy but then shifts to lower energy when R

appear at 0.92eV. The dashed lines of RfA in Fig. 3.3(c,d,e) show this change of shift direction

with increasing k.. R}, RS, and Ri;',iim also appear in these directions and will be discussed

later in detail as their modes are associated with those of R}, R3’, and R} 0, Which are

examined in later sections. To summarize, we observe the modes labeled as R?, RfA, RfB , R,

RY, and Rﬁg,SiOZ depending on ¢. The results clearly indicate that consideration of only two
modes discussed in previous works is insufficient to properly describe the plasmon band
structure of the fishnet. Particularly, several of the modes only appear at finite K, . In the

following section, we present a physical picture of the general modes of the fishnet before
analyzing the experimental results in detail. Later in the discussion section, we will relate the
observed modes to the general modes of the fishnet.
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Figure 3.2 Experimentally measured transmission, reflection, and absorption spectra for (a)
#=0" (b) $=90" (c) $=22.5" (d) $=45" (e) $=67.5". The incident angles of 0", 10", 17",

23" and 29" are displayed. For clarity, the transmission spectra are vertically offset with
increasing angle.

3.3.2b General picture of the plasmon modes in fishnet

The fishnet structure is essentially a metal/dielectric/metal layer with perforated holes
surround by air (superstrate) and SiO; (substrate) on each side. It has been studied that the
dispersion of the surface plasmons of a thin metallic film with holes can be well described by
that without holes [70-73]. Therefore, to help our understanding of the surface plasmon modes
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of the fishnet, we first consider the resonant modes of Ag/Si0,/Ag layers with the same
thickness of our fishnet (Fig. 3.1(a)) but without the presence of holes. (We will refer this as the
“infinite film system”.) Following the method in Ref. [74], we find that three distinct modes
exist in our spectral range (Fig. 3.4). (A fourth mode exists at higher energy near the plasma
frequency of silver and thus is neglected in our discussion [75].) Fig. 3.4(a) shows the
tangential electric field distribution of the three modes at 1eV corresponding to

k=5.1, 7.4, and 12.0um™" for each mode, respectively (orange dotted line in Fig. 3.4(b)). As

one can see, mode M and M, 0, have its field confined more in the Ag/Air (superstrate)

Ag/air

interface and Ag/SiO; (substrate) interface, respectively. The mode M, has its field confined

mainly in the two Ag/SiO, interfaces between the metal layers. The field distribution is
asymmetric and thus can be understood as magnetic modes. The dispersion of each mode is
presented in Fig. 3.4(b). We note that M___ has the lowest dispersion curve. Similarly, we

expect that the fishnet exhibits these three distinct modes but the periodicity of their dispersion
curves have to be taken into account due to the presence of the holes. (For later reference, we
mark the sections I, II, and III in Fig. 3.4(b) to indicate the probed photon energy range and
corresponding k-vector range for each mode.)

mag

substrate superstrate

(a) M.,  SiO: AgSio;Ag|Air (b) 1.5 .
M.
mag
-’ -
MAgISiO’z Si0,  Ag|SiO, Ag Air
>
©
0.5
M,  Si02|AgSiozAg Ar
o - 1 L 2 a
0 5 10 15 20

K (um™)

Figure 3.4 Three resonant modes of SiO; (substrate)/Ag (28nm)/SiO, (35nm)/Ag (28nm)/Air
(superstrate) infinite film system lying in the near-infrared spectral range. (a) Tangential
electric field distribution of three modes at 1eV (b) Dispersion curve of the three modes.
Section I, II, and III are drawn to indicate the k-vector range of the corresponding probed
photon energies (0.75eV~1.16eV) for each mode, respectively.

Using the mode dispersion in the infinite film system as a starting point, we can
understand the plasmonic band structure of the fishnet by introducing two important effects: (1)
Finite Brillouin Zone due to the periodic structure, and the corresponding formation of many
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bands in the folded Brillouin zone. (2) Different boundary condition (due to the edges of the
metal structure) will modify the plasmonic wavefunction and shift the plasmon resonance
frequency.

Let’s examine first the Brillouin Zone effect and assume the @ —k dispersion from
infinite film system is little modified. The unit cell of the fishnet is a 600 nm x 600 nm square.
In Fig. 3.5, we illustrate the corresponding reciprocal lattice in the extend zone scheme. The
first Brillouin Zone is the region noted by the gray shade. Each red dot in the figure
corresponds to a reciprocal lattice point, which will be at the I'-point in the folded zone scheme.
The blue circle encloses each reciprocal lattice point and represents the k-vector range that we
can probe in the experiment. The yellow area indicates the dispersion section of the photon
energy we probe for the three modes M, g0, M and M, - (Thus, the yellow area in Fig.

3.5(a,b,c) corresponds to section I, I, and III in Fig. 3.4(b), respectively.) The overlap between
the blue and yellow area will then be resonances which lie in the momentum and energy range
that we can probe. For resonances derived from M there is no overlap between the blue

Agl/air mag *

Aglair
and yellow area (Fig. 3.5(a)) indicating that the mode is outside the probing range. Second, for
M there are overlapping regions in the second Brillouin zone, indicating a single branch
of resonance can be excited due to the periodic structure (Fig. 3.5(b)). We note the two distinct
overlapping areas close to reciprocal lattice points (0, £27/a)and (£27/a,0) in Fig. 3.5(b);
these areas correspond to propagating surface plasmon modes confined in the Ag/SiO,
(substrate) interface in k, and k; directions, respectively. Finally, for M__, the yellow area

Ag/SiO2 ?

mag °
has overlap with the blue circles in several Brillouin zones, encompassing reciprocal lattice
points (0, £27/a), (27 /a,0), and (£27/a,£2x/a), as shown in Fig. 3.5(c). Therefore

several branch of plasmon resonances derived from M, . mode can be excited in the periodic

fishnet structure.

=

>

Y\ P

3 v Y

b

Aglair Ag/SiOz

3
7]
<]

Figure 3.5 Square reciprocal lattice of the infinite film system assuming a periodicity of
a=600nm in X and Y using the extended zone scheme. Blue circle represents the probed k-

vector range and encloses each reciprocal lattice point (red dot). Yellow area represents the
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dispersion sections I, II, and III in Fig. 3.4(b) for (a) M

respectively.

Aglair ? (b) IVIAg/SiOz 4 and (C) Mmag 4

To better understand the multiple resonance branches derived from M__ mode, we

mag

examine how the M, modes of the infinite film system get modified in the fishnet structure

due to the fishnet boundary condition, which requires that the electrical current flowing normal
to the metal edge to be zero. If the infinite film plasmon mode already (largely) satisfies this
boundary condition, it will be a good approximation for the fishnet eigenstate. On the other
hand, if the infinite film plasmon mode strongly violates the boundary condition, it will be
modified significantly and have a much higher resonance frequency (because the boundary
condition often requires extra nodes in the current distribution).

In Fig. 3.6 we plot current distribution of infinite film M, modes at reciprocal lattice

points (0, £27/a), (£27x/4a,0), and (¥27/a,+2x/a). We have chosen symmetric and anti-

symmetric combination of these modes, and overlaid the current distribution onto the fishnet

structure itself. (Gray and white area represents where the metal and hole of the fishnet would

IF
m o/e,n o/e >

where m and n index the reciprocal lattice points along X and ¥, and o/e denotes the
odd/even symmetry in X and ¥ . The superscript IF refers that they are modes of the infinite

exist.) For convenience we will name these modes for the infinite film system to be M

film system. For reciprocal lattice points at (0, +27/a), we have two modes Mg, and Mg,

with their current distributions shown in Fig. 3.6(a,b). Likewise, for reciprocal lattice points at
(£27/a,0), we have two modes M;, o and M, o in Fig. 3.6(c,d), and for (£27/a,£27/a) we

(o} e
IF IF IF IF
have M, ,,, M ,,, M and M

lo,1e * le,le

F

as presented in Fig. 3.6(e,f,g,h). We note that M, , and

M'l';o correspond to modes along X whereas M'OF'10 and M'OF’1e correspond to modes along ¥ .

For the infinite film system, these modes along X and § are degenerate.
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Figure 3.6 Current modes (blue arrows) of the infinite film system at points (0,1), (1,0), and
(1,1) as noted in Fig. 3.5(c). (a) M';lo and (b) MloF,le are degenerate modes at (0,1). (c) M'fop
and (d) My, , are degenerate modes at (1,0). (¢) Mf,,,, () Mi, ;. (2) M}, .., and (h) M{,,, are
degenerate modes at (1,1). The grey area indicates the fishnet geometry for comparison.

Now by examining current distributions of the different modes in Fig. 3. 6, we found
that infinite film modes Mg, and My, , satisfy the fishnet boundary condition (with no current

flowing normal to the position of metal edges) almost perfectly, and modes M'l':oy0 , M., and

hmF

10.1 Satisfies the fishnet boundary condition reasonably well. Therefore we expect them to be
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good approximations to real resonances in the fishnet structure at similar resonance frequencies.
Indeed we can identify magnetic plasmon resonances in the fishnet structure with current

and M'lFOV10 . We

display the current distribution of these fishnet eigenmodes in Fig. 3.7, and denote them as
M M M M and M

ST s : : IF IF IF IF
distribution similar to the infinite film modes Mg ,,, My, ,, My o, My 105

. We note that Moo and M, , are derived from the

0,10° 10,0° le,0° le,1o0° lo,10

modes M, ; and My, ; which correspond to modes along X . The mode M, ,, is derived from

Mg’lo which corresponds to the mode along ¥ . Unlike the infinite film system, the modes along

X and ¥ for the fishnet are non-degenerate because the wires disrupt the original current

distributions; the restoring forces of the charges are changed. This is similar to the behavior in
quantum mechanics that when a wavefunction is modified its frequency is shifted. On the other

hand, the infinite film modes Mg,., M{, ., and MY, ,, violates the fishnet boundary condition

strongly; there are significant normal current at the metal boundaries which are forced to be cut
off and form a node. Thus, these eigenmodes are shifted to much higher energy and is outside
our probing range.
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Figure 3.7 The current modes (blue arrows) of the fishnet metamaterial (a) M, ,, (b) M, (¢)
Mo (d) Mygso (€) My 15

M M M and M

spectral range. These modes are all magnetic resonances at the I'-point in the folded Brillouin
zone, and each anchors a different branch of plasmonic band dispersion. Together with the
resonance branch derived from surface plasmon mode M they form all the observable

In summary, we find the modes M, ,,, M, 5, M. 4, My, 4, 1010 0 be in our

Ag/SiO2 ?
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resonances in the probed near-infrared spectral range and will be a focus of our discussion.
Their excitation strength depends on the incident light polarization and k-vector and will be
analyzed in detail in the discussion sections.

3.3.2c Analysis of results and discussion
3.3.2c-1 Plasmon modes in high-symmetry directions (¢= 0" and 90°)

With the general picture of the plasmon modes of the fishnet in mind, we now analyze
the experimental results. The modes in ¢ = 0° direction are first investigated. With s-polarized

incident light, the electric field is along ¥, and the modes M, ,, and M, ,, with non-zero net-
dipole can be excited (Fig. 3.7(a,d)). M, ,, has larger net-dipole than M, ,  because the

oscillating dipole moments of M, , are all in-phase along the thick wires. We assign the lower
energy resonance Rf as mode M, ,, and the higher energy resonance Rg as mode M, . The

excitation strength is consistent with our assignment; Rf is more strongly excited than Rg (Fig.
3.3(a)). The fact that Rg is observed signifies that indeed the thin wires introduce a finite

oscillator strength to mode M (If the thin wires cease to exist, M, ,, cannot be excited as

le,10 *
the currents in center and boundary of the unit cell perfectly cancel each other; its net-dipole
moment becomes zero.)

To support this, we carried out numerical calculations to simulate the optical responses
of the fishnet using the finite-element-method (FEM) [76] through COMSOL. In this method,
the simulation domain is subdivided into minuscule volumes, i.e., elements. Maxwell equations
in the form of partial differential equations are solved for each element. The solutions contain
the internal field distribution throughout the structure. The fishnet structure illustrated in Fig.
3.1 and appropriate refractive indices for different elements in the structure are used. For silver,
we used the optical constants taken from Ref. [77]. The refractive index of the SiO; layer is
taken to be 1.43. In the calculation, we set the incident light to be normal to the sample with

electric field along y . The results indeed show the two resonant modes M, ,, and M, ,, as

presented in Fig. 3.8. Mode M, ,, is unobserved because currents in the thick wires of a unit

cell cancel each other and its net-dipole is zero.
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Figure 3.8 Numerically calculated current distributions showing the modes corresponding to (a)
M, 1, (b) M ,, . The incident electric field polarization is along ¥ .

The dispersion of Rg and Rg are plotted in Fig. 3.9. They exhibit positive and negative
dispersion, respectively. This is because with increasing K, , the mode distribution of Rf
evolves into that of the higher energy Rg . This can be seen by comparing M, ,, and M, ,, in
Fig. 3.7(a,d). With increasing K, , currents of M,  in the center and boundary of the unit cell
become more out-of-phase like that of M, , . On the other hand, currents of M, in the
center and boundary of the unit cell become more in-phase like that of M, . Thus, the current
distribution of Rf becomes more like the higher energy mode Rg and exhibits positive
dispersion. Likewise, Rg exhibits negative dispersion as its current distribution becomes more

like the lower energy mode R?. We can picture that the positive band of Rf is folded back
from the BZ edge to the zone center. This folded back band corresponds to the negative
dispersion of mode Rg . We also observe that the mode strength of Rf decreases whereas R(z)
increases in Fig. 3.3(a). Similar to the dispersion, this can be explained from the variation of the
current distribution of M, ,, and M, .. in Fig. 3.7(a,d). For M, ,,, the net-dipole decreases as

the currents in the center and boundary become out-of-phase with increasing K, . On the other
hand, for M, ,,, the net-dipole increases as the dipoles in the center and boundary are initially
out-of-phase but become more in-phase with increasing kK, . From this picture, we can

understand that the initially bright Rf becomes darker and the dark Rg becomes brighter.
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Figure 3.9 Experimentally measured plasmon modes R} (blue) and R (red) as a function of

k, in the direction of ¢=0". R? and RJ exhibit positive and negative dispersion, respectively.

Next, we investigate the plasmon modes in the ¢ =90° direction along § . With p-
polarized incident light, the y-z plane has mirror symmetry and only even modes with respect

to this mirror plane, i.e., M M and M can be excited. As we have discussed earlier,

0,10° le,10° 1e,0°

M, ,, has larger net-dipole than M, due to its in-phase currents along the thick wires. M,
is forbidden at normal incidence but allowed with finite kK, due to the phase variations in the

thin wires (Fig. 3.7(c)). We assign R}”, R3’, and RS’ to be My,,, M, ., and M

0,10° le,10 ° 1e,0 >

respectively. Consistent with our assignments, in Fig. 3.3(b), we observe Rfo to be strongest
and Rgo is unobserved at normal incidence but appears at finite K, . In addition, we observe the
mode Ri%,SiOZ in Fig. 3.3(b) and assign it to be M

the measured dispersion of Ri(;,SiOZ as green circles in Fig. 3.10 after calculating its k-vector

agisio, at finite k, . To understand this, we plot

using the relation —k;, +27/a=Kk,. (k;, is the tangential k-vector of the incident photon.) The

blue line corresponds to the dispersion of M as calculated for the infinite film system. We
The

deviation at higher energies can be understood as the band lowering effect near k, =27 /a.

Ag/SiO2

see that they match well confirming our assignment of R to the mode M

Ag/SiO2 Ag/SiO2 *

26



1I2L

0.9}

eV

I16~ [

(LSP L

0 0.25 0.5 0.75
ke(27 /a)

Figure 3.10 Experimentally measured dispersion of Ri%/sm (green circles) and the calculated

dispersion of mode M of the infinite thin film system (blue line).

Ag/SiO2

To support our assignments, we carried out numerical calculation in this direction with
p-polarized light. At normal incidence, we confirm that Rfo and RZO correspond to M, ,; and

M respectively. (Field distribution is same as shown in Fig. 3.8.) The field distribution of

le,lo°
Rgo with 6 =10° is present in Fig. 3.11(a). With the currents of thick and thin wires all
pointing away from the center of unit cell, we confirm that Rgo conforms to mode M, , as

depicted in Fig. 3.7(c). Finally, Fig. 3.11(b) shows the field distribution of Ri%,SiOZ at 0, =10°

corresponding to surface plasmon modes with large normal component.
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Figure 3.11 Numerically calculated current distribution of (a) R}’ and (b) Ri%,SiOZ for ¢ =90°

at 6§, =0". They correspond to M, and M respectively. The incident electric field

Ag/SiO2 ?
polarization is along V .
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In Fig. 3.3(b), we observe the mode strength of Rfo becomes weaker with increasing K.
This can be understood from the fact that the ¥ component of the incident electric field ( E,),

being the tangential field, is responsible for exciting M, ,, in Fig. 3.7(a). In the experiment, as
the incident light is p-polarized, the tangential component (E, ) decreases while the normal
component ( E, ) increases with larger €, . Hence, the excitation of M, ,, is reduced and
correspondingly Rfo becomes weaker. The situation is similar with Rgo. It becomes weaker

due to decreasing E, . Mode Rgo is unobserved at normal incidence but appears at finite K .

This is because its excitation is forbidden due to its net-zero dipole moment at normal
incidence (see mode M, , in Fig. 3. 7(c)). However, with finite K, , the phase variation in the
thin wires prevents their cancelation in the unit cell and induces a stronger mode strength.
Lastly, we observe in Fig. 3.3(b) that Ri%,SiOZ exhibits a stronger dip of T and peak of R as &,
increases. The spectra of A also show resonance but it is more pronounced in T and R because

resonances with very large dipole moment have the effective radiation damping to be much
larger than absorption damping. These pronounced spectral features are similar to that shown in

systems such as corrugated dielectric waveguides [78]. With increasing &, , the features of T

in°
and R become more pronounced because surface plasmon polaritons have a large normal field
component and its coupling with incident light becomes stronger due to the increasing E, field.

3.3.2¢-2 Plasmon modes in low-symmetry directions (¢ = 22.5°, 45°, and 67.5%)

In this section, we investigate the plasmon modes in ¢= 22.5°, 45", and 67.5°

directions. We first focus on the normal incidence case where only M M and M, , can

0,10° le,10 °

be excited due to the presence of x-z and y-z mirror planes. M, ,, has largest net-dipole

100 has the weakest (see Fig. 3.7(a,b,d)). At , =0, Fig. 3.3(c,d,e) shows
that only two modes RfA and RY are observed. (Here, we refer ¢ =22.5, 45, and 67.5.) Their
positions correspond to the k, =0 energy positions of R and RJ (or R}® and R}’) at 0.85¢V

moment whereas M

and 1.14eV, respectively. Therefore, we assign RfA as mode M, ,, and RS as M, ,, for k =0.

However, the mode M, , is unobserved in our linear spectra. To understand this, we carried

out numerical calculations with electric field along X at normal incidence for a detailed
analysis. In this case, only mode M, , can be excited due to the x-z mirror plane (Fig. 3.7).

From our results, although no clear feature is discernible in the linear spectra, we confirm a
resonant mode with a field distribution as Fig. 3.12(a) lying 50meV above M, , . This mode

conforms to M, , as the currents on the center and boundary of the unit cell are out-of-phase as
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depicted in Fig. 3.7(b). We find that the electric field amplitude of this resonance is 20 times
smaller than that of the background electric field (Fig. 3.12(b)). (The background electric field
is from the tail of the mode at zero-frequency.) As absorption is proportional to intensity, the
absorption due to the electric field of the resonant mode is 400 times smaller than the

absorption due to background electric field. This is because the oscillator strength of M, , is
very weak as its dipole moment is close to zero. (In fact, without the thin wires it has non-zero

dipole moment; the difference of the currents in the junction and non-junction prevent it to be
Zero.)

(b)

Figure 3.12 Numerically calculated current distributions showing the modes corresponding to
(a) M,y (b) background current. The incident electric field polarization is along X.

Interestingly, Rf ,, initially shifts to higher energy but then shifts to lower energy when
RfB starts to appear. The dash lines in Fig. 3.3(c,d,e) illustrate this change in shift direction.

Thus, RfA and RfB appear to be splitting from each other with increasing K, . This kind of

avoid-crossing behavior is observed in quantum systems. We understand this plasmon
dispersion behavior as the following discussion.

In our numerical calculation, we observed two modes M, ,; and M, , with the latter

being 50meV higher in energy. These two modes lying close to each other can couple when
their modes are not orthogonal. Since, M, ; is a weaker mode, its coupling to the stronger

M,,, mode will allow it to become observable. The coupling will only be allowed when the
two modes are not orthogonal and this depends on the direction of K, . Thus, we assign RfA and

RfB to be the coupled modes of M, ,; and M, . In the following, we show that the coupling is

allowed only for low-symmetry directions and that our observation is consistent with this
picture.
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First, we discuss the coupling at normal incidence (&,, = 0" ). Coupling between two
modes depend on their mode overlap and is determined by

JE()-p(rydr
(3.2)
where E(TF) is the electric field of one mode and P(F) is the dipole of the other mode. For

k. =0, Eq. (3.2) is zero because of the symmetric distribution of E(F) and Pp(F) with respect

to x-z and y-z mirror planes (Fig. 3.13(a)). Therefore, the two modes are orthogonal and no
coupling occurs and this is consistent with that we only observe one mode for k, =0 .

Second, we consider the coupling in the directions of ¢ =0 and 90°. Fig. 3.13(b)
illustrates the modes with a finite IZX (¢=0°); the phase is varying in X . Here, Eq. (3.2) is
again zero because of the mirror symmetry in the x-z plane; the integration at I =(X,Y,Z) is
canceled by that of the position I''=(X,—Y,z). Fig. 3.13(c) depicts the modes with a finite Ry
(¢ =90°) Similarly, the mode overlap is zero due to the mirror symmetry in the y-z plane; the
integration at I' = (X, Y,Z2) is canceled by that of the position I''=(—X,Y,Z). Therefore, it is
01 and M, is forbidden in the directions of ¢ =0" and 90° and

again consistent with our experimental observations.

clear that the coupling of M

Third, the coupling in the directions of g= 22.5°, 45°, and 67.5" is considered. A finite
IZt induces phase variations in both X and ¥ as depicted in Fig. 3.13(d). Due to the phase

variation, no mirror planes exist. Eq. (3.2) ceases to be zero as k, becomes finite. Therefore,
coupling between M, ,, and M, , are allowed and become stronger with increasing k; . The

coupling mixes the bright and dark mode making the latter to become visible. This is the reason

¢

we observe the coupling behavior of R},

and RfB in low-symmetry directions (Fig. 3.3(c,d,e)).
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Figure 3.13 Illustration of the mode overlap between the dark mode (M, ;) and bright mode

M, 1, for (a) kK, =0 (b) ¢=07(c) ¢=90" (d) ¢ =45 . Red arrows indicate the induced dipoles
of M, (left) and M, ,, (right). Blue dashed arrows is a schematic representation of the electric
field distribution by the dark mode (M, ).
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We further analyze the coupling of the bright mode (M, ,,) and dark mode (M, , ) and
deduce the dispersion of the latter from our experimental results. Particularly, we focus on
¢ =45 but the discussion is also applicable to ¢=22.5" and 67.5". Fig. 3.14(a) plots the
dispersion of R, and R} (red circles) as observed in Fig. 3.3(d). In experiment, we can only
observe the coupled modes. We also know the dispersion of the uncoupled bright mode from
our measurements in th = |ZX and Et = Ey . With this information, we predict the dispersion of

the dark mode where the coupled modes can be explicitly expressed in terms of the uncoupled
modes. We denote the dark mode and bright mode as eigenstates @, and ¢, , respectively. Their

energy eigenvalues are E; and E, prior to coupling. When the two states are allowed to
interact, the eigenstates become a linear combination of ¢, and ¢, , and to find their energy we
must find the eigenvalues of the matrix

Ed H int
H int Eb

is the coupling coefficient [79]. The eigenvalues are

(3.3)

where H,

E,+E
E,=—0 04+ /H2 +A’
T 2 int

(3.4)

|Ed_Eb|

where A = is half of the energy separation between ¢, and ¢, . The new eigenstates

are a linear combination of ¢, and ¢, and given as

¢+ = a+¢d + b+¢b

3 :a_¢d +b—¢n
(3.5)
A—H2 +A? 4
where a, =————"—— b =1, a =1,and b =———=—==—"1n Fig. 3.14(a), the
o P A+H. +A°

upper and lower red circles corresponds to ¢, and ¢ _, respectively. The blue solid curve
corresponds to ¢, . Using Eq. (3.4), we calculated the dispersion of ¢, and presented as the
black solid curve. Furthermore, Fig. 3.14(b) shows the calculated dispersion of H. . It clearly

shows that the coupling becomes stronger with increasing Et as we have discussed previously.
Fig. 3.14(c) shows the normalized coefficients a, and b, for ¢, . We confirm that ¢, is purely

a dark mode at k, =0 and the contribution of the bright mode becomes larger with increasing

K.. ¢ shows similar behavior with the contribution of the dark and bright modes reversed.
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This also explains the change of the mode strength of RfA and RfB in Fig. 3.3(c,d,e). The
increased contribution of the dark M, to RfA makes it weaker whereas the increased

contribution of M, ,, to RfB makes it stronger and visible at finite k, .

C
(@ (b) H (€) coefficient
1 0.1 14
09 i, oo P, 0.08
o |
09 1 ¢b
- 0.06
20 0 R 2
g ¢ 0.04
0.8 i .
Y
¥ -~
0.75 H See
1
1
0.7 - 0
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1 0 02 04 06 0.8 1

kt kt

=
-

5

Figure 3.14 Coupling behavior of R;; and R;: : (a) Dispersion of the uncoupled (¢, , ¢,) and
coupled modes (¢, , ¢ ). The red circles and blue solid line are from experimental results and
the black solid line is calculated from Eq. (3.4); (b) Dispersion of the coupling coefficient H,  ;
(c) Normalized amplitude of the dark (&, ) and bright (b, ) mode contributing to ¢, .

3.3.2-d Relation of observed modes to the general modes of fishnet

In the experiment, the observed six modes are labeled as RY, R?, RfA, RfB, R, and

R‘f\g,SiOz depending on ¢ . In the general picture, we discussed that the modes M, ,,, M, ,,

M M 10> Mygs0,and M are expected to be observed. From our analysis, we find that

1e,0 » AgISiO2

R? and R} correspond to M, ,, and M respectively. Modes RfA and RfB are mixed

. Thus, the

le,lo >

modes of M, ,, and M, ,. Mode R} corresponds to M, ,, and Ri%,SiOZ to M
M,,, M

Ag/SiO2

measured six modes are related to the five distinct modes M M and

MAg/SiOz :
3.7(e)) where its current oscillations are perfectly canceled in the unit cell.

0,10° 10,0 le,0° le,10°

In our measurements, we are unable to observe M, ,  because it is a dark mode (Fig.

3.4 k-dependent effective optical constants

In a natural material, the optical constants, i.e., N, Z, &, and u, are useful in describing
its material properties. Likewise, effective optical constants can be informative in understanding
the characteristics of a metamaterial structure. In practice, these can be deduced from the
complex transmission and reflection coefficients. In this section, we carry out phase
measurements using an interferometric setup and deduce the k-dependent effective optical
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constants for the first time. The retrieval procedure is presented and then the experiment results
are discussed.

3.5 Retrieval procedure

We briefly describe the formalism to retrieve the k-dependent effective optical
constants from the measured transmission (f ) and reflection () coefficients. Here, it is
assumed that the metamaterial is a homogenous slab of thickness d with its normal pointing in
z direction (Fig. 3.15). Furthermore, the metamaterial is considered to have mirror symmetry in
the x-z and y-z plane. Thus, the effective material tensors of the slab can be expressed in the
form of

(&, 0 0 (w0 0 )
=l 0 &, 0 and g=| 0 u, 0 | (3.6)
0 0 ¢, 0 0 u,

This is true for the fishnet as well as for many other proposed metamaterial structures. As
shown in Fig. 3.15, the front and back semi-infinite medium is considered to be medium 1 and
medium 3 with isotropic material properties (&, x4, ) and (&,, 4, ), respectively.

(b)

Figure 3.15 Beam geometry of incident s-polarized light on x-z plane. (a) Metamaterial slab

(medium 2) with thickness d between semi-infinite medium 1 (front) and medium 3 (back).

The electric field is along y direction. (b) Top view of fishnet showing x-z and y-z symmetry
planes.
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The beam geometry is depicted in Fig. 3.15. The light is incident on the x-z plane from
medium 1. In the experiment, the light is s-polarized with electric field along y in order to
excite the magnetic resonance with currents perpendicular to the thick wires. Thus, the electric
field has y component and magnetic field has x and z components. The normal wavevector for
each medium are K,,, K,,, and K,; as illustrated in Fig. 3.15(a). The tangential wavevector is

k, =& 4 sind, in all medium. With this geometry, the transmission and reflection coefficients

can be expressed in terms of the angle-dependent wavevectors in medium 1, 2, and 3 as

s, e
i= =5 (3.7)
22 (k,, +k,;)cos(k,,d) —i(—+k,k,;)sin(k,,d)
K, . kfz .
—2(k,, —k,3)cos(k,,d)+i(—%-—k, Kk, )sin(k,,d)
f-\: fxx f;x
2 (k,, +k,;)cos(k,,d)—i(—5- +k, k,;)sin(k,,d)

where k,, = /kZeu —k? , k= N Ko&,46 K/ , and

kzZ = \/kozgyy:uxx - ktzluxx /:uzz :

(3.8)

Eq. (3.7) can be inverted to relate the material parameters of medium 2 with € and Ff as,

kzl (1 B I,’\2) + kz3f2)

k,,d=+cos™ (= . —),
tk, A=F)+k,;(1+P)]
9)
&:ikaz “D-kif
Ly, 1+¢° —f*

(3.10)

Furthermore, the effective index of the metamaterial slab can be obtained from

n=+Jk2 +k? /K, .

(3.11)

From Egs. (3.8-11), n, ¢, , and 4, is obtained upon assuming the normal component z,, =1
with no resonance. Similar relations can be obtained for p-polarized incident light giving the
expressions for &, and u . Here, we focus on obtaining 4, using s-polarized light as it
contains the information of the excited magnetic resonance.
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3.4.2 Experimental scheme

We carry out phase measurements of the complex transmission (t ) and reflection ( )
coefficients using the setup depicted in Fig. 3.16 which implements a Newton interferometer
arrangement. The light source was the super-continuum fiber laser described in previous
sections. A 2D InGaAs CCD camera was used to detect the interference fringe due to the
overlap of the sample and reference images. The absolute phase is deduced by comparing the
fringes in the substrate and fishnet (Fig. 3.16 inset).

M: Mirror Dg substrate
L: Lens
BS: Beamsplitter -
D;g: CCD camera 4
T: Transmission | fishnet
R: Reflection L *
|
] N
I
| :I ______
Fiber laser BS saniple
M

Figure 3.16 Experimental setup to measure the phase of transmitted and reflected light. Near-
infrared tunable pulses are provided by a super-continuum fiber laser. The interference pattern
is detected by an InGaAs CCD camera. The absolute phase is obtained by compared the fringe
on the substrate and fishnet (inset).

3.4.3 Results and discussion

We focus on characterizing the lower energy magnetic resonance for ¢=0° using s-
polarized light. Fig. 3.17 display the measured T=|t |*, R=|F °, ¢, and ¢,. The magnetic
resonance with its characteristic features is identified around 0.85¢V. We note the dip of T is
associated with the curvature variation, i.e., kink behavior, of ¢ (Fig. 3.17(a,c)). This can be
understood from Kramers-Kronig relations where it is known that the phase is related to the
slope of amplitude [80]. The dip in T has its slope varying from negative to positive and is
correlated as a kink behavior in ¢ . For R, the slope doesn’t exhibit a change of sign and the

spectra of ¢ have monotonous dispersion (Fig. 3.17(b,d)). The effective n, ¢, x,, and their

vy’
k-dependent spectra are deduced and are plotted in Fig. 3.18. The spectra of 1, shows a
prominent resonant feature whereas ¢, exhibits a monotonous plasma dispersion. This
confirms that the resonance is strongly magnetic. The structural parameters of the fabricated
fishnet do not give negative values for the real part of x,, . However, the real part of n is
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negative as the condition Re(e,, ) Im(z,, )+ Re(u,,)Im(g,,) <0 to achieve negative index is

satisfied [47]. Thus, the negative refraction is mainly due to the real part of ¢, and imaginary
part of 4, as has been observed in other studies [17, 64, 81, 82]. The resonant position of £,

is observed to shift to higher energy with increasing k, . Spectral changes in the transmission

and reflection are associated with this shift. This indicates that the dispersion of the magnetic
resonance is responsible for the observed changes. Thus, we experimentally confirm that the
resonance is magnetic in nature and the observed dispersion is due to the shift of the magnetic

resonance.
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Figure 3.17 Experimentally measured angle-dependent spectra of (a) T (b) R (c) ¢, (d) ¢,.
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Figure 3.18 Experimentally measured angle-dependent spectraof n, ¢, and g, deduced
from Egs. (3.8-11); (a) Re(n) (b) Im(n) (¢) Re(e,,) (d) Im(g,,) (e) Re(rs,) () Im(zz,) .

3.5 Conclusions

In summary, we probed the plasmon band structure of the fishnet metamaterial using
angle- and polarization- resolved spectroscopy. Multiple magnetic bands are shown to exist in
the near-infrared spectral range. Most interestingly, we identify dark modes that couple
strongly with the bright magnetic modes in low-symmetry directions. This leads to
hybridization of the bands accompanied with avoid-crossing behavior. Such effects are
analogous to the mixing of extended electronics states in solids and should be considered in
designing metamaterials. In addition, we develop a phase measurement technique and measure
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the k-dependent effective optical constants for the first time. We show that plasmon dispersion
originates from the shift of the magnetic resonance in the effective permeability. Our approach
sets up a basis for characterizing the plasmon band structure of other metamaterials.
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Chapter 4

Second harmonic generation in optical metamaterials

4.1 Motivation

In recent years, there have been a number of reports on studies of nonlinear optical
properties of metamaterials. The first attempts were mainly theoretical; experimental works
appeared only recently. Pendry [10] suggested that enhanced nonlinear optical responses could
be observed in metamaterials composed of split ring resonators (SRR) at the magnetic
resonance. A series of experiments showed significantly enhanced second-harmonic generation
(SHG) from gold SRRs arrays at their magnetic resonance frequencies [12, 83, 84], but the
signals were obtained at a single frequency. Later, it was observed that SHG from a fishnet
metamaterial exhibited strong enhancement at the magnetic resonance [85]. It was suggested
that unlike in a molecular system, the resonant enhancement came from local-field
enhancement through the excitation of the plasmon resonance. However, detailed comparison
of experimental results with theoretical calculation has not been done and quantitative
understanding of the observations has been limited.

In this chapter, we experimentally study the nonlinear response of a fishnet structure
with Ag/SiO,/Ag sandwiched layers using second harmonic generation (SHG) spectroscopy.
Also, the SHG response from the metamaterial was theoretically calculated. The approach
combines finite-difference-time-domain (FDTD) simulation with a field integration technique.
The calculated SHG spectra around the magnetic resonance show quantitative agreement with
the experimentally measured spectra of P and S polarization combinations. The maximum
resonance enhancement of SHG reaches ~80 times of that from a flat Ag surface for the P-in/P-
out polarization combination, suggesting that metamaterials could be potentially useful as
nonlinear optical materials in some applications. Furthermore, the theoretical calculations are
able to explain many interesting features observed in experiment, and allow design of structure
that maximizes SHG.
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4.2 Second harmonic generation spectroscopy

The basic theory of SH spectroscopy is well established [86], and only a brief
introduction is presented here. When an electric field E(w) is incident on a medium, a second

order nonlinear polarization P(2w) is induced. Under the electro-dipole approximation it is
express as

PQw)=¢5,72 : E(w)E(w) (4.1)

eee

where 70 is the electro-dipole contribution to the second-order nonlinear susceptibility tensor.
P(2w) generates a signal at 2o and its intensity has a quadratic dependence to the effective

nonlinear susceptibility 7. . For a plane wave input, the SH signal is expressed as

2 =(2)12 12
@ | 7 I 1 (@)
8¢,c’ cos’ B

12w) = (4.2)
where | () is the input intensity and /3 is the exit angle of 2@ with respect to surface normal.
The effective nonlinear susceptibility has the form

7% =[LCw)-6,,1 77 :[L(w)8, l[L(@)8,] (4.3)

where € is the unit vector of the polarization of E fieldand L being the tensorial Fresnel
factor. In our experiment, we use the geometry presented in Fig. 4.1. The x-z plane is the
incident plane where z-axis is parallel to the surface normal. For SHG, the boundary condition
determines that the exit angle /3 is equal to the incident angle.

Figure 4.1 Geometry of second-harmonic generation.
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The Fresnel coefficients for frequency @ at an interface of two media with dielectric
constants & (@) and ¢,(w) are [87]

L (@)= 2¢,(w)k,, (@)
&, (0)k, () + &/(0)k,, ()
L (C()) — 2klz (CO)
Y k,, (@) +k,, (@)
L, (w) = 2¢(w)e, (0)k,, (w) 1 (4.4)

&, (0)k,(0)+&,(0)ky, (0) £(@)

where & () is the effective dielectric constant of the interfacial layer [86]. For bulk
contribution, it equals the bulk dielectric constant ¢,(®), and for surface contribution, the

£,(@)(&,(@) +5)

microscopic local-field correction needs to be considered leading to & () =
4e,(w)+2

The input and output beams can be chosen to be either perpendicular or parallel to the
plane of incidence being S-and P-polarized, respectively. Thus, independent elements of 7'

can be probed selectively by different polarization combinations. For SHG, the four beam
polarization combinations can be generally written as,

7@ =L,Qo)L, (o) 12
28 =—cos L, (20)L%, (@) 72 +sin AL, Qo)L (@) 2)

xyy i
15 = cos’ AL, )L, (@) 7,2
+CO0S ﬂ sin ,BLyy (20)) Lxx (0)) Lzz (0)) ’ Z(Z)

yxz
+cos Bsin BL, 2o)L, (@)L, (@) Z;Q
+sin’ AL, o)L, (®)- 1

yzz

28 =—cos’ L, o)L, () 74
- COS2 ﬂ sin ﬂLxx (260) Lxx (CO) Lzz (CO) ' 7((2)

- 0082 ﬂ sin ﬁLxx (2(()) Lzz (Ct)) Lxx (C()) : Z>(<22x)
+cos fBsin’ AL, Qo)L (@) x)

Xzz

+cos’ Bsin AL, Qo)L (w)- x5

ZXX

+cos fsin® AL, Qo)L (o)L, (@) 1y,

+cos ﬂ Sin2 :BLzz (2(0) Lzz (a)) Lxx (a)) : Z(Z)

+sin’ AL, o)L, (@) 74 (4.5)
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(2)

() refers that the input E(w) is S-polarized, and the output

The notation, for example, y.
E(2w) is P-polarized. Also, the expression ;(i(jﬁ’ is specific to a certain coordinate system. It

can be transformed from one coordinate system XYZ to another xyz as

22 =D 72 -DH(j-myk-f) (4.6)

Imn

where ijk and Imn refers to the new coordinates xyz and original coordinates XYZ,

respectively. The above description allows us to predict the non-vanishing susceptibility
components in our measurements on the fishnet sample and silver film which is used for
normalization.

4.3 Experimental setup

The laser system used for the experiment is well described in [88, 89]. The laser beams
are provided by a OPG/OPA setup pumped by a mode-locked Nd:Yag laser (Continuum
PY61C-20). Briefly, the oscillator stage of the Nd:Yag laser provides 25ps pulseas at 1.064um
with 20Hz repetition rate. The output from the oscillator is focused to a pinhole to improve the
mode quality by spatial filtering. After that the pulse is amplified to ~30mJ/pulse by a Nd:Yag
amplifier. 75% of the energy is picked up to generate 355nm output by third harmonic
generation. It is achieved by first generating second-harmonics by a type-I LBO (lithium
triborate) crystal. Then the second harmonic is combined with the fundamental 1064nm beam
in a type-1I LBO crystal to generate the third harmonic output of ~7mJ/pulse. The third
harmonic output at 355nm is split by a 50:50 beam splitter and directs the beam into two
OPG/OPA setups [89]. For a OPG/OPA system, there are two BBO crystals. The pump beam at
355nm passes these two crystals where their optical axes are positioned oppositely so there is
no overall beam displacement. The signal and idler beams generated by the optical parametric
process are sent to a grating where the first-order diffracted beam is reflected back. The
fundamental 355nm beam is separated by a dichroic mirror. It is retro-reflected to be combined
with the seed again at the two BBO crystals. The amplified seed is then separated again with a
dichroic mirror giving a total output ~450ul/pulse at the idler wavelength 1.5um. The
OPG/OPA output is tunable from 0.41um to 2.6um using both signal and idler beams. The
schematic of the OPG/OPA setup is depicted in Fig. 4.2.

355nm Delay

PBP
I

Grating

Idler I \ : : } _‘/

Filter DM1 13 BBO1 BBO2 M4  DM2 L1 15 L2

Figure 4.2 OPG/OPA setup
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For the experiment, the idler beam is selected and focused on the sample with a spot
size of ~500um®. The layout of the SHG setup is presented in Fig. 4.3. The beam is incident at
45° and the generated SHG pulses are measured in reflection direction. The signals are detected
Hamamatsu R955 photomultiplier tube and gate integrator electronics after spectral filtering
and polarization selection. The signals were normalized to that of replacing the fishnet sample
with a silver film. The structure (Fig. 4.4) has been prepared by the same process described in
Sec. 3.2.

. Polarizer
Polarizer

Sample

Figure 4.3 Experimental geometry for second-harmonic generation measurements.

Figure 4.4 (a) Schematic of the thick wire of fishnet (b) SEM image

4.4 Results and analysis
4.4.1 Linear spectra of experiment and theoretical calculation

To understand the nonlinear optical response of a system, the linear optical properties
should be known first. Therefore, we first carry out measurements to obtain transmission,
reflection, and absorption spectra. The input beam with linear polarization along the thin stripes
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normally impinging on the sample (E || X and H || §, see Fig. 4.4(a)). The results are depicted

in Fig. 4.5 by the red open circles, from which a magnetic resonance can be identified at
~1.375um where the absorbance is maximum. Then a theoretical calculation is employed using
a FDTD simulation [90]. The dielectric constants of silicon and silicon dioxide were taken as
3.4777 +10.004 and 1.65, respectively [91]. A Drude model was taken to describe the optical

dielectric constant of silver &,(®) =&, — @, / o(w—iwy) with @, =1.37x10°s™ and &, =4.

For thin silver films used in experiment, we expect electrons to experience additional scattering
due to surface roughness and structural imperfections. Therefore, we set the damping parameter

,, as an adjustable parameter to be determined by comparing with the experimental

absorption spectrum. We found that the most appropriate value of @, was 9x10”s™", which is

ol
roughly 6.6 times larger than the corresponding bulk value [51]. We note that similar
adjustment was adopted in a recent theoretical study [38]. The FDTD calculated spectra with
such a choice of @, are shown in Fig. 4.4 as blue lines, which are in excellent agreement with

the experimental result. FDTD simulations identified the resonance at ~1.375um to be a
fundamental magnetic resonance and that at ~1.02um a high-order magnetic resonance, since at
both wavelengths strongly enhanced magnetic fields are induced inside the sandwich structure
while the electric responses in the two Ag layers nearly cancel each other.

(a)

R 'm
0.3/~

[=]
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—FDTD
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A, =1375nm
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Figure 4.5 Linear transmission, reflection and absorption spectra of the double-fishnet
metamaterial, obtained by experiments (red circles) and FDTD simulations (blue lines).

4.4.2 Computational methodology to calculate SHG spectra

The FDTD simulations provide the local electric field distribution of the input in the
fishnet structure. This information is used to compute the nonlinear responses of the system.
For example, Fig. 4.6 shows the distribution of local electric field on the x-z symmetry plane in

the structure at 1.38um with incident radiation of E || X . The local field is strongly enhanced on
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the inclined planes in regions close to the boundary between the top Ag layer and the middle
Si0, layer.

-320  -160 0
X (nm)

Figure 4.6 Normalized electric field distribution on the middle symmetrical x-z plane at
1.38um.

The local field distribution is incorporated with a field integration technique to calculate
the SHG signal. Here, the computational methodology is described briefly. For metal, the

second-order nonlinear response is described by two independent, non-vanishing surface

nonlinear susceptibilities y¢’) = y¢7, and ¢ =y L, = x3h. = 28).. = 280, » where £ is

along the surface normal. It is well known that y¢*) = y¢”),. dominates the response [92].

Therefore, in the calculation only this component is considered for flat Ag surfaces and local
Ag surfaces of the metamaterial structure. Then the effective electric-dipole moment for SH

radiation, p* (2w ), that is induced in a unit cell by an incoming field, E(w) can be expressed
as [85, 93]

P = [L(F.20): 70 :[E(FL)F dF 47)

where the integration is over the entire silver surfaces within a unit cell.
Eloc(f,a)) = [(F,w)- E(w) is the local electric field, and E(F,a)i) is the local field correction
factor at w,. They are obtained from the FDTD calculation. For a rough calculation, the

integration in Eq. (4.7) is carried over the surface areas of a unit cell that are directly exposed to
the incoming light.

We normalize the reflected SH signal from the fishnet against the reflected SH signal
with P-in/P-out polarizations from a flat Ag surface. Thus, the signal can be expressed as

A _ 2
s, |6 97,0

(ol

Sref ‘ép '[_p(Z)(pa p)]ref

(4.8)

5 -

Here, S, denotes the signal generated with the o '-in/ o -out polarization combination from

the fishnet. €, (o =S,P) is the unit vector for polarization & p'” (o, ") and [P (p, p)]

ref
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refer to the effective SH dipole moments per unit cell area on the sample and the flat Ag film,
respectively, induced by inputs of the same intensity. For [ P (p, p)], » Eq. (4.7) reduces to

[P (P. Pl = AL(F.20): 78 [L(F, ) E (@)F (4)

where A is the area of the unit cell of the fishnet, and the local-field factor L(F,w) is simply the
transmission Fresnel coefficient for the air/metal interface.

4.4.3 SHG spectra of experiment and theoretical calculation

In the experiment, the reflected SHG spectra with various input/output polarization
combinations are measured around the magnetic resonance. The sample is oriented so that the
incident plane is either the y-z or the x-z plane (x and y being along and perpendicular to the
thin stripes, respectively). The input beam angle on the sample is at & =45". The results are

depicted in Fig. 4.7. The spectra are normalized against the SH signal of P-in/P-out polarization
combination from a flat Ag film.

o
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)
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w
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Figure 4.7 FDTD calculated (lines) and measured (symbols) SHG spectra of the fishnet
structure for different polarization combinations: (a) P in, P out; (b) P in, S out; (¢) S in,

S out; (d) S in, P out. The incident angle is kept at & =45" and the incident planes are
specified in the legend for different cases. Inset shows the measured quadratic
dependence of the SHG signal on the incident pump power.

47



The calculated SHG spectra are compared with the experimentally measured spectra in
Fig. 4.7. We find reasonable quantitative agreement between calculated and measured spectra.
Several characteristic features of the SHG spectra from the fishnet are noticed. First, a resonant
peak always appears around the magnetic resonance at ~ 1.375um as long as the input beam
has a magnetic field component along ¥, although the precise position of the resonance peak
shifts slightly in different spectra compared to the normal incidence case (Fig. 4.5). Second,
both theory and experiment show that the SHG enhancement for the P-in/P-out polarizations at
the magnetic resonance is ~80 times in comparison with that on a flat silver surface. This is
remarkable considering that the fishnet structure has nearly half of the surface plane empty.
Third, the P-polarized SH output is much stronger than the S-polarized one, irrespective of the
input polarization. Fourth, both theory and experiment display two resonant peeks in the P-
in/P-out spectra; the peak at ~1.22pm was not observed in the normal incidence spectra (Fig.
4.5) and the S-in/P-out SHG spectrum (Fig. 4.7(d)). Finally, the non-resonant SH signal with P-
in/P-out polarizations is strong as we would expect, knowing that a strong PP-SHG is also
observed on a flat silver film. The non-zero SHG signals in SS and PS cases observed
experimentally are caused by imperfections of the real sample. Detailed discussions of the
features are done in the following in the following section.

4.5 Discussions

The resonant enhancement of SHG from the fishnet around 1.375um arises from
resonant enhancement of the local field. For our fishnet structure, the magnetic resonance can
be excited only when the input excitation has a magnetic field component along ¥, and is
observable in SHG with a P-polarized input propagating in the x-z plane or an S-polarized
input propagating in the y-z plane. To explicitly illustrate the local field enhancement effect,
Fig. 4.7(a) and (b) depicts the FDTD-calculated local field at the upper Ag/SiO, edge on the
inclined side plane for S-polarized input in the y-z plane and P-polarized input in the x-z plane,
respectively. In both cases, the fundamental resonance at ~1.375um is obvious. Interestingly,
an additional weak resonance at ~1.22umis found in the P-input case (Fig. 4.8(b)), which does
not exist in the S-input spectra (Fig. 4.8(a)) and the normal-incidence spectrum (Fig. 4.5(c)).
FDTD simulations identified this resonance as an electric-dipole one with currents flowing on
the side walls, and it can only be excited by an input wave with an E, component (e.g., off-

normal P-wave input). This resonance is also responsible for the peak at ~1.22um in the PP-
SHG spectra (Fig. 4.6(a)), observed both experimentally and numerically.

The frequencies of resonances excited by S- and P-polarized inputs are slightly different
(Fig. 4.8), and similarly for resonances observed in the SHG spectra with S- and P- inputs as
shown in Fig. 4.7(a) and (d). This is due to different resonance dispersions in the two cases
because of different couplings between adjacent magnetic resonators in the fishnet. Both our
experiment and FDTD simulation revealed that the resonance dispersion of the S-input case is
stronger than that of the P-input case, and thus, the former has a more red-shifted resonant
frequency. The FDTD simulations have taken such effects into account rigorously.

48



(a) S-input

“enhancement

loc

E
N B O N b O

P-input

1250 1350 1450
Fundamental A (nm)

Figure 4.8 Normalized local fields at the Ag/Si0O, edge in the inclined side plane as
functions of the fundamental wavelength, calculated by FDTD simulations assuming (a)
S-wave incident in the y-z plane and (b) P-wave incident in the x-z plane.

Relative strengths of SHG with different polarization combinations can be understood
from symmetry argument. Eq. (4.7) can be re-written as

P (2w)=X? :E(w)E(w), (4.10)

where X = .[ L(F,20): 7 :[I:(F, a))]2 dr should reflect the symmetry of the unit cell. The

fishnet structure has mirror planes at x=0 and y=0, then the nonvanishing elements of X® are
X2, X, X, X&) =X, and X{2) = X{}) . None of these elements contributes to SHG

722 0 XX 0 zyy ? XZX XXz 2 yzy
with P(-in)S(-out) and SS polarization combinations. Therefore, PS-SHG and SS-SHG are
forbidden in such a fishnet structure. The experimentally observed signals shown in Fig. 4.7
appeared only because the real fishnet structure did not have the perfect mirror symmetry. On
the other hand, SP- and PP-SHG are allowed. As mentioned above, the magnetic resonance is
expected in SP-SHG with beams in the y-z plane and in PP-SHG with beams in the x-z plane.

The corresponding contributing X* elements to SP-SHG and PP-SHG are X2 and (X%, X2

X 772 % XX 2

X® = X)) respectively. We note here that in contrast to the flat metal surface, SP-SHG from

the fishnet (with beams in the y-z plane) is non-vanishing even if we treat the metal as a free
electron gas. This is mainly because SP-SHG can be generated from the inclined side planes of
the fishnet structure. In our fishnet structure, SHG originates from the silver part of the surfaces.
For SP-SHG, the P-polarized SH output comes solely from p'* induced in each unit cell by the
)

z

S-polarized input. Contribution from the top flat surface of the Ag stripes to p,” is negligible

if the local field component perpendicular to the surface is negligible. On the other hand,
contribution from the Ag side planes is significant and is given by
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o J.{;(f)(EZ,,OC cos@+E, . sin0)* cos &

; ds (4.11)
—2;(“(2)(E cosd—-E, sind)E,, _ cosd+E  _sinf)sinf

x,loc z,loc z,loc x,loc

where @ is the inclination angle of the side planes (see Fig. 4.4), and the integration is over the
Ag-covered area of the inclined side planes. Fig. 4.9 shows how E, .and E,, . vary on the side

wall and the top Ag surface for @ =71" (experimental sample) and & =90’ (ideal case with
vertical side walls). It is seen that around the upper Ag/ SiO, edge on the side walls, the local
field enhancement is near maximum. In addition, different symmetry properties possessed by

E, o and E, . within a unit cell are actually responsible for the global symmetry of X

x,loc

X,loc

clements which we argued before. At&=90", both E, ,.and E, . are present even though the
S-polarized input has only a field component along X .
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Figure 4.9 Distributions of normalized local fields (solid line: E, , ; dashed line: E, . )

x,loc ?

along the symmetry lines on the top and the side wall Ag surface, calculated by FDTD
simulations for the fishnet structures with (a)+(b)&@="71", and (¢)+(d) 8 =90".

Fig. 4.10 describes SHG from a fishnet with =90 obtained from FDTD simulations.
It is seen, as expected, that SS- and PS-SHG do vanish, consistent with the symmetry argument
presented above. Both PP- and PS-SHG are allowed, but PP-SHG is appreciably stronger than

SP-SHG. It is interesting to compare the =90 case (Fig. 4.10) with the experimental sample
case with @ =71" (Fig. 4.7). Because of the much stronger local-field enhancement, PP-SHG
and SP-SHG for 8 =71" are much stronger than those for 8 =90".
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Figure 4.10 Simulated SHG spectra of the fishnet with vertical side walls: (a) P in P out,

(b) Pin S out, (¢) Sin S out, and (d) S in P out. Incident angle is kept as & =45" and
the incident planes are specified in the legend for symbols and lines, respectively.

Finally, we note that the linewidth of the measured SHG peak (Fig. 4.7) is narrower
than the linear absorption peak (Fig. 4.5). It was shown in [85] that the measured third
harmonic generation (THG) peak is further narrowed compared with the SHG one. This is in
striking contrast with resonance behaviors of molecular materials, where the linear, SHG, and
THG spectra often have similar line shapes [86]. The difference arises because in metamaterials,
the resonance enhancement is through the local field resonance. The nth harmonic in a
metamaterial is generated by the nth-order induced polarization

P = [L(F,nw): 7 (1) [Ege (F, )] dF (4.12)

which can be approximated by p™ (nw) o ‘I:(F, a))‘n if “hot spots” exist. This explains the

resonant linewidth narrowing of the higher harmonics.

4.6 Conclusions

In summary, using SHG spectroscopy and comparing it with theoretical calculations,
we have provided a complete analysis of second harmonic responses from a fishnet
metamaterial. It is shown that the resonant enhancement of SHG from a metamaterial is
achieved through the resonant enhancement of the local field. In our case, we observed an
enhancement of ~80 times larger signal compared to that of a bare silver film. Also, the
excellent agreement between experiment and theory validates the computational approach of
FDTD simulations with a field integration technique to calculate the nonlinear response. It may
be utilized to further understand details of many interesting phenomena observed
experimentally, and allow researchers to design optimal metamaterial structures for nonlinear
wave-mixing applications.
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Chapter 5

Pump-probe spectroscopy study of fishnet metamaterial

5.1 Motivation

Actively controlling the optical properties of metamaterials have garnered much interest
because of the potential implications [94, 95]. By changing the effective refractive index upon
request, one can envision tuning the functioning frequency range of negative refractive index
materials or invisibility cloaking devices. In addition, tuning the properties of metamaterials
can also be useful in improving the performance of conventional applications such as
modulation and switching [96]. Recent studies have mostly focused on switching by utilizing
low-frequency metamaterials through applying a bias voltage [97]. However, in these studies
the spectral behavior changes of effective optical constants are not studied and therefore
provide only limited understanding. Also, since the switching is achieved by applying bias
voltage, the speed is limited by the time constant of the equivalent circuit. Therefore it is
impossible to probe the intrinsic limit of switching speed.

In this chapter, we report our study carrying out femtosecond pump-probe spectroscopy
to probe the modulation dynamics of a fishnet metamaterial [64]. We have designed a new kind
of fishnet metamaterial with a mid-semiconductor layer and utilized optical pumping to excite
free carriers in the nanostructure. Very short pulses are required to probe the intrinsic limit of
the dynamics of the materials. Therefore we use femtosecond pulses to probe the dynamical
change of metamaterials. The results help elucidate how the effective optical constants change
upon external perturbations.
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5.2 Experiment
5.2.1 Fishnet design

We design a new type of fishnet structure that includes an amorphous silicon (a-Si)
layer. The purpose of including a semiconductor layer is to allow excitation of free carriers
upon optical pumping. Our sample is composed of Ag(25nm)/a-Si(80nm)/Ag(25nm)
sandwiched layers on a silica substrate. Fig. 5.1 presents a scanning electron microscope (SEM)
image (Fig. 5.1(a)) and the schematics of the three dimensional structure (Fig. 5.1(b)). The
samples were designed using the finite-difference-time-domain (FDTD) method [90] to have a
magnetic response in the near-infrared. Adjusting the width and thicknesses of the grids along
with selecting material of proper dielectric constants allows fine tuning of the resonant
frequency to the desired value [98]. The samples were prepared by nanoimprint lithography
[69]. During the evaporation process, a-Si was evaporated between the top and bottom silver
layers.

Figure 5.1 Fishnet structure (a) SEM image of a sample. Its grid-like structure is
composed of orthogonal thin and thick wires. (b) Schematic of the fishnet showing the
Ag/a-Si/Ag sandwiched layers.

5.2.2 Experimental setup

Fig. 5.2 depicts the experimental arrangement.. To explain briefly, it implements a
Michelson-type interferometer to measure the magnitude and phase of the transmission and
reflection coefficients. A 20-MHz super-continuum fiber laser providing a broadband
wavelength between 500-1650nm was used to probe the sample without pump. For the pump-
probe studies, a femtosecond laser system was utilized. A 1-kHz Ti:Sapphire regenerative
amplifier was use to pump an optical parametric amplifier (OPA) system. The amplifier
provides 100-fs pulses at 800 nm and is used to pump the fishnet metamaterial. The OPA
provides tunable near-infrared pulses (1.05-3.3um) and probes the metamaterial. Details of the
regenerative amplifier and OPA system are described in [99].
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Figure 5.2 Experimental setup to measure the complex transmission (f ) and reflection
(F) coefficients.

5.3 Results and analyses

5.3.1 Pump-induced changes of magnitude, phase, and effective optical constants

First, the magnitude and phases of the complex f and [ coefficients are measured
without the optical pump. Blue solid lines in Fig. 5.3(a,b,d,e) display the measured
T=|t|>, R=|F [}, 4, and ¢, respectively. Then following the procedure in Sec. 3.2, we deduce
the complex effective refractive index (A ) and impedance ( 2 ). Next, the optical pump is
introduced and the changes in the amplitude and phase of f and f are measured using a lock-in
technique. The pump-induced changes of AT/T, AR/R, A¢, and Ag, at pump fluence of
300pJ/cm? are plotted in Fig. 5.3(c,f). By adding the pump-induced changes to metamaterial

linear responses, transmission and reflection parameters with the pump are obtained and shown
as the red dashed lines in Fig. 5.3(a,b,d,e).
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Figure 5.3 Experimentally measured spectra of T, R, ¢, and ¢ with and without pump.
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Fig. 5.4 plots the deduced effective A, &, /& and their modulations from the

measurements. The dip in T and peak in R clearly shows a characteristic resonant spectral
feature. The distinct resonant features of fz confirm a strong magnetic resonance at 1.15um

where the resonant wavelength defined by the peak of Im( ). The pump-induced spectral

changes of all quantities around the resonance are also clearly observed. The Re( £ ) also

exhibits spectral features at the magnetic resonance, indicating that the resonance is not purely

magnetic, a result arising from the tapered layer structure of the fishnet (Fig. 5.2(b)) that
causes mixing of the usual symmetric and asymmetric resonant modes [56].
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The spectra of £ in Fig. 5.4(e) and 5.4(f) shows that the pump-induced changes come
in mainly through broadening of the magnetic resonance. This results from the induced
refractive index changes, An' and AK', of a-Si in fishnet. These can be estimated from the
refractive index change, ANn® and AK®, of the bare a-Si film, which are deduced from the

measured changes of transmittivity (T") and reflectivity (R") of the film using the relations
[100],

(aTb)An +( b)Akb dARb—( b)An +( )Akb (5.1)

ok®

The experimentally obtained values are An°=-0.01 and Ak"=0.05. An" and Ak', being similar
to these values, are mainly responsible for the shift and broadening of the magnetic resonance,
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respectively. In our case, the shift of resonance is not appreciable, and only the effect of AK" is
significant. In general, however, one could use both An" and AK' to shift and broaden the

resonance to achieve strong modulation. Large An" alone could be obtained in dielectric
materials such as liquid crystals and polyelectrolytes.

Interestingly, we also note that Fig. 5.3(c) show correlations between pump-induced
changes of different quantities. The maximum AT occurs around minimum A ¢, and vice versa,

at 1.12um and 1.2pm, respectively. This can be readily understood from the Kramers-Kronig
relations. Therefore, both amplitude and phase modulations are achievable and can be predicted
from understanding of how the optical constants behave under external perturbation.

5.3.2 Modulation strength

The pump-induced change is most significant near the resonance as expected. The
normalized induced changes are observed to be AT/T=31% and AR/R=-42% at the resonance
wavelength 1.12um for a pump fluence of 300uJ/cm” and zero pump-probe time delay. Fig.
5.5(a) also shows that the changes are linear with the pump fluence. The decrease in Im( i ),
which mainly follows from decrease of Im( /) at the magnetic resonance (Fig. 5.4(b) and

5.4(%)), leads to the different signs of AT and AR. Interestingly, the observed AT/T and AR/R
on an a-Si film (same thickness (80nm) as that in the fishnet structure) were both less than 1%
with the same pump fluence. Thus, the pump-induced changes of AT/T and AR/R in the
metamaterial structure are 50 times larger than that of bare a-Si thin film. The significantly
larger signal comes from enhancement through the plasmon resonance: a small change in the
refractive index of the dielectric layer in the metamaterial can induce a dramatic change in the
resonant characteristics, and hence the optical properties near resonance. Therefore,
metamaterials can be a very effective optical modulator.

5.3.2 Modulation speed

The relaxations of AT/T and AR/R after pumping were measured for both the fishnet
and a-Si film. Then the relaxation of the pump-induced absorption change (AA) is deduced.
The pump-induced absorptions in both cases are very similar as shown in Fig. 5.5(b). The
induced changes as function of probe-pump time delay have a fast decay component of ~750fs
followed by a long tail extending over hundred picoseconds. The similar decay dynamics of a-
Si and the fishnet incorporating it indicate that the fishnet modulation dynamics is dominated
by free carrier excitation in a-Si. The contribution from excited carriers in the metal layers is
negligible because the maximum excited carrier density in the silver layer estimated from the
pump fluence is ~10'%cm™. This is orders of magnitude smaller than the intrinsic free carrier
density ~10%cm™, and therefore its effect on the optical properties of the fishnet is insignificant.
Therefore, dielectric materials with larger absorption coefficient and shorter carrier lifetime
should be chosen in order to improve the strength and speed of the pump-induced modulation.
For example, low-temperature grown GaAs is known to have carrier lifetimes of ~200fs [101]
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and so is ion-implanted InP [102]. Both have strong direct interband absorption that can lead to
large modulation depth with lower pump fluence.

(b) 15— v v

(@) 60F = nT.i"l' ofl’lshn.et i -— . - .'&A of I.’Ishne.l
_ -ARIR of fishnet = = £ s -Si
é I -ATIT ofa-;i " 42 § s e AA of a-8i 42 ;e‘
@ - -ARIR of a-Si -— E 2.0l <
f:_, a0k /‘/ :—; k! 8 £
i © < E
s ] i !
@ {1 5 5 1" s
% 20 & g 3
3 =
e 5
ob e . . o o , . 1°
0 100 200 300 400 500 2 0 2 4 &8 8 10
Pump Fluence (;.:.J!cmz) Probe Time Delay (ps)

Figure 5.6 Pump-induced responses of the fishnet and a-Si film. (a) Normalized changes of
transmission and reflection versus pump fluence. (b) Pump-induced absorptions versus probe-
pump time delay.

5.4 Conclusions

We have carried out femtosecond pump-probe spectroscopy with an interferometer to
measure the pump-induced spectral changes of transmission, reflection and their phases over
the magnetic plasmon resonance of a metamaterial. By doing so, we are able to study the
spectral and dynamic behavior of optical modulation in the fishnet structure. The observed
pump-induced changes had a fast relaxation time of ~750fs, and the magnitude of change was
dramatically enhanced compared to that in natural materials. The spectral changes indicated
that the effect is mainly due to the pump-induced broadening of the resonance. The modulation
was governed by the properties of the dielectric layer in the fishnet. Its relaxation time
corresponded to the excited carrier lifetime of the dielectric medium. The results indicate that
stronger and faster modulation could be achieved by proper choice of the dielectric medium in
the metamaterial structure. Our study suggests that further improvement of the modulation
characteristics is possible with better choice of the dielectric medium.
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