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Abstract 

Optical Characterization of Plasmonic Metamaterials 

by 

David Jaeyun Cho 

Doctor of Philosophy in Physics 

and the Designated Emphasis in Nanoscale Science and Engineering 

University of California, Berkeley 

Professor Yuen-Ron Shen, Co-Chair 

Professor Feng Wang, Co-Chair 

 

Optical metamaterials are artificially engineered structures composed of subwavelength 
units. They exhibit exotic optical properties that are unobserved or unattainable in nature. 
Recent efforts have led to the observation of many interesting phenomena and as well as 
promising applications such as super-resolution imaging and transformation optics. At optical 
frequencies, the functionalities of metamaterials are achieved through excitation of plasmons as 
most structures are metal-dielectric composites. The objective of this dissertation is to provide 
the tools and study the unique properties and novel phenomena of plasmonic metamaterials. 

 We first theoretically study a pair of nanobars to properly understand artificial 
magnetism which is important in most metamaterials. Then we experimentally investigate the 
optical properties of the “fishnet” metamaterial using a variety of spectroscopic techniques. 
First, we probe the plasmonic band structure using angle- and polarization- resolved linear 
spectroscopy. Most interestingly, we observe dark magnetic modes and their coupling to bright 
modes leading to avoid-crossing behavior typical of quantum systems. The k-dependent 
effective optical constants are measured through phase measurements confirming the dispersion 
of the magnetic resonance. Second, second-harmonic generation spectroscopy is carried out 
showing significant resonance enhancement achieved through the excitation of plasmons. The 
observations are substantiated with theory to validate our physical understanding of nonlinear 
wave-mixing processes in metamaterials. Finally, we carry out pump-probe spectroscopy to 
understand the dynamic behavior. The optical responses are shown to be modulated in 
femtosecond time scale. The modulation magnitude is greatly enhanced while the dynamics is 
mainly determined by the constituting dielectric medium. 
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Chapter 1 

 

Introduction 

 

1.1 Introduction 

Light-matter interaction has been always of great importance in condensed matter 
physics. This is because materials with unique optical properties lead to novel optical 
phenomena of physical interest and also many useful applications. In previous years, much 
research has focused on engineering materials to control the light-matter interaction. For 
example, research on quantum well structures show that absorption properties can be tuned by 
controlling the thickness of thin semiconductor layers [1]. Studies on photonic crystals show 
that the diffraction of light can be precisely controlled by repeating regions of high and low 
dielectric constant materials [2]. 

More recently metal nanostructures have been in the spotlight. One reason is that metal 
nanostructures can have extremely strong coupling with light due to their large free electron 
density. This allows the scattering cross section to be several times larger than its geometrical 
size at the plasmon resonance [3]. A second more practical reason is that advances in 
nanofabrication techniques such as e-beam lithography and focused-ion beam milling have 
opened up the possibility of fabricating arbitrary shapes of nanostructures [4, 5]. This 
advancement realized the concept of metamaterials where light-matter interaction can be 
controlled in a highly desired way. 

 

1.2 Optical metamaterials 

Metamaterials can be defined as artificial structures composed of units with dimensions 
smaller than the wavelength of interest. The subwavelength  feature size allows one to apply 
the effective medium approximation and homogenize the response [6]. As a result, the 
assembly of individual units can be assigned effective material properties at a macroscopic 
level. The individual units can be considered as artificial “atoms” or “molecules” interacting 
with electromagnetic waves. The effective material properties arising from the interaction is 
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strong resonance, the effective permeability becomes negative ( Re( ) 0eff  ) in the range of 

p mp    . Here, mp  is defined as the effective magnetic plasma given as 

1
r

mp
F

 


                               (1.4) 

at which the effective permeability becomes zero. 

 

 

Figure 1.3 The effective permeability of a split ring resonator at microwave frequencies. 

  

The exact resonant frequency and oscillator strength is determined by the dimensions of 
the SRR. This allows one to tune the range of the effective permeability to be negative. Later 
on, by using variant forms of the SRR, researchers have successfully pushed the resonant 
frequency to be at optical frequencies [11, 12]. It has now become common to use designs 
which are variants of a pair of bars; current loops can be obtained by exciting asymmetric 
modes in the pair. Detailed discussion of these properties will follow in Chapter 2. 

 

1. 4 Negative index materials 

The previous section discussed how artificial magnetism and negative effective 
permeability (µeff) is achieved in metamaterials. On the other hand, obtaining negative effective 
permittivity (εeff) is simpler because metal exhibits a strong negative permittivity below its 
plasma frequency. To achieve specific negative values at a certain frequency range, one only 
needs to design thin metal wires; they act as diluted metal with a red-shifted plasma frequency 
due to the reduced free electron density [13]. By overlapping thin wire arrays with negative εeff 
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and metamaterial units with negative µeff, one can obtain a final metamaterial structure with 
both negative εeff and µeff. This approach was confirmed to be successful by Smith [14]. 

Having simultaneous negative values of permittivity and permeability leads to quite 
interesting phenomena. The refractive index becomes negative and the directions of phase 
advance and energy flow become anti-parallel. This can be understood by considering 
Maxwell’s equations 

,       

0,       

B
D E

t

D
B H j

t

 
    




    


 


  


           (1.5)

 

with the constitutive equations 

D E

B H









 
  .         (1.6) 

Considering a propagating monochromatic plane wave with 0( , ) exp( )E k E ik r i t   
   

 and 

0( , ) exp( )H k H ik r i t   
   

, the equations can be simplified as 

            and              k E H k H E     
    

.      (1.7) 

It can be easily seen that k


, E


, and H


 form a right-handed triplet of vectors when 0   and 
0  . On the contrary, when 0   and 0  , they form a left-handed triplet. In this case, the 

energy flow, described by the Poynting vector ( S E H 
  

) is anti-parallel to the wavevector k


. 
Veselago [15] proved that in this case, the refractive index must be taken the negative sign so 
that causality is conserved. This is the reason why negative-index materials are also called as 
left-handed materials. 

Negative-index materials exhibit many counter-intuitive phenomena as discussed in 
Veselago’s paper [15]. The study was limited theoretically as there was no material available 
exhibiting simultaneous negative values. One interesting result is that when light is incident 
from a positive-index material to a negative-index material, the light is refracted to the negative 
angle direction with respect to the interface normal. Snell’s law,  

1 1 2 2sinn sin n            (1.8) 

indeed shows that the angle of refraction is negative; if 1n  and 2n  have opposite signs, then 1  

and  2  also have opposite signs. Furthermore, it was also predicted that the Doppler effect and 

Cherenkov effect are reversed in a negative-index medium [16]. 

 Experimentally, negative-index medium was demonstrated at microwave frequencies 
using a combination of metallic wires and SRRs [14]. Continued interest and advance in 
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nanofabrication techniques have allowed researchers to develop negative-index materials at 
optical frequencies using a variety of structures such as paired nanorods, fishnet, and silver 
nanowires [17-19]. 

 

1.5 Thesis highlights 

The potential implications of metamaterials are not just limited to having a negative 
refractive index. The true potential lies in the freedom to obtain desired values of the effective 
permittivity and permeability. Moreover, it is possible to control these values in frequency-
domain as well as in the spatial-domain. This enables fascinating applications such as sub-
diffraction limited imaging [20-25] and transformation optics [26-32]. Thus, the aim of this 
dissertation is to provide tools for characterization and fundamental understanding to facilitate 
the study of future metamaterials for these exciting applications. 

The dissertation is organized as the following. 

In Chapter 2, we theoretically study the artificial magnetism in a pair of nanobars. The 
various multipole components contributing to the magnetic resonance is discussed. We point 
out that the electric quadrupole has been incorrectly neglected in previous studies. The findings 
may serve as a ground work to understand the interaction between individual units. 

In Chapter 3, we study the plasmonic band structure of a fishnet metamaterial. The 
structure is designed by electromagnetic simulation and fabricated through nanoimprint 
lithography. The experiment is carried out using an angle- and polarization-resolved 
spectroscopy technique.  Our measurements allow us to identify multiple magnetic bands and 
understand their coupling behavior in the fishnet structure. In addition, phase measurements are 
carried out to deduce the k-dependent effective optical constants. 

Chapter 4 describes our second-harmonic generation (SHG) spectroscopy study in 
optical metamaterials over the magnetic resonance. The result shows a strong enhancement of 
the nonlinear signal due to excitation of a plasmon resonance. Furthermore, we carried out 
theoretical calculations and successfully reproduce the results quantitatively confirming our 
physical understanding of nonlinear wave-mixing processes in metamaterial structures. 

 Finally, in Chapter 5, we study the dynamic response of a metamaterial through pump-
probe spectroscopy. We find that optical pumping can induce drastic changes of the linear 
properties in femtosecond time scale. The modulation dynamics is mainly determined by the 
constituting dielectric medium, but the modulation magnitude is greatly enhanced through the 
plasmon resonance. 
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Chapter 2 

 

Contribution of the electric quadrupole in artificial 

magnetism 

 

2.1 Motivation 

A major focus in research is designing metamaterials with negative refractive index. It 
was first demonstrated in microwave range [10, 33-37] and later extended to infrared and 
optical frequencies [11, 12, 17, 38-46]. As described in Sec. 1.4, having the effective 
permittivity ( ) and permeability ( ) to be simultaneously negative leads to a negative index 
[10, 15, 47]. It is straightforward to obtain a negative  , which occurs naturally for metals at 
optical frequencies. However, negative   is nonexistent in nature. Only recently, it was 
achieved in artificial metamaterials using strong magnetic resonances in suitably designed 
metal plasmonic nanostructures [11, 12, 19, 38, 43-45, 48]. It is usually considered as to be 
associated with a magnetic dipole resonance and the contribution from electric quadrupole is 
neglected. However, similar to the magnetic dipole radiation, the electric quadrupole radiation 
can also be greatly enhanced by plasmon resonances and it is typically of comparable strength 
at optical frequencies. Therefore, one might expect electric quadrupole to play as important a 
role as magnetic dipole. In most previous studies, electric quadrupole contributions to the 
plasmon resonance are not carefully investigated [42, 43]. Here, we show by simulation that the 
electric quadrupole  contribution is actually comparable to that from magnetic dipole and 
therefore may not be ignored. 

 

2.2 Approach 

2.2.1 Parallel nanobar structure 

Several metamaterial designs have been proposed for achieving negative refraction in 
the optical range. However, many are variants of the parallel metallic nanobar structure (Fig. 
2.1) [19, 40, 42-45].  Therefore, we focus on this structure. The incident electric field polarized 
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0 0 0

ˆ ( cos cos 2 )QM
ii

total P M QE E E e E e     
   

, where the phases M  and Q  are relative to 

0PE


. The measured scattering spectra with their polarization dependence can be fitted by the 

total intensity 
0 0 0

22
 cos cos 2  

   
QM

ii
total P M QE E E e E e    to obtain 

0PE


, 
0ME


, and 

0QE


 

and hence P


, M


, and Q


. To demonstrate this, we fit the far field scattering pattern directly 

obtained from DDA method to retrieve 
0 0 0

: :P M QE E E    = 1: 0.88: 0.67 whereas explicit 

calculation of P


, M


, and Q


 gives 
0 0 0

: :P M QE E E    = 1: 0.81: 0.62. The agreement shows that 

indeed it is possible to deduce separately the multipole contributions in a scattering experiment. 

 

2.3.2 Relation of multipoles to optical constants 

We examine the contribution of Q


 to the effective   and   of a metamaterial. For the 

parallel bar structure, ME  and QE  have the same phase in the forward and backward direction 

at the asymmetric resonance, and may appear indistinguishable for light propagation in the 
corresponding metamaterial. Therefore, one may anticipate that electrical quadrupole Q


 plays a 

similar role as magnetic dipole M


and both contribute to the effective  .  

In the case of metamaterials, one often uses k


-independent effective   and   to 
describe electric dipole and magnetic dipole contributions of the responses, respectively. 
Therefore, we investigate the description with k


-independent effective   and   with non-

negligible electric quadrupole term so that simple Fresnel coefficients for transmission and 
reflection are still valid. To be more rigorous, we examine the effective   and   of a 
metamaterial with reference to the Maxwell equations. 

We consider the simple case of an isotropic bulk metamaterial. In this case, the electric 
quadrupole tensor is described by ( )ij Q i j j iQ i k E k E   where Q  is a constant and ik  and jE  

are the components of wavevector k


 and incoming electric field E


. The macroscopic Maxwell 
equations are typically written in the form,     

0,                  0

1 1
,        

D B

B D
E H

c t c t

   

 
    

 

 
  

        
     (2.1) 

where  

4 ( ) ( )D E P Q k E     
   

,           4H B M B   
   

      (2.2) 

are the electric displacement and magnetic field, respectively. However, as we mentioned 

above, D


 and H


 are not uniquely defined [7, 53-55]. The macroscopic Maxwell equations are 
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invariant if we replace D


 and H


 in Eq. (2.2) by ' 4D E P 
  

 and ' 4 ( )QH B M M  
   

 

with 
1

QM Q
c t


   




. For an isotropic material, we find 2( )Q QM B

c

 
 

. Together with 

the materials response relations of EP E
 

, MM B
 

, it yields 

1 4 E    ,   1 2(1 4 ) 4 ( )M Qc

       ,      (2.3) 

where both   and   are k


-independent and the latter contains electric quadrupole 
contribution. This electric quadrupole contribution can be viewed as a resonance enhanced 
spatial dispersion in the metamaterial. We show in [56] that the same conclusion can be 
reached by considering inclusion of electric quadrupole contribution in the derivation of 
transmission and reflection coefficients and matching them with the known Fresnel coefficients 
in terms of   and  . In this derivation, boundary conditions have to be treated with great care 
[53]. 

Although our description is shown to be valid for an isotropic material, it also holds true 
for light propagation in high symmetry directions in non-isotropic materials, which is often the 
experimental case. For instance, it applies to normal incidence of light in a fishnet metamaterial, 
where negative refractive index has been reported. 

 

2.4 Conclusions 

In summary, we have shown that metamaterials consisting of a pair of metal bars or 
similar nanostructures may have electric quadrupole resonances comparable to magnetic dipole 
resonances in strength at the resonant frequency. Light scattering spectroscopy on a unit 
nanostructure should allow separate determination of the different multipole components at 
various resonant frequencies and hence the nature of the resonances. In an isotropic 
metamaterial or anisotropic metamaterial with wave propagating along high symmetry 
directions, the nonnegligible electric quadrupole appears to contribute to the effective . This 
implies that electric quadrupole contribution may also yield a negative   near its resonance in 
a metamaterial. Generally, electric quadrupole resonance can appear at a different frequency 
from the magnetic dipole resonance and may alone give rise to negative  . It is incorrect to 
neglect the electric quadrupole in describing artificial magnetism in optical metamaterials.  
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Chapter 3 

 

Probing the plasmonic band structure of optical 
metamaterials 

 

 
3.1 Motivation 

At optical frequencies, metamaterials achieve their functionality by excitation of 
plasmon resonances [19]. The individual units can be considered as meta-atoms. Since the units 
are typically arranged in a lattice, a plasmonic band structure appears in analogy to the 
electronic band structure of solids. Here, the excited plasmon modes take the role of the 
electronic orbitals. The shape of the Brillouin Zone (BZ) will be defined by the lattice 
arrangement of the meta-atoms. Understanding the plasmonic band structure of a given 
metamaterial is important because applications such as sub-diffraction imaging [20-22, 24] and 
cloaking [26-32] require precise control of the optical responses depending on the wave 
propagation direction, i.e., the wavevector in the BZ. In this respect, theoretical and 
experimental studies have investigated the oblique response of metamaterials with much 
attention to the magnetic split ring resonator (SRR) [57-60]. It has been shown that they can 
exhibit non-dispersive responses at terahertz or lower frequencies and thus could be used for 
imaging and cloaking applications. At optical frequencies, similar attempts have been carried 
out [61-63] to report that the optical responses exhibit strong angle-dependence and therefore 
the dispersion cannot be ignored. However, the studies are limited as only high symmetry 
directions of the dispersion are probed and do not consider all the involved plasmon modes. 
Therefore, here we study the plasmon band structure of a metamaterial in several directions of 
its BZ to fully characterize its plasmon resonances. By doing so, we are able to identify 
previously unobserved magnetic resonances and also interesting coupling behavior between 
adjacent modes. The approach we provide can be generally applied to investigate metamaterial 
structures. 

In this chapter, we focus on the “fishnet” structure due to its importance in achieving 
negative refractive index at optical frequencies [17, 64]. Most works have focused on studying 
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the well known magnetic resonance only at normal incidence. More recently, it was reported 
that the previously overlooked higher energy resonance is also magnetic [65, 66]. But the 
understanding is lacking because only the normal incidence is probed and no clear physical 
description is provided except that the currents are antiparallel for the top and bottom metal 
layer. Ref. [67] measured the angle-dependent transmission spectra of the fishnet but the 
characterization is incomplete as only the lower energy magnetic resonance is discussed due to 
their limited spectra range. However, as we will show, the fishnet exhibits other magnetic 
modes that previous studies were unable to probe. The plasmon band structure of the fishnet 
requires better understanding through a systematic characterization by probing several 
directions of the BZ with extended spectral range. 

Here, we utilize an angle- and polarization- resolved spectroscopy technique to identify 
the excited plasmon resonances from the spectral features of transmission, reflection, and 
absorption. This allowed us to observe the excitation of various plasmon resonances and their 
evolution with the in-plane wavevector and light polarization. In addition, we carry out phase 
measurements using an interferometry scheme to obtain the transmission and reflection 
coefficients and retrieve the k-dependent effective optical constants. From our results, we 
identify multiple magnetic bands and show that optically dark modes can couple to the bright 
bands resulting in unusual dispersion behavior. The deduced effective optical constants confirm 
that the plasmon dispersion is originating from the shift of the magnetic resonance.  

 

3.2 Fishnet design and preparation 

The studied fishnet structure is depicted in Fig. 3.1 with a schematic of its three 
dimensional structure (Fig. 3.1(a)) and a scanning electron microscope image (Fig. 3.1(b)). It is 
composed of top and bottom metal layers separated by a dielectric layer [64]. We choose the 
multilayers to be Ag/SiO2/Ag with 28/35/28nm thickness. The structure is a square lattice with 
a periodicity of 600a  nm. Therefore, the BZ in reciprocal space is also a square. Our 
structure is fabricated by the nanoimprint lithography (NIL) technique [68]. It involves two 
major steps. First step is to prepare the NIL mold by patterning the fishnet on a Si substrate 
using electron-beam lithography. Second step is to fabricate the actual sample using this mold 
as a template. A double-layer UV-curable NIL process is utilized and followed by an e-beam 
evaporation and lift-off process. The final result is the multilayer structure as presented in Fig. 
3.1. Detailed description of the fabrication process is elaborated in Ref. [69]. 
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 with energies changing from 0.85eV to 0.88eV and 1.14eV to 1.02eV, respectively. We 

observe the mode strength of  to decrease as its absorption reduces from 60% to 55% and 

that of  to increase as its absorption grows from 30% to 45%. Second, for , we 

observe modes , , , and 
2

90
Ag/SiOR  as marked in Fig. 3.3(b). Both  and , which 

appears at 0.85eV and 1.14eV, respectively, vanishes with increasing tk . On the other hand, 

 and 
2

90
Ag/SiOR  are unobservable for 0tk   but appears at finite k-vector. Finally, for 

22.5   , 45 , and 67.5 , the spectra commonly exhibit  and  (  indicating the 

respective direction) to show avoid-crossing behavior with increasing ;  starting at 

0.85eV initially shifts to higher energy but then shifts to lower energy when  starts to 

appear at 0.92eV. The dashed lines of  in Fig. 3.3(c,d,e) show this change of shift direction 

with increasing . 
2R , 67.5

3R , and 
2

67.5
Ag/SiOR  also appear in these directions and will be discussed 

later in detail as their modes are associated with those of 90
2R , 90

3R , and 
2

90
Ag/SiOR  which are 

examined in later sections. To summarize, we observe the modes labeled as 
1R , , , 

2R , 

3R , and 

2Ag/SiOR
 
depending on  . The results clearly indicate that consideration of only two 

modes discussed in previous works is insufficient to properly describe the plasmon band 
structure of the fishnet. Particularly, several of the modes only appear at finite . In the 
following section, we present a physical picture of the general modes of the fishnet before 
analyzing the experimental results in detail. Later in the discussion section, we will relate the 
observed modes to the general modes of the fishnet. 
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dispersion sections I, II, and III in Fig. 3.4(b) for (a) Ag/airM , (b) 
2Ag/SiOM , and (c) magM , 

respectively. 

To better understand the multiple resonance branches derived from magM mode, we 

examine how the magM  modes of the infinite film system get modified in the fishnet structure 

due to the fishnet boundary condition, which requires that the electrical current flowing normal 
to the metal edge to be zero. If the infinite film plasmon mode already (largely) satisfies this 
boundary condition, it will be a good approximation for the fishnet eigenstate. On the other 
hand, if the infinite film plasmon mode strongly violates the boundary condition, it will be 
modified significantly and have a much higher resonance frequency (because the boundary 
condition often requires extra nodes in the current distribution). 

In Fig. 3.6 we plot current distribution of infinite film magM  modes at reciprocal lattice 

points (0, 2 / )a ,
 
( 2 / ,0)a ,

 
and ( 2 / , 2 / )a a   . We have chosen symmetric and anti-

symmetric combination of these modes, and overlaid the current distribution onto the fishnet 
structure itself. (Gray and white area represents where the metal and hole of the fishnet would 
exist.) For convenience we will name these modes for the infinite film system to be IF

m o/e,n o/eM , 

where m  and n  index the reciprocal lattice points along x̂  and ŷ , and o/e  denotes the 
odd/even symmetry in x̂  and ŷ . The superscript IF refers that they are modes of the infinite 

film system. For reciprocal lattice points at (0, 2 / )a , we have two modes IF
0,1oM  and IF

0,1eM  

with their current distributions shown in Fig. 3.6(a,b). Likewise, for reciprocal lattice points at 
( 2 / ,0)a , we have two modes IF

1o,0M  and IF
1e,0M  in Fig. 3.6(c,d), and for ( 2 / , 2 / )a a    we 

have IF
1e,1oM , IF

1o,1oM , IF
1o,1eM , and IF

1e,1eM  as presented in Fig. 3.6(e,f,g,h). We note that IF
1o,0M  and 

IF
1e,0M  correspond to modes along x̂ , whereas IF

0,1oM  and IF
0,1eM  correspond to modes along ŷ . 

For the infinite film system, these modes along x̂  and ŷ  are degenerate. 
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resonances in the probed near-infrared spectral range and will be a focus of our discussion. 
Their excitation strength depends on the incident light polarization and k-vector and will be 
analyzed in detail in the discussion sections. 

 

3.3.2c Analysis of results and discussion 

3.3.2c-1 Plasmon modes in high-symmetry directions (  and ) 

With the general picture of the plasmon modes of the fishnet in mind, we now analyze 
the experimental results. The modes in  direction are first investigated. With s-polarized 

incident light, the electric field is along , and the modes 0,1oM  and 1e,1oM  with non-zero net-

dipole can be excited (Fig. 3.7(a,d)). 0,1oM  has larger net-dipole than 1e,1oM  because the 

oscillating dipole moments of 0,1oM  are all in-phase along the thick wires. We assign the lower 

energy resonance  as mode 0,1oM  and the higher energy resonance  as mode 1e,1oM . The 

excitation strength is consistent with our assignment;  is more strongly excited than  (Fig. 

3.3(a)). The fact that  is observed signifies that indeed the thin wires introduce a finite 

oscillator strength to mode 1e,1oM . (If the thin wires cease to exist, 1e,1oM  cannot be excited as 

the currents in center and boundary of the unit cell perfectly cancel each other; its net-dipole 
moment becomes zero.)  

To support this, we carried out numerical calculations to simulate the optical responses 
of the fishnet using the finite-element-method (FEM) [76] through COMSOL. In this method, 
the simulation domain is subdivided into minuscule volumes, i.e., elements. Maxwell equations 
in the form of partial differential equations are solved for each element. The solutions contain 
the internal field distribution throughout the structure. The fishnet structure illustrated in Fig. 
3.1 and appropriate refractive indices for different elements in the structure are used. For silver, 
we used the optical constants taken from Ref. [77]. The refractive index of the SiO2 layer is 
taken to be 1.43. In the calculation, we set the incident light to be normal to the sample with 
electric field along . The results indeed show the two resonant modes 0,1oM  and 1e,1oM  as 

presented in Fig. 3.8. Mode 1o,1oM  is unobserved because currents in the thick wires of a unit 

cell cancel each other and its net-dipole is zero. 
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In Fig. 3.3(b), we observe the mode strength of  becomes weaker with increasing . 

This can be understood from the fact that the  component of the incident electric field ( yE ), 

being the tangential field, is responsible for exciting 0,1oM  in Fig. 3.7(a). In the experiment, as 

the incident light is p-polarized, the tangential component ( yE ) decreases while the normal 

component ( zE ) increases with larger in . Hence, the excitation of 0,1oM  is reduced and 

correspondingly  becomes weaker. The situation is similar with . It becomes weaker 

due to decreasing yE . Mode  is unobserved at normal incidence but appears at finite . 

This is because its excitation is forbidden due to its net-zero dipole moment at normal 
incidence (see mode 1e,0M  in Fig. 3. 7(c)). However, with finite tk , the phase variation in the 

thin wires prevents their cancelation in the unit cell and induces a stronger mode strength. 
Lastly, we observe in Fig. 3.3(b) that 

2

90
Ag/SiOR  exhibits a stronger dip of T and peak of R as  

increases. The spectra of A also show resonance but it is more pronounced in T and R because 
resonances with very large dipole moment have the effective radiation damping to be much 
larger than absorption damping. These pronounced spectral features are similar to that shown in 
systems such as corrugated dielectric waveguides [78]. With increasing in , the features of T 

and R become more pronounced because surface plasmon polaritons have a large normal field 
component and its coupling with incident light becomes stronger due to the increasing zE  field. 

 

3.3.2c-2 Plasmon modes in low-symmetry directions ( ) 

In this section, we investigate the plasmon modes in  

directions. We first focus on the normal incidence case where only 0,1oM , 1e,1oM , and 1o,0M  can 

be excited due to the presence of x-z and y-z mirror planes. 0,1oM  has largest net-dipole 

moment whereas 1o,0M  has the weakest (see Fig. 3.7(a,b,d)). At 0in   , Fig. 3.3(c,d,e) shows 

that only two modes  and 
2R  are observed. (Here, we refer 22.5,  45,  and 67.5  .) Their 

positions correspond to the 0tk   energy positions of 0
1R  and 0

2R  (or 90
1R  and 90

2R ) at 0.85eV 

and 1.14eV, respectively. Therefore, we assign  as mode 0,1oM  and 
2R  as 1e,1oM  for 0tk  . 

However, the mode 1o,0M  is unobserved in our linear spectra. To understand this, we carried 

out numerical calculations with electric field along x̂  at normal incidence for a detailed 
analysis. In this case, only mode 1o,0M  can be excited due to the x-z mirror plane (Fig. 3.7). 

From our results, although no clear feature is discernible in the linear spectra, we confirm a 
resonant mode with a field distribution as Fig. 3.12(a) lying 50meV above 0,1oM . This mode 

conforms to 1o,0M  as the currents on the center and boundary of the unit cell are out-of-phase as 
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First, we discuss the coupling at normal incidence ( ). Coupling between two 

modes depend on their mode overlap and is determined by 

             

(3.2) 

where  is the electric field of one mode and  is the dipole of the other mode. For 

, Eq. (3.2) is zero because of the symmetric distribution of  and  with respect 

to x-z and y-z mirror planes (Fig. 3.13(a)). Therefore, the two modes are orthogonal and no 
coupling occurs and this is consistent with that we only observe one mode for .  

Second, we consider the coupling in the directions of . Fig. 3.13(b) 

illustrates the modes with a finite  ( ); the phase is varying in . Here, Eq. (3.2) is 

again zero because of the mirror symmetry in the x-z plane; the integration at  is 

canceled by that of the position . Fig. 3.13(c) depicts the modes with a finite  

( ) Similarly, the mode overlap is zero due to the mirror symmetry in the y-z plane; the 
integration at  is canceled by that of the position . Therefore, it is 

clear that the coupling of 0,1oM  and 1o,0M  is forbidden in the directions of  and 

again consistent with our experimental observations. 

Third, the coupling in the directions of  is considered. A finite 

 induces phase variations in both  and  as depicted in Fig. 3.13(d). Due to the phase 

variation, no mirror planes exist. Eq. (3.2) ceases to be zero as  becomes finite. Therefore, 

coupling between 0,1oM  and 1o,0M  are allowed and become stronger with increasing . The 

coupling mixes the bright and dark mode making the latter to become visible. This is the reason 

we observe the coupling behavior of  and  in low-symmetry directions (Fig. 3.3(c,d,e)).  
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We further analyze the coupling of the bright mode ( 0,1oM ) and dark mode ( 1o,0M ) and 

deduce the dispersion of the latter from our experimental results. Particularly, we focus on 
 but the discussion is also applicable to  and . Fig. 3.14(a) plots the 

dispersion of 45
1AR  and 45

1BR  (red circles) as observed in Fig. 3.3(d). In experiment, we can only 

observe the coupled modes. We also know the dispersion of the uncoupled bright mode from 

our measurements in  and . With this information, we predict the dispersion of 

the dark mode where the coupled modes can be explicitly expressed in terms of the uncoupled 
modes. We denote the dark mode and bright mode as eigenstates  and , respectively. Their 

energy eigenvalues are  and  prior to coupling. When the two states are allowed to 

interact, the eigenstates become a linear combination of  and , and to find their energy we 

must find the eigenvalues of the matrix 

                

(3.3) 

where  is the coupling coefficient [79]. The eigenvalues are 

                 

(3.4) 

where  is half of the energy separation between  and . The new eigenstates 

are a linear combination of  and  and given as 

             

(3.5) 

where , , , and . In Fig. 3.14(a), the 

upper and lower red circles corresponds to  and , respectively. The blue solid curve 

corresponds to . Using Eq. (3.4), we calculated the dispersion of  and presented as the 

black solid curve. Furthermore, Fig. 3.14(b) shows the calculated dispersion of . It clearly 

shows that the coupling becomes stronger with increasing  as we have discussed previously. 

Fig. 3.14(c) shows the normalized coefficients  and  for . We confirm that  is purely 

a dark mode at  and the contribution of the bright mode becomes larger with increasing 

.  shows similar behavior with the contribution of the dark and bright modes reversed. 
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The beam geometry is depicted in Fig. 3.15. The light is incident on the x-z plane from 
medium 1. In the experiment, the light is s-polarized with electric field along y in order to 
excite the magnetic resonance with currents perpendicular to the thick wires. Thus, the electric 
field has y component and magnetic field has x and z components. The normal wavevector for 
each medium are 1zk , 2zk , and 3zk  as illustrated in Fig. 3.15(a). The tangential wavevector is 

1 1 1sintk     in all medium. With this geometry, the transmission and reflection coefficients 

can be expressed in terms of the angle-dependent wavevectors in medium 1, 2, and 3 as  

2
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Eq. (3.7) can be inverted to relate the material parameters of medium 2 with  and  as, 
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Furthermore, the effective index of the metamaterial slab can be obtained from 

2 2
2 /z t on k k k   .          

(3.11) 

From Eqs. (3.8-11), n , yy , and xx  is obtained upon assuming the normal component 1zz   

with no resonance. Similar relations can be obtained for p-polarized incident light giving the 
expressions for xx  and yy . Here, we focus on obtaining xx  using s-polarized light as it 

contains the information of the excited magnetic resonance. 
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the k-dependent effective optical constants for the first time. We show that plasmon dispersion 
originates from the shift of the magnetic resonance in the effective permeability. Our approach 
sets up a basis for characterizing the plasmon band structure of other metamaterials. 
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Chapter 4 

 

Second harmonic generation in optical metamaterials 

 

4.1 Motivation 

In recent years, there have been a number of reports on studies of nonlinear optical 
properties of metamaterials. The first attempts were mainly theoretical; experimental works 
appeared only recently. Pendry [10] suggested that enhanced nonlinear optical responses could 
be observed in metamaterials composed of split ring resonators (SRR) at the magnetic 
resonance. A series of experiments showed significantly enhanced second-harmonic generation 
(SHG) from gold SRRs arrays at their magnetic resonance frequencies [12, 83, 84], but the 
signals were obtained at a single frequency. Later, it was observed that SHG from a fishnet 
metamaterial exhibited strong enhancement at the magnetic resonance [85]. It was suggested 
that unlike in a molecular system, the resonant enhancement came from local-field 
enhancement through the excitation of the plasmon resonance. However, detailed comparison 
of experimental results with theoretical calculation has not been done and quantitative 
understanding of the observations has been limited. 

In this chapter, we experimentally study the nonlinear response of a fishnet structure 
with Ag/SiO2/Ag sandwiched layers using second harmonic generation (SHG) spectroscopy. 
Also, the SHG response from the metamaterial was theoretically calculated. The approach 
combines finite-difference-time-domain (FDTD) simulation with a field integration technique. 
The calculated SHG spectra around the magnetic resonance show quantitative agreement with 
the experimentally measured spectra of P and S polarization combinations. The maximum 
resonance enhancement of SHG reaches ~80 times of that from a flat Ag surface for the P-in/P-
out polarization combination, suggesting that metamaterials could be potentially useful as 
nonlinear optical materials in some applications. Furthermore, the theoretical calculations are 
able to explain many interesting features observed in experiment, and allow design of structure 
that maximizes SHG.  
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 The Fresnel coefficients for frequency   at an interface of two media with dielectric 
constants 1( )   and 2 ( )   are [87] 
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where ' ( )   is the effective dielectric constant of the interfacial layer [86]. For bulk 

contribution, it equals the bulk dielectric constant 2 ( )  , and for surface contribution, the 

microscopic local-field correction needs to be considered leading to ' 2 2

2

( )( ( ) 5)
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 The input and output beams can be chosen to be either perpendicular or parallel to the 
plane of incidence being S-and P-polarized, respectively. Thus, independent elements of (2)

eff  

can be probed selectively by different polarization combinations. For SHG, the four beam 
polarization combinations can be generally written as, 
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The calculated SHG spectra are compared with the experimentally measured spectra in 
Fig. 4.7. We find reasonable quantitative agreement between calculated and measured spectra. 
Several characteristic features of the SHG spectra from the fishnet are noticed. First, a resonant 
peak always appears around the magnetic resonance at ~1.375μm as long as the input beam 

has a magnetic field component along ŷ , although the precise position of the resonance peak 
shifts slightly in different spectra compared to the normal incidence case (Fig. 4.5). Second, 
both theory and experiment show that the SHG enhancement for the P-in/P-out polarizations at 
the magnetic resonance is ~80 times in comparison with that on a flat silver surface. This is 
remarkable considering that the fishnet structure has nearly half of the surface plane empty. 
Third, the P-polarized SH output is much stronger than the S-polarized one, irrespective of the 
input polarization. Fourth, both theory and experiment display two resonant peeks in the P-
in/P-out spectra; the peak at ~1.22μm  was not observed in the normal incidence spectra (Fig. 
4.5) and the S-in/P-out SHG spectrum (Fig. 4.7(d)). Finally, the non-resonant SH signal with P-
in/P-out polarizations is strong as we would expect, knowing that a strong PP-SHG is also 
observed on a flat silver film. The non-zero SHG signals in SS and PS cases observed 
experimentally are caused by imperfections of the real sample. Detailed discussions of the 
features are done in the following in the following section.  

 

4.5 Discussions 

The resonant enhancement of SHG from the fishnet around 1.375μm arises from 
resonant enhancement of the local field. For our fishnet structure, the magnetic resonance can 
be excited only when the input excitation has a magnetic field component along ŷ , and is 
observable in SHG with a P-polarized input propagating in the x-z plane or an S-polarized 
input propagating in the y-z plane. To explicitly illustrate the local field enhancement effect, 
Fig. 4.7(a) and (b) depicts the FDTD-calculated local field at the upper Ag/SiO2 edge on the 
inclined side plane for S-polarized input in the y-z plane and P-polarized input in the x-z plane, 
respectively. In both cases, the fundamental resonance at ~1.375μm  is obvious. Interestingly, 

an additional weak resonance at ~1.22μm is found in the P-input case (Fig. 4.8(b)), which does 
not exist in the S-input spectra (Fig. 4.8(a)) and the normal-incidence spectrum (Fig. 4.5(c)). 
FDTD simulations identified this resonance as an electric-dipole one with currents flowing on 
the side walls, and it can only be excited by an input wave with an zE  component (e.g., off-

normal P-wave input). This resonance is also responsible for the peak at ~1.22μm  in the PP-
SHG spectra (Fig. 4.6(a)), observed both experimentally and numerically. 

The frequencies of resonances excited by S- and P-polarized inputs are slightly different 
(Fig. 4.8), and similarly for resonances observed in the SHG spectra with S- and P- inputs as 
shown in Fig. 4.7(a) and (d). This is due to different resonance dispersions in the two cases 
because of different couplings between adjacent magnetic resonators in the fishnet. Both our 
experiment and FDTD simulation revealed that the resonance dispersion of the S-input case is 
stronger than that of the P-input case, and thus, the former has a more red-shifted resonant 
frequency. The FDTD simulations have taken such effects into account rigorously. 



 

Figure 
functio
S-wave

from sy

where 

fishnet 
(2)
zzz , 

with P(
forbidd
appeare
the othe
expecte
The cor

(2)
xzx 

the fish
electron
the fish
For SP-

S-polar

if the lo
contrib

4.8 Normal
ns of the fu

e incident in

 

Relative str
ymmetry arg

(2) (L r  
 

structure ha
(2)
zxx , (2)

zyy , 

(-in)S(-out) 
den in such a
ed only beca
er hand, SP
ed in SP-SH
rresponding

(2)
xxz ), respe

hnet (with be
n gas. This 
hnet structur
-SHG, the P

rized input. 

ocal field co
ution from t

lized local fi
undamental w
n the y-z pla

rengths of S
gument. Eq

 

(2), 2 ) : :Sr  

as mirror pl
(2) (2)
xzx xxz  

and SS pola
a fishnet str
ause the rea
- and PP-SH

HG with bea
g contributin

ectively. We

eams in the 
is mainly be
re. In our fis
P-polarized 

Contributio

omponent pe
the Ag side 

fields at the 
wavelength,
ane and (b) P

SHG with di
. (4.7) can b

(2) (2 )p 

2
: ( , )L r   
 

anes at x=0
, and (2)

yzy 
arization co
ructure. The
al fishnet str
HG are allow
ams in the y-
ng (2)


elem

e note here t

y-z plane) i
ecause SP-S
shnet structu
SH output c

on from the 

erpendicula
 planes is si

49 

Ag/SiO2 edg
, calculated 
P-wave inci

ifferent pola
be re-written

(2) : (E  


dr


 should r

 and y=0, th
(2)
yyz  . Non

mbinations.
 experiment

ructure did n
wed. As me
-z plane and

ments to SP-S

that in contr

is non-vanis
SHG can be 
ure, SHG or
comes solely

top flat surf

ar to the surf
ignificant an

ge in the inc
by FDTD s
dent in the x

arization com
n as  

) ( )E 


, 

reflect the s

hen the nonv
e of these el

. Therefore,
tally observ
not have the
ntioned abo

d in PP-SHG
SHG and PP

rast to the fl

shing even i
generated f

riginates fro
y from (2)

zp i

face of the A

face is negli
nd is given b

 

clined side p
simulations 
x-z plane. 

mbinations 

symmetry of

vanishing el
lements con

, PS-SHG an
ved signals s
e perfect mir
ove, the mag
G with beam
P-SHG are

lat metal sur

if we treat th
from the inc
om the silve
induced in e

Ag stripes to

igible. On th
by  

plane as 
assuming (a

can be unde

     

f the unit ce

lements of 
ntributes to 

nd SS-SHG
shown in Fig
rror symmet
gnetic reson
ms in the x-z

( 2)
zxx  and (

rface, SP-SH

he metal as 
clined side p
er part of the
each unit ce

o (2)
zp  is neg

he other han

a) 

erstood 

     (4.10) 

ell. The 
(2)


 are 
SHG 

G are 
g. 4.7 
try. On 

nance is 
z plane. 

(2)
zzz , (2)

zxx , 

HG from 

a free 
planes of 
e surfaces. 
ll by the 

gligible 

nd, 



 

 

(2)
zp

 

where 
Ag-cov

wall an
vertical
field en

,x locE an

elemen

S-polar

Figure 

along th
simulat

It is see
present
SP-SHG

case wi

and SP

(2)

(2
||

(
~

2

E









  is the inc
vered area o

nd the top A
l side walls)
nhancement
nd ,z locE with

nts which we

rized input h

4.9 Distribu

he symmetr
tions for the

 

Fig. 4.10 d
en, as expec
ted above. B
G. It is inter

ith 71    (

-SHG for 

,

)
,

cos

( cos

z loc

x loc

E

E







clination ang
of the incline

Ag surface fo
). It is seen t
t is near max
hin a unit ce

e argued bef

has only a fi

utions of no

ry lines on th
e fishnet stru

escribes SH
cted, that SS
Both PP- and
resting to co

(Fig. 4.7). B
71    are m

2
,

,

sin )

sin

x loc

z loc

E

E



 

gle of the sid
ed side plan

or 71    (e
that around 
ximum. In a
ell are actua

fore. At 
ield compon

rmalized lo

he top and t
uctures with

HG from a fi
S- and PS-SH
d PS-SHG a
ompare the 

Because of th

much strong

50 

2

,

cos

)( cosz locE



 

de planes (s
nes. Fig. 4.9

experimenta
the upper A

addition, dif
ally responsi

90 , both E

nent along x̂

cal fields (s

the side wal
h (a)+(b) 

ishnet with 
HG do vani
are allowed,

90    cas

he much str

ger than thos

, sinx locE 

see Fig. 4.4)
shows how

al sample) a
Ag/ SiO2 edg
fferent symm
ible for the g

,x locE and ,z lE

x̂ .  

solid line: xE

ll Ag surface
71  , and (c

90    obt
sh, consiste
, but PP-SH
e (Fig. 4.10

ronger local

se for 90 

n )sin
dS

 





), and the in
w ,x locE and E

and 90   (
ge on the sid
metry prope
global symm

loc  are prese

,x loc ; dashed 

e, calculated
c)+(d) 90 

ained from 
ent with the 

HG is apprec
0) with the e

l-field enhan
0 . 

S            

ntegration is 

,z locE  vary on

(ideal case w
de walls, th

erties posses
metry of (



ent even tho

 

line: ,z locE ) 

d by FDTD 
0 . 

FDTD simu
symmetry a

ciably strong
xperimental

ncement, PP

   (4.11) 

over the 
n the side 

with 
e local 

ssed by 
2)  

ugh the 

ulations. 
argument 
ger than 
l sample 

P-SHG 



 

Figure 
(b) P in
the inci

 

than the
harmon
striking
THG sp
the reso
metama

 which 

resonan

 

4.6 Con

we hav
metama
achieve
enhanc
excelle
FDTD 
be utili
experim
wave-m

 

4.10 Simula
n S out, (c) S
ident planes

Finally, we
e linear abso
nic generatio
g contrast w
pectra often
onance enha
aterial is gen

can be appr

nt linewidth

nclusions 

In summary
ve provided 
aterial. It is 
ed through t
cement of ~8
ent agreemen
simulations
zed to furth

mentally, an
mixing appli

ated SHG sp
S in S out, a
s are specifi

e note that th
orption peak
on (THG) p

with resonanc
n have simila
ancement is
nerated by t

( )np  


roximated b

h narrowing 

y, using SH
a complete 
shown that 

the resonant
80 times larg
nt between e
s with a field
her understan
nd allow rese
ications. 

pectra of the
and (d) S in 
ed in the leg

he linewidth
k (Fig. 4.5).

peak is furth
ce behavior
ar line shap
 through the
the nth-orde

( , ) :L r n 
 

by ( ) ( )np n
of the highe

HG spectrosc
analysis of 
the resonan

t enhanceme
ger signal c
experiment 
d integration
nd details o
earchers to 

51 

e fishnet wi
P out. Incid

gend for sym

h of the mea
. It was show

her narrowed
rs of molecu
es [86]. The
e local field
er induced p

( ) ( ) :[n
eff locr E
 

( , )
n

L r 
 

er harmonic

copy and co
second harm

nt enhancem
ent of the lo
ompared to
and theory 
n technique
f many inter
design optim

ith vertical s
dent angle is
mbols and li

asured SHG
wn in [85] t
d compared 
ular material
e difference

d resonance. 
polarization

( , )]n
c r dr 

 if “hot spo

cs.  

omparing it w
monic respo

ment of SHG
ocal field. In
 that of a ba
validates th
 to calculate
resting phen
mal metama

 

side walls: (
s kept as  
ines, respec

G peak (Fig. 
that the mea
with the SH
ls, where th
 arises beca
The nth har

  

ts” exist.  T

with theoret
onses from a
G from a me
n our case, w
are silver fil
he computat
e the nonlin
nomena obs
aterial struct

(a) P in P ou
45   and 

tively. 

4.7) is narro
asured third 
HG one. Thi
e linear, SH

ause in meta
rmonic in a 

 

This explains

tical calcula
a fishnet 
etamaterial i
we observed
m. Also, the

tional appro
near respons
served 
tures for non

ut, 

ower 

is is in 
HG, and 
amaterials, 

(4.12) 

s the 

ations, 

is 
d an 
e 
ach of 
e. It may 

nlinear 



52 
 

 

 

 

 

Chapter 5 

 

Pump-probe spectroscopy study of fishnet metamaterial 

 

5.1 Motivation 

Actively controlling the optical properties of metamaterials have garnered much interest 
because of the potential implications [94, 95]. By changing the effective refractive index upon 
request, one can envision tuning the functioning frequency range of negative refractive index 
materials or invisibility cloaking devices. In addition, tuning the properties of metamaterials 
can also be useful in improving the performance of conventional applications such as 
modulation and switching [96]. Recent studies have mostly focused on switching by utilizing 
low-frequency metamaterials through applying a bias voltage [97]. However, in these studies 
the spectral behavior changes of effective optical constants are not studied and therefore 
provide only limited understanding. Also, since the switching is achieved by applying bias 
voltage, the speed is limited by the time constant of the equivalent circuit. Therefore it is 
impossible to probe the intrinsic limit of switching speed. 

In this chapter, we report our study carrying out femtosecond pump-probe spectroscopy 
to probe the modulation dynamics of a fishnet metamaterial [64]. We have designed a new kind 
of fishnet metamaterial with a mid-semiconductor layer and utilized optical pumping to excite 
free carriers in the nanostructure. Very short pulses are required to probe the intrinsic limit of 
the dynamics of the materials. Therefore we use femtosecond pulses to probe the dynamical 
change of metamaterials. The results help elucidate how the effective optical constants change 
upon external perturbations. 
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ase of t̂  and
/R, t  and

pump-indu
ters with the

sion ( t̂ ) and

tive optical 

coefficients
splay the me
rocedure in 

Next, the op

d r̂  are meas
d r  at pum

ced changes
e pump are 

 

d reflection 

constants 

s are measu
easured 
Sec. 3.2, w

ptical pump

sured using 
mp fluence 

s to metama
obtained an

red 

we deduce 

p is 

a lock-in 
of 

aterial 
nd shown 



 

Figure 

(a) T. (

 
measur
feature

where t

change
exhibit
magnet
causes 

5.3 Experim

b) t . (c) ΔT

Fig. 5.4 plo
rements. Th
. The distinc

the resonant

es of all quan
s spectral fe
tic, a result 
mixing of th

mentally me

T/T and 

ots the dedu
e dip in T an
ct resonant 

t wavelengt

ntities aroun
eatures at th
arising from
he usual sym

easured spec

t . (d) R. (e)

uced effectiv
nd peak in R
features of 

th defined by

nd the reson
he magnetic 
m the tapered
mmetric and

55 

ctra of T, R,

) r . (f) ΔR/

 

ve n̂ , ̂ , ̂
R clearly sh
̂  confirm 

y the peak o

nance are als
resonance, 
d layer struc
d asymmetri

 t  and r  w

/R and r . 

 and their m
hows a chara
a strong ma

of Im( ̂ ). T

so clearly ob
indicating t
cture of the 
ic resonant 

with and wit

 

modulations 
acteristic res
agnetic reson

The pump-in

bserved.  Th
that the reso
fishnet  (Fi
modes [56]

thout pump

from the 
sonant spect
nance at 1.1

nduced spec

he Re( ̂ ) al
onance is no
g. 5.2(b)) th
. 

 

. 

tral 
15μm 

tral 

lso 
t purely 

hat 



 

Figure 

(a) Re(
red das

in main
refracti

refracti
measur
[100], 

The exp
to these

5.4 Experim

n̂ ). (b) Im(
sh curves are

 

The spectra
nly through 
ive index ch

ive index ch
red changes 

T

perimentally
e values, are

mentally ded

( n̂ ). (c) Re(
e deduced fr

a of  ̂  in F
broadening

hanges, fn
hange, bn  

of transmit

b
b

b

T
T ( ) n

n


 



y obtained v
e mainly res

duced n̂ , ̂
( ̂ ). (d) Im(
from those o

Fig. 5.4(e) an
g of the magn

 and fk , o

and bk , o
ttivity ( b ) 

b
b

b

T
( )n

k


 



values are 
sponsible fo

56 

 and ̂  from

( ̂ ). (e) Re(
of (a,b,d,e) o

nd 5.4(f) sho
netic resona
of a-Si in fi

f the bare a
and reflectiv

bk  and R

bn =-0.01 a
or the shift a

m t̂  and r̂
( ̂ ). (f) Im(
of Fig. 5.3.

ows that the
ance. This re
shnet. Thes

-Si film, wh
vity ( bR ) o

b
b

b

R
R ( )

n


 



and bk =0.
and broadeni

with and wi

̂ ). The blu

e pump-indu
esults from 
e can be est

hich are ded
f the film us

b
b

b

R
( )n

k


  



05. fn  and
ing of the m

 

ithout pump

ue solid and

uced change
the induced

timated from

duced from t
sing the rela

bk .  

d fk , bein
magnetic res

p. 

d 

es come 
d 
m the 

the 
ations 

(5.1) 

ng similar 
onance, 



57 
 

respectively. In our case, the shift of resonance is not appreciable, and only the effect of fk  is 

significant. In general, however, one could use both fn  and fk  to shift and broaden the 

resonance to achieve strong modulation. Large fn  alone could be obtained in dielectric 
materials such as liquid crystals and polyelectrolytes. 

Interestingly, we also note that Fig. 5.3(c) show correlations between pump-induced 
changes of different quantities. The maximum ΔT occurs around minimum Δ t  and vice versa, 

at 1.12μm and 1.2μm, respectively. This can be readily understood from the Kramers-Kronig 
relations. Therefore, both amplitude and phase modulations are achievable and can be predicted 
from understanding of how the optical constants behave under external perturbation. 

 

5.3.2 Modulation strength 

The pump-induced change is most significant near the resonance as expected. The 
normalized induced changes are observed to be ΔT/T=31% and ΔR/R= -42% at the resonance 
wavelength 1.12μm for a pump fluence of 300μJ/cm2 and zero pump-probe time delay. Fig. 
5.5(a) also shows that the changes are linear with the pump fluence. The decrease in Im( n̂ ), 
which mainly follows from decrease of Im( ̂ ) at the magnetic resonance (Fig. 5.4(b) and 
5.4(f)), leads to the different signs of ΔT and ΔR. Interestingly, the observed ΔT/T and ΔR/R 
on an a-Si film (same thickness (80nm) as that in the fishnet structure) were both less than 1% 
with the same pump fluence. Thus, the pump-induced changes of ΔT/T and ΔR/R in the 
metamaterial structure are 50 times larger than that of bare a-Si thin film. The significantly 
larger signal comes from enhancement through the plasmon resonance: a small change in the 
refractive index of the dielectric layer in the metamaterial can induce a dramatic change in the 
resonant characteristics, and hence the optical properties near resonance. Therefore, 
metamaterials can be a very effective optical modulator. 

 

5.3.2 Modulation speed 

 The relaxations of ΔT/T and ΔR/R after pumping were measured for both the fishnet 
and a-Si film. Then the relaxation of the pump-induced absorption change (ΔA) is deduced. 
The pump-induced absorptions in both cases are very similar as shown in Fig. 5.5(b). The 
induced changes as function of probe-pump time delay have a fast decay component of ~750fs 
followed by a long tail extending over hundred picoseconds. The similar decay dynamics of a-
Si and the fishnet incorporating it indicate that the fishnet modulation dynamics is dominated 
by free carrier excitation in a-Si. The contribution from excited carriers in the metal layers is 
negligible because the maximum excited carrier density in the silver layer estimated from the 
pump fluence is ~1018cm-3. This is orders of magnitude smaller than the intrinsic free carrier 
density ~1023cm-3, and therefore its effect on the optical properties of the fishnet is insignificant. 
Therefore, dielectric materials with larger absorption coefficient and shorter carrier lifetime 
should be chosen in order to improve the strength and speed of the pump-induced modulation. 
For example, low-temperature grown GaAs is known to have carrier lifetimes of ~200fs [101] 
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