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Abstract

An electromagnetic beam model is developed for the simulation of actuated electronic 

textiles. The beam is solved using a nonlinear director-based kinematic description with 

additional temperature and electric potential fields along its length. The three fields are 

fully coupled by mutual dependences on the deformation, Lorenz force, back 

electromotive force, temperature dependent constitutive responses, and the Seebeck 

effect. Instead of solving Maxwell’s equations in full detail, a quasistatic approximation is

used to solve the electric potential in the presence of a moving material medium. The 

current-carrying beam approximation is used to further simplify the solution space for 

the potential. While this formulation alleviates the spatial and temporal discretization 

restrictions, the coupled problem is an index-1 semi-explicit Differential Algebraic 

Equation requiring special treatment. The time dependent problem is solved using 

different Runge–Kutta methods. Diagonally implicit Runge–Kutta methods and explicit 

Runge–Kutta methods using implicit solution of the electric potential problem are 

explored. The finite element model is implemented using the open source package 

FEniCS, which is able to automatically generate the linearizations of the multiphysics 

equations required for the implicit solutions. A model problem is constructed with which 

to test and analyze the physical formulation and numerical solution techniques. The time

stepping methods are verified using the convergence orders of the higher-order Runge–

Kutta methods. Runtime comparisons show that the explicit methods are generally more

computationally efficient than the implicit schemes used for this problem. For the implicit

schemes, a staggered solution is significantly faster than a monolithic solution at most 

time step sizes. However, at very large time steps, such as those that would be used for

dynamic relaxation, the monolithic solution can be more efficient than the staggered 

solution.
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Differential algebraic equation

Runge–Kutta methods

1. Introduction

The coupling of electromagnetic fields with moving and deforming structures is 

challenging to treat efficiently in a computational framework. This work presents a 

physical formulation and discusses numerical solution techniques for a slender yarn- or 

wire-like conductor moving and deforming through an applied magnetic field. The 

canonical setup studied is a single yarn clamped on both ends and connected to a 

simple resistor and voltage source circuit, diagrammed in Fig.     1. Such bodies can be 

found in MEMS devices  [1], [2] and electronic textiles  [3], [4]. The authors’ greater 

interests include incorporation of the presented model into a simulation of 

electromagnetically actuated textiles, such as that seen in Haines  [3] using 

electrothermal and thermomechanical effects.
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2. Download full-size image

Fig. 1. A wire moving through a magnetic field.

The are two particular issues when coupling electromagnetism to structural problems 

that will be considered: (1) the spatial and temporal timescales associated with the 

electromagnetic fields yield very stiff numerical behavior, and (2) electromagnetic fields 

need to be solved in the interstitial and surrounding media and/or vacuum to the 

structure. A number of different formulations and numerical techniques have been used 

to solve coupled problems in electromagnetism. Often, Maxwell’s equations are solved 
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by discretizing the electric field E and flux density B directly and marching in time. 

Popular examples are the finite difference time domain method, introduced in Yee, 

1966 [5], and specially designed vector-based finite elements such as the Nédélec 

elements introduced in 1980  [6]. Solving Maxwell’s equations in time requires timesteps

on the order of 10−14s and similarly scaled spatial grids to discretize individual 

electromagnetic waves  [7]. A finite element model solving E and B directly couples to 

the large deformation of a magnetoelastic membrane directly in Barham, 2010, using 

split implicit integration of the electromagnetic and mechanical fields  [8]. The use of the 

electromagnetic potentials–e.g. the electric voltage potential V and magnetic vector 

potential A or other Gauge transforms on these–as primary solution variables is also 

possible. These formulations have the advantage of not requiring special elements to 

enforce divergence and curl conditions, so that nodal element basis functions can be 

used. For example, the finite element method is applied to solve the magnetic vector 

potential coupled to a saturable permeable material subject to deformations in Ren, 

1995  [9] and Besbes, 1996  [10]. A discontinuous Galerkin enhanced immersed 

boundary finite element method for solving the electric scalar potential with material 

discontinuities is presented in Brandstetter, 2014  [11] that is used for problems in 

structure-interaction in Brandstetter, 2015  [12].

In this work, a novel formulation and discretization is used to avoid these issues. An 

electric potential formulation is developed that includes the theoretical treatment of 

motion and deformation of a conductor in a strong magnetic field. The geometry of the 

beam is used to further remove the need to solve the electromagnetic fields in the 

space around the material, allowing the same discretization to be used for the electric 

potential as is used for the mechanical and thermal fields. The stiff behavior of the 

potential and electric charge is used to develop a quasistatic approximation.

While this approach alleviates the temporal and spatial resolution restrictions on solving 

the electromagnetic fields, it introduces the additional complication of having to solve a 

Differential Algebraic Equation (DAE) to march the solution in time. These problems 

have the general form

(1)0=f(t,y,ẏ)

where t is time and y is the solution sought with time derivative ẏ. The problem reduces 

to an Ordinary Differential Equation (ODE) when f can be solved for ẏallowing the 

problem to be written as ẏ=f(t,y). The index of a DAE, (or differentiability index, 

specifically) refers to how many time-derivatives must be taken of the system to 

produce an equivalent ODE. This value is used as a measure of the difficulty of solving 
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the DAE  [13]. Index reduction is one methodology used to solve DAEs, wherein the 

equations are transformed by successive differentiation to produce an equivalent ODE. 

The methodology can be applied automatically using, e.g., the Pantelides 

algorithm  [14]. However, index reduction typically results in issues such as error-drifting

in constraints and is not necessary for index-1 DAEs  [13]. Without resorting to index 

reduction, the solution of a DAE requires some type of implicit scheme. Methods 

designed for stiff problems are typically used. The Radau family of implicit Runge–Kutta 

methods is widely used, particularly Radau-IIa  [15], [16], which exhibits L-stability 

(i.e., the methods are designed to dampen stiff modes).

For the problem explored in this paper, the Voltage variable V produces an index-1 

semi-explicit DAE with the structure

(2)ẏ=f(t,y,V)

(3)0=g(t,y,V)

where g can be solved for V given a t and y. Taking advantage of this structure, this 

work explores the application of time stepping methods that are less-robust than those 

discussed above to determine an efficient solution method for the problem of 

discussion. The fully implicit methods, described above, such as the Radau family, 

require solving multiple stages simultaneously. This work applies Diagonally Implicit 

Runge–Kutta (DIRK) methods that only require solving a single stage at a time, 

resulting in smaller linear problems to solve and store. Through numerical 

experimentation, it is observed that the DAE does not require a time-stepping method 

that can handle stiffness. Thus, both L-stable and not L-stable implicit methods will be 

applied and compared. For further experimentation, the nonlinear stages of the implicit 

methods are solved in two ways: (1) using a monolithic solution of all fields 

simultaneously as a single DAE, and (2) decoupling the fields into three separate 

ordinary and implicit equations and solving each stage iteratively in a staggered fashion.

Because the applied method does not need to handle stiffness, explicit Runge–Kutta 

methods can also be applied by using a solution method that solves the implicit 

Eq. (3) at every stage calculation of Eq. (2). Three different types of time-steppers and 

solution methods are applied to the DAE: explicit Runge–Kutta methods, diagonally 

implicit Runge–Kutta methods with monolithic stage solution, and diagonally implicit 

Runge–Kutta methods with staggered stage solution. Each of these methods is applied 

to schemes with different convergence orders.

The finite element method is used for the spatial discretization of the problem, using the 

open source FEniCS package for its implementation [17]. FEniCS employs a Domain 

Specific Language (DSL) to represent user-input variational forms that are then 
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compiled into low-level C++ finite element routines, simplifying the implementation of 

the complicated system of equations formulated. The DSL system can perform 

differentiation to automatically obtain the tangent matrices to the finite element forms 

that are used in the solution of the nonlinear DAE  [18]. A methodology for using FEniCS

to automatically produce the finite element code needed to solve DAE by organization 

of the unknown fields into mixed function spaces is described.

The first half of the paper describes through the formulation of the dynamic current-

carrying flexible wire. In Section  2, the Partial Differential Equations (PDEs) used as the

basis of the model are developed from the theory of coupled continuum 

electromagnetism and mechanics. Next, the PDEs are further simplified in 

Section  3 using the assumed forms for the fields based on the geometry of the beam. 

The second half of the paper describes and analyzes the numerical solution methods. 

The variational form and the beam-specific integration methods used in the finite 

element discretization of the spatial equations are given in Section  4. Solution methods 

using explicit and implicit Runge–Kutta methods are described Section  5. Details of the 

implementation of the program, as well as external libraries used, are given in 

Section  6. The time integration methods are studied and compared on a model problem

in Section  7. Finally, concluding remarks are given in Section  8.

2. Formulation

In this section, the PDE description of the problem is developed. The formulation of the 

system follows closely from Kovetz  [19] and Steigmann  [20]. For the reader’s 

reference, the notation used in this section and the rest of the manuscript is 

summarized in Table     1. First, the special treatment of electromagnetic quantities with 

respect to deforming material frames is introduced in Section  2.1. The complete 

statements of the mechanical balance laws and Maxwell’s equations for moving media 

in Section  2.2 are expressed. The constitutive models that will be used for the material 

media studied in this work are introduced in Section  2.3. With these, and additional 

assumptions about the electromagnetic fields in the problem, Maxwell’s equations are 

reduced into a quasistatic electrostatic potential equation in Section  2.3.

Table 1. Nomenclature of operators and mechanical quantities.

Mechanics:

ei Coordinate orthonormal basis in spatial configuration

Ei Coordinate basis in a reference configuration

x, X,ξ Material position in current, reference, and ideal configurations, respectively.

v Material velocity
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F, Deformation gradient with respect to reference configuration, ∂x∂X

T Temperature

ρ Mass density

T Cauchy stress tensor (current configuration)

u Total material internal energy

q Heat flux vector

Electromagnetism:

E,H Electric field and magnetizing field (laboratory frame)

B,D Magnetic flux density and electric displacement field (Galilean invariant)

V Electric voltage potential (laboratory frame)

q Free charge density (Galilean invariant)

J Current density (laboratory frame)

J Conduction current density (material rest frame)

E Electromotive intensity (material rest frame)

rr̄,Jr̄ Mixed boundary condition coefficients

Constitutive properties:

λ,μ,αλ,αμ Lamé parameters and respective temperature coefficients

ϵ0,μ0 Permittivity and permeability of free space

k Thermal conductivity

χ Relative electric susceptibility

σ Electric conductivity

S Seebeck coefficient

Beam formulation:

r,g1,g2 Centroid position and director fields

2.1. Mechanical and electromagnetic coordinate frames

For a fully nonlinear body interacting with electromagnetic fields, there are a few 

different coordinate systems that need to be used. The kinematic frames that 

correspond to classical continuum mechanics are illustrated in Fig.     2. The coordinate 

system ξ is defined to provide a convenient description of the geometry of the body—in 

this case a long and thin beam. The reference (or, natural, or unstrained) 

configuration, X, may differ from this ideal configuration; i.e., a beam may be naturally 

bent, but it is still easier to describe its deformation using the curvilinear system ξ. The 
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quantity F=∂x∂X denotes the deformation gradient from the reference configuration to 

the current configuration of the body.

1. Download high-res image     (248KB)

2. Download full-size image

Fig. 2. Configurations for describing finite deformation problems. In this problem, the 
reference configuration is straight, so that ξ=X.

The treatment of electromagnetism requires one additional distinction to be made in the 

current configuration: the stationary laboratory frame and the rest frame of the material. 

No deformation field between the two is needed, but the material velocity v introduces 

new electromagnetic quantities. The displacement field, polarization density, and 

magnetic flux density are invariant, i.e.  D+=D, P+=P, and B+=B. The current, J, electric 

field, E, magnetizing field, H, and magnetization, M, are not invariant, however, and in 

their place the conduction current density, J, the electromotive intensity, E, 

magnetomotive intensity, H, and Lorentz magnetization, M, are used:

(4)J=J−qv

(5)E=E+v×B

(6)H=H−v×D

(7)M=M−v×D.

In these equations, v is the material velocity, so that these quantities describe the fields 

in the material rest frame with respect to any Galilean frame (the material velocity v also

transforms with respect to a new frame).
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The Aether relations, describing the polarization and magnetization of free space, only 

hold in the stationary laboratory frame, but material constitutive responses require the 

Galilean invariant electric fields observed in the material’s rest frame. The total 

displacement and magnetizing fields in the presence of the material are thus given by

(8)D=ϵ0E+P

(9)H=μ0−1B−v×ϵ0E−M

where ϵ0 and μ0 are the permittivity and permeability of free space. Since material 

responses must be specified in the material rest frame, this requires carefully 

distinguishing between both laboratory frame and material frame quantities.

2.2. Problem statements

The invariant forms of Maxwell’s equations are

(10)∇x⋅B=0∇x×E=−B∗

(11)∇x⋅D=q∇x×H=−D∗+J

where X∗ denotes the flux derivative, X∗=∂X∂t+(∇x⋅X)v−∇x×(v×X). Additionally, charge 

conservation can be recovered from these equations,

(12)−∂q∂t=∇x⋅J=∇x⋅(J+qv).

The quantities q and J are the free charge density and conduction current density that 

are “dragged” by the material.

The balance of energy and balance of linear momentum for the material medium are

(13)ρ(uu̇−∂uv⋅vu̇−∂uF:Ḟ)=−∇x⋅q+ρh+J⋅E

(14)ρvu̇=∇x⋅T+ρb+qE+J×B.

The terms ρu and ρv, and T are the internal energy, momentum, and Cauchy stress 

tensor of the material body itself. In the above equations, h and b are heat sources and 

body forces that are not electromagnetic in nature. The balance of energy equation has 

the additional terms −P⋅Ė−M⋅B on the right hand side, and the balance of linear 

momentum equation has the additional terms +[∇xP]E+P∗×B+[∇xM]B+M×(∇x×B). These 

terms are present in the complete formulation and denote power and force terms on the 

body from the polarization and magnetization, but since polarizations and 

magnetizations will not be considered, these terms are left out for compactness.

The stored energy and momentum in the electromagnetic field are not present in 

Eqs. (13), (14) This is a result of manipulation of Kovetz’s original statements into a 

body-force and heat-source style equation on the material. Indeed, the balances stored 

energy and momentum of the electromagnetic fields are automatically satisfied by 

Maxwell’s equations (Eqs. (10), (11)), and do not need to be considered in their solution.
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The energy and momentum of the fields can be post-processed out of a solution to 

these PDEs if desired.

2.3. Constitutive responses

The following quantities remain that require constitutive responses:

(15)u,q,J,T,P,M.

The internal stored energy has the following relations:

(16)T=∂u∂FFT,P=−ρ∂u∂E,M=−ρ∂u∂B.

Thus, only u, q, and J need to be specified, (though the effort to specifying udoes 

increase).

The variable u denotes the internal stored energy of the material, not including that 

contained in the E and B fields themselves. For a general class of solids, it is a function 

of deformation gradient, temperature, and the electromagnetic fields, u=uˆ(F,T,E,B). 

Explicit dependences for electromechanical effects, such as piezoelectricity, will not be 

considered, though the theoretical and computational formulation makes it possible to 

consider them. A general elastic dielectric will have a constitutive response 

of u(T,F,E)=uheat(T)+ustrain(T,FTF)+upolar(E). For a linear dielectric, the polarization is P

′=ϵ0χE where χ is the relative susceptibility of the material and ϵ0 is the free space 

permittivity. upolar=−12E⋅ϵ0χE. The term ∂u∂E⋅Ė would appear in Eq. (13) and would 

greatly complicating the solution process, so polarization is not included in the 

implementation. The constitutive response of the material used is a temperature 

dependent Neohookean hyperelastic stress with a linear heat capacity:

(17)u=cv(T−T0)︸uheat+μ(T)2(trC−3)−μ(T)logJ+λ(T)2log2J︸ustrain,

where T0 is a reference temperature. The Lamé parameters μ and λ can be calculated 

from Young’s modulus E and Poisson ratio ν by μ=E2(1+ν) and λ=Eν(1+ν)(1−2ν). A linear 

temperature dependence is used in the material 

parameters, μ(T)=μ0+αμ(T−T0) and λ(T)=λ0+αλ(T−T0), where μ0and λ0 are the reference-

temperature values.

Fourier’s law for heat flux is used, which relates the heat flux q to the temperature 

gradient by

(18)q=−k∇xT

where k is the thermal conductivity tensor. Only isotropic materials are considered, so 

the thermal conductivity k will be treated as a scalar.

Ohm’s law for a conductor, J=σE, where σ is the electrical conductivity tensor, also holds

in the material’s rest frame (see  [21] p572; [19] p86, 135). As with the thermal 

conductivity, only isotropic materials are considered, so it will be treated as a scalar. 
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Additionally, the Seebeck effect will be considered, which induces an electromotive 

force in response to temperature gradients. The constitutive response for the material is

(19)J=σ(E−S∇xT)

where S is the Seebeck coefficient that can be either positive or negative, depending on 

the material. The reader is directed to Kovetz  [19] for a formal development of 

electromagnetic material constitutive responses.

The material laws are specified in the reference state of the material, and transform due

to the deformation of the material as k=1JFk0FT, σ=1JFσ0FT, and χ=1JFχ0FT. A material 

that is isotropic in its reference frame develops a texture due to its deformation. Thus, 

isotropy is the statement about the reference values σ0=σˆI, k0=kˆI, and χ0=χˆI, where I is

the identity matrix.

2.4. Electric potential approximation

The following assumptions are used to further simplify the electromagnetic problem 

state:

1.

The magnetic B field is dominated by an externally applied field (such as a 

powerful electromagnet near the wire); the contribution by the current in the 

conductor is negligible, i.e.  Bapp≫Bself. This assumption implies that the 

electromotive force introduced by the motion of the conductor through the 

external source is greater than the self-electromotive force due to the self-

inductance of the conductor.1

2.

The time behavior of the E field and charge is highly stiff on mechanical time 

scales, ϵ0(1+χ)σ→0.

3.

The effect of the electric charge density inside of the conductor is negligible as 

the force magnitude from the electric current component of the Lorenz force is 

much greater than the electric charge component, J×B≫qE.

These assumptions are used to replace Maxwell’s equations with a simpler PDE to 

solve. The electric potential is not invariant, but the invariant quantity V′=V−v⋅A is 

unwieldy for this formulation due to its dependence on the magnetic vector potential, A. 

Let V be the Lab Frame electric potential so that the electric field E then 

satisfies E=−∇xV. Faraday’s law, ∇×E=∂B∂t is trivially satisfied by this formulation, since 

the curl of the gradient is zero, and Gauss’s law for magnetism, ∇⋅B=0 forms a 
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constraint on the applied B that can be chosen. The derivation begins with Gauss’s 

law ∇⋅D=q and charge conservation, ∂q∂t+∇⋅J=0. In these two equations, there are two 

unknowns: the electric potential V and the charge q.

First, the constitutive responses are inserted into the law for charge 

conservation, −∂q∂t=∇x⋅(σ(E−S∇xT))+∇x⋅qv, and into Gauss’s law, q=∇x⋅ϵ0(E+χE). (The 

susceptibility of the wire of question is zero, but is included in this discussion for future 

use.) The potential is plugged into both of these equations to obtain

(20)∂q∂t+∇x⋅qv=∇x⋅σ∇xV−∇x⋅σ(v×B−S∇xT)

(21)q=−∇x⋅ϵ0(I+χ)∇xV+∇x⋅ϵ0χv×B.

Let DqDt=∂q∂t+∇⋅(qv). For the sake of a scaling argument, the conductivity is 

decomposed into a constant scaling factor and a fabric tensor by σ=σˆAσ where ‖Aσ‖≈1. 

After substituting Eq. (21) into Eq. (20), the following first-order ODE for the voltage is 

obtained (where D/Dt contains the additional convection term):

(22)−ϵ0σˆDDt(∇x⋅(I+χ)∇xV−∇x⋅(χv×B))=∇x⋅Aσ∇xV−∇⋅xAσ(v×B−S∇xT).

The permittivity of free space ϵ0 is approximately equal to 8.85×10−12Fm and the 

conductivity σ of conductors is on the order of 106Sm. The susceptibility χ of materials is

close to zero or one. For most materials, the ratio ϵ0(1+χ)σˆ is extremely small and 

represents a very stiff time constant for the relaxation time of the free charges and 

electric potential. Taking the limit as ϵ0σˆ→0, the steady state result can be used as an 

approximation,

(23)∇x⋅σ∇xV=∇x⋅σ(v×B−S∇xT),

where the conductivity tensor σ is written again for clarity. This equation is a quasistatic 

potential approximation for a deforming material moving through a magnetic field with 

an induced electromotive force (the term −S∇xT can be exchanged by any other 

response). From the solution of the potential, the quasistatic value of the free 

charge q can be determined by Gauss’s law.

The fact that there is a charge density present is contrary to experience with the 

analysis of stationary conductors. A standard conductor (no additional chemical 

potential) moving in a magnetic field will develop a charge density according 

to q=ϵ0∇x⋅v×B. Note that another commonly analyzed state of the conductor rigidly 

translating through the medium will also not produce a charge density, only surface 

charges at opposite ends. A conductor rotating with constant angular velocity about an 

axis, e.g.  v=ωreθ, will develop a constant charge density. If the magnetic field is along 

the axis, then q=ϵ02ωB. For an example of such a system, consider the Faraday disc 

(i.e., a homopolar generator) (see Kovetz, p139, and Montgomery, 2003  [19], [22]).
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However, the post-processing step to calculate q is extra computational work. The 

magnitude of the force density qE=q(E+v×B) is much smaller than the magnitude of the 

term J×B and is neglected.2 Thus, the force density for the beam is only calculated 

by f≈J×B.

2.5. Electric boundary conditions

Boundary conditions are desired that would yield a back electromotive force effect, as is

observed in an electric motor, for example. Using two Dirichlet voltage boundary 

conditions has current-sourcing effects that are not intuitive. One side of the wire is set 

to ground to pin the constant mode in the PDE, and on the other side, a mixed boundary

condition is used that couples the body to the external circuit illustrated in Fig.     1.

The total current leaving the body and entering the circuit is I=∫ΓJ⋅ndΓ. 

Assuming V(0)=0V, the body has to match up with the circuit by the integral relation

(24)V(L)=−R∫ΓJ(L)⋅ndΓ+ΔVE,

where R is an external resistance and ΔVE is an external voltage source. Assuming that 

there is an ideal electrical connection at the surface, with the area of the surface 

being A, the above relation can be phrased in terms of the current density as

(25)J(L)⋅n=−1RA︸rr̄V(L)+ΔVERA︸Jr̄,

thus giving a mixed boundary condition linearly relating the normal current density to the

potential with coefficients rr̄ and Jr̄. Coupling to more complicated circuits requires solving

an additional Kirchhoff’s law network system while solving the PDE.

2.6. Summary of field equations

In a standard approach to solving solid deformations, the partial differential equations 

are pushed back into the reference configuration. A subscript naught denotes a value 

evaluated in the material reference configuration. The three coupled partial differential 

equations derived can be summarized by

(26)ρ0ẍ=∇X⋅∂u∂F+ρ0ρJ×B+ρ0b

(27)(ρ0cp+∂ustrain∂T)Ṫ=∇X⋅k0∇XT+ρ0ρJ⋅E+ρ0h

(28)0=∇X⋅σ0∇XV−∇X⋅σ0(FTv×B−S0∇XT)

where the material position was written, ẋ=v, and b and h are specific forces and heating

terms that are not electromagnetic in nature. The three fields are fully coupled, 

illustrated in Fig.     3. No extra heating term is included, h=0, and, for the sake of 

numerical stability, a dampening body force of b=−γv is used. The conduction current 

density can be determined from the potential field by

(29)J=1JFσ0FT(−F−T∇XV+v×B︸=E+SF−T∇XT︸S∇xT).
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The push-back into the ideal configuration is identical, with all reference configuration 

values, subscript X and 0, replaced by their values in the ideal configuration, subscript ξ.

The reference configuration does not differ from the ideal configuration in the model 

problem studied.
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Fig. 3. Coupling diagram of fields.

Remark: fully-coupling the problem

The Seebeck effect was included in the problem for the sake of the numerical study. A 

missing arrow in Fig.     3 would correspond to a zero-block in the tangent matrix seen 

later in Eq. (91). Out of concerns that a zero-block in the matrix might bias one solution 

method over another, the Seebeck effect was added as the simplest way to fill out the 

matrix. That is, the effect was added to make the problem “harder” with respect to the 

solution algorithm.

3. Current-carrying beam

A kinematic director-based beam model is used, wherein in a one dimensional finite 

element basis is used along the axis and an ansatz is used along the cross section to 

construct the displacement field using two vector directors, as diagrammed in Fig.     4. 

E.g, see Rubin  [23]. Thermal and electromagnetic fields are incorporated into the beam

formulation with additional ansätze for the temperature and electric current that are 

constant along the cross section.
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Fig. 4. Director based beam formulation.

3.1. Director-based beam model

The ideal configuration of the beam has coordinates X1, X2 along the cross section 

and X3 along the axis, with the curvilinear orthonormal basis vectors E1, E2, and E3, 

respectively. Let r(X3) denote the position of the centroid of a given cross section of the 

wire, and g1(X3) and g2(X3) denote directors of the cross section in the 

directions X1and X2. These fields are assembled into an assumed solution for the 

position field

(30)x(X1,X2,X3,t)=r(X3,t)+X1g1(X3,t)+X2g2(X3,t).

The director fields are illustrated in Fig.     4. The coordinate system ξ was defined for 

convenient description of the geometry of the long and thin fiber to allow this simplified 

deformation description. The reference (or, natural, or unstrained) configuration, X, may 

differ from this ideal configuration; i.e., a fiber may be naturally bent, but it is still easier 

to describe its deformation using the curvilinear system ξ. The configurations are 

illustrated in Fig.     2.

The deformation gradient for this field can be calculated 

by F=∂x∂X=∂x∂ξ∂ξ∂X0=∂x∂ξ(∂X0∂ξ)−1 where X0 is the mapping from the ideal 

configuration ξ to the reference configuration X. The gradient with respect to the ideal 

configuration is calculated from the ansatz by

(31)∂x∂X=(∂r∂X3+X1∂g1∂X3+X2∂g2∂X3)⊗E3+g1⊗E1+g2⊗E2.
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If the unstrained configuration is assumed to be identical to the reference 

configuration, X=ξ, as is the case for an initially straight beam, then ∂X∂ξ=I, and the 

deformation gradient is F=∂x∂ξ.

The unit normal to the cross section can be obtained by nC(X3)=g1×g2‖g1×g2‖2. The 

cross section and centroid are not required to be perpendicular in the director-based 

theory. The unit vector along the centroid is defined in terms of the centroid position field

by

(32)eaxis(X3)=drdX3‖drdX3‖2

and is used to orient the electric current. In rotation-based beam models, this unit vector

is obtained by applying the rotation matrix, R, to the reference axis vector, eaxis=RE3.

3.2. Balance of energy

The beams are assumed to have a constant temperature across their cross section, so 

that the temperature is only a function of the axis coordinate,

(33)T=T(X3).

This representation can be plugged into the balance of energy laws directly. The 

gradient in the reference configuration is then only constructed from the derivative along

the centroid direction,

(34)∇XT=dTdX3E3.

3.3. The restriction of electromagnetic problem to the beam

Without further assumptions, it would be necessary to mesh the space around the 

textile, even if it were a vacuum, and calculate the electromagnetic fields there as well. 

For this problem, it is assumed that the magnetic field is dominated by an externally 

applied source, such that the contributions by currents in the body are negligible. Only 

the electric field and current inside of the textile will be calculated during the simulation. 

The electric field outside of the material varies as a consequence but is not required for 

the deformation calculation.

The base assumption to the electromagnetic discretization is that the conduction current

density is uniform across the cross section and oriented along the axis of the beam, 

such that

(35)J=J(X3)eaxis(X3).

The notations used will now collide slightly with respect to the electric field and the ideal 

coordinate basis: FE3∥eaxis, FE1, and FE2 are the basis vectors of the reference 

coordinate system pushed into the current configuration. Because both the current and 

temperature gradient are assumed to be oriented along the axis of the fibril, the 



constitutive law of Eq. (19), J=σ(E−S∇xT), assuming isotropy, requires that electromotive 

intensity must also be oriented along the axis of the fibril, yielding E⋅FE1=E⋅FE2=0. Using

the above assumption the lab frame electric field can be broken up into the curvilinear 

coordinates of the beam as (E+v×B)⋅FE1=(E+v×B)⋅FE2=0. This yields the following 

restriction for the electric potential:

(36)FT∇xV⋅E1=FT(v×B)⋅E1

(37)FT∇xV⋅E2=FT(v×B)⋅E2.

Even though the potential is being constructed in the lab frame, the condition that 

current must flow along the axis of the beam yields a trivial condition on the gradient of 

the voltage across the cross section. These components could be solved for by 

substituting in the ansatz for v, but do not have any effect on the current and are thus 

uninteresting. Returning to the potential equation and breaking the divergence in the 

components along the ideal coordinates,

(38)0=∇X⋅σ0∇XV−∇X⋅σ0JF−1v×B+∇X⋅σ0S0∇XT.

Only the ξ3 direction is not trivially satisfied by Eqs. (36), (37), so the one-dimensional 

PDE that needs to be solved is

(39)ddX3σ0dVdX3=ddX3σ0(v×B⋅FE3−S0dTdX3).

Thus, for computation purposes, only voltage at the centroid of the beam needs to be 

solved, yielding an unknown field that is only a function of the axis coordinate,

(40)V=V(X3).

Since the only non-zero component of E is along the axis coordinate, the conduction 

current density in the laboratory frame can be determined to depend on the laboratory 

frame voltage, the deformation gradient, the material velocity, and the temperature 

gradient by

(41)J=1JFσ0(−∂V∂X3+FTv×B⋅E3−S0∂T∂X3)E3.

4. Variational form

4.1. Function spaces

The continuum problem has four unknown fields: x,v,T,V. In the kinematic beam model, 

the fields x and v have assumed forms that are not directly the functions being sought. 

The solutions that are sought are thus constructed from component functions 

of r, g1 and g2. For the sake of clarity at the expense of compactness, the following 

naming convention for fields is adopted: prefix of δdenotes a test function, prefix 

of v denotes an element of the velocity field, and an overdot a denotes the time 

derivative, with an overline abc¯u̇ used to prevent ambiguity with multi-character symbols.

There are eight unknown fields
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(42)r,g1,g2,vr,vg1,vg2,T,V

with a total of twenty components. The following function spaces are defined for seeking

the solutions for these fields:

(43)r,vr,δr∈Vr

(44)g1,vg1,vg¯u̇1,g2,vg2,vg¯u̇1∈Vg

(45)T,Ṫ,δT∈ST

(46)V,δV∈SV.

The test displacement and velocity fields constructed from test functions from the space

of solutions of r,g1, and g2, relating them to the test functions in the space of w by the 

relations

(47)δx(X1,X2,X3)=δr(X3)+X1δg1(X3)+X2δg2(X3),

and, by stating that the position and velocities of the directors come form the same 

spaces, the test functions on the velocity are identical, δv=δx.

4.2. Integral statements

The integration over the domain is split between the cross section and the axis. The 

finite element approximation discretizes the solution along X3, and the integral 

along ∫0LdX3, where X3∈[0,L], is handled by the finite element program. Integration over

the cross section is evaluated by Gaussian quadrature, so that each Gauss point on the

finite element discretization maps to multiple Gauss points on the cross section and its 

boundary. Let wA,Xˆ1A,Xˆ2A∈P(Ω)denote the set of Gauss points and weights over the 

geometric quantity Ω.

Performing the integration of the PDEs over the domain of the beam, and applying the 

above described cross-section quadrature, yields the following finite element integrals. 

The subscript m denotes forms related to the mechanical fields, Tdenotes forms related 

to the temperature fields, and V denotes forms related to the Voltage fields. The masses

for the mechanical and thermal forms are

(48)Mm(δv,vu̇)=∫0L∑A∈P(C)wA(δvr+Xˆ1Aδvg1+Xˆ2Aδvg2)⋅ρ(vr¯u̇+Xˆ1Avg1¯u̇+Xˆ2Avg2¯u̇)dX3

(49)MT(δT,Ṫ)=∫0L∑A∈P(C)wAδTṪdX3.

The internal force vector is formed by

(50)Fm(δv,v,x;T,V)=∫0L(∑A∈P(C)wA(δx⋅δuδx+δx⋅Jey×B)+∑A∈P(∂C)wAδx⋅pr̄)dX3

(51)+[∑A∈P(C)wAδx⋅tr̄]0L,

the thermal internal force by,

(52)FT(δT,T;v,x,V)=∫0L(∑A∈P(C)wA1ρ0cp+∂ustrain∂T(dδTdX3k0dTdX3+δT(σ0J2)))dX3

(53)+[∑A∈P(C)wAδT⋅qr̄⋅n]0L,

and the implicit voltage equation satisfies the variational integral



(54)GV(δV,V;v,x,T)=∫0L∑A∈P(C)wA(dδVdX3σ0dVdX3+dδVdX3E3⋅FTv×B⋅E3)dX3

(55)+[∑A∈P(C)wAδV⋅σ−1(rr̄V+Jr̄)]0L.

Note a discrepancy between the mass matrices: the mechanical mass matrix has the 

density, while the thermal does not. This is because the implementation requires 

constant mass matrices. The ∂ustrain∂T term present in the thermal mass is dependent 

on the mechanical state, so the thermal mass density is divided to place it on the right 

hand side, where it appears in the denominator in FT.

4.3. Organization of mixed function spaces

The FEniCS framework is able to build tangents of variational forms automatically. To 

build the tangents desired, mixed function spaces are defined differently depending on 

the solution method to be used. Each split equation to be handled by DAE solver is 

assigned a single mixed function space corresponding to the unknown fields in the 

equation. The following definitions correspond directly to the declaration of the mixed 

function spaces and corresponding solution functions, test functions, and trial functions 

in FEniCS.

First, in the staggered implicit and explicit cases, the three equations are split, so that 

three function spaces are needed. The beam fields are grouped into one function space,

(56)Mbeam={Vr,Vg,Vg}

leading to the definition of the following nine-component functions for x, v, δx, and vu̇:

(57)x={r,g1,g2}∈Mbeam

(58)v={vr,vg1,vg2}∈Mbeam

(59)δx={δr,δg1,δg2}∈Mbeam

(60)vu̇={vr¯u̇,vg¯u̇1,vg¯u̇2}∈Mbeam.

These represent the finite element solution space of the mechanical problem, with the 

additional strongly-enforced condition ẋ=v. The scalar function spaces for the 

temperature and velocity listed above are used to complete the description for these 

cases. The above variational forms form the three equations

(61)Mm(δx,vu̇)=Fm(δx,v,x,T,V)∀δx∈Mbeam

(62)MT(δT,Ṫ)=FT(δT,v,x,T,V)∀δT∈ST

(63)0=GV(δV,v,x,T,V)∀δV∈SV.

For the monolithic implicit solution, all of the fields are solved simultaneously, and thus 

one mixed function space is defined as

(64)Mall={Vr,Vg,Vg,ST,SV}.



A trick used is to model the entire system as a rank-deficient second order system in 

time. The fields are organized together to define the functions y, w, δw and was

(65){r,g1,g2,00̸,00̸}=y∈Mall

(66){vr,vg1,vg2,T,V}=w∈Mall

(67){δvr,δvg1,δvg2,δT,δV}=δw∈Mall

(68){vr¯u̇,vg¯u̇1,vg¯u̇2,Ṫ,00̸}=w∈Mall.

The functions y and w are constrained by the strongly enforced condition ẏ=w. The 

velocity fields are considered the primary fields so that the mechanical and thermal 

mass matrices are in the same form. The nulls, 00̸, are place holders in the finite element

function space that are not included in variational form. These are here for convenience 

in the implementation and will leave behind zero rows and columns in matrices and 

vectors after assembly. There is only a storage cost in the y vector associated with the 

null fields in the final program. The variational forms are summed together,

(69)Mall(δw,w)=Mm(δv,vu̇)+MT(δT,Ṫ)

(70)Fall(δw,w,y)=Fm(δv,v,y,T,V)+FT(δT,v,y,T,V)+GV(δV,v,y,T,V)

so that variational statement for the monolithic solution of the problem is

(71)Mall(δw,w)=Fall(δw,w,y)∀δw∈Mall.

5. Time stepping

With the implicit electromagnetic problem, it is not possible to use a purely explicit time 

marching scheme. This leaves three options for solving the state of the system at the 

next time step:

1.

explicit/implicit splitting: march the dynamics explicitly, solving the implicit 

problems at each stage;

2.

implicit time stepping with staggered iteration: solve each field implicitly, and 

iterate through the fields one by one until the solution converges; and

3.

implicit time stepping with monolithic solution: solve all of the fields 

simultaneously with a single nonlinear newton iteration.

The first of these methods was used in previous work for a network model in 

Queiruga  [24]. The methodology is similar to solving the pressure–velocity differential 
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algebraic equation for explicit solutions to the incompressible Navier–Stokes [25]. The 

second is employed in a similar network model in Zohdi  [26], [27].

The differential algebraic equation can be written in two forms. In this discussion, it does

not matter what method was used to discretize the PDEs so that x, v, T and V are 

treated arrays of discrete values. Here, the arrays are coefficients to finite element 

functions, where the arrays x and v actually refer the coefficients to the beam directors 

instead of those of a nodal basis. The matrices and vectors Mm, MT, Fm, FT and GV are 

the result of the assembly of the finite element forms described in the previous section. 

The semi-explicit structure can be shown explicitly by writing it as

(72)vu̇=Mm−1Fm(t,v,x,T,V)Ṫ=MT−1FT(t,v,x,T,V)

0=GV(t,v,x,T,V)

where in the actual implementation the mass matrices would not be inverted. For the 

DAE to be semi-explicit, it must be possible to solve GV for the implicit variable V, 

required that the derivative ∂GV∂V be nonsingular. The formulation above satisfies this 

requirement. The fields v,x and T will be referred to as the “ODE” fields in the following 

discussion to reflect the fact that their time derivatives appear in the equation. The 

field V will be referred to as the “implicit” field.

The problem can be written in a more general form,

(73)Mallw=Fall(t,w,y)

where w and y are new variables that contains all of the unknown fields as described in 

Eqs. (65), (66). For the system to be a DAE and not reduce into an ODE, M must be 

singular, i.e. rank deficient. In the above example, rows and columns of the mass matrix

corresponding to the implicit variable V are zero. The terms Mall and Fall are constructed

by concatenating the single field terms in Eq. (72) as so:

(74)Mall=[Mm000MT0000],Fall={FmFTGV}.

Expressing the DAE in this form is very useful for automatically generating the required 

forms using a DSL system such as FEniCS.

The initial conditions of x(t=0), v(t=0), and T(t=0) are required to fully define the problem. 

The initial quasistatic field V(t=0) is not required to be specified because it can be 

obtained by solving 0=GV(x0,v0,T0,V0) due to the semi-explicit structure of the DAE.

In ODE analysis, the standard trick is to reduce higher-order derivatives into a system of

first-order equations by introducing variables and equations such as ẋ=v   [28]. Consider

the case where the second order problem is a structural problem, where x and v are 

each vector fields, and the first order and quasistatic component are both scalar fields. 

The total amount of degrees of freedom to be marched in time is 3N+3N+1N+1N=8N. The

majority of the degrees of freedom are associated with the discretization of x and v, so is
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therefore desirable to treat the second order component specially to decrease the size 

of the matrix system to be solved (from 8N to 5N in the given example).

5.1. Runge–Kutta system of equations

For general Runge–Kutta methods marching a first-order ODE dudt=f(u), the 

intermediate stage derivatives, ki and the updated value uN=u(t+h) are calculated 

starting from u0=u(t) by using the equations ki=f(u0+h∑j=1saijkj) and uN=u0+h∑i=1sbiki, 

where s is the number of stages and i=1,2,…,s. The general scheme is modified to 

handle the second order and quasistatic components.

The second order system has a trivial equation dxdt=v. Marching the trivial component 

first, each stage of the position is related to the previous stage values and current stage 

value of the velocity by xi=x0+h∑j<saijvj. This solution is plugged directly into the other 

equations to eliminate the need to solve for xiindependently. For the other equations in 

the system to be satisfied for the current stage, vi, Ti and Vi must satisfy

(75)Mmvi=Mmv0+h∑j=1iaijFm(x0+h∑k=1jajkvk,vj,Tj,Vj)

(76)MTTi=MTT0+h∑j=1iaijFT(x0+h∑k=1iaikvk,vj,Tj,Vj)

(77)0=GV(x0+h∑k=1iaikvk,vi,Ti,Vi)
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5.2. Semi-explicit splitting

In an explicit method, only the previous stage values of the fields are needed for the 

current stage evaluation. The quasistatic field needs to be solved implicitly at each 

stage, but the ODE fields can be marched explicitly. Whenever a derivative evaluation is

required for the ODE fields, the quasistatic field V is solved. At each intermediate 

stage i, the problem 0=GV(xi,vi,Ti,Vi), can be solved for Vibecause xi, vi, and Ti have 

been specified by Eqs. (75), (76). The following Newton’s method iteration is used to 

solve the nonlinear problem

(78)0=[∂GV∂V|xi,vi,Ti,V[k]]ΔV[k]+GV(xi,vi,Ti,Vi[k])

where k is the iteration variable, V[k] is the intermediate value, and ΔV[k] is the Newton 

update to obtain V[k+1]=V[k]+ΔV[k]. The initial value of the iteration is set to the 

previously calculated stage value of Vi−1.
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Typically, a lumped mass approximation is used so that the matrix solution is not 

required at each derivative evaluation. However, this results in the scheme solving a 

slightly different problem, so the consistent mass matrix is used in this work to allow the 

numerical comparison between the explicit and implicit methods. The Dirichlet boundary

conditions on the ODE fields need to be applied on linear systems involving mass 

matrices, e.g.  Mmvi=R.

The mass matrix must also be used for the last linear combination,

(79)Mm(vN−v0)=h∑i=1sbikmi

(80)MT(TN−T0)=h∑i=1sbikTi.

The second order field is similarly determined using the stage velocities by

(81)xN=x0+h∑i=1sbivi.

Because the implicit field is not satisfied after this step, the implicit equation must be 

solved again for VN,

(82)0=GV(xN,vN,TN,VN),

at the end of time step.

5.3. Implicit stepping

Diagonally implicit Runge–Kutta schemes are used, allowing the nonlinear problem of 

each stage to solve independently with only N-unknowns. Both L-stable and not L-stable

methods are used. For the L-stable schemes, the final stage in these methods is 

at t+h (i.e.,  cs=1) and the final row in Aij is equal to bj,3 and so the nonlinear solution 

step gives x(t+h), T(t+h), and V(t+h)without any extra work. When cs≠1, the mass matrix 

can be back-solved with the linear combination to determine the values at t+h, but the 

quasi-static field requires performing an extra solution step.

For convenience, let the following symbols represent the current stage value minus the 

diagonal component (i.e., the unknown term): vˆi=v0+h∑j<iaijFmj, xˆi=x0+h∑j<iaijvj, 

and Tˆj=T0+h∑j<iaijFTj. Breaking the stage summations into the diagonal and lower 

triangular components to group together terms that depend on the current stage, the 

nonlinear system of equations

(83)Mmvi−haiiFm(xˆi+haiivi,vi,Ti,Vi)=Mmv0+h∑j<iaijFm(xj,vj,Tj,Vj)

(84)MTTi−haiiFT(xˆi+haiivi,vi,Ti,Vi)=MTT0+h∑j<iaijGV(xj,vj,Tj,Vj)

(85)GV(xˆi+haiivi,vi,Ti,Vi)=0

is obtained, with all unknown values placed on the left side. Using the chain rule, the 

linearization of one of the functions on the left hand side with respect 

to vi is ∂∂vi=haii∂∂x+∂∂v. This is used to form Newton’s method iterations for the second 

order fields.
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5.3.1. Staggered field iteration

The three equations above can be solved in a decoupled manner by solving each field 

independently with the others frozen and iterating between the equations until the 

process has converged. The following three Newton’s method iterations are used for 

each field, with [k] denotes the current value, and ())̃i denotes the current values of the 

frozen fields. The velocities are iteratively updated using the linear system of equations

(86)[Mm−h2aii2∂Fm∂x−haii∂Fm∂v]Δv[k]=Mmv0+h∑j=1i−1aijFm(vj,xj,Tj,Vj)−Mmvi[k]

+haiiFm(vi[k],xi[k],T)̃i,Ṽi).

The update for the second order field is applied to both vi[k+1]=vi[k]+Δv[k], and xi[k]=xi[k]

+haiiΔv[k]. The first-order temperature field requires solving

(87)[MT−haii∂FT∂T]ΔT[k]=MTT0+h∑j=1i−1aijFT(vj,xj,Tj,Vj)−MTTi[k]+haiiFT(x)̃i,ṽi,Ti[k],Ṽi)

for ΔT, with the similar update Ti[k+1]=Ti[k]+ΔT[k]. Finally, the implicit equation must be 

satisfied for the stage values, so the following equation

(88)0=[∂GV∂V|x)̃,ṽ,T)̃,V[k]]ΔV[k]+GV(x)̃i,ṽi,T)̃i,Vi[k])

is used to determine Vi via the iteration Vi[k+1]=Vi[k]+ΔV[k]. With most methods for PDE 

discretization, all of the matrices that need to be solved will be symmetric.

5.3.2. Monolithic solution

Consider now the form of the DAE in Eq. (73), where the fields w and y are defined by 

grouping the individual fields in the form of Eqs. (66), (65). The subscript “all” 

on M and F is dropped in this section. Following the same methodology as in the case 

above, applying the scheme to y and plugging yi=y0+h∑j<iaijwj+haiiwi into equation 

for wi yields a similar form of

(89)Mwi−haiiF(wi,y0+h∑k=1iaikwk+haiiwi)=Mw0+h∑j=1i−1aijF(wj,yj).

The entire system can be linearized at once about wi[k] in the direction Δw, which 

simultaneously linearizes in the direction {Δv,ΔT,ΔV}, to make the Newton iteration:

(90)(M−haii∂F∂w−h2aii2∂F∂y)Δw=Mw0+h∑j=1i−1aijF(wj,yj)−Mwi[k]+haiiF(wi[k],yi[k]).

The derivatives of the monolithic F can be constructed in terms of the individual 

equations by

(91)∂F∂w=[∂Fm∂v∂FT∂v∂GV∂v∂Fm∂T∂FT∂T∂GV∂T∂Fm∂V∂FT∂V∂GV∂V],∂F∂y=[∂Fm∂x∂FT∂x∂G

V∂x000000].

The rows of M and ∂F∂y corresponding to 00̸ field placeholders are zero after the 

calculations are carried out. The linearized parts of the quasistatic equations appear 

in ∂F∂w.

The difference between construction by concatenating matrices and assembling using a

monolithic function space as specified in Eq. (64) is the ordering of the unknowns: the 
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finite element implementation is now free to automatically order the unknown fields. This

results in a {x,y,z,T,V,x,y,z,T,V,…} ordering instead of a {x,x...y,y...z,z...T,T...V,V...} ordering, 

greatly reducing the bandwidth of the linear systems.

The implementation of the monolithic system makes it difficult to perform the final linear 

combination step and quasistatic solution, so only L-stable methods that do not require 

this step are used.

6. Implementation details

The code is built in the Python programming language and is dependent upon the finite 

element package FEniCS  [17]. The Python code uses a number of C++ extensions 

which are interfaced as submodules. The code also makes use of Numpy  [30] and 

Scipy  [31] for the de facto standard Python numerical array data type and numerical 

algorithms; Mathematica  [32] for code generation and symbolic integration and 

differentiation; Matplotlib  [33] for plotting; and Paraview [34] for visualization. The 

Runge–Kutta time stepping logic is entirely written in Python using the low-level 

optimized vector and matrix operations of Numpy and FEniCS. The staggered and 

monolithic solution schemes use the same implementation. A monolithic solution is set 

up by inputting a single-second order field with a rank deficient mass matrix M into the 

general implicit Runge–Kutta routine. Because there is only one field in the list of fields, 

no staggering iteration occurs.

7. Results and discussion

7.1. Model problem

The model problem is an initially straight cylindrical beam with uniform initial 

temperature with both ends clamped. The beam is suddenly connected to the circuit 

described in Fig.     1 at t=0. The clamps remain fixed, and the electric current varies due 

to the motion of the beam inducing a back electromotive force. The parameters used for

this simulation are shown in Table     2. The temperature change is pinned to 0 at the 

endpoints, the normalized reference temperature. For the voltage boundary conditions, 

the side at −L is held at ground (0V), and the mixed boundary condition of Eq. (25) is 

applied to the other side with the values in Table     2. The values were chosen so that the 

voltage drop across the beam is 1Vat rest and the external resistor has the same 

resistance as the beam itself. The magnetic field is oriented in the xy plane at an 

angle ϕ to the initial state of the beam to induce a helical bending.

Table 2. Dynamic problem parameters.
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Simulation duration tmax 2.5ms Young’s modulus E 10 MPa

Length L 1 mm Temperature coefficient αμ, αλ −0.1MPaK, 0MPaK

Wire radius R 0.02 mm Electric conductivity σ 1Smm

Magnetic field magnitude B 1T Seebeck coefficient S 0.1VK

Magnetic field angle ϕ π4 Resistance BC rr̄ 0.5Smm

Dissipation γ 0.01Nsm Applied current BC Jr̄ 1 A

Heat capacity cv 1.0mJK Density ρ 1gmm3

The beam is discretized in space using forty elements and all of fields have linear basis 

functions. Since there is no known analytical solution, even an approximate one, for 

comparison, the spatial discretization is not important and is kept low to decrease the 

computational cost of each time step. Four locations are probed in the solution: (1) the 

vertical displacement at the center, y(X3=0); (2) the lateral displacement a quarter of the 

way through the beam, z(X3=12); (3) the temperature a quarter of the way through the 

beam, T(X3=12); and (4) the voltage a quarter of the way through the beam, V(X3=12). 

Only the first probe is placed at the center because the symmetry of solution causes 

uninteresting behavior in the other fields at that point. The deformation and current field 

of the beam are rendered in Fig.     5 and the fields probed are plotted in time in Fig.     6. As 

can be seen in Fig.     5, the current magnitude is not uniform along the beam at each 

point in time due to the Seebeck effect and nonuniform electromotive force.
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Fig. 5. Time series of the model problem with frames spaced equally apart. The mesh is
colored by the current magnitude, measured in amperes, with the same ranging in each 
frame. The current magnitude is not uniform along the beam at each point in time due to
the Seebeck effect and nonuniform electromotive force. The beam deforms in 
the −z direction; the camera is rotated 180°. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Time plots of the four probes from the scheme RK4 with Nt=10,000.

7.2. Error analysis

Multiple Runge–Kutta methods were used to verify that the numerical solution behaves 

as expected. The method referred to as “RK2-mid” is two stages and commonly known 

as the explicit midpoint method with c={0,12}. The label “RK3-1” refers to the three stage

explicit scheme with c={0,23,23}. The label “RK4” refers to the classical four-stage 

explicit Runge–Kutta method. The one-stage implicit midpoint method is referred to as 

“ImMid”. The tableaus of the previously mentioned methods can be found in Butcher, 
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1987  [35]. The two methods labeled “DIRK2” and “DIRK3” have two and three stages, 

respectively, and are credited to Crouzeix, 1975  [36] and Nørsett, 1974 [37]. The 

methods “LSDIRK2” and “LSDIRK3” are L-stable schemes derived by Alexander, 

1977  [29].

Since there is no available analytical solution for this problem, the solutions are 

compared to an over-refined case of the classical RK4 method with Nt=100,000. The 

error in all four fields is calculated across the domain. Because the mesh remains the 

same while varying the time stepping scheme and time step size, the error metric 

between two fields integrated over the domain is simplified by examining only the 

coefficients to reduce the post-processing complexity. For each field, called y here, 

constructed by coefficients y(ξ3)=∑iaiϕi(ξ3), the L2error between the “best” 

solution, ybest, and a given solution y is approximated by the equation

(92)e(y)=∫Ω(ybest−y)2dΩ∫Ω(ybest)2dΩ≈∑i(aibest−ai)2∑i(aibest)2.

(This is equivalent to using an inexact nodal quadrature rule to calculate the error 

integral.) The vector components of a vector field are analyzed together, but the 

coefficients of the centroid and director fields are analyzed as separate fields, as well as

their velocities, so that there are a total of eight errors for a given solution. A single error 

metric is taken by taking the two-norm of the list of eight errors.

Due to the nonlinear nature of the problem, constructing a setup suitable to test 

convergence errors is challenging. At the larger time steps that the implicit methods are 

able to take, the approximate solutions approach a slightly different solution (with an 

error of about 10−4) than the over-refined solution. The fields g2and vg2, associated with 

the director in the z-direction, especially suffer from this trend (see Fig.     7). The authors 

hypothesize that, after a certain duration, Lipschitz continuity breaks down in the 

problem due to the bifurcations associated with the buckling modes and free-rotation at 

pinned BCs. To make the problem “easier” for the numerical solver, the timespan of the 

simulation is kept short and clamped boundary conditions are used. These 

considerations motivated the choice of parameters in Table     2.
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Fig. 7. Obtained errors for all fields independently.

The convergence orders for each of the eight fields separately are shown in Fig.     7. The 

same time steps were tried for all methods; the smallest time step that converged is 

shown for each explicit method. The convergence orders were computed with the points

marked by crosses. The two-norm of the set of eight fields was used for the order 

calculation, and the results are listed in Table     3. All methods produced the expected 

convergence orders.

Table 3. Computed convergence orders.

Method Expected Observed Method Expected Observed

RK2-mid O(h2) 1.949 DIRK2 O(h3) 2.990

RK3-1 O(h3) 2.969 DIRK3 O(h4) 3.916

RK4 O(h4) 4.000 LSDIRK2 O(h2) 1.988

ImMid O(h2) 1.985 LSDIRK3 O(h3) 2.953

7.3. Runtime

The methods were analyzed for performance using a simple process-time timing (as 

opposed to wall-time). Since only a rough comparative metric was desired, the program 

was run single-threaded on a 2013 Macbook Pro laptop with a 2.9 GHz Intel Core i7. 

The problem setup was designed to perform all of the tests in one day of computation 

time. The resulting runtimes are plotted in Fig.     8. The three explicit methods used are 

able to produce a high-accuracy solution much faster than any of the implicit methods. 

The only advantage to the implicit methods is the ability to produce a low accuracy 

solution in a short time using large time steps. The methods solved by both staggered 

solution and monolithic solution are also shown in the plot, with the labels “LSDIRK2”, 

“LSDIRK3” for the staggered solution scheme, and “mLSDIRK2” and “mLSDIRK3” for 

the monolithic solution scheme. The staggered iteration is overall faster than the 

monolithic solution for smaller time steps and higher accuracy. For very large time 

steps, the monolithic solution for LSDIRK2 is faster. The number of iterations used in the

staggering iterations decreases with the size of the time step: at large time steps, about 

eight coupling iterations are required, while for smaller time steps, only about four 

coupling iterations are needed.
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Fig. 8. Runtimes of methods required to produce a desired error plotted in a log–log 
scale. The methods prefixed by “m” were solved monolithically.

The code was profiled at the Python level using the library line_profiler by Robert Kern 

(which can be found at https://github.com/rkern/line_profiler) to observe where the 

different schemes were spending the bulk of the computation. The break downs are 

shown in Table     4. The explicit method was RK4 with 1000 time steps, and the implicit 

methods were LSDIRK3 with 100 time steps. Some categories are merged in the 

methods: In the explicit method, the ODE fields are treated by the same code, so 

assembly of Fm and FT cannot be differentiated. Similarly, all matrix solutions are 

handled by the same line of code in the implicit methods. In the monolithic solution, all 

forms are assembled simultaneously. Application of boundary conditions is included in 

the matrix solution category. The miscellaneous calculations include vector operations 

for computing the Runge–Kutta stages. The implementation is not well optimized in 

terms of reusing data structures and allocated regions of memory (e.g., there are a few 

unnecessary copies, and the sparsity structure of tangent matrices is recomputed every 

time a new matrix is assembled). The profiling results show that the time spent on these

operations is not very significant for the implicit methods, but is significant for the explicit
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method. Additionally, using the consistent mass matrix imposes a very high cost to the 

explicit method, where a lumped-mass approximation could yield a significant 

performance benefit.

Table 4. Computational cost breakdowns as a percentage of total runtime obtained from profiling. Ditto 

marks denote categories that could not be discerned due to code structure.

Explicit Staggered Imp. Monolithic Imp.

Assembly of Fm 26.0% 89.8% 96.8%

Assembly of FT “ 1.0% “

Assembly of GV 14.2% 0.6% “

Solving M 24.8% 6.3% 1.1%

Solving GV 6.6% “ “

Misc. Overhead 28.4% 2.3% 2.1%

8. Conclusion

A formulation for the dynamic analysis of moving current-carrying wires in magnetic 

fields was developed utilizing both a quasistatic approximation and a thin-beam 

approximation to simplify the solution of the electromagnetic equations to a one-

dimensional implicit PDE along the axis of the wire. The resulting three coupled partial 

differential equations along the beam were solved using both implicit and explicit higher-

order Runge–Kutta methods, with the added handling for the electric potential equation 

as described.

It is not necessary to use stiffly stable Runge–Kutta methods for the resulting DAE, as 

both explicit methods and non-stiffly stable implicit methods were effective. Removing 

the stiff partial differential equation for charge density allows the use of explicit methods 

with an added implicit-field solution step with tractable time steps. The Runge–Kutta 

treatment for the DAE described in Section  5 can be applied to other problems with 

similar structure (and the implementation is also general enough to be used in other 

problems), though the numerical properties were only studied on the current-carrying 

beam.

The higher order explicit methods outperform the diagonally implicit methods greatly at 

high accuracies. The implementation for the explicit methods also has significant room 

for improvement as overhead costs are significant. Particularly, there is significant cost 

associated with using a consistent mass matrix, which was only needed to compare 

numerical accuracy with the implicit methods. However, the implicit methods have the 

typical advantage of operating at very large time steps at a low computational cost, 
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which may be useful in certain configurations when the stability of the problem restricts 

the time step size of the explicit methods.

Because the staggered solution for the implicit schemes is faster than the monolithic 

solution at high accuracy and comparable with low accuracy, the extra effort of 

formulating the tangents for the cross-field terms (e.g.,  ∂FT∂V) is avoidable. Formulating

the voltage tangent ∂GV∂V is still necessary to use the explicit method. The 

implementation of a monolithic iteration was only tractable due to the use of the 

differentiation package in FEniCS; deriving the equations for cross-field tangent matrix 

components would not have been attempted if the authors were to do it by hand. The 

tangent matrix and coupling sources for the Voltage problem alone were implemented 

much faster using the DSL system than could have been done otherwise.

The discretized model problem is quite small, with only 451 degrees of freedom. The 

runtime of the implicit methods should be examined on a larger problem with which the 

additional overheads would be amortized. Current work is considering contacts between

multiple current-carrying beams in a textile structure that may make the implicit methods

more attractive in comparison to the explicit methods.
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1

A corresponding circuit approximation would have the assumption EMFapplied≫ddt(LselfI). To 

estimate Lself, consider the case where the wire is deformed into a semi-circle and the external 

circuit is also laid out in a semi circle of radius r=L2=1mm. Then, the inductance is L=μ0r(log(8rR)

−2+Y2), Y is the skin correction factor. Following the Ansatz of uniformly distributed current (Y=1/2)

and using the wire dimensions, L≈5.32×10−9F. Additionally, the current is of magnitude I≈10−4A in 

the problem. With a simulation duration of 2.5ms and assuming a zero-to-maximum change 

(which is not the case since Land I are not initially zero), the term ddt(LselfI) can be capped 

by 10−9V. With a 1T applied field, EMFapplied=∫vBdl≈1ms×1T×0.002m=0.002V, justifying the 

assumption.

2

Consider a 1mm long beam with a 0.1mm cross sectional radius moving perpendicular to a 

magnetic field of 1T with a velocity of 100ms and 0ms at either end. A back-of-the-envelop 
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calculation shows that the force density magnitude (ϵ0ΔvLB)

(vB)=8.85×10−12Fm×100ms×1T/10−3m is approximately 8.85×10−5Nm3. For comparison, if the beam

were carrying 10−4A of current, the force density, IB/A=1A×1T/(π(0.1mm)2), is 

approximately 3.1×103Nm3.

3

This property actually implies L-stability; see Alexander, 1997  [29] for a proof.
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