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EXPLOITATION OF THE SMALL PION MASS IN MULTI-REGGE THEORY
R. Shankar -
Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720 -

April 26, 1974
ABSTRACT

This dissertation is a collection of four papers which address
themseives_to problems in multi-Regge théory-and lean heavily on the
hypothesis of pion poie dominance in arriviné_at the\sOlutions. The
meanihg of;multi-Regge diagrams (whose superficial resemblance to
'.Feynmén diagrams'seemed to be the source of some.prevalent misconcep-
“tions) and the rules for ménipulating the same are'discussedvih the‘
first paper. The second provides an affirmative an@rquéntitative '
answer to the question of whether or not the pomeféﬁ cén and does.

- occur more than once in the amplitudé for a sinélé process. The
‘significant'feature bf the analysis, based on the piéh pole dominance
hypothesis,_ié that only the context in which the pomeron occurs (high
energy diffractive amplitudes) is assumed and the resﬁlt is independént
of the specific J-plane singularity associated with ﬁhe pomeron. The
third and fdurth papers deal with triple-Regge précesses. In the
‘former, the omission of off-diagonal coefficients  (G.jk; i # j) in
'triple-Regge’fits.to the data is criticized and fhevexchange degeneracy
arguments adduced in support of .the above omission are shown to be |
without basis in the triple-Regge region. Calculétioﬁs within . the

plon pole dominance model afe'presénted to show that.one of the omitted

off-diagoﬁal_COefficients could possiblyvbe responsible for a
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substantial fraction (typically 30%) of the inclus’i;}'e cross section.

In the finai‘ﬁaper, the salieht features of the measuféd diagonai

coefficients (Giik) are correlated with the rqle of the pioﬁ méssiin' _ -
the triple-Regge region. In particular,the obserVed,delay in the
convergence of ﬁhe triple-Regge expansion in thé varisble (S/M2)
describing the exclusive reggeons, resulting:from‘thévlargeness of the
coefficients Gppp and Gppp compared to Gpop and Gppgy 15 tied
in with the circumstance that while the‘latter paif'is independent of

the pion mass the former is controlled by it in an essential way.
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INTRODUCTION

The Principle of Nucléar Democracy, which proclaims that all"
poles of fhe S matrix are created equal, does notiexclude the
circumstance that the pioﬁ pole is more eépal than.oﬁhers, by virtue
of its strategic location. Before we go into what constitutes a
strategic locatibn, let gs summerize the great simplification'ésso—v
ciated_withrthe S-matrix poles:v (i) The pole locations are decided
by particlé“maésés, and are hence generally known. '(ii)‘ The:iésidués

are sometimés known beforehand. For example, the residue of thg pion

~ pole in thé amplitude for a(pa) + b(pb) - a(pa,) + b(pb,) + f*(p+)

- | /. . 2 : ‘
+n(p) at t=(p,+p -p) = R '1is ‘the pion mass) is a

product of -én+ and br" 'elastic amplifudeé. o

Befweén us and this simplification stands the gap sepafating
the physical region (to which we are confined) and the pole location.
For a pole in the crossed channel invafian£ (which we will call t)
this separation has a minimum value given by the maés squared of the
corresponding exchanged particle. If the latter wéré a pion, which
is.by far the lightest hadron,‘the pole comes within .= 0.02 GeV2 of
the physical region in the t-plane. Since the other singularities are“

++ .
effectively in the order of 1 GeV2 away, one assumes that the pion

We are ignoring here the macrocausality poles fhat occur in the'
physical region of prdéesses with three or more particles in the
* initial state.
++

I use the word "effectively" to take into account certain weak
singularities like the twoipion branch point which come much
closer:than 1 GeV.. The significant discontinuities associated

with such.singularities are however in the’order of 1 GeV2 away.
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pole controls the part of the physical region closest to it, bringing
to the physical region the above mentioned simplifications otherwise
confined to the pole location. S _ ;

While skeptics argued that more distant singularities are not

<7

necessarily-ignorable,'others have dared to make the above assumption,

called‘the pibn'pole dominance hypothesis, and have.beén led to a

variety of”iﬁteresting consequences ranging from the Chew-Low

extrapolation of the earliest days to the multipéripheral models of

Amati,.Bertocchi, Fubini,vStrangellini, and Tonin. ﬁ_-  e A_- ‘ .
This-dissertatibn is a collection of papers”(presented'in |

four chapters) which attack problems in multiéRegge theory,-leahing

heavily on the pion pbie dominance hypothesis for guidance. The - . | ;

contents of these papers are briefly discussed in thé preceding general

Abstract and the Abstracts preceding eéch paper. | “ ' g - !
Hopefully thé following pages Will convinéé you that the

hypothesis of @ion pole dominanée has by no meansvyielded its laét

result and that in the future it will lend itself to further exploita-

tion. o : ) .
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‘A CLARIFICATION OF MULTI-REGGE THEORY

Physical Review D7 (1973), 3513
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A CLARIFICATION OF MULTI-REGGE THEORY

R. Shankar
Lawrence Berkeley Iaboratory

University of California ,
Berkeley, California 94720 -

February 7, 1973

ABSTRACT

We are concerned here with the amﬁlitude.forvthe
reaction a +b =1 + 2 + -+ + N. | We assert that thé
pfévalent notion of ﬁdding QultiuRegge diagrams, corre-
- sponding to the different ordering of fiﬁal-barticles,
hés no.baéis. Arguments supporting this assertion are
followed by a list of rules for calculating cross
sections. A sample of the literature that motivated

_this paper is briefly discussed.
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I. INTRODUCTION
Many models have been proposed on the basis of a generalization
of Regge theory from 2 -2 reactions to 2 - N reactions. We are

concerned here with two concepts that seem widespread.

- Concept A: The amplitude M, for the 2 ~N process, is a sum of

amplitudes_correspodding to all the multi-Rggge diagrams related by a
permutation of final particle legs.

Concept B: If A is accepted, the question of interferencebterms
between the different terms arises. One finds arguments that either
emphasize their insignificance or exploit their ihpOrtance.

We.argue here that concept A has no place in any theory that

" generalizes 2 -2 Regge theory, by seeking asymptotic expansions of

M in certain special regions of phase space. We éhall, however, work
within the framework of the Bali, Chew, and Pignotti (BCP):I"’2 multi;
Regge hypothesis, which seems to be.the‘natural'generalization of the
"J plane” analyticity of 2 =2 reactions. We shall show that concept
A has no'placé in the implementation of this hypothesis. Concept A

seems to be a result of the superficial resemblance that multi-Reggé

‘diagrams bear to Feynman diagrams.

-

In Sec. II we see how, and in what sense, multi-Regge diagrams
approximate the actual amplitude, M. We dilate on those aspects |
that/éistinguish an asympﬁofic expansion within an S-matrix framework
from’pgrtgfbative expaﬁsions of field theory. -Rules for calculating

cross sections are discussed in Sec. III. In Sec. IV we discuss a

" sample of the literature where concepts A and B are employed. We have

not specified whether the final particles are distinguishable,-

identical, or a mixture of both, since our assértion regarding concept



e
A is independent of this question. In what>follows, howevef, it must

be born in mind that we use the word 'phase space" to mean @, the

M)
mathematical phase space, in which .the final.partiéle momenta go over all
the values allowed by energy momentum conservation. (We contrast ¢M
with ¢O’ the observable phase space, in which the“mqmenta of the

final partiéles are reétricted so that each distinguishable final

 state occurs just once).

e

II. THE MULTI-REGGE HYPOTHESIS OF BCP

Wé assume_familiarity with Tolier variabigesl’2 and deal only
with certain special aspects that are germane to thg issue. For
concreteness, the reader may consider the N = 2_.éase, in what
follows. - |

(i) ,Consider the amplitude M, for the pfocess
a +b =1 +2 +7~-- + N, involving spinlesé particles. Bali, Chew,
and Pignottil_’2 explain how, by ordering the _N  particles in any
drbitrary way, we can fefine the Toller variables; .Figure 1 is the
Toller disgram employed for this purpose. We‘emphasize that

(é)> It is kinematical in nature and merély éstabiishes.a_
convention-for the leier variabl;s_

| (b) The ordering of particles in Fig. l'is not their ordering

| in rapidi%y. The latter is decided by the valueé-bf the w's, §'é,
and t's.. Thus, one Toller diagram and fhe set of variables defined
by it; are.all ﬁe need to span the entire phase Space ¢.

(c) No factorization of M is intended or implied.



We have then o

)  = 'M(t

T 0)2,'00 12)...; glg)')

M = M(’tlg)t23)..'; gle)gga) 5).'

where gi,i+l stands for the group variables of the ith 1link. We

now expandfthe amplitude over the 0(2,1) group functions. In

symbolic form (for brevity) we have

£

12 2 12 2
M(tle).'.':; glg)"') = ju 4 as 5 ‘0 Xd‘ :. (glg)d 3(%25)..‘ ‘

Y/

..
2
g 127723

(tlg,t25,--i) ,(;)

where, in Eq. (1), L s stands for the label of the irreducible
. s . _

‘representations of 0(2,1), the d's are the group functions, and B

is the "partial wave amplitude." (We are awarevthat_the above symbolic
form has suppressed the m,n indices, the contours 'in the 4 planes

ete.)
(ii) The multi-Regge hypothesis: "The amplitude B is an
analytic function of the 4's, with the rightmost singularity being a

factorizable pole « in the 2, . . plane." We are
. i,i+l

1,140 1)
not interesﬁed in analyzing the validity of the'above hypothesis,
but rather iﬁ examining the consequences.

(ii1) The abpﬁé hypothesis, even if true, is useful only in
special circﬁmstances. For the ordering of particles in Fig. 1, ﬁhére

is one part of phase space where, as S - x, wWe can have ti 141
’ 2
2
oo.l’

3

fixed, the subenergies si,i+l -3 1.e., gi,i+l -f In this

‘region the particles will be ordered in ragidity‘as they are 1n

Fig. 1 (see Fig 2). 1In such a region, the contributions from the
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rightmost poles will dominate the £ integrals, and we can write the

famous expansion:

M(tle,...; ng""). —_—— Bal(t12)(COSh §12)

ot
)aN—l,N( N-1,1) (tN o

X (cosh &y )y Pon

+ terms coming from the nonleading singularities of the £ planes,

whose effect is negligible in this part of space phase

)

+ neglected terms. . - (2)

In. Mél){nthe subscript refers to the region of:ph#se space,. ¢l’i
correspoﬁding to this ordering of particles; while the superscript
indicates that only the leading pole was retalned in each expans1§ﬁ
We repre;ent Mll) by a multi-Regge dlagram (Flg 5) (the origin of
all this misunderstanding!), and remark that: '

(a) It is a dynamical diagram.

(v) Factorization is implied.

(c) R&pidity ordering of particleé is as in‘diagram.

(

To calcul&te any cross section in thls part of ¢l, we can use Mll)

instead of M, W1th little error. If we want, we can keep two poles,

a and o' in each expansion (assuming the second leading singularity

N-1

is a pole) to get M](_Q),which will be a sum of 2  terms, each with-

]

its own diagram. Here the addivity is a cdnsequenée 6f Cauchy's

theorem and not the superposition principle.
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(iv) Consider now the part of phase spacé_Where the rapidiﬁy

plot is ‘'as in Fig. L. It is clear that the physics here is as simple
as in Fig. 2. However, ’tlg': (pa - pl)2 cannot be held fixed as

S1o - w. Therefore the Toller variables defined in Fig. 1 are

Undesirablé, despite their formal completeness. An expansion in those
variableo ~will, at best, have poor convergence.pfoperties. (We
cannot, osymptotically; call a few terms of the expansion as "leading"
and ignoro the reét.) To exploit the'dynamical simplification in the
situation;'Wé must draw a new Toller diagram with‘particle ordering

(21113:4’5)"'1\])' Then %12 = (P - P2)2 can b&_?' held fixed. as

a

S, =—w (so that —»w®) to yield:

12 §12

a(tlg) N

M= Bo(tp)(sp) B(t10,9p%05) " By (y_y )

+ terms from neglected singularities . (5)

By our convention, the leading term is Mél). To calculate cross

(1)

sections in this neighborhood, we can use M2 o;* Még) binstead of
.M- .

It is‘clear that in the N! regions'of'phose spacé,
¢l’¢2""¢N!’ corresponding to the different orderings of final
particles in rapidity, we ﬁost define N! differeot Toller diagrams

and N! sets of Toller variables, in order to exploit.the simplicity

introduced by the multi-Regge hypothesis. The reason for permuting

the legs is thus' the need to set up new sets of Toller variables, and

not the superposition,or Bose principle. It is clear that nowhere

does the theory require or admit the addition of one expansion, Mi’
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of ¢i’ to another, My of ¢j;,0f one and the same amplitude M.

The different expansions are alternate and not additive. 1In ¢i we

can use 'Mgl) or M§2) but not M§1)7+ Mgl). Suéh.an addition is an A

arbitrary recipe, and certainly not forced upon us by the'sﬁper—

position or Bose principles. In fact, these principies are not imposed v

on M by héndAjas in perturbative field theories. where M 1is built

from little'pieces , but are demanded of M in S-matrix Regge calcula-

tions, where one begins with the "complete" amplitudé and seeks its

asymptotic expansions.

Thesé ideas are transparent in_the' 2 -aé,.equal mass, case.
The +t- and u-channel expansions (not their leading pole approximations)

M, and ,Mu .are each alternate, cbmplete expansions of M. A choice

t

between them is made when we wish to approximate AM in some special

j regions.of'phase space. If we approxiﬁate Mt by the leading pole
conﬁribﬁtipn: Mil), we are assured that at any fixed t, as s ;am, 
Mgl) will apprbach M to any given accuracy. Iﬁ practice, when we
work at fixgd‘ s, Nél) can be a'poor'approximaﬁion to M except for
very small t. At larger t, if Mél) is a bad fit, we can try M,Eg)
etc. Whilé addiné more t poles to Mt is not guaranteed fo give
better approximation, it is a legitimate process oné can try. Similar
results hold for Mu; By contrast, the process of adding some singu— - N
larities of Mt to some of Mu’ to get approximation$ for M, is a
pureiy arbitrary recipe and not a consequence of thé theory. The

expansions, M, and Mu’ are dual and alternative, as Ms’ the direct

£
channel expansion (which may possibly be appfoximated by a few reson-
ances) is duel to M,, the cross channel Regge expgnsion (which may

possibly be approximated by a few Regge poles). Fits to the data,

i
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using an M} constructed by adding t and u Regge poles, do not
test the~thebry. | |

We similarly conclude that the following, oft-quoted recipé;
for brocesses with identical particles in the final state,is aiso
ad hoc, and not a consequence of the multi-Regge'hjpothesis:

Step 1l: Calculate thg multi-Regge amplitudev Mi corresponding
to one ordefing of final particle momenta. (Then vMi‘ approaches M
in a sub-region of ¢i where the Regge limit is_reached,)

Step 2: Set M ==Z:Mi, where 1 runs through all the permu-
. n v

tations of the identical particle momenta in the final state.

Though this recipe guarantees Bose statistics manifestly, the

-flaw in the argument is the following. Bose statistics merely requires

that M(A) = M(B), where A and B are two points in phase space,

related by abpermutation of identical bosons. There is, however, no

requirement that M achieve this symmetry by the recipe M = Z:Mi'

We illustrate this point by considering a Veneziano-like amplitude,

B(u,t), for a fictitious 2 ~»2 process where tﬁe 5 channel has

\

identical particles and no resonances. Bose symmetry requiréS’that if

B(u,t) > oL
(1im u- a,t=b)
then we must have
N : F(b
B(u)t) ' ”> t(_za

(1im t- a,u=b)
This is certainly true of the beta function B{u,t). However, when

we expand-it to display the pole structure, we héve



-10-

(exhibiting the t poles)

Blut) = L vy

N=O N
o gy(t) |
= EZ: T (exhibiting the u poles) .
N-O N '

(The and. gN are the same in both expansioné.)_

€y

While either expansion has Bose symmetry as defined above, the

symmetry is not achieved by the recipe. It is clear that,’while

>ii gy(n) gy (%)
t - gN T §N'

N=0

is manifestly symmetric, it is not equal to the amplitude B(u,t).

III. CROSS SECTION CALCULATIONS
For brevity, we restrict ourselves to total cross séétions,
OT’ for 2 -+ N processes. The ruies for,partial‘cross sections will

be clear from this. In principle, to calculate _cT, in the multi-Regge

pole approximation, we must:

() Divide the phase space @ in N! distinct, nonoverlapping

regions ¢i’ corresponding to the different ordefihgs of final
particles in rapidity.

(b) In each region ¢i, approximate M by M§l) or Mgg)
etc., integrate the approximate IMiI2 over ¢i to get the approxi-

mate contribution ci.
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We then have, in the multi-Regge approximation, O ~ Z: 31‘
. T=7

(¢) If identical particles are present, consider just the

distinguishable orderings, i.e., On 2:'. g..
| distinguishable

Such approximations to OT may, for example, be useful in

bootstrap calculations that connect 2 —2 absorptive parts to 2 =2
total cross sections, via unitarity. In these calculatiens,*it is

hoped thatlthe contributions to o from the subfegions of ¢i,"

T
where Mgl) approximates M well,'will dominate. ' The sharp fall
off of residues with momentum transfers makes this plausible.

In practice, however, the conditions for "distinct, nonover-

lapping regions” can only be achieved by restricting the Toller

‘variables of each ordering by clumsy constrainte.j {In 2 -2 equal
‘mass scattering, the t channel |Mt|2 is to be iﬁtegrated over..¢tf
the forward hemisphere, i.e., from t =0 to t = %(hmg - e); and
the u chaﬁnel lMu|2 over @ , from u =0 te u = %(hmg - e)];e

'However, due to the rapid fall off of residues,iin t, in the leading

(

term Mél) of M,, we can integrate ]Mtl)l2

over all t. The same

.goes for'-|M£l)|2. We then have symbolically (omitting flux factors),

Gzﬁtal :' 8£ * 8vu :% 'Mﬁl)‘e d¢t * 'Mﬁl)lg d¢u
| P, - AP,
- |M1(;l) ° ap + IMIEl) ? ap

? g

For 2 =2 _reactiens, as s -ém, this will be an excellent approxi-.

mation. If' N > 2, largeness of s does not guarantee large
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_subénergiesv Sij' :We must then use severe cuts on the data (and
hence the ?hase space ) to, ensure large sijfsf -Then, the assﬁmed
t dependence of the residues will allow us to pe;fdrm free integrals
in the t's without appfeciable overcounting. - |
If.ﬁe relax the constraints on the sij's, we face the proépect
of double counting,'by doing free t 1integrals over phase space-Qwe
run through the same region of phase space several_times, each timé
integrating a differentvapproximation for lMlg; When we do this,
we must be?cognizant of this error.
We urge the reader to réad Ref. 3, where the author deals.ﬁith_
the cross sections for the reactions pﬁ_-amn+ f'@ﬁ— + kno. Apart’

from his remark on interference terms, we find that his paper adhérés

to the above rules.

Iv. LITERATURE_SAMPLING

We.néw discuss briefly, a samplg (vy. no means.exhaustive),
of instances where concepts .A and B, mentioned_éarlier, are
encountered. |
Ref. hzjz Theoretical papers that assume M. is a sﬁm of pieces from’
éll diagrams ébtainéd by permuting final particle legs.: It .is argued
in Ref. h'£hat the interference terms are negligible, while Ref. 5 |
exploits their importance.
Ref..6: _. A double-Regge analysis of ﬁ+p —>n+bop'iat lB.l-deV/c.
Achieves a good fit by phase space overcounting, of the type discussed
earlier (by admitting small 55 5 - regions). It is shown that a
coherent édditibn of amplitudes obtained by permﬁting-external legs

is in disagreement with data.
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Ref. 7: TFits data by coherent addition of permuted pieces in double-

Regge analysis of Kn —K x p at 5.5 GeV/ic.

Ref. 8: A study of pp - pp + 2n+ + 2x at :23 GeV/c. Gets M ﬁy
(a) Adding diagrams corresponding to diffefent ordering of
the protons in the chain (allowing them to go at the most one link from
the ends).
(b) Symmetrizing by hand with respect to identical pions.
We find thaf a common trend in current phenomenology is to fit

the Regge ﬁarameters of various diagrams in regions of phase space

" where they best approximate the amplitude, and then, to use their sum,

coherent or incoherent, to get the cross sections in.the rest of

phase space. Since such fits involve multiple_cdunting in the amplitude

or phase space, they neither verify norhvilify the BCP multi-Regge -

hypothesis.
How then are we to test the above hypothesis? The heart of

the multi-Regge hypothesis is that in certain special regions of phase ’

space, the 2 — N amplitude may be described by a few factorizable
Regge poles. Factorizability implies that the'trajectbry and residue
of a Regge pole, deduced in one gituation, may be used in other
situations where it occurs. We therefore suggest the followiﬁg
type of test of the hypothesis.  For example, we cbuld conéider ﬁhe
region appropriate to.the multi-Regge diagfam of]Fig. 5. The end

couplings, (tl) and BppP(tE) are known from .pl-nucleon

Bﬂﬂp _
scattering. We can thus measure the middle coupling appP(tl,tD,w)
(where P is the pomeron). v '

This residue, together with deP(t), measured from, say, =d

scattering, must then fully determine M in the region corresponding

to Fig. 6, if the multi-Regge hypothesis is correct.
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It may be argued that the BCP hypothesis is not the, but a,
multi-Regge:hypothesis, and therefore, theorists and phenomenologists
need not adhere to the rules it implies. Though we do not share such

skepticism, we nevertheless wish to say this: Aﬁy multi-Regge théory,

L.

which is a natural generalization of 2 —» 2 Regge.theory, will like-

' Wiée seek asymptotic expaﬂsions,of M in certéih sbecial regions of
phase space. Such expansions will be'élternatefénd notnadditive;.just
as-in 2 — 2 theory. Adding diagrams obtained,gy‘permuting external
legs has ‘a natural and legitimate place in pertu?bative field theofy
:and in_the reflexes of its expert practitioners, but not in any S-matrix

calculation like 2 — 2 Regge theory or its geheralization;'
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FIGURE CAPTIONS
1. Toller diagram for a + b =1 + 2 + ~4-N.
2;» ﬁapidity plot for multi-Regge region of Fig. 1.
3, Multi-Regge diagram depicting Mﬁl) of Eq. (2).._
L, fﬁapidity plot in multi-Regge region of .¢2.
5. bﬁ+b —>n+pop in double Regge region. ‘

6. Double Regge region of <fa —>n+pod.
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CAN AND DOES THE POMERON OCCUR MORE THAN ONCE IN A SINGLE PROCESS?
R. Shankar
Lawrence Berkeley Laboratory

University of California
- Berkeley, California 94720 -

; October 12, 1973

7 ABSTﬁACT _

A Study of high energy diffiactivelémplitQAes (the elastic’"
ampiitude being a special case), has revealea ﬁhe'fbllowing regular-
itiés at small momentum transfers: (a) They all tend to be almost3.‘
purely imaginary, and (b) They all have the same energy dependénée; '
leading to universal, constant (modulo logarithms).cross sectibns g£'
high energies. 1In this paper, it is assumed'that:theéé regularitieé-
are producedﬂb& an underlying, common mechanism,.whiéh ié defined as
the pomeron}}jThe question then addressed is.whéthef the poméron, $d~

defined, can and does occur more than once in a single process.

It is demonstrated that various models for the pomeron (involv-.

ing Regge poies, Regge cuts, geometric ideas likebdiffraCtion; étc.)_
lead to different answers to this qﬁestion,-none of them quantitativé.
' By contrast; the introduction of the pion-pole dominance (PPD) hypofh-
esis is shoﬁn to lead to a model-independent quantiﬁaﬁive'answerkn o
AsSuming juét the above definition of the pomeron, the PPD ﬁypothesié
pfedicts certain processes that must be termed mﬂlti—pomeron by.the
advocates of all models, and provides estimates fbr their cross
sections. The predictions of this hypothesis are COmpared with

experiment.

This work was supported by the U. S. Atomic Energy Commission.
o ‘ _ »
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It is shown that PPD leads to, and sets lowef bounds for,
inclusive tfiple-pomeron cross sectiong assuming no more than our
genefal definition of the pomeron. It is pointed out that the repeti-
tion of the pomeron--guaranteed by PPD--may be used. to set upper bounds
on asymptotiéutotal cross sections. The cruCial-property of the result
--that’tota; cross sections must-eventually die éway—-is that it does
not rely on any model—dependent property of the pomeron, such és

factorization,'

1. 'INTRODUCTION

Consider the collision of two particles. a and b. We shall
call this process a diffractive process if: |

(i) The final particles fall into two clustersv A and B
(in rapidiﬁy) centered around pérticles a and b respectiVely,'aﬁd

(ii)  The quantum numbers of A and B are those of a and
b respeétively.

it should be emphasized that we use the word diffraction to
refer only to,ﬁhese two properties of an event and dp nof imply any
underlying optical model mechanism. Clearly elastic events fall under
the class of diffractive events as defined above. |

Imagine a rapidity plot of an event in which a and the
cluster A occupy one end, say the left end, while Db ‘and B 6ccupy
the right énd. If there is a large rapidity gap bet@een the rightmost
member of A and the leftmost member of B, we shall term it-a high
energy diffractive event. The following regularities have been

detected empirically in the study of the amplitudes for such events:
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(i) They‘all tend to be purely imaginary in the "forward"
directions, that is, in regions of small momentum tfansfer t across
the large fapidit& gap.

(ii) They all have the same energy depehdence inrthe small’ t
region, leading to the universal, constantT cross section.

In the elastic case, these‘two properties, toéether with the
optical theorem, imply that total cross sections et high energies are'
constant. l

The universality of these two properties'of diffractive
amplitudes ‘at high energies suggests a common underlying mechanismf
It is assumed here that such a mechanism exists, and is called the
pemeron. No'specific models such as Regge poles,“cute<or optical
- descriptions are assumed for the pomeron. IIt ie simply defined by_tﬁe
context in which it occurs--as the cbnfrolling mechanism behind all. 
high energyrdiffraetive processes.

It‘should be pointed out that the wofd pomefoﬁ'was originally
coined by the Reggeists to stand for a factorizable Regge pole, ﬁhich
was their model for this mechanism. To avoid eonfusien, I shaii use

the word pomeron when referring to the mechanism in a model independent

way aﬁd the.word pomeron.pole, when referring to the Réggeist'é-modeln
for it. | | |

The question before us is this: '"Can the pomeron, as defiﬁed :
abqve, 6ccur more than once in‘a'single process?" VIn what follows; Qé

shali try to answer this question restricting ourselves to a subset of

diffractive events--the elastic ones. This is done only in the

i Unless otherwise stated, the word constant should be taken modulo

logarithms.
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interest 6f simplicity and brevity. In other words; whereas we shall

consider from now on, only those situations in which the pomeron
controls high energy elastic amplitudes, the conclusions we reach about
its multiple occurrenbe are valid for the pomeron defihed in the broad

sense, as the mechanism behind all high energy diffractive events.

Consider the total cross section for two particles a and b.
It typically‘hés an energy dependence shown in fig.. 1. There is a low

energy resonance region characterized by sharp bumps which gives way

R

to a smootthegge region around Sab . At higher eﬁergies, around

.
Sab ?
is that while the two lower energy regions differ in their shapes as

the Regge region turns into a flat region. The interesting fact

we change thg‘particles a and b, the region'ébove :Sab*. has a -
universal forﬁ. vFrom the optical theorem, this'iﬁplies,that-the
corresponding elastic amplitudes must have a universalbenergy dependence»
in the forward directibn. It is also found in the region abové  Séb*,
that the elaétic amplitudes‘are almost purely imaginary at sm@il’ t.vc
This then is the high energy diffractive region refer?ed to’eariier and
‘according to our définition, the pomeron controls thé elastic_amplitude
above thell”pomeron threshold", Sab*' Can the pomeron, so defined,'}
.occur more than once in a single process?

There is'no unanimity among the theorists in their answers, 7
since different factions of theorists believe in different models and
different models give different answers. This is not.éurprising, éoﬁ;
k'sidéring the diversity in the models. While the reggeists argue among
themselves ohAwhether to represent the pomeron by a faétorizableiRégge
poie or by some nonfactorizable object like a cut in the J-pldne; the

advocates of the geometric models speak in terms of.ébéorbing target
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discs and projectiles diffracting around them. This state of affairs
is elaborgted in section 2.
Is there a model independent way of answéring the qUestiQn?

Can one, assuming no more than a definition of the ppméron as the
-mechanism contfblling all high energy elastic aﬁplitudes, decide thé'
question ofiits multiple occurrence? Orie can, if_one steps Qutside
current high energy ideas and invokes the old notionof pion pole
dominance (PPD). It is shown in section 3 that armedeith this hypoth-
esis, oné can define multi-pdmeron processes, and eétihate their cross
sections, éésuming no mofe than our general definiﬁion'of the poﬁeron.
"In short, PPD provides a model-independentT and quanﬁitative ;nSWer to
the questibn of multi-pomeron processes. The predictions of this

-
hypothesis are compared with experiment in section L.
One can also use PPD to define and set lower bounds for
iriclusive triple-pomeron cross sections; as Weil as to set upper bounds

on asymptotic, pomeron dominated cross sections; all in a model

independent fashion. These ideas are discussed in section 5.

2. WHAT DO THE DIFFERENT MODELS OF THE POMERON SAY ABOUT TﬁE QUESTION
OF MULTI-POMERON PROCESSES? |
I will consider Jjust three models. They will suffice to shoﬁ'
that the question of multi-pomeron processes, if analyzed within the

language of. the existing theories of the pomeroﬁ, bécbmes highly model

dependent.

T The PPD hypothesis is, itself, a model. The words "model'indepen-
dent," as used in this paper, should be taken to mean "independent

of any models for the pomeron."
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" A. The pomeron pole model

In‘the Regge language, a pomeron pole a.tJr :J'% 1, with even

: signatﬁre, is’ the most econoﬁical way to explain ﬁhe regularities

mentioned éarlier. The unit intércept provides the S-1 behavior,

while the éignature factor, i - cot(% muP(ti), prdvides the correct

‘phase at t_=.O. ‘ |
The elastic amplitude, for a typical ab — ab. process, has the

following form, when dominated by the pomeron pole§

o(t)

Mo (St) = By p(t) (5) Bopp(®) - (2:1)

Thié-amplitudeuis represented pictorially in fig. 2.2 The factorizedf
form allows us to abstract the pole;vﬁith a frajeCﬁory aP(t), and
speak of it in other reactions. Consider, for exaﬁplé, the process
ab —)&bn+n-; in a part of phase space where the raﬁidity ordering of
the partiéles is és shown in fig. 5.
| £

= (Pa

N #
N + P+) > Sa+., agd the subenergy

If the subenergy S,

‘ " )
Sb- = (be + P_)2 > Sb_ » Regge theory gives for the amplitude,

' %p tl c '
Mabéabn+ﬂ-v ) BaaP(tl)(s.a+) TﬁnPP(Snﬁ ’t’tl’tE)
o (t,) _
P\ o2 .

as depicted in fig. L.
Let us summarize what Regge theory tells us, granted that the

pomeron is indeed a factorizable pole.

T When I speak of a moving singularity, such as the_pomeron pdle,

aP(t), being at J = l; I mean QP(O) = 1.
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(é) It clearly defines a double-pomeron piocess‘as one in-which
the pomeron pole occurs twice in the amplitude, as in eq. (2.2) or
fig. L. -The pomeron pole encountered here is the énevfrom the elastic
reaction thét originally defined it [eq. (2.1) or fig. 2].

(b) While Regge theory says that the external céuplings,
B(t), are the same ones encountered in the elastic case, all it'sayéf
of 7, the central coupling, is that 7y it independent of a aﬁd b.

It gives neither the scale of Y, nor the dependencé on the variables,

C

Smr , &, tl’ and t2. o
(c) Regge theory does, however, give the dependence of the
amplitude on the subenergies, Sa+ and Sb-' This dependende may bé

used by the experimentalist to identify double-pomeron procésses,

In short, granted a pomeron pole, Regge theory admits and
defines a doﬁble-pomeron process, but leaves it to{eXperiment to set
the scale or rate. This conclusion is true for a general mulﬁi-pomeron
procesé.

B. The Regge cut model of the pomeron

Theorétical_analysis following the introduction of the pomefon
pole has indicated that such a simple desc¥ip£10n’6f the pomeron leads 
'tovinéonsistenéies, Fof.one thing, if there is a pomeron pole at
J =1, as suggested by the observed constancy of total cross sections,
the multi-pomeron branch points accumulate at J = l‘[l]. For another,
.'stgrting with a factorizable pomeron pole at J = 1, one can get into
situations where some partialvcross sections exceed the total, unless-
the triple-pomeron coupling, ‘gPPP(t)’ vanishes at t = 0 [2,12]. A£
preseht, whéﬁlneither gPPP(O) nor the importance of multi-pomeron
branch poinﬁé is known, the J-plane singularity associated with the
pomeron is.obscure. What does Regge theoryzsay abb@ﬁithe possibility

W
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of multifpomefon processes, if the pomeron is represehted by a non-
féctorizable prlane singularity, such as a cut? _Strictiy speaking,

" it is incorrect to speak of therecurrenceksingle.or multiple), of a
nonfactorizable singulﬁrity, The reason is that_sﬁch singularitieg,
unlike factorizable poles, do not have an identity independent of the
specific réaction they occur in. For example, if the leading J?plaﬂe
singularity in_the high-energy elastic ab amplifude'were»a cut, we‘
coﬁld not aiséociate thebcut from the particles & 'and b. The only
time we qan bé,sure that this same cut occurs in a different process,
is ﬁhen the amplitude involves expiicitly the high energy a-b
amplitude as a factor. |

‘ There'is, however, a slightly nonrigorous'waynof speaking of

a nonfaétorizéble singularity withoutassbciatingit.with a specific
reaction, and that is by its location in the J-plane or, alternati&ely,
by fhe energy dependence-it produces.' Motivated by the universal highr
.energy dépendence of all total cross sections, one may assume thét

their J-planes are universal, in that their leading singularities will

have the same location. If, thérefore, one defines the salient feature

of the pomeron to be this energy dependence, one'may_define a multi-
pomeron proéess as one in which this dependenqe isvrepeated. For
example,vin ﬁhe reaction ab ;aabﬁ+ﬂ- discuésed earlier (fig. 3), with
‘Sa+ > Sa+* .aﬁd Sb- > Sb-*’ if one finds the samé dependence of the
amplitude on these variables as in the elastic a-x and b-y reactions
respéctively, one may réfer to this reaction as a dogble-pomeron
process. While such é'definition tells the experiméhtalist what to’

look for, Regge-cut theory does not provide an explicit form such as

‘eq. (2.2), for the amplitude of this process.
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C. The geomefric or diffraction model [3]

In this model, the collision of particles a and b is
viewed in geometric terms. The projectile ab sees;thé target b as
a disc. At‘high energies, the disc becomes highly abéorbing, due tq'
the preponderance of inelastic channels. In a naivé;Sénse, the con-
stancy of total cross sections may be understood iﬁ terms of a coné£ént
radius, R, of the disc. "The phase is largely confrolled by the |
absorptivity. To see this connection, consider the féllowingjrather
artificial, but illustrative example. For a collisionlof spinlesé

particles, the partial wave series for the amplitude is given by

- ‘ <: 2is, ;>
| n e B,
M(S,0) = }: (22 + 1) 21 ™

£=0

Pz(cos 9) .

Let us resort to the following simple minded description of the
scattering:
(a) The target disc absorbs '(qﬂ = 0) all partial waves that

impinge on it, i.e., till £ = Emax = kR; where k. is the momentu_m:"'

of the projectile in the target rest frame,

(b) A1l higher4partial waves go unaffected, ~(nz - 1,. 83_=_O).

The phase of the amblitude is then clearly‘imaéinary. In
bragtice, of course, the description is more'complicaﬁéd'[h]; o
Iﬁ,is.curious that the geometric diffraction_model, which,";
despite i£s'vastly different logic,bconcu;s with the Regge polé model
‘ regafding many of the féatures of the pomeron in high'énergy elastic |
amplitudes, takes a very different stand on the question of multi-,

pomeron processés. Where are the two absorbing discs in the reaction

ab —»abx+ﬁ-' that might justify calling this reaction a double-
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poﬁéronrpiOCésé? Advocates of the geometric model séebno reason fof--
indeed no meaning for--the repetition of the pomeron{‘

Having discussed at some length. the Varioﬁs hbdels of the
pomeron and'the varying answers they give to the qﬁeétion of multi-
pomeron préceéses, we are now ready to embark on a study of the PPD

hypothesis and the'modeléindependent answer it prévides.

3. THE PION POLE DOMINANCE HYPOTHESISN

‘ Inkthié section, the question of multi-?oméroh processeé wili
be discussed, assuming no more than oﬁr general definition of the
- pomeron.- For simplicity, let us consider a specific reaction,
TP -*nfpﬂ+£-: Let us go to the part of phése spa¢¢ sﬁown in the
rapidity plot»of fig. 5. It is a general property>of the amplitudev'.
that, when t = (Paf +P, - Pai)2 = u2, it is given by:a pion pOle;
with a factorizable residue:

AL A ()
M - - 4 - > ' 2 B ' (5-1)
.:rt p—)ﬁvpn % | t—-)p.g t -.p, .

as pictorially represented in fig. 6.

In eq. (3.1), the factor A , _(V;) is the elastic, ——
' T T . : _ -
scattering amplitude, as a function of the variables, 'VL, associated

with the:left:blob. A similar definition holds fér A _ (VR) at the‘
right blob. "P

- The .crucial point is that if the two subenqrgies, Sa+V and
Saf, exceed thé pdmeron.thresholds, Sa+* and Sb-*’ the pomeron will
occur in each biob by definition, and produce the_characteristic

subenergy ‘dependence and phase in the two elastic amplitudes.
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This process must be termed double-pomeron byvanyﬂstandards;

since the precise situations that contain the pomeron by definition, '

occur twice. The form of the amplitude in eq. (3.1) allows us another
way of seeing this. Let us use, in eq. (3.1), the principle of CPT - S
invariance to replace the amplitude A _ (Vh) by the amplitude for . .

TP

the CPT-transformed process, A +_(VR);' We may now see the amplitude ' ‘
. ‘ T P . _ _ . ! . t
M as describing a two stage process--the reaction n+p —>n+p followed

by the reaction n+n- —>ﬁ+i---in which the n+ goihg!into,the sécond ’ ;
collisibn.ié the one that came out of the first. At :t = uez this  .
is a reai pion, and the two coilisions are real collisions.ahd'cahibe
separated in space-time. (learly these twovelastié{even£s,are .
_independénf; and_ﬁhe pomeron, whatever be %he model for it, will OCCQI
in each, if,the subehergies are above the pomeron thresholds. We thgs | o -

see that there are really two discs in this process--one in each elastic

collision. By the same token, there are two pomefon'poles or two Regge

cuts or two of whatevér-you-ﬁhﬁnk—the-pomeron-is.7iThé?e is,'however;
a catch to this argument. The éoint t = pg“ Qheré‘these éonSidéra? ; ' |
fibns épply,-iS’outside the physical regiqn which is confined to

negative t; The réheeming factor is the‘smallneésAof ﬁhe quantity
u2' (=~ O.O2IG¢V2) which prompts the following h&pothesis of PPDﬁ_ _ | - |
&he emplitude in the physical région is given by the factorizable - F"» _ . E
function feg. (3.1)] definedvat-the pole, multipliéd by a t-erendeht S
form factor,  f(t). Alfhough the entire physical‘feéidn is HOP.ClOSe”
: to the piph pole, the region where the>amplitude is significant.is

. 2
close to it, since the (amplitude)_' contains the factors

(t - pg)'g'land £(t), both of which are rapidly falling functions
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of‘ £ = -t T. Support for thg PPD hypothesis>ahd the specific choice
of the,form'factor appropriate to this prdblem aré"discussed at length
in the Appéndix. For the present let us accept a simfle—minded form
féctor gi&en by f(t') = 1 for 0<t'< T, and zero ﬁeyond. The
Appendix will justify this choice and provide the value for T

- Starting with the matrix element M of eq. (3.1), we can
vintegrate |M|2 over t' wup to T, over the blob.subenergiés from
the pomeron threshoids up to the kinematically allbﬁedvmaxima,vto get
UE?(S,T), the double—pomeron cross section for.this.ordering (fig. 5)

of the central pions. The following is the result:

ST/(sb_*;mg)

. = 3 - —— _
+ , l6n582 . _ a+ “a+ ﬂfﬁ a+
Sa+
((sT/s )+m2]
a-+
-2y el 4
X ds, (Sb -m )o (Sb_)
* s, TP
Sb- !
T , _ .

dt' -

X 75 mb . (5.2) .

=08, (8, _-n")/s]

This formula'is from ref.[5],adapted to a situation where the energies,'

‘S, Sa+’ and’ SE_ are large and the pion mass is ignored. (Thé_last '

" approximation leads to little error, due to the téin limit.) The

T We shall be using both varisbles t' and t in the future.
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kinematiéal upper limit on the subenergies guaranteéé that t&in never
exceeds T; The proton mass is m.

To estimate OE?(S,T) from eq. (3.2), oneICan feed in the
empirical x-n and gx-p cross sections and perform a numerical
integration. Since these calculations are anyway quite approximate,
let us resort to a simplification that gives a quiék estimate. Let us
replace the elastic cross sections, which vary sliéhtiy with the sub-
energies, by constanfs Oeﬂ(w)) that represent their a§erage behavior
in the region between the éomeron thresholds and the kinematically

allowed maxima. With this simplification the integral can be easily

performed to give

£ el

T x 2.5 X o° () x 0 (o) _ e
P . 1 . 1 .
OE_(S)T) lZIB P [5 log" Z - 15: + %— - ——2-] mb

(3.3)
where
ST
Z = .
* * 5
Sgy (Sy_ - 1)
. el . el # >
9hoos1ng Gﬂﬂ(w) = 3 mb, Uﬂp(w) =5 mb, S,y = 2 Gev?,
+* .
S =4 GeVQ; T = 0.25 GeVQ, leads to

b-

oF = 13k at S = 386 Gevo. |

The value of § 1is chosen to facilitate comparison with recent
experiments performed at NAL at 205 GeV/c. While the choice of T
" is discussed in the Appendix, it must be mentioned here that it could

e
be lower in principle, but not likely to be lower than 0.125 GeV™.
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Tﬁe pomeron thresholds are chosen to éliminate all‘pfominent reso-
_nances. Some'contaminatién from lower trajectoriés'is inevitable.
This questién is taken up later.
A similar calculation for O?E, the cross éection for events
"with thé other ofdering of‘the two central pions in rapidity, yields a
formula similarvto eq. (3.1), with

- 8T

7 = — .
¥ % D
Se- (Sb+ - o)

In this formula, Sa_* is the pomeron threshold for a x n  system.
-Due to the'iack of any structure in the‘cross section in this channel,
it”is hard to select a value for Sa-*' The following alternative
criterion fof pomeron dominance is suggested and ig tb be observed
both in the calculation of the theoretical estimaté,ﬁﬁd in the'experij
mental selection of double-pomeron events: The g x . subsystem‘is
pomeron domingted when the rapidity gap Ay,‘betweeh-fh; two pions is
two units or more. For a phenomenologicél cbnnection.ﬁetween 0y 2'2‘
and pomeroh dominance, see ref.[7]. The theoreticaiiestimaté,-whichbv
deals with.subenergies rather than rgpidities, requiféé us to convért
a minimum rapidity gap Ay = 2 into a minimum subenergy Sa_*. If'the
two pions have transverse momeﬁta ﬁ; and ?i , and have &y = 2

" their subenergy is‘ ' -

. 1 ’
L. 2 D 2 12
Sa"_ (Fa)?_) = 2p + <l?a’ o ) <,Pb

cosh 2

!
o
+
E .
]
U
. ol
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Assuming that on the average,

(1) : l%‘ = lT”b’ ~ 0.3 GeV/c
(ii) ?a-ﬁ) ~ 0 we get sa_*=o.8 GeV°. With the other

_ parameters.samé as before, we get
01_31: = 20.4 wb at S = 386 GeVo.

The. total double-pomeron cross section is given by

PP(s - 586 GeV*) = 021_) * “]ff = 33.8 uB .

The same set of parameters yields for the reaction pp —)ppﬂ+ﬁf a

tofal double-pomeron cross section of 31.3 pb at 205 Gev/c

(s =387 GeVQ)-

 Comparison with experiment: Recently two groﬁps have measured double

pomeron cross sections as defined in this paper. The reaction

ﬁ-p ->n-pﬂ+n-’iat 205 GeV/c was studied by an NAL-LBL-UC Berkeley‘[

collaboration [7], while the reaction pp —9ppﬂ+nf. at 205 GeV/c

was studied by the Argonne group [8]. Omitting details of the experi-

ments since they may be found in the references quoted, I present

below the comparison between the theoretical estimates of the cross

sections and the empirically measured values.

Reaction Plab 0 (experiment)

xp e P - 205 GeV/c 30 + 10 pb

pp - Por N 205 GeV/ec W £ 15 ub

o gthéory)q
33.8 Kb

31.3 pb
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We find that the measured cross sections are compa@ible with the
theoretical estimates. As a result of the rather lowlvalues of the

S* usea here,.thére is surely some contamination from lower trajec-
tofies. Raising these minimum subenergies (in the_théoretical estimate
and in the experimental selection of events) will lead to "purer"
.double;pomeron cross sections. At the present enefgies and statistics,
such a move will lead to prohibitively low cross sections. In future
experiments with higher energies or statistics or'both; this will be a
desirable as well as feasible modification.

In éddition to providing an estimate of the integrated cross
section, thé.PPD hypothesis also makes two predictions on differenfial
cross sections. These could not be meaningfully tésted with the
present statistics.

(i) The t' distribution: Consider the general reaction ab —9abn+ﬁ-.

By integrating eq. (3.2) over the subenergies we obtain

£, . el
2.5 x 005 (0) 057 () | |
S E— 5 bJ x £(z) [%— log Z - ,:;er+ _12] mb /GeV" .
165 . Ly,

Q:lpa
cla

((3:37)

This formula refers to a specific rapidity ordering of the central
pions--pion 1 nearest toc a and pion J 1is nearest to b. 1In fhe”
formula, .Z = t'/to, where t) = (Séi* - mag)(sbj* - ﬁsg)/s and £(z)
is the form factor.  As mentioned in the Appendix;.[éq{ (A.3)1, the o
form factor appropriate to these calculations is f(t') = e-ht'. In
eqns. (3.2 and 3.3), where the aim was to integrate over t', ‘this
form was réplaced for convenience‘by f(t') =1 for VO <t'<7T=1/k

and zero beyond. For the differential cross section. of course, we
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must use the exponential form. Typically do/dt' r;ses from 'to up
to 10 tO and falls monotonically thereafter.. For éxample, in the
process depicted in fig. 6, ty = 0.016 GeV2’ and the peak is around
t' = 0.16 GeV2. Unlike guasi-two-body reactions, which typically fall
monotonically in t', these cross sections are predicted to first rise
and then f#ll. They owe this proﬁerty to the fact that here the‘twoi.
blob masses do.no$ have to lie in some resonance ban@”but are allowed
to vary. As'.t' increase from to, the allowed range of mass variaft

tion increases, while the factors f(t') and (t' + p2)2 decrease.

(ii) Distribution in Sﬁnc: According to the Steinman relations [9],

the amplitude cannot have simultaneous poles in t and in Sﬂﬂc, the

(mass)2 of the two central pions. Thﬁs the residue; R, of the polé:at

, will not have pole in S%ﬂc, say due to the f meson. |
According to the PPD hypothesis, there exisis a (physical) region of
small t' (= -t) in which the amplitude is essentially what is found

" at the polev(except for a t-dependent form factor @hich introduces ho_
singularity ip Sﬂﬁc). In this région of "small" t', if one divide;
the events into bins (of width 0.05 GeV- ' for example) and plots
within each‘bin the distribution of events versus Sﬂng’ one should seé
none of the resonances of the dipion system. Conversély, the t' |
above which these resonances show up would mark the breakdown of fhe-'
A_PfD_hypothesis, telling us what "small"” t' means. Such a test, which
can be done in quasi-twé-body reactibns as well, willitell us in -one
stroke the validity of the Steinman relations as stated above; and the
range of validity of the PED hypothesis. |

We thus infer from the Steinman relations,that PPD is challenged

not only by'ﬁhe neglected singularities in t but also by the
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singularitiésvin Sﬁﬂc. At a fixed value of Snﬂc;vif we increase
-t, the neglected singularities in 1t .- compete with the pion pole.
‘At some fixéd t, if we vary Sﬁnc, a pole in Sﬂnc' can aominate the -
‘amplitude ifIWe get sufficiently cldse to it. Should this happen, thé
pion pole wiil be absent in the amplitude according fd‘the Steinman
relationsf Innour example, if we focus on the f-méson pole in Snﬂé;v-
the closesfvwe can get to it, by varying Sﬂﬁc along the real axis,
Cis given by.the imaginary part of the pole position;Which is equal to
bthe producﬁ,of its mass and width, with a value of ébout 0.2 GeVE.
At this pdinf of closest approach, we can say roughlj-fhat PPD will'be
challenged by'the f-meson pole for -t around 0.2 GeVQ, assuming:
equal residues for the two poiés.. Thus the bfeakdown of the PPD
hypothesis can bevbrought about by either the negleéfed éingularitiés
in t '6r the neglect¢d singularities in Snnc' Thé fbrmer .could be
' detected by a study of density matrix elements in qugsi-two-body
reaétionsband'the latter by a search for resonances in- Sﬁﬂc.
v It is interesting to study two earlier attempts at detectingr
double~-pomeron processes in the light of the PPD hypofhesis. Leipes,
zweig, and Robertson (LZR) [10] studied »x p —aﬁ'pﬁ+¢- at 25 GeV/c _\
~while Rushﬁrooke and Webber (RW) [11] étudied 199 —>ppn+ﬂ- at 6?25 
V’GeV/c. Both.assumed the double-Regge pole form of‘the'amplitude,
eq; (2.2), for the double-pomeron ?rocess and foundvthat such an B \
. amplitude had negligible weight in their fit to thé double-Regge v
regibn. Thisrmeans either that the central couplihg _Y is Véry'smail,\

or that the poméron is not a factorizable pole and the amplitude

doesn't contain a factored component like eq. (2.2).
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Does the failure of these two analyéeé to detect double-pohefbn
processes conflict with the estimates of - PPD? No! The reason is thét
the PPD f.ormula gives a miniscule 4 yb for the 'experiment of LZR
(s =50 GeV2) and a similar result for that of RW. Instead of using
the fofmula we can see the smallness of the PPb estimate in the following
way. For the double—p;merdn process to occur via PPD; we require not o
only that the two end blobs be massive, but that the central link be

kinematically allowed to have small t's. 1In the vn-p,—!ﬂ-Pﬂ+ﬁ_

reaction that we just discussed, we saw that

Say (Sp_ - w) _

S .

1
min

;Assuming that;the‘only sizeable cross sections are for those reactions
in which a:_t',,of say 0.1 GeVz, is accessible, we'need an 'S given

by

a+ b-

using the smallest values of: Sg+ andv Si; compatible.with the double-

pomeron region. Using the. S* values quoted eariier, this conditién

‘requires s>bs GeVE, a reqﬁirement barely met in fﬁg LZR experimeﬁf.

A similar,consideration applies to thé RW experimeht," :
Iﬁ.the language of these two analyses, involvingtpomeron:poleé,

the PPD hypothesis sets a lower bound on the central c§upling,,

C
(s~ b by

residue known from elastic experiments (fig. 7).

te), by focussing on the pion pole at t = pz, with a

In their analysis, LZR conclude that the absence of an f

resonance in SmC further corroborates the absence of the.dquble-
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pomeron eVents. This conciusioh is true only as long as 1 1is
.controlled.by a pole in S’mC (fig. 8). If such»a pble were present
with a substantial residue, it would lead to double—pqperon events at
lower enéréieé, since t' need not be small. Théir.analysis essen-
btially indicates the absence of such a pole.

In the PPD induced, double-pomeron processes, the sitﬁation.is

C

Jjust the oppdéite--namely, the absence of resonant étructure in‘ S o
: 7

accompanies the controlling méchaniSm, the pionvpolé{

5. FURTHER APPLICATIONS OF PPD

A. Triple-pomeron cross sections

a

The.PPD hypothesis, together with the definifion of tﬁe pomeron,
may be used ﬁo define aﬂd seé lower bounds for inélusive triple;poméron
Cross sectiong. Consider, for example, the reaction |
. p(Pa).+ p(PB)-_,p(PC) + X, the'parentheses containing the moménta_of_the
profons.  iet us restriét ourselves to events iﬁ,which PC is vérjb
close to Py .Let 'MX be the mass of éhé undetecfed particles, X.

We are interested in the inclusive cross section,

ao -
2
).

_ ' 2 2, '
, where t = (PC - Pa) and M~ = (Pa + P - P,

at d(Mx2/S)

Consider ali exclusive events in this region with the.ffoperty that éf
all the paﬁticles in the cluster X, the one hearest‘to the proton, in
rapidity, is a pion-of momentum P, (fig. 9). The contribution of |
.thgse excluSiQe events to the inclusive cross secfich“involves, among
other intégrations, one over u = (Pd + P, - Pa)2;_ffom zero to the
kinematicél limit in the negati&e u region. At u = ue, the

amplitude factorizes:
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LA (S,t) A (V.)
Moy IR weex XL (5:1)

s u_u

u=
Using ©PPD, we may integrate thié IMIQ, over a regiqﬁ of small negative
u, up to fU; ?he iﬁtegral over NX, ‘is done uSiné:the optiéal
theﬁrem. These operations are best represented piétorial;y (fig. 10).
The result is do’/dt d(N&E/S), the contribuﬁion to .do/dt(d ng/s)

from the pion pole in u.

If the three blobs of fig. 10 have subenergieé above the pomeron

thresholds, fhe_pomeron will occur in each of them doing itsZJOb. This
v thgn’is a triple-pomeron process in a modél-indepehdehtvsense._ One can
estimaté the magnitude of this pion-pole contribution using xp- elastic
and total cross section data. | |

It is only when one speaks.of a triple-pomeron pdle couplihg,

gPPP(t); that one needs to put pomeron poles in the blobs. Such a

calculation has been done by Sorensen [6] who estimated ngP(t)' Hisv'

paper also contains the phase space details omitted here.

B. Asymptotic bounds on total cross sections

0y

Theoriéts have repeatedly been driven [2,12]‘“ to the conclu-
sion that if the pomefon were to be a factorizable Regge pole, if
couldni't be at J =1 (i.e;,.all total cross sections must éventually
die away), unless the triple-pomeron coupling gPPP(£>» vanished at.

t = 0. This_reéult is‘arrived'at by repeating the-pomeron in certain
judiciouély chgsen circumstances, either exclusively or inclusively.

To ensure its fepetitibn these authors assumed its factorization, and
theirvresﬁlts seem to rely on this assumption. |

On the other hand, wé have seen that using_PPD,vthe pomeron

may be kept inside blobs. and repeated_using just*the'factorizablitiy
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of the pion:pole. It follows that ‘the ailments accompanying an
asymptoticaliy constant,T pomeron-dominated cross section will ensue,
forcing total cross sections to eventually die away. The crucial‘ |
feature'of the result is that it is indipendent of‘the J-plane
singularity'associated with the pomeron.

To get tﬁe boundé, one needs to find appropriate situations
with repeated pomerons,Ato avoid pitfalls of multiplexcounting, and to

do the phase space. These details will be discussed and the bounds

derived in a subsequent paper.

6. CONCLUSIONS

The universal energy dependence and phase of high-energy
diffractivé_amplitudes (of which the elastic is a special case),
suggests an underlying mechanism. 1In this paper, such a mechénism was
~ assumed to exist; and defined to be thevpémeron.v The question taken
vup was "Can and does the pomeron, so defined,.occurbmorg than once in
a single prdcess?" An analysis of various models'of-the pomeron
indicated that diffefent models gave different reéulfs, none of them
quantitatiyea The introduction of the PPD hybotheSis provided a
model inde?endentg.quantitative answer whose utility was demonstrated
in the specific reaction, x p —»x pr n . At the pion pole (fig. 6),
the ﬁroduétion amplitude factored into a product'bf»two elastic

- amplitudes, A ‘- énd A _ . Since these elastic:émplitudes contain
' T TP ' ‘

the pomeron by definition. at high energies; the situation at the pion

pole is a double-pomeron process in a model independent sense. 1In

?

T In this context the word "constant" has thebusual meaning and not

modulo logs.
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\
terms of tﬁe space-time description outlined earlier, possible at
t = ug, one.may see the process as one in which a real ﬂ+ ofvmass p,
first suffers an elastic collision with a 5, and then proceeds to
collide elasticaily with the. n . Since there gzg.twﬁ collisions, there
are two pomerons;‘granted large enough subenergies. The PPD hypéthésis

allows a continuation of these ideas, valid at t ;'p?, to the nearby

physical region.

A comparison with two recent experiments,  “_? —9ﬂ-pﬂ T ana
PP —9ppﬁ+nf, both at 205 GeV/c, shows that the obsefved cross sections
~are compatible with the theoretical estimates. Further tests of-the
PPD hypothesis, which must await experiments wiﬁh greater energies,
stétistic; or both, are suggested. A study of two-earlier attempts at>
detecting double-pomefoh cross sections shows that'théir negative
results afé:compatible with the PPD model.

It was shown that PPD{ together with no more than our.géneral
definition o£ the pomeron, leads.to lower bounds on triple-pomeron |
processeé. It was pointed ouf that using PPD to repeat the pbméroﬁ,
one could_défive ﬁpper bounds on the asymptotic pomeroﬁ domiﬁated Cross
éections, without making model—dépgndent assumptions about thevaMerOn,
such as ité factorizability. If the present degree of validity of QPD
persists aéymptotically, the result that total créss sectioné must  '
eventually die éway seems inescapable, no matter what the nature of,‘
the singularity associated with the pomeron.

The philosophy throughout this paper has béen‘to use thé pion
to analyze the pomeron, rather than to use the poherén to analyzevv”
itself. The pomeron; whose nature is enigmatic, is kept within biobs,

and only theé pion, whose properties (particularly its factorizability)

are certain, is explicitly shown. The catch is that the
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factoriidbiiify of the amplitude is guaranteed oniy at the pioﬁ pole .
and not in'the physicél region.. One has to assumé; Vi; PPD, th@t this
cfucial property is not lost in the transit frbm the pole, to the.
physical region, O.02‘GeV2 away. This seems plausible (due to the
smallness of _pe), has worked in the past, works at S ~ 400 GeV2, but

can never be proved.
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APPENDIX

The argﬁments suppdrting the existence of:aOuble;pomerén Ccross
sections rested on two assumptions: |

(1) At the pion pole the amplitude factorizes--the residue R
is a product~of two elastic amplitﬁdes, each of which will contain the
pomeron if the subenergies are large enough. |

(2)  This behavior will persist in the small f'. region. The
only‘difference from the situation at the pole will be the inclusion
of a form factor, f(t), (the PPD hypothesis).

The first assumption will not be disCussed here since it is -
'_ a widely‘accepted and basic property of the amplitude. The second
notion invélves a guess, as to how the amplitude behaves in the physical
région of small t', knowing its behavior at the_pole. These are  1

essentially two schools of thought that make two different guéSsés.

A. The S-matrix approach. Here thebproblem is viewed as that of
guessing the_behaviof;of an analytic function near.a pole with a knoWn
‘residue. There is no syétematic way to do this. _The PPD'hypothesié
:is a guess prompted by_the notibn that since the”physical region‘ié j
close to tﬁe pole, the amplitude should no@ vary too much in going
ffom the pble to the éhysical region. Only experimént can décide fhé
validity of such a guess and if it proves a valid gﬁéss, to decide its
fénge (iﬁ, t') of validity. We shall return to this‘quéstion laterL

B. The absorption model [13-15]. This model has proved very useful-

in the study of quasi-two-body reactions. Here one essentially
identifies the .amplitude at t = p2 with a single Feynman diagram
(the "pion pole" diagram), since ‘at this point it dominates over the

other diagrams (fig. 1la). Away from 1t = “2 the neglected diagrams
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havé to be-considered. The crux of the absorption model is that the
effect of‘the neglected diagrams may be inéorporated'by the incluéion
of initial and final state interactions (fig. llb)vt15,15]. Once again
only experiment can decide the Qalidity of this gﬁess, ”

| Over the last few -years, nu@erous Quasi-two~boay reactions have
beeﬁ studied to test énd compare the two guesses or models. Both
. models afe fequired to explain the empirical'fact'fhat often the fall
in t of the differential cross section is sharper than what the pion
pole factor (t - ug)-g would indicate. In the,S-métrix approach,.
‘this is achieved by the incorporation of form factof [16,17]. While
these form factors, suitable for describing final states contaihing-
feSonances or stable particles of‘definite spin, haVe‘kinematical and
dynamiéal ﬁptions behind fhem, they are nbt free of arbitrary'péra@efers
that must be deduced from eXperiment [18].

In thé absorption model, the sharp collimation in t is a
result of thé_initial'énd-final state interactions. jTQ the extent that
the initiai stafe interaction is givén by the elasfié'écattering data
(éee fig. 11b), it is free of parameters. The final sta%e interacfiéns,
since they are not subject to direct measurement;'must be handled
either via-additional assumptions or additional paraméters that'mayvbe

+

empirically determined [13].

Ih short, both models can usually describe any differential
cross section - dd/dt' with the help of judiciously .chosen parameters.
By contiast; the study of the dénsity matrix elemenﬁs,‘ pij,'éf'the' |
.decaying final_state resonances, such as the po in.the reaction
1P —apoAp,.can distinguish the tWo models.‘ The P?D model, with a

factorizable émplitude, predicts that in the decay of the p-meson, all



-L48-

thq density matrix elements will vanish for all values of t' in the’
‘Gottfried-Jackson frame, with.the exceptibn of” pod; which will be.
unity [lj]. The absorption model, with a'nonfactorizable amplitude can
admit a nonzero value for all Pij° However, for small t' the pre-’
dictions of this model approach the values given byithe PPD model.

. The eﬁpirical situation is as follows. Oﬁe;finds that for
small t' (usually up to 0.15-0.2 Gevg) pbO is between 0.8 _éndu
1, while the‘Otherg are very smail, usually around 0.05 [19-21].

For larger values of t', the fésults differ substantially from the
PPD predictions. The absorption model, although pérémetér dependent,is
able to accommodate and describe these matrix elémenté.in this regioh..
We ﬁave seen that in our problem, the bulk'of.the t! integ?a—
tion comes from small t' (around’ O.i5 GeV2 fof=thé specific process
debicted in fig. 6)f Based on the study of the density matrikveleMenfs_
in this region, we may say that in this range of ,t;, the PPD &nd
absorption models are indistinguishable a?d in agreement with experi-
ment. Aftéf all both of them have to agree at the,pole, and if the
process is a smooth one the mérger could be eXpecﬁed:around small  t'.
Furﬁhér evidencé for factorization at small vt' comes from a
study of 'ﬁ'p _,poﬂ‘p at 6 and 8 GeV/c, described in ref. [22}} Here

the PPD model is assumed for £ - t&in < 0.3 GeV2 and the off—shell =P

cross section (lower vertex in fig. 12a) dOOff/dQ,-vis extrabtéd and
found to have the same angular dependence as its'on;shell counterpart;'
except for an overall scale. It is also found that if the lower vertex
is allowed to be inelastic (iower vertex, fig. 12b);'and the off-shell

cross section for the process g p —an-ﬂop is derived, then the ratio

GOff(n'p'—aﬁ"ﬂop)/GOff(n“p -5 p) agrees with the on-shell ratiok
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Ahothér.factor that controls the success of PPD, ih addition
to the émallnéss of t', is the absence of competing mechanisms. In
the processl_ﬁ-p -an-pn+n_ it is clear that the link carrying-the

G =1 . The same conclusion may be

momentﬁm'transfer t must havé I
reached for the proceSs-'pp —appn+n- if one makes the édditionél
assumption -that the two protonsvat the two ends db not sénd any
quantum ﬁumﬁers to the central pions (which is taﬁfémount to assuming
a factorizaﬁié pomeron controlling the two end blpgs); This meéns,that

the 5 and the A, are the only possible objects that can be

2
exchanged across that link. A study of the reaction g p -9pon [23],
shows that when the and the 4, are present, the A2__begins‘td
stand out for . t' - téin greater than 0.3 GeVg. :This condlusion is
based on a study of the density matrix elements of the decaying ﬁ
o mesontand'séeing at what t' the PPD predictionsABreak down,
forcing the inclusion. of the A2 iﬁ the descriptién.' While this state
of affairs is. not expected to be universai, it.does lend some support
fo our ignbring the Aé at smaller values of t'.

if bne is persuaded by the abbve-mentioned_argumentsbthét the
PPD model will provide a good description of a proceéé at shall t's,
there still remains the problém of what form %actor]is to be employed
in the double#pomeron process. The standard form factors of the quasi-
two-body reattions afe not applicable heré éince they pértain to final.v
states of definite spins-—resonances:or stable particles; while in the
double—pomerbh'case these resonances have been speéifﬁpally exclﬁﬁed;{
There is, howéver, a theoretical model of forﬁ factofs‘that is valid
in preciseiy this context. By sblving the multipeiipherai integral

equation with variable masses for the external pions it is possible to

derive the dependence of the high-energy elastic amplitudes on the
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external masses, i.e.; the form factors [2&]; Omitting'details of the
calculatioh, as ﬁhey may be found in the reference quoted, I present:
here the flnal formule that is applicable to the present process: If-
.two on-shell pions couple to a reggeon of spin a(u) and mass (u)%;
with a coupling g(u), then the effect of taking one'Qf the pions off-

shell to a mass (t)2, changes the coupllng to
B(th) = B(u) ] l 2 a .
recasol I

l;a(ﬁ)

(A.1)

In this formula u. is the scale factor and represents the (mass)2 of

0
the gx-g resonance that goes into the kernel of the integral equatibn.
Since the:é.are at least two prominent resonances to be considered,
namely the p- and the f—meSéns, the authors of ref. tQh] reéommend a
‘value of 1 GeV2 for Ug» which in addition to repréSenting the mean of
the two resonance masses élso gives a good result in the numerical solu-
tion of the integral equaﬁion [2&].. In principle the value of Ug
could be smailér, but not smaller than 0.5 GeV2, the mass squared of
thevmeson. | L |
| In incorporating these form factors into our calculation'the

following considerations are relevant:Jr

(i) Ssince u represents the momentum transfer in the two
elastic processes at the two ends of the pion link (sée; for example,
fig. 6), it is usually very small, since at high energies, the bulk of
the elastic cross section comas from u < O.l'GeVE.V We may . therefore
drop factors like u/2 and u/k, as well as ug iﬁ,éq;'(A.l);'in

comparison ﬁith Ug and t. While t can be very small, it is only

T We are forced here to associate pomeron Regge poles with the two
pomerons in the blobs (see fig. 6). This is a necéssary evil for

v getting the form factors.
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at larger t (around 0.15 or 0.2 GeV2) that the. form factor plays a

significant role,providing the cut off. We shall ignore the slope of

il

1. The form factor then simplifies to

u)< ) | (a.2)

(ii) This factor occurs to the fourth power in the double-

the pomeron and set Q

il

B(u,t)

r\)H—’

pomeron cross section and leads to an overall form factor

. 8 .
, : : u bt /u it /u
f(t) = "‘“S%ff' ~ €’ @ _ e ‘ q - (A.3)
for small t'. Choosing Uy = 1 GeV2 leads to a form factor
)+t ' -
£(t') = e ¥ [unile uy = 0.5 GeV" would lead to f(t') = o0t

For Simpliéity this form factor was replaéed by a.flat one that simply'
cut off the integral [eq. (3.2)] at t' = 1/k GeVg;_leading to a
result like eq. (3.3). If inétead, one performs the‘integrations usiﬁg
the exponential form fgctors, one gets anvanswer iﬁ terms of exponential
functions. Nﬁmerically, the_result-of such a calculation is_aboutj"
20-25% larger than that cgming from a simple formula like eq.'(B.B).
Coﬁsidering_the_other approximations and uncertainties ih this caléula-
. tion, sﬁch és the value of. Uy this differerice islconsideredinot"v
important enough to justify abandoning the simplelfor@ula, eq. (5<§);
The following important point is wortﬁ undgrséoring. For the
purposes.of deriving the model independent_bounds;on asymptoti¢7totél

cross sections that were mentioned in section 5B, it is sufficient to
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know that there exists a ph&sical region of nonzeréfmeasure in t' ih
which the'production amplitude.factorizes, as it doesﬁat the pole.. On
the'other_hand, to make a realistic’ estimate of the dbuble-pomeron Cross
secfion, one must estimate the rdnge in t' over which this factoriza-
tion wiil persist. While the range of validity of the PPD hypothesis-
ma& be controversial;,it seems very clear from a Stﬁdy of quasi-two-
body reactions that there définitely exists a range'of‘Small t' over

which the amplitude factorizes to a very good approximation and is

ddminated by.the pion pole.e;For example, at very small t', all density

matrix elements approach the PPD values [19-21]. To_extend this’result-
from the qua31 two—body regections to the double—pomeron process, one.
51mply needs to increase the masses of the end blobs from the resonance

region to-the pomeron region. Is this increase llkely to produce any

significant changes? It appears not, from the following consideration. -

In ref. [20] we find that if in the reaction x p —9pOAP,vwe increase

the mass of the g-n system till we reach the reaction x p —;foép

the density matrix elements in the very small t"'region remain the
same. One flnds, for example that poo = 0.91 ¢ O 07 for
0<t' -¢t'., < 2p2, in p-decay, while pOO = O. 88 + 0.11 for

min

S 2 . :
< - T s - . .
o< t! tmln < 5u in f-decay. The slight decrease in Poo 1n

going from the p to the f-meson may be understood in terms of the

increase in 'téin and the increase in the range of t'.
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FIGURE CAPTIONS

A typical total cross section as a functidﬁ of energy.

- The elastic amplitude M+ .eb (8,t) in the pomeron dominated

region.
The rapidity plot for the process ab —>abn+ﬁ- in the region

of interest.

The multi-Regge producthn amplitude Mab—fabﬂ+ﬁ‘ in the

doublefpomeron region.

* The rapidity plot for the reaction x p - prx . in the -

region of interest.

The production amplitude M _ _ , . at the pion pole.
T Pow Pron . .

The.PPD model for Y&ﬂpp(sﬁﬂ.’ t, 5, tg)'i The B's are

known by factorization from the elastic experiments.

The LZR model for Y&npp(snn » 6, by, tg).

Rapidity plot for pp — pX, with the "left-most" particle in

X beihg a pion°

&

Calculating dd”"/dt d(M%E/S), the pion's contribution to the

inclusion cross section. The prime on I' tells us to keep

Mx2 fixed when summing over .Pd{

(a) - The amplitude for the reaction ﬁ'pv-»poap at the pion
pole. .

(b) The amplitude for the same process, aﬁay from the pion

polé, in the %bsorption model. The blobs denote initial

and final state interactions.

(a) The reaction x P —apoﬂ-p in the PPD model.

(b) The reaction D —p’x x P in the PED model.
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CHAPTER III

CRITICISM OF THE P'-w EXCHANGE DEGENERACY
ARGUMENTS IN THE pp = px TRIPLE-REGGE REGION
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CRITICISM OF THE P'-w EXCHANGE DEGENERACY ARGUMENTS

IN THE pp » pX TRIPLE-REGGE REGIONT

R. Shankar
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

March 28, 1974

ABSTRACT

| The omission of»off—diagonal terms (Gijk’ i#j)
in the triple-Regge analysis of pp - pX on the grounds
Of, P'—w exchange degeneracy is questioned. It is poinﬁed
out that not only aré compelling reasons absent for such

é degeneracy but imposition thereof cornflicts with simple
G-parity considerations and leads to the néglect of
probably significant off-diagonal terms. The practical
pfoblem.of triple-Regge fitting in the presence of the

off-diagonal terms resurrected here is briefly examined.

 Consider the reaction p(pl) + p(p2) -> p(p3);+ X in the
triple-Regge region; M? ='(pl + P, - p3)2 + o, ‘(s/M2) + o and
t = (p3 --,_pl‘)2 fixed. The notation is defined by the following

expansion of the inclusive cross section:

T-Work supported by the U. S. Atomic Energy Commission,
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._.._‘29'_‘..._._; _9_ Z (t)E(t)B (t)‘if(t)

. ’ R +0y . ‘

x (—5-)&1.(#) O‘J(t.) 71.Jk <M2 \akO) (I E<O))B (O)mb Gev™
In the_abpve éxpansion,‘ sor= l'GeVZ, Bppi(t) ié the ‘dimensionless
‘coupling of Regge pole i to protoms, andv'gi(t) .is‘the_Signature'
factor forv'i, giveh by [i - cot(%ﬂa (tl)] for even and _ 7
[-i -—tan(%ﬂai(t))] for odd 31gnatures T The B are normalized such’

that a single pole i contrlbutes to the p p total cross section

an amount

o (s) 1[m (0)] 8__.(0) o2V 2
s = = s .(0 L0) — V
pp, s &4 .Bppl Bppl <SO> . € |
The triple- Regge coupllng g1 k(t), which has dimensions of GeV 2
will be measured in mb (1 mb = 2.5 GeV_ ) ‘

' Experimentalists usually parametrize the inclusive cross

section as follows:

T With this choice of odd signature factor, ng (0) 1is positive while
W ) . .

Bop (0) B__ (0) is negative, |
© " By
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Oy (t)+a (t) (0)
" Ok
dt d(l\fﬂ/s) ( > Z 1Jk(t)<Me> <;—c-)-)
Therefé?é '

mm ﬁg— pplm £,(1) 8 (1) s";(p-)_,:'gi';]ﬁku) (tn £,00)

. B B
(0) mb-Gev™“ (4) -
X Bppk o ‘

-~ For the éff—diagonal (i #J) terms let us define

G = G + G = 2Re G (5)

ijk 15k~ Tjik 1jk

In bhenomenolpgical analyses (see, for éxample, refs. (1)'
or (2)) one considers the pomeron P, and the neXt‘family‘ofvlower'
foles,'¢611ectively referred to as R. The principal candidates for
R are the :?' aﬁd w, since the p and Aé coﬁple weakly to
protons. |

My purpose here is to question an assumpiidh usually made ih
. such fits, that the P! and w combine to form a real term R
(és in p-p elastic scéttering) so that the off-diagonal terms Eﬁ?
and §§ﬁ ‘are absent. One says for example, PRP =:2vRe GPRP = 0 .on
" the grounds that the P is mainly imaginary'while R 1is mainly real.
Such reasoning, on the basis of exchange degeneraéy, has a legitimate
place in p-p elastic scattering, but not here.;.inxthe former case,
and Upy .0 withzopppsite signatufes

h itions =
the condition BppP’ Bppw



' o _ -
for P'-. énd w allow one to drop the 1nterference terms. between
P and R_ in dopp/dt. Evidently, in the case- of pp + pX, the
dégeneraéy_érguments are valid when X = proton, but in other cases,
especially in the tripléQRegge region, it is nofiét all ébvious that
the degenéfacy should persist. In fact fhe iﬁdiécfiminate impbéition
of such‘dégenerécy conflicts with simple C—pérify-éonsiderations.
Con51der, for example, the ternm GPRP’ together w1th eq (4).
Assumlng (perhaps legltlmately) that B ppt = 5ppw, We can infer the

| vanlshlng of GPHP .only if gPP'P gPuP' Homover, gPuP vanlshe-

from G-parity conservation, while no such restriction exists fof

Epprp-
of the P ~might be regarded as incompatible with-éxchange degeneracy.

Wg may thergfore expect a nonzero GEE?;=.G££,P. Ex1sten¢e

As for the other off—diagonal term, GPRﬁ’ it w1ll vanish
unless both the labels R refer to the same obJect, P' or , once

again due to G-parity conservation. Thus

GEEB‘ = QEB,P, + GEEQ. Assuming BPPP' = Bppwf
GPRR = (common factors)[ Epp1p: 2 Re 1[—1_— cot(iﬂap,)]Im EP'

* B 2 Re i[i - tan(%ﬂaw)]lm Eai]

"‘[2 Epp1p1 +2ngw]' | p | (7) 

assuming for simplicity that EP(t) = 1. The fggg, term Vanishés_if

Epppt ="_ngw' While this is pdssible, theré.éxigt no reasons why.

this must be the case.
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- Having resurrected the off-diagonal ferms’let_us ask how
important'they may be. To get a feeling for tﬁle»question, let us
turn fo the pion pole dominance model, In thlelmcdel the w 1is
excluded since'pions mediatevthe coupling'betweec:the-reggeons' i, J,
and ﬁ;T(B). While the w is excluded by lGréafify from
?RP and PPR, it is.allowed in RRP' RPR, and- RRR. Nonetheless
the T exchange model should glve some idea of the relative importance
of varléus terms. Formulas for g, Jk(t) calculated within this model
have appeared in the literature (3,4] and have been numerlcally
evaluated-by Sorensen (5)._ For ocr present purpdée, l have used the
formulasafcf g.jk(O), the off-shell form factcre of Sorensen; and

the T-p elastic amplltudes of Barger and Phllllps to calculate

(O) and dole/dt d(Mz/s)lt -0’ the contrlbutlon of each

1Jk
term ;d the inclusive cross section at t = O:' Table I contains the
;'results for x = 0. 87 and 5 = 108 752 GeV2 together w1th the
extrapolations of the measured cross section (l) to t = Of' We see
. from the'taple that the PRP term could be verylsignificant
(= 30%). .While,absolute values of couplings and cross sections
calculated_inithe model afe.dependenﬁ on Fhe'cut off provided by the
off-shell factors, the relative magnitudes of the'earious terms are
more reliable (7) a
Resurrectlon of the off-diagonal term leaves the follow1ng
optiohsfl |
(A) We can fit the data with all six terms, énd_a TP term of

" magnitude given by Bishari (8). Considering the vast amount of data

available, a good fit with these parameters shculd still be meaningful.
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(B) We can try a fit with fewer terms, refeffihg to Table I for
guidance. For example, for x not too close to 1, we can try omitting
the‘nonscaling terms PPR, RRR, and Bfﬁ if 5-518 in the
ISR rangte. | o

(c) We can follow Dash s prescrlptlon [9).fdfb£andling the P
and. Pf'~as one unit. Dash claims that over an intermedlate range.'
Of‘enefgies; the P and P' vmay-be replaced to-a good approx;matlon
by a single factorizable pole_ P, of 1ntercept near- 0.85 (lO)
According to Dash, the presently 1nvest1gated 1ntervals of (s/Mz)
and (M2/s ) fall within the range of valldlty of thls approx*matlon
Dash in fact succeeds in- fltting a 1ot of pp > pX data using no

~

more than PPP and wrP terms. Note that the leadlng of f- dlagonal
term PP’P is contained in 555, since each P represents the
combined effect of P and P'. While the equlvalent pcle P
'must give way to separate P .snd- P' when (s/M2) and (M2/s ) gov
beyond the 1ntermediate range specified, the phenomenologlcal |
simplic1ty empha51zed by Dash may allow an economlcal descrlptlon
of the triple—Regge reglon

'_“In-conclusion, this paper emphasizes the absence of compelling -
reasons for P'!'-w exchange degenerscy in the triple—Regge_regicnvOF
pp + pX and stresses that imposition'of such degenefacy-conflicts
with G-parity conservation. Of the two off-diégdﬁal termsfreinststed
by the abcve arguments, the PRP term seems especiaily significanﬁ;

according'tc the pion exchange model. MEaningfui»dsta analysis must

. find a means of including at least this term.

I am very grateful tobGeoffrey Chew fo:sseveral useful dis-

cussions and in particular for drawing my attenticnvto Dash's work.
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Table I. The predictions of the mw-exchange model for G..k
| 15k ‘ +J
- do

2
and in mb-GeV ", at x = 0.87, 1 = 0.
dt d(ﬁ;/s) : IR : _

-9L .

| P | PPR | RRP |RER | PRP ! PER Total |  Total
. ‘ a0 | do
\ § dt d(MZ/s)lt=o | dt a(F/s) £20
o | |
' i : ! of experi-
§ ment (1))
s = 108 GeV* 2
aotJ¥ | ; ' I
—_— 6.6 | 2.6 8.1{ 3.4y 9.2 ! 3,9 34 o 80 -
at a/s) |, o o o
=0} |
; P i
4 19.4 17.6 {23.8/10.027.0 j11.4
~s>=.752‘GeV2 _'
—— = |66 |10 8.1] 1.3/ 9.2 | 1.5 28 o
at a(M/s)4-o! . ! | :
£ |24.0 3.6 129.2] 4.7.33.2 5.4 |
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R. Shankar
Lawrence Berkeley Laboratoi'y :

University of California
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April 25, 1974

Abstract

This paper is an extension of the investigations of Abarbanel et
al., who examined asymptotic total cross sections .in a multipéripherél
‘model and OBtéined the surprising result that the scale vacirvthe Cross
sections is .provided not by p, the mass of the exchanged pion (as antic-
ipated on geometrical grounds) but by my,, the_cenfral mass"of the |
dominant low energy m-m resonance entering the kernel. In this paper
the role of the pion mass in triple-Regge phySic§ is clarified by exam-
ining the»vpion pole dominance rhbdel for the triple-Regge couplings
gijk' It is found that m_V provides the scalé fovx" thé-inclusive link and
that for this reason the couplings gijk depend very little on the inter-
cept o) of the exchanged reggeon. In the exclusiye links if 1 = ‘j =
pomeron,‘ m,, once again ‘is the only active energy scale, whevreas if
i =3 =R, the reggeons of intercept 0.5 or less, thé pion mass enters
the couplings 8RRk in an essential way. It is shown that the smal.lness
of p.z/mv2 is responsible for the largeness of the ratios gRRk/gPPk'

These features of the model, which are in qualitative agreement with

experiment, are put to a quantitative test.

*Work done under the auspices of the U.S. Atomic'Energy Commission.



-79-

I. Introduction

The theorist's view of the role of the pion mass p in hadronic
processés has an interesting history. FolloWing Yukawa's discovery
that exchanging a particle of mass m produces a force of range 1/m,

- there has existea the belief, based on geométricé.l reasoning, that
ﬁadron-hadron cross sections would be controlled bg} the lightest hadron,
the pion. The cor'respbnding cross section TTp.-Z ~ 60 mb, is in fact of
the ordér of magnitude of observed high energy total cross sections.
The geometriéal view was nevertheless ch’allengv‘e’d by the investigation
of Abarbanei, Chew, Goldberger, and Saunders [1]-\§ho calculated
meson;m'esqn asymptotic total cross section within aﬁmultiperiphefal
model involving an N-dimensional multiplet of pions obeying an SU(n)
symmetry. They obtained the surprising result that as the pion mass
B was réduced to zer,ov, the total cross section approached a smooth
limit of order

.3 S
167 ‘ (1)

ot (0) ~
S va

where my, is the cenf;i'al mass of the. domihant low-energy resonance
multiplet in elastic —_ scattering. For my% 900 MeV and N=8, they
obtained a cross section of about 30 mb, acceptable in magnitude but
totally non-geometric in character -- the scale of the cross section
- being provided by the direc‘t channel mass my; rather than the
‘t-chanr‘lél mass . ’ | '

Since my, is the only mass left in the problem, it als.o sets the
scale for‘ the Regge expansion. The authors of ref. [1] obtain for the
asymptot‘ic form of the absorptive part of the elastic amplitude, the

. expressidn of the form
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A(S,0) o7, 161> (Tn—s—-z)a | (2)
v .
due to the l-.eading. pole a. Clearly the same mass my, will set the
scale for the Regge expansions in meson-baryon and baryon-baryon
a.mplitude‘s calculated within this _model,

It has been known phenomenologically that a u‘niyersal scale ‘
factor S, = 1GeV? (= mvz) is the natural one for Regge expansionsT,

in the sense that if one expands the absorptive part of the forward

elastic amplitude for a typical process as

o o
A(S.0) 2, P(S ) P+§ pR(g%) Ry )

the residue BP of the. pomeron is commensurate in magnitude with the
Pg corresponding to the lower (intercept = 0.5) trajectories. [2, 3]
Thus the largeness of the variable (S/S() is a direct and reliable
measure of the convergence of the expansion. In cc:)ntvrast, if oné- uses

,,LZ as the scale factor; one obtains for the same amplitude an expansion:

<

2 \%P ap 2 @R ap
AS.0) 3 ﬁp<§5> (ﬁ) +§ ﬁR(é%> (H—52-> R @
: ap 04
- ﬁ‘p(;sz> ez (3

In this expansion the largeness of (S/p,z) is not a reliable measure of
the convergence of the series, since the relatively large residues

accompanying the lower poles delay the convergence in this variable.

TIn this paper the scale factors S; and mVZ (both set equal to 1GeV?)
will be used interchangeably. In some theoretical contexts the scale .
factor will be denoted by rnV2 to emphasize its origin within the
model, while in a phenomenological context the symbol Sy will be
preferentially used.
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Are we to infer from the above that the only role of the pion mass
is to make plausible (due to its smallness) the hypothesis of pion-pole
dominari‘cé in each link o.f the multiperipheral chain? What about the
georﬁetrical connéétion between the pion mass .Aand-hadronic Cross
sections ? . -

The answ'er'to.this question is implicit in ref. [1]. We find there
that onl.y'the' part of the total cross section arising from Regge poles
rsubsvta.ntially above zero in t.h.e t-channel angula;‘ >'rnomen.tunjl plane (and
hence important é,t'high energies) is p,z- independent, whereas thaﬁ
associated with lower poies (and hence dominant étj low energies) is

sensitive to pz. To see how this comes about let us examine the trace

of the kerne’lT used in ref. [1]:

T. K (5)

; A+1
TN 16n3(>\+1) (u -t)z [mvz-zt]

where | N\ is the angular momentum in the t-channéi. For poles sub-
stantially above A=0 (A 21/2)-the dependenée on |J,2 is feeble and to a
| good approximation one may set p.2 =0. [1] For‘ pblés around A= 0 and
below, the dependehce on }1,2 is crucial and in fact for X\ <0, se_tfing |
p.z =0 will cause the divergence of the integral. For poles in this fegion
the 'ph'ysvical value of p.z will enter the description introduciﬁg an addi-
tional energy scalé.i Herein lies the possibil_ity of a reconciliation-
with the"'geometric ideas. If we conéider a proées“s like wmw—> V'V-(where
_V is the n;n"resdnance) due to one pion exchange, the cross section

will indeed diverge if HZ is set equal to zero (in accordance with geo-

¥ This is the only place where p enters as the mass of the exchanged
object. Its occurrence as the mass of the external particles else—

where does not interest us.

PR 2 .
1 The fact that such low lying poles are sensitive to u~ is only of
academic interest since they do not feature in. phenomenolog1cal

Regge f1ts
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metrical ideas), and we must use the physical bvél_ue of p,z.' This de-
pendencé_ on p,z does not, however, conflict with -th‘e results of‘Ab.afra
banel et al., since the energy dependence of this c'rvoss‘ section corre-
sponds to.a low lying pole at A=2a, -1 = -i. It is only when an infiﬁite
number of exclusive processés, involving an infirﬁte number of pion
links add uvlp‘.inclusively to produce-va hi.gh lying Regge pole that the
dependence.on\ pz drops out.,'. o | |

_ After this lengthy prelude let us turn to the question at hand, the
role of the pion mass in triple-Regge pﬁysics. While all reactioné'o.f
the type ab - c X fall under the latter category, -we. will confine our-
selvesr to a reaction p(p1) +p(p2) - p(p3),+ X which al%)ne has been
investigated in detail. In the limit M°=(p, +py-py) o, (s/MZ)IV;_ "
and t= (p3 -p1)2 fixed, let us write the ih'clusiv'e: croés section as |

'ai(t)+aj(t) 5 2 (0)

dg _ (S0 TR M2 |
dt d(M%/s) a (S>1§J:k ijk (t)<M2‘> | §0 ) | ',éé)

where thé c'oefficie?nts ‘Gijk are mea;ured in mb '-GeV-Z. Expefirﬁent~
alists presently use two trajectories, thé pomeron (P) of_infercept
unity and a lower trajectory (R) of intercept around 0.5 or below. vOnly
diagonal terms (i=j in Gi‘jk) are.employed., The results from a __varigty
of sources are surhmarized in Table I; We shall discuss this tablé in
greater detail later. For the present let us note two c‘onspicuous
features: B |

(i) The coefficients Giik have only a feeble dependence on the
inclusive reggeon k, that is G.., and G,., are commensurate'in
iiP iiR _ :
magnitude (reflecting the suitability of SO=1 GeV_2 as the scale factor
in this link}).-

Some readers may object to the above generalization on the
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grounds that there are fits such as refs. [5,‘6] in which_GRRP is sub-
stantial while GRRR is absent. I would like to dr‘a.w the attention of
such readers to ref. [5] whfare'it'is pdinted out that even a suBstantial

coefficient GRRR (of the same order as G P) could easily be omitted

RR
in a fit since its presence makes little difference to the inclusive cross
section and the x? values. Notice, however, that fits in which GrRR
does ocvcu'r,‘(_refs. [4, 7]), it does so with a magnitﬁde similar tOIVGRRP'

(i1) The coefficients Giikv have a marke,d.d'ep:endence on the
reggeon i: the coefficients GrRK -are an order of-rﬁagnitude' larger
‘than the coefficients Gpp - Cbnsequenﬂy the variable (S/MZ) does
not provide a reliable index of the convergence of the expansion in the
two ekclusivé’linké. From our earlier discussion it wbuld seem that
a new energy scale has made its appearance and is di’scr'iminating.
between P and R.

In this paper both these features will bé related to the role of the
pion mass in the triple-Regge region. The analysis will be based on
the pion pole dominance model for triplé-Regge k.coup.‘lings. While the
model formulas for these'coupling's‘ have appeared-in the literature [8]
and have beep numerically evaluated by Sorensen [9] my _purpose_here
is to focus attention on the following fe?a.tures of the model which have
not been erﬁphasized in thé past:

(i) The inclusive link carrying reggeon k v(Fig. 2) has a smooth
behavior as p,2—> 0. In this limit the oniy energy scale is S,, a cir-
cumstance which wiil be seen to be fesponsible for the wéak Ide_f)endence
of Gijk on the reggeon k.

- (i1) The pz dependence in the exclusive iinks is éimilar to‘tﬁat

~encountered in ref. [1] >If the links carry high spin reggeons i and j,

pz'may_be set equal to zero and. rnV2 =Sy provides the scale, while if
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i and j afe_ low_spin reggeons the physical value of p.z enters in an
essential way. | The cru’cié.l difference here is that even the trajectories
R of intercept > 0.5 (which are very mucha pe;rt of the triple-Regge

fits to the data) are classified as low spin reggei_)ns." The entry of the

small pion mass into the coeffi,cients/GRRk is seen to be the cause of Co-

the large ratios‘ GRRk/GPPk and the resultant delay in the converggnce
of the tr'ipleLRegg‘e series in the variable (S/Mz).

Thev paper is organizéd as follows; The notations and conventions
are establi"sheid in Section II. A brief discussion of the model, l_éé.ding
to the formulas for the triple-Regge couplings, is presented in Séction
III. These formula.'s are é.nalyzed in Section IV to display the role of

the pion mass. The quantitative predictions of the model are compared

with experiment in Section V. .

II. Notations and Conventions

From a theoretical standpoint the following expé.ﬁsidri' of the in-

clusive cross section is more appropriate than eq. (6):

35— “\§/) Térs. < (t) €, (t) . (t) £.7(t)
dt d(MZ/S) < S> 1 nSO izj:,k ﬁppl i | BppJ j (
a.(t)+a.(t) | |
x(=) © 1m £ (0) - (M k 0) mb-GeV
Mm? T By (0 Im by (07 (57) Pppi (0) mbrGeV :

(7D
In this expansi.on -ﬁppi (t) is the coupling of reggeon i to ‘protons',v
ozi(t) its ‘traj,ectbry (ai(O) = ai) and §i(t) its signature factor‘gi‘ven by
[i-cot(l/gnai(t))] for even and [-i -tan(%nai(t))] for odd signétures.
The triplé-Regge coupling gijk(t) hé.s dimension's' VG'e‘V"2 and will be

measured in mb (1 mb=2.5 GeV-Z). The normaliiation of the B's is
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such that a single pole i contributes to the total cross section an

amount

1

Oppyi (5) 3w & *[Im E(0)] B2 (0) (%) ‘Gev™? (8)

With the present choice of signature factors “32 (0) and [32 , (0)

. ppw ppP
will both be positive. Since only ﬁgpi(O) is defined by eq. (8) we will
agree that ﬁppi(o) is the positive square root of ‘3f2)pi(0)' This defines
the sign of gijk' A comparison of eqs. (7 and 8) provides the connection

between the triple-Regge coefficients Gijk and the triple~-Regge

couplings gijk:

mb- GeV
For the off-diagonal coefficients (i#j) let us define the quantity
Giik = Gijk + Gjik = 2 Re Gijk : ,(10)

In the fits carried out so far, the Regge poles used are the pomeron
(P) and the next family of poles -- referred to collectively as R. The
effect of pion exchange is included either directly by means of a nnP

term or indirectly, by using aR(t) = 0.2+t instead of the conventional

_ozR(t) = 0.5+t in the RRP term. In some cases ap = 0.2+t is used

uniformly. In all the fits carried out so far, only diagonal coefficients

Giik are employed. The results from the analyses of NAL [4, 5], ISR

[6] and global [7] data are presented in Table I. The trajectories

employed in the different fits are indicated there. While both refs.

- [6] and [7] give analytic expressions for G, (t), the values at specific

t-values are presented here so that they may be compared with other

measurements. The regions of small ltl (defined arbitrarily by |t|<
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0.16 GeVZ) is avoided since it seems controversial -- coefficierits' '
vi/hich turn over in this region acéording to some fits (e. g., GRRP of
ref. [7] do not turn over according to others (ref {6]).
As p01nted out in the 1ntroduct10n, our obJect here is to under-

stand why the coefficients Giik have a feeble dependence on reggeon k
vand a eti‘ong dependence on reggeon i. If we fecall that ﬁPPi have
~about the eame magnitude for P and R and that_, Igp(t) [2 and IgR(t) |2
are also of similar. magnitude, we deduce from eq. (9) that 85k will |
exhibit a similar dependenoe on the indices i and k at least for small
|t I .* In the next two sections we will therefore exa.mine g; ik within
the pion pole dominance model and understand how the pion mass p
produces the above mentioned dependence on i ‘anvd‘ k. We will finally

return to Giik ‘in Section V when the model is compared with

experiment quantitatively.

III. The Pion Pole Dominancé Model for gijk

Since this model has been discussed at leri.gt}i. in refs. [8] and[9]
only a bvrie.f description will be ,profided here, =emphasizing .those
aSpects_iwvhicli are germane to the subsequent discussions. Among all
the exclusive events contributing to the inclusive cross section, con-
sider those in which the particle from X closest to the proton m rapid-
1ty (labelled 4 in Fig. 1) is a plon, 1r(p4) When '1_1= (p3+p4 --.pi)2 = HZ,_

the amplitude factorizes:

‘.:\\
* We know from total cross section measurements that Bppp(o)"' ,
ﬁppR(O) For aR—OS and aj =1, |€, 2 “2’5, |2 at t=0. We are

ass|u1|n1ng that this commensurab1l1ty will pers1st for modest values
of |t
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M M : ‘
: U ) et - -X! .
Mpp—>pTrX' (u) — 2 TR>Tp 21Tp v v (11)
u— U -y :

.The key assurﬁption in the model (based on the s;nallness of MZ) is that
in the pAhysical region (u <0) the amplitude is giveﬁ_ by the factorized
form of eq. (11) modified by form factors which account for the off-
shell nattl.lre‘ of the exchanged pion. This assumption has been testeci
against experiment for the case X' =v. mp and found to be reliable. [11] |
Calculations of the inclusive cross section in the triplé-Regge
region from't}?e vrnodel amplitude and the identification of gijk afe
schematiéally represented in Fig. 2. The details may be found in refs.

[8,9]. The following is the result

. a.(t)ta.(t)
gj(t) = F(i:: (2 ERS f [ ‘/;J_Z_VT sinh q] ]
1+ay |
(£) 2 7“71’“1;5 ’ Péi(lfl (o (coth )y (tu,u ) B )
X By (Owu) mb . | R (12)

One considers in this model just the vacuum trajectories P a‘nd P,
sinc.e the w is forbidden by G-parity, while the p and A2 coupie
weakly to thé external prbtons. - Thus the three types of pions that can
be exchangéd are accounted for by a facto_r 3 in eq.. (12). The scale
factor m_V2 = SO =1 IvéeV2 implicit in refs. [8,9] is explicitly displayed
here and. cpsh q :-Eé_'\/:;l_%;q . The residue eri. (t,yz, zz) is the coupling |

of a reggeon i of mass Nt to pions of mass y and z. Only ﬁnm )

uz,uz) = Bm-ri(t) is measurableT and we shall use the ABFST [12] form

T The coupling B__;(t) és that obtained from Regge f1ts using the standard
scale factor of be
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factors to go off- shell;I

1+ai(t)_

2, t/ 2
.mV+/4—p.-.

B (ty>20) = B _.(t) (13)

mV2 - (yzf 22
For future reference, let us note that for t, yz and zz much smé,ller

. 2 ..
than ., we can use the approximation
my, Pp

‘/z(lzi;f_) (1+a))

B (ty2 sl =p (1) e TV T a

IV. The Role of the Pion Mass
As given by eq. (12) the coupling gijk(t) defies any simple arialy-
sis. Howe.ver, the formula simplifies greatly at t=0: |

0 7 - a.ta.

. | | 2 i 7
- 3 1 1 1 us -u
. g..k(O) = T T7 *TE f du 5 < | > |
o H tém “k .( )_w o -u)2 rnV2 |
Uta B ‘ . A C
- Ko o2 - -
< Zu > B"“i(o’u ) Bnnj(o’“-z’u) Bk (0s s u) mb (15)
p -u ’ l : " ' . . T

and using eq. (14)

. : ’ 0
-3 1 1 T o : .
g;x(0). = o3 Tra,  (2.5) Bril® Brri(0) B (0) Xf du
o | s
. 2 \%'Y trey [‘*’ijk (m' ' 2)] ;
no-ulye -u . V . .
Z 2 \mo2 < 2 > o © mb . (16) .
W-w® \my A\ -u/ o .
| : 2 Y+ alt)
. . rnv 1 .
I Sorensen uses the form factor which

my 2 - Y (y°+2- ) |
doesn't reduce to unity on shell. For the range of small ltl he
considers, this causes little error. .

»



-89-

o, ta.t2 . . :
where w,., = + 1+ @, varies in the limited range 3-4 for
ijk 2 .k _

conventional P and R trajectories. Let us begin by examining the
dependence of gijk(o) on reggeon k. We see that (-u/(p,z-u))Hbak'
smoothly approaches unity as p2.—> 0 and may be evaluated in that limit.

1 and

The depehdence of g‘iik(O) on k is then.due to the fe.ctoré (1+'ak)_‘
ﬁ%"k(O) in front of the integral in eq. (16) and the forrﬁ factor
e[‘*’ijk u/mv?‘] within. The dependence of these quantities on the
reggeon k is weak.‘ That the coupling ﬁﬂ“k(O) c.ould becOmesensi—‘
tive to }.12 (and possibly be vebry large) for ak;jO ‘.is. of academic
interest, since such low-lyi‘rig Regge poles do net occur in triple-
Regg‘el fits. |

Let us now turn to the diagonal couplings and consider the
dependence of. giik on reggeon 1i.

0

. 3 1 1 2 du
giik(o) - 161r3 1+ak"‘ (2.5) B‘mri(o) ?‘rmk(o.) Xf (HZ _u)Z
2 \20 [o., wm. 2] |
><'< —u> TV | an

where the 'p.z =0 limit of (-u./(;,tz--u))pra/k has been taken. If i=P (with
ap=1), the integral is independent of p.z and the scale is provided by
> . : N

g

31 1 2 o4y 1 B
g (0) = : B2 (0) . (0) (—————) mb .
PPk. 1 6Tr3 2.5 1+ak TP mrk mVZ Yppk
‘ (18)
If i=R, with aR‘—‘O.S we obtain
2.
3 1 1 2 (19)

' -2 B (0) (—5) tog[ —Y ) |
173 2.5 1+ak rtR "k 2 ) log 2 mb .

8rrk(®) = » —
S O v @R RKM
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Notice now the physical val ue of |J.2 has entered in an e.ssential way
 and how s'etting p.2= 0 ‘causes gRRk(O) to 'diverge:(vas anticipated by
geometric’al_ reasoning). The crucial difference between‘ the inclusive .
cross sections discussed here and tne total crosAs s_ectionS discussed '
in ref. [1]"is. that for the latter, p.z was expected to enter only for
trajectories with a,{, O (which do not feature in phenomenological
Regge fits) while in the present case even the trajectories. of intercept
~0.5 (Which, are very much a part of triple-Regge‘.fits) are. |J.2- _
dependent 1 |

For R= P!, if we recall that B .pl0) =B 13,(0) [2,3] we'eBtain

from eqs. (18, 19) the rough estimate:

2 : o .
grrk!?) ey VN L .
—— A () n ————| ~ 10 - L (20)
g (0) PPk
PPk @R RKM

for an average w of 3.5 and m.vz/pz'_j: 50.

Whether or not this ratio w_ill be observed experimentally is
decided'bfthe corrections that mnst be applied to the model. The two
key approx1mat1ons made in the model were that: »

(i) particle 4 in F1g 1 is a pion, and that

(ii) granted (i), the amplitude is dormnated by the pionvpo.l'e in u.
It is not clear. how"approximation (11) affects the natio gRRk/gPPk'- | On _
the other 'han_cl the effect of the corrections to assumption (i) are easier
to analyse,. since event in which Iaarticle 4 i.s‘not a nion__mak.e additive |

corrections to the inclusive cross section and to the triple-Regge - -

T Whereas singular behavior of grRKk(0) jin the p2—>0 limit obtains only

for ag < 0.5, a strong dependence on i~ is expected even if aR were
s%1ghtly above 0.5. We can see from eq. (17) that the dependence on

decreases smoothly with increasing @, and ult1mately dlsappears
for @ =ap = 1.
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couplings gijk calculated in the pion model. Let us consider for def-
initeness the impact of events in which particle 4 is a kaon, on the
| ratio gRRk/gPPk' If we assume for simplicity kaon pole dominan_ce,

. R
the above calculations can be repeatedﬁ- with pz-meZ and Bﬁ“i(O)‘ i
ﬁKKi(O). The contributions to gPPk(O) will be of the same,order as in
the pion'ca.se since empirically [Smri(O)z' ﬁKKi(O)_, [2] ar}d’th'é meson
mass drops out for such couplings. By contrast, the contributions to

gRRk(O) wiil be much smaller than in the pion case due to the depen-
dence of these couplings on the meson mass (eq. .2'0). A more detailed
analysis su.ggests that the corrections to gRRk(O) will be of the same
order as the corrections to gPPk(lO). The net éffect of the kaon events
then, will be to lower the ratios gRRk(O)/gPPk(O) ‘calculated in fhe
pion model. |

That m,, and not the meson masses (u or mK)‘ controls glﬁ,.PP(O)

v
is of theoretical interest for two reasons. First, the’ above circum-
stance lends credibility to the estimate of gPPP(O) by A_barbanél et al.,
[13] who assumed that an SU_(3) octet of mesons contribute equally to

gpppl0)-

metrical reasoning, their assumption would have been grossly violated

Had gP'PP(O)‘ a dependence on meson mass expected by geo-

by the sizeable mass difference between the pions and the kaons within
the octet. Secondly, and more importantly, a non-vanishing gPPE;(O)

of a scale decided by HZ would have led to an embarrassingly large

S g
. . . 0 . 2 .
value for the dimensionless parameter = ———— 0), which,

according to these authors measures 1-o,, the deviation of the pomeron

intercept from unity. These features are not accidental, for consis-

* We are assuming that the form factors are the same in both cases
for want of a more realistic alternative. ‘
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- tency of the model requires that if the asymptotic total cross sections

- have a smooth limit as the meson mass vanishes, so must the triple-

-pomeron coupling gPPP(O)'

Let us pause now to understand the phy51ca1 or1g1n of the factor
(p.z- u)zoz1 (eq. 17) which played a crucial role in the subsequent analy-
sis.T Consider the schematic form of the amplithd_e'for pp—pnX' in
Fig. 2 along the t-channel. We see there a reggeon'_i of mass Nt
coupling to a m-m system consisting of a real pion of.'mass M and a
virtual pion of mass Nu. We will' disco;/er that the’ factor. (#2; 'u).'ai'
corresponas to the usual threshoid factori Wthh 1nh1b1ts the couplmg
of the q-u system to high sinn reggeons i near the m-m threshold
Since p is small and N tends to be small (due te the pole factor ‘
(|J.2- u)—z)_, the CM energy of the m-m system '\/;t',' is close to thre.sheld
Cif t is z_ero‘ (as in our enalysis) or small. The threshold factors are
thus very eifective and the coupling to the pomeron,. whrch has the .
h1ghest sp1n, is suppressed the most |

How did the threshold factor enter the couphng g; k‘? We know in
the -usual Regge ana1y31s of ab—=cd that the quest1on of whether or not
the residues exhibit th'reshold behavior is decid_ed by the choice of the
asymptotic variable. | At htgh energies in the -S-c"ha'.nnel, v.if we expa.nd_.
the amplitude in terms of cose =8/2pq (where P and q. are the. CM

momenta of a€ and bd respectively, in the t- channel), the contrlbu-

tion of a _single Regge pole i is the of the form

Za- : .
TWhereas the factor (&u —u)/rn ! enters eq. (17), we will not go into

the origin of (mVZ) i ﬁére, since the latter turns out to be a matter

of simple algebra. The curious reader will be mformed of 'its entry
by means of a footnote. S .

- ":Thls factor gets squared when we calculate giik',”__
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o 5 a;(t)
M(S:8) ogh > Ei() Yacsl! () Yoas R
.t fixed
_ 'ai(t) ai(t) o
where Yaci(t) p:O (p) and dei(t) q:O (q) If.hovwever, we
expand in terms of (S/SO), as
M(S,t) g7 §;(t) B, (D) ( S > Brail®) - (22)
_ : So .

t fixed

the ''reduced" i‘esidue_s f will not exhibit strong threshold behavior.
Consider now the Regge expansion in the exclusive link carrying
reggeon i (Fig. 2) which leads to the triple—Regge‘: expansion of eq. (7).

To which of the two possibilities er. (21, 21) does 1t correspond? .

'Something inbetween, is the answer. To see why, note that for

large Mz", '

le%r-p—z cosf, = N2p cosf, = (—%)x«i’i? N | | o (23)
wher‘e m is the pfotbﬂ mass and p the CM momé_ntum of the protons‘
1 and 3 (Fig. 2) in the t-channel. It follows that an expa'.nsi‘on in the
variable (SA/M'Z) céri‘eéponds to ijemoving the threshold behavior only
from the px}oton‘end and introducing an additional factor of N2t into
the miss.ing mass end.V we may therefore anticipate in the coupling Q.f
reggeon i to X (that is, to the y-y system in our model) a factor
NZE - '\/?q')ai(t)

the CM mor_n;entum of the m-m system in the t-channel. If we now recall

. . . 2a; B :
and in gﬁk(O) a factor (N2t * '\/Z'q)" :1, where q is

T Notice that in expanding in terms of (S/MZ) one also omits the Regge
scale factor Sy (compare with eq. (22)), which then gets absorbed
into the missing mass end. The overall factor attached to this end is
then m/S(): Zt/mvz. In the interest of clarity the factor 1/mV2 is -
suppressed in these discussions. Coe
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that

WEq =2t ud) = (Bew at t=0, | (24)

. 2 2% %
we understand the origin of the factor (u -u) in- g k(O)

W‘e have restricted oul_" discussions to the point t=0 so as to
exploit the s@mpie formula for gijk(o)' The nume;rical es_timat‘gs for.
ijk(t):_ giVén by' Sorensen [9] indicate that the _majof features’ encount- -
ered at t=0 persist for modest \}alues of |t| (up to ~ .25 GeVZ)'i As
we fnove away frvom zero, the followiﬁg considé_rations control the
ratios gRRR(t.) /gppy(t) and Gpp (©) /GPP'k(t)f; |
. (i) The threshold effecfs whichv discrirn_inatéd between P and R
will get weaker as we move in the negative t direction, since this :" |
takes us away from the w-n threshold. This will tend to lower thé .
ratio gRRl%(t)/gPPk(t)' |
(ii) qu to the small slope of P, the diffe;'énce dP(t) -'aR-(t) in—
creases with |t| -- which in turn boosts the 'fatié gRIl{k(t)/gvP;Pk(f)"v
(iii) The residues ﬁmrp(t) have a sharpéf f--falloff thap ﬁﬂﬂf;,(t)"-»'
which enhances gR-Rk(t)/gPPk(t).' A similar consi’deration-applies't_o.'_
[Sppp(t) and 5 R(t) Wthh tends to boost the rat1o GRRk(t)/GPPk(t) .
(see eq. (9)). .

We will take these cons1derat10ns into account when we put .the’
model to a quantltatlve test in Section V. Let us now summarize ouf B
findings in somewhat more general terms Cons1der g k(t) ‘as the
coupling of two reggeons i and j to the ends of a ladder k (F1g 3)
The la‘.d>der“ can contain any species of particles. Due to the cho1ce of:

(S/MZ); as the asymptotic variable in egs. (6, 7), the cduplings of

T The triangle function A(x,y, z) = x2+y2+z2 - ZXY -2 yz - 2zx.
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réggeons.i and j to the- edgés of the ladder (that is, to the particles ab
and ac respectively) contain threshold factors. The masses of a, B,
and ¢ in‘singate themselves into gijk(t) through these threshold factors
and the propagators of band c. If the intercepts of the reggons i and
j are substantially above 0.5 (that is if i=j=pomerof1) these masses
drpp out. For trajectories R, of intercept = 05 these masses enter
the couplings and can play an important role. If these masses squared
are co.mme.nsurate with the scale factor of 1 _GéVZ- v\(é. g., for kaons)
their effect will be minimal. If, on the other hand, a, b, apd c are
pions (as in the model) the entry of the small pion mass p into the |
couplings gRRk 'will boost them up way abvox're gPPk' The consequent
‘delay in the convergence of the series in the variable (S/MZ) may there-

fore be attributed to the new energy scale brought in by the pion mass, -

over and above SO'

V. Quantitative Comparison with Experiment .

The object of this section is to compare the ratios of triple-Regge
coefficients calcu‘latec.i within the model with experiment. The existing.
analyses omit off-diagonal-coe'ffici.ents Gijk (i;éj) in tbeir fits . eithe?‘ .
arbitrarily or on the basis ofvcertain exchange de‘genéracy arguments.[ 7]
In ref. [“14] fhése exchange degeneracy arguments are criticized as beiivng
inapplic;ble in the triple~Regge region. It is pointed out there that
- according to.the pion pole_dominance model one o_.f the off-diagonal
terms (PRP) is ex'pec.tbed to make a significant contribution (typically
30%) to the inclusive cross section. The fact that this possibly'ir_’npor-‘- '
tant term haé been omitted in the data analysis makes a term by term
comparison of the mo'dél with experiment poi.ntless.' ‘We will therefore

perform a comparison of average quantities, the sdle purpose
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of which will be to demonstrate that the ratio.s. GRRk/GPPk given by
the model are of the same order as the measured ones. Since there
exists no unique prescription for the kind of average that must be em-

ployed, the following average ratio is chosen arbitrarily:

- Grrx’ _ Srrr*Crrp '
Copr?  Copn ¥ G (25)
PPk prr ' ppp

‘Since no measurement has been performed at t=0, the comparison

2 The comparison will be made only with

will be made! at t=-0.16 GeV
fits that use the conventional trajectory ap = O.5+t‘, si%xce we can identify
the latter with the P' and use its known residues and signature factof.
The corresponding operation for the effective trajectory a.R = 0.2+t is
ambiguous. To obtain_Giik(t), er. (9)  and (12) were combined, thelk
residues of ref. [3] were used and the value of the cdrﬁplicated integral

in eq. (12) ektracted from Sorensen's paper. The results aré given 1n
Table II. It is encouraging to ﬁote that the difference between the .m’o_denl ‘
prediction for <GRRk>/<GPPk> and the meé.sured ones is no greater .

than the differences among the latter.

vi. Conclusions

We started with the surprising result of ref. [1] that in a multi=-
‘peripheral model the scale for the asymp'totic“crbss sections is pro--
vided not by the mass u of the exchanged pions-but by 'm.v, the ceht‘ral

- mass of the low energy n-m resonance that entered the kernel -- a non-

TWe wish to remain as close as possible to the point t=0 tb'whiéh 5
- much of our discussion was confined. The choice of |t [=0.16 GeV
permits a comparison with refs. [ 5, 6, and 7]. ‘o
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B géometric feature. Nevertheless, reconciliation Qith,geometrical ideas
was possible, since according to ref. [1], the ﬁzﬂ.-indep.end.ence was true
for only the higher singularities ()\2 14) while lower singularities were
allowed to exhibit a depé.r'ldence on pz expected_én geometrical g‘round.s.v
In this paper we tried to understand the role played by p.z in
triple-Regge physics by considering the pion po.le donmirian.ce model for
triple-Regge c‘oupli’ngs. We saw that of the three links carrying reg-
geons i, j and k (Fig. 2) the inclusive link (k) was controlled by m,
and not |.12 and for this reason had only a feeble ‘cllepehdence on a |
'(prox;ided @ was well above: zevro_). The situation in the exciusive links
‘re-sembled in part that encounfered in ref. [1] -- i:he higher reggeohs
were éontrollé,d just by rﬁvz, while the lower Qnés were controlled by
p.z ‘as well‘.- The crucial feature here was that even the poles R of
intercept 0.5, which play a prominant role in triple-Regge fits, .'were_

classified as low. The entry of the small pion mass into the couplings

8RRk Vas seen to boost them by a factor of about ten over the couplings
gPPk-' The new mass scale introduced by the pion into gERRK (and
hence G ) may then be ‘viewed'as the cause of the delayed conver-

RRk v
gence of the triple-Regge expansion in the variable (S/Mz) describing
the exclusive links. |

" The tendency of the pion mass p to enter the couplings via the -

pole factor (p.z- ﬁ)—'z and to boost them in magnitude due to its smallness;

were offset either wholly (in gPPk(O)) or in part (in gRRk(O)) by the
2a; '

angular momentum barrier factors (pz- u) LIt was pointed out that,

had the model generated a noh—vanishing gPPP(O) with a scale set by

HZ rather than m an embarrassingly large np would have resulted.

V b4

‘The quantitative predictions of the model were compared with

experiment. It was found that the ratio of averaged couplings,
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(GRRk)/(GPPk) given by the model was of the same order as the

measured ones.
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Table I. - Data in triple-Regge couplings Giik(tj in mb GeV-Z.
Source Trajectories [t|(Gev?) “PPP “PPR CrRrRP  CRrRR
Ref. [4] ap = 1 .33 .21 .87 33.7 30.4
(NAL) _ :
ap = .5+t .45 A4 .56 27.7 31.5
Ref. [5] ap = 1+.25¢ 16 .3 3.8 108 --
(NAL) ap = 2+t v -
in RRP .20 .2 3.3 91 --
= .5+t '
in others .25 2.3 - 78 --
(fit OI) .33 7 1.8 67 --
ap, = 1+.25t 16 92 3.7 26 -
ap = 5+t .20 .84 3.6 24 --
anP included .25 .75 2.3 23 . --
as per Ref. [10] .33 .52 1.8 21 -
(fit IV)
Ref. [6] lep = 1 , 16 .83 -- . 15.7 --
(ISR) ap = -5+t 20 .70 - 15.7 --
(The G's ' .25 .57 -- 15.7 .-
iven in Ref. '
4] have been .33 .41 -- 15.7 --
multiplied by ‘ -
m to get the ap, = 1+.15t 16 16 - - 15.7 --
Gls usedby |, "= 54 .20 0 - 157 -
others.) R - = ) ’
.25 .84 - 15.7 -
.33 .65 - 15.7 --
Ref. [7] ap, = 1+.25¢ 16 6 1.6 963  86.2
Jag = 2t .20 1.25 1.6 - 86.5 65.8
| 25 1.0 1.4 72.8 51.6
37.8

.33

.75

1.2 54
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N

Table II. Comparison of the pion- pole dominance model predictions '

‘for Giik(t) (in mb - GeV~ ) with experiment, at t=-0. 16GeV2.

G Gonn G. .- G CrRic)
Source PPP PPR RRP RRR GPPk>
Ref. [5] 92 3.7 26 - 11.3
fit IV o
‘Ref. [6] .83 - 15.7 -- 18.9
a (t) =1 : S
Ref. [6] 1.16 -- 15.7 -2 13.5
aplt).= 1+54 ' o

Model . .38 .81 . 58 11 144
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Figure Captions

Fig. 1.

Fig. 2.

Fig. 3.

Rapidity plot of an exclusive event contri_bu'ting to the inclu-
sive cross section in the pion pole dominance model.

- Schematic derivation of gijk(t) in th'e>p'iro'n pole dominance

model.

The ladder description of the "trip1e=Regge:couplingé. The
dotted lines remind us that we are considering the absorptive
part. The couplings y have threshold factors while the

~couplings B do not.

o
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