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Improving single-cell genomics scalability and data interpretability for 

applications in single-cell chemical transcriptomics 

Christopher Swart McGinnis 

Abstract 

 Cellular biology has traditionally relied upon simple, low-dimensional single-cell 

measurements (e.g., microscopy and flow cytometry) which fail to adequately address cellular 

complexity, or high-dimensional aggregative measurements (e.g., bulk RNA-sequencing) which 

obscure cellular heterogeneity. Single-cell genomics technologies strike the ideal balance 

between measurement complexity and resolution, but have historically been hampered by two 

technological limitations: cell-cell doublets which confound data interpretation, and scalability 

limitations due to high reagent costs and complex parallel sample preparation workflows. 

 In this dissertation, I present solutions to both of these issues. First, I describe 

DoubletFinder, a machine learning approach for finding cell-cell doublets in scRNA-seq data by 

identifying real cells with heightened similarity to in silico-generated artificial doublets. Second, I 

describe MULTI-seq, a method enabling pooled single-cell genomics sample processing by 

labeling plasma membranes with sample-specific DNA barcodes prior to cellular isolation. After 

describing these technologies, I demonstrate three MULTI-seq applications. First, I explore the 

effects of sample pooling on single-cell RNA-sequencing (scRNA-seq) data-quality. Second, I 

extend MULTI-seq to single-cell epigenomics assays. And third, I leverage MULTI-seq to perform 

the largest-ever single-cell screen-by-sequencing experiment on PBMCs. Collectively, this 

dissertation documents molecular and computational tools for improving single-cell genomics 

scalability and data interpretability, and illustrates how these improvements expand the 

boundaries of feasibility for single-cell genomics experiments. 
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Chapter 1: Introduction 

1.1 The Promises and Pitfalls of Single-Cell Genomics 

Cells are the irreducible components of biological systems, and cellular heterogeneity and 

communication define the line between order and chaos — between life and death. The simplest 

unicellular organisms leverage cell-cell communication to form diverse collectives which are 

robust to changing environments. In multicellular organisms, cellular communities develop into 

networks of tissues and organs comprised of functionally-distinct “cell types” which satisfy diverse 

physiological demands. A core tenet of the field of Cell Biology is to systematically characterize 

the structure, function, and behavior of these cell types; a lofty goal which has been recently 

accelerated by the field of single-cell genomics.  

Traditionally, cells have been studied using simple, low-dimensional measurements. For 

example, qualitative cellular features such as shape, size, and color are readily identified using 

microscopy, as are the quantitative abundances of small sets of biomolecules using methods 

such as flow cytometry. However, low-dimensional measurements necessarily fail to encompass 

cellular complexity, as each individual human cell can contain tens of thousands of different 

genes, hundreds of thousands of mRNA transcripts, and many billion protein molecules. Next-

generation sequencing technologies identify and quantify these biomolecules in an unbiased 

manner, and thereby provide the requisite dimensionality to understand what makes a cell 

assume a particular identity. However, until recently, such approaches have been limited to 

profiling only large pools of cells, which in turn obscures the cellular complexity these methods 

are employed to study.  

In 2011, the first method for generating high-dimensional measurements of individual cells 

– single-cell RNA-sequencing (scRNA-seq) – was described [1]. Despite only analyzing 85 total 

cells, this achievement sparked an avalanche of technological advances which have vastly 
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increased the scalability and applicability of single-cell analysis. For example, droplet microfluidics 

[2-4] and combinatorial indexing technologies [5,6] have increased the numbers of cells that can 

be analyzed in a single experiment by multiple orders of magnitude. Moreover, methods for 

analyzing diverse levels of biological information including the genome [7], epigenome [8-14], and 

proteome [15-17] have been described, providing the blueprint for reducing cellular identity to its 

component parts. As a result, researchers have now generated cell type “atlases” of entire organs 

and organisms [18,19]; uncovered variability within ostensibly homogenous cell types which 

initiate humoral immune responses [20]; and pinpointed the cellular origins of human diseases 

such as cystic fibrosis [21]. 

While such descriptive analyses of biological systems remain of paramount importance, 

technical and analytical limitations have resulted in questions of mechanism and causality being 

historically left untouched by the single-cell genomics community. For instance, while it is 

undeniably important to categorize the component building blocks of the human body, 

understanding how these building blocks differ between individuals (both healthy and diseased), 

vary in space (e.g., regions of the gastrointestinal tract responsible for differential nutrient 

absorption), shift over time (e.g., during development and aging), and respond to perturbation 

(e.g., pharmaceuticals or environmental toxins) represents a scale of single-cell genomics 

experiments that surpasses the capacity of existing technologies. Moreover, the process of 

identifying these cellular building blocks is confounded by technical artifacts (e.g., cell-cell 

doublets) introduced by single-cell genomics technologies, themselves. Developing molecular 

and analytical tools which circumvent these limitations in single-cell genomics scalability and 

interpretability is the focus of this thesis.  

 

 



 3 

1.2 Distinguishing Single Cells from “Single” Cells with DoubletFinder 

The one shared requirement of all single-cell genomics workflows is a mechanism for 

isolating individual cells. The earliest single-cell genomics workflows used fluorescence-activated 

cell sorting (FACS) to isolate individual cells in microwells, to which molecular biology reagents 

were added for analyte capture, barcoding, and amplification. Since cells were sorted one-by-

one, these approaches were limited to relatively low numbers of cells (e.g., 101-103) per 

experiment, precluding their applicability to many biological questions. Many subsequent cell 

isolation methods [2-6,22-24] raised the upper-limit on cell-throughput to 104-106 cells per 

experiment by capturing cells in a pooled format. For example, in droplet microfluidics-based 

scRNA-seq, single-cell isolation is achieved by Poisson loading cells into emulsion oil droplets. 

Because the number of droplets greatly exceeds of the number of loaded cells, the chance that 

any two cells are co-encapsulated in a single droplet is relatively low. 

However, due to the inherently random nature of pooled single-cell isolation workflows, 

the occurrence of cell-cell co-encapsulation is unavoidable and generates technical artifacts 

known as doublets. Doublets confound single-cell genomics analysis by producing multi-cell 

measurements which masquerade as individual cells, making analytical tasks such as cell type 

identification challenging. For example, it can be nearly impossible to discern doublets from bona 

fide cell states co-expressing known cell type markers (e.g., developmental intermediates). In 

Chapter 2 of this thesis, I describe a machine learning-based solution to this problem called 

DoubletFinder [25]. DoubletFinder “finds” doublets in scRNA-seq data by identifying cells which 

co-localize with in silico-generated artificial doublets in gene expression space. As a result, 

DoubletFinder improves the interpretability of single-cell genomics datasets. 
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1.3 Transitioning from Descriptive to Mechanistic Single-Cell Genomics 

High-throughput single-cell isolation methods have increased single-cell genomics cell-

throughput by 4-5 orders of magnitude relative to FACS-based approaches. Despite this 

achievement, sample-throughput (i.e., the number of technical or biological replicates, time-

points, perturbations, etc. assayed in a single experiment) is severely limited in standard single-

cell genomics workflows. This limitation is rooted in details of next-generation library preparation 

workflows, wherein oligonucleotide indices recording each cell’s sample-of-origin are introduced 

at the end of the procedure. As a result, traditional single-cell genomics experiments require 

individual samples to be processed in parallel, which introduces undesirable technical variability, 

limits scalability, and translates to prohibitively-high reagent costs for even modestly-large 

experimental designs. One potential solution to this problem is to tag cells with sample-specific 

DNA barcodes prior to single-cell isolation. Such a ‘sample multiplexing’ approach would enable 

any number of experimental samples to be processed in a single pool, thus circumventing existing 

limitations on single-cell genomics sample-throughput.  

In Chapter 3 of this thesis, I describe a scRNA-seq sample multiplexing method called 

MULTI-seq [26], which uses lipid-modified oligonucleotides to introduce DNA barcodes to plasma 

membranes. MULTI-seq increases scRNA-seq sample throughput by simplifying sample 

preparation workflows and lowering costs, while additionally improving data-quality through 

doublet identification and batch effect minimization. In turn, MULTI-seq fundamentally expands 

the purview of single-cell genomics experiments beyond descriptive analyses of biological 

systems. For instance, when multiplexing samples is not prohibitively expensive, questions of 

mechanism and causality which require perturbations, diverse sample sources, and experimental 

replicates can be adequately interrogated. Moreover, technical concerns related to single-cell 

genomics sample processing (as discussed in Chapter 4) which have traditionally been de-
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prioritized due to high experiment costs can be economically addressed. Building on this work, in 

Chapter 5 of this thesis I also describe an extension of MULTI-seq called MULTI-ATAC-seq, which 

is a method for multiplexing samples during single-cell epigenomics experiments. 

 

1.4 Single-Cell ‘Screen-by-Sequencing’ 

 Integrating computational doublet detection and sample multiplexing technologies into 

single-cell genomics workflows makes it possible to generate readily-interpretable datasets at 

unprecedented scale. To date, these technologies have been applied successfully across many 

experimental parameters including time [26], space [27], individuals [28], and perturbations [29-

32]. Amongst all of these parameters, the use of sample multiplexing approaches for incorporating 

scRNA-seq into high-throughput chemical perturbation screens has particularly gained 

momentum. For instance, in one pioneering study [29], large numbers of samples consisting of 

drug-perturbed cancer cell lines undergoing an epithelial-to-mesenchymal transition were 

analyzed using MULTI-seq. In contrast to traditional high-throughput screening workflows which 

are limited to simple read-outs such as cell growth or viability [33], this study demonstrates how 

single-cell genomics sample multiplexing enables screening against more nuanced cellular 

phenotypes. In another recent study, Zhao and colleagues used patient-derived glioblastoma slice 

cultures in a small scRNA-seq-coupled chemical screen, highlighting how the resolution of 

scRNA-seq facilitates the use of in vitro systems comprised of diverse interacting cell types which 

better recapitulate in vivo disease biology. This represents an improvement over existing bulk 

‘screen-by-sequencing’ platforms [34-36] which obscure cellular heterogeneity and, as a 

consequence, are predominantly limited to simple in vitro cell line systems.   

In Chapter 6 of this thesis, I build on this growing body of work by using MULTI-seq to 

perform the largest per-sample single-cell ‘screen-by-sequencing’ experiment to date. 
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Specifically, I describe the analysis of ~1,000,000 single-cell transcriptomes of resting or 

CD3/CD28-stimulated peripheral blood mononuclear cells responding to ~800 unique 

perturbations including immunomodulatory and FDA-approved drugs. These analyses reveal the 

primary modes of immunomodulation in T lymphocytes and myeloid cells, and highlight key 

insights that can be gained using single-cell screen-by-sequencing. For example, I discuss how 

scRNA-seq can capture the ‘polypharmacology’ of off-target drug activities on cellular 

phenotypes, enabling more accurate drug classifications beyond what is possible from known 

primary molecular targets. Moreover, I highlight a subset of macrophage-depleting drugs which 

achieve this phenotype by enhancing T-cell-mediated macrophage apoptosis to demonstrate the 

importance of performing high-throughput screens on complex in vitro systems. As a result, these 

analyses outline the potential for single-cell ‘screen-by-sequencing’ to revolutionize drug 

development. 
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Chapter 2: scRNA-seq doublet prediction using DoubletFinder       

Elements of the following chapter are reprinted from the manuscript “DoubletFinder: 

Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors” by 

Christopher S. McGinnis, Lyndsay M. Murrow, and Zev J. Gartner, published in Cell Systems on 

April 24, 2019, Vol. 8, Issue 4, pages 329-337. 

 

2.1 Abstract 

 Single-cell RNA sequencing (scRNA-seq) data are commonly affected by technical 

artifacts known as “doublets,” which limit cell throughput and lead to spurious biological 

conclusions. Here, we present a computational doublet detection tool—DoubletFinder—that 

identifies doublets using only gene expression data. DoubletFinder predicts doublets according 

to each real cell’s proximity in gene expression space to artificial doublets created by averaging 

the transcriptional profile of randomly chosen cell pairs. We first use scRNA-seq datasets where 

the identity of doublets is known to show that DoubletFinder identifies doublets formed from 

transcriptionally distinct cells. When these doublets are removed, the identification of differentially 

expressed genes is enhanced. Second, we provide a method for estimating DoubletFinder input 

parameters, allowing its application across scRNA-seq datasets with diverse distributions of cell 

types. Lastly, we present “best practices” for DoubletFinder applications and illustrate that 

DoubletFinder is insensitive to an experimentally validated kidney cell type with “hybrid” 

expression features. 

 

2.2 Introduction 

scRNA-seq has evolved into a powerful and scalable assay through the development of 

combinatorial cell indexing techniques [1] and cellular isolation strategies that utilize nanowells 
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[2] and droplet microfluidics [3-5]. In droplet microfluidics and nanowell-based scRNA-seq 

modalities, Poisson loading is used to co-encapsulate individual cells and mRNA capture beads 

in emulsion oil droplets where the cells are lysed, mRNA is captured on the bead, and transcripts 

are barcoded by reverse transcription. Since cells are randomly apportioned into droplets, the 

frequency at which droplets are filled with two cells—forming technical artifacts known as 

“doublets”—varies according to the input cell concentration with a frequency that follows Poisson 

statistics [6]. Doublets are known to confound scRNA-seq data analysis [7-8], and it is common 

practice to mitigate these effects by sequencing far fewer cells than is theoretically possible in 

order to minimize doublet formation rates. For this reason, doublet formation fundamentally limits 

scRNA-seq cell throughput. 

Recently developed sample multiplexing approaches can overcome this limitation in some 

circumstances. For example, genomic [9-14] and cellular sample multiplexing techniques [15-18] 

directly detect most doublets in scRNA-seq data by identifying cells associated with orthogonal 

sample barcodes or single nucleotide polymorphisms (SNPs). By identifying and removing 

doublets, these techniques minimize technical artifacts while enabling users to “super-load” 

droplet microfluidics devices for increased scRNA-seq cell throughput. However, sample 

multiplexing techniques have limitations in the context of doublet detection. For instance, doublets 

formed from cells associated with identical sample indices or SNPs cannot be detected. 

Moreover, sample multiplexing cannot be applied retroactively to existing scRNA-seq datasets. 

To address these limitations, we developed DoubletFinder: a computational doublet 

detection tool that relies solely on gene expression data. DoubletFinder begins by simulating 

artificial doublets and incorporating these “cells” into existing scRNA-seq datasets that have been 

processed using the popular “Seurat” analysis pipeline [19,20]. DoubletFinder then distinguishes 

real doublets from singlets by identifying real cells with high proportions of artificial neighbors in 

gene expression space. In this study, we describe the development and validation of 
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DoubletFinder in three parts. In the first part, we benchmark DoubletFinder against “ground-truth” 

scRNA-seq datasets where doublets are empirically defined by the sample multiplexing 

approaches Demuxlet [9] and Cell Hashing [15]. These comparisons reveal that DoubletFinder 

detects ground-truth false negatives and improves downstream differential gene expression 

analyses. Moreover, ground-truth comparisons illustrate that DoubletFinder predominantly 

detects doublets derived from transcriptionally distinct cells—referred to here as “heterotypic” 

doublets—and is less sensitive to “homotypic” doublets formed from transcriptionally similar cells. 

In the second part, we leverage scRNA-seq data simulations to demonstrate that DoubletFinder 

input parameters must be tailored to data with different numbers of cell types and magnitudes of 

transcriptional heterogeneity. These analyses facilitated the development of a parameter 

estimation strategy for datasets without ground-truth while also revealing that DoubletFinder is 

most accurately applied to scRNA-seq data with well-resolved clusters in gene expression space. 

In the third part, we apply DoubletFinder to “real-world” data lacking ground-truth doublet 

labels. Specifically, we test DoubletFinder on an existing mouse kidney scRNA-seq dataset [21] 

containing an experimentally validated intermediate cell state that shares gene expression 

features with two other kidney cell types. We chose this dataset in order to explicitly test whether 

this strategy for artificial doublet generation (i.e., averaging of expression profiles) leads to 

DoubletFinder false positives in context with bona fide “hybrid” cell states. DoubletFinder correctly 

classifies this “hybrid” cell state as singlets, which suggests that DoubletFinder can be broadly 

applied to scRNA-seq data describing cell-state transitions. This case study also illustrates “best 

practices” for DoubletFinder application and emphasizes how results should be interpreted with 

methodological limitations in mind (e.g., undetectable doublets and poor performance on 

homogeneous data). 
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2.3 Results 

2.3.1 DoubletFinder algorithm overview. 

 DoubletFinder predicts doublets in a fashion that can be split into five distinct steps (Fig. 

2-1). First, DoubletFinder simulates artificial doublets from existing scRNA-seq data by averaging 

the gene expression profiles of random pairs of cells. Simulating doublets in this fashion preserves 

cell composition while recapitulating the intermixing of mRNAs from two cells that occurs during 

doublet formation. Second, DoubletFinder merges and pre-processes real and artificial data using 

the “Seurat” single-cell analysis pipeline [19,20]. Notably, pre-processing parameters are held 

constant between the original and merged real-artificial datasets. Third, DoubletFinder performs 

dimensionality reduction on the merged real-artificial data using principal-component analysis 

(PCA), producing a low-dimensional space that describes the similarity between real and artificial 

cells. Fourth, DoubletFinder detects the k nearest neighbors for every real cell in principal 

component (PC) space, and this information is used to compute each cell’s proportion of artificial 

nearest neighbors (pANN). Finally, building on the assumption that real and artificial doublets co-

localize in PC space, DoubletFinder predicts real doublets as cells with the top n pANN values, 

where n is set to the total number of expected doublets.  

 

 
Figure 2-1: Schematic overview of DoubletFinder workflow.  
Doublet detection is necessary to correctly interpret intermediate cell states (blue, orange) in scRNA-seq data, which could represent 
developmental intermediates or technical artifacts. Starting with scRNA-seq data pre-processed using Seurat, DoubletFinder 
integrates artificial doublets (red) into the existing data at a defined proportion (pN). DoubletFinder then defines each cell’s 
neighborhood in gene expression space (pK, example neighborhood seed in bright blue). The proportion of artificial nearest neighbors 
(pANN) is then defined, and cells with the top pANN values are predicted as doublets. Doublet removal aids in scRNA-seq data 
interpretation – e.g., when discerning doublets from legitimate differentiation intermediates. 
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Figure 1: DoubletFinder overview, nUMI comparison, and ground-truth benchmarking.  
(A) Schematic overview of DoubletFinder workflow. Doublet detection is necessary to correctly interpret intermediate cell states (blue, orange) in scRNA-
seq data, which could represent developmental intermediates or technical artifacts. Starting with scRNA-seq data pre-processed using Seurat, 
DoubletFinder integrates artificial doublets (red) into the existing data at a defined proportion (pN). DoubletFinder then defines each cell’s neighborhood in 
gene expression space (pK, example neighborhood seed in bright blue). The proportion of artificial nearest neighbors (pANN) is then defined, and cells 
with the top pANN values are predicted as doublets. Doublet removal aids in scRNA-seq data interpretation – e.g., when discerning doublets from 
legitimate differentiation intermediates.  
(B) Schematic describing pN-pK parameter sweep. Increasing pN corresponds with increasing numbers of artificial doublets (red) relative to singlets 
(black). Increasing pK corresponds with larger neighborhood sizes (red dotted circle, neighbors highlighted in yellow) used during pANN computation.  
(C) pN-pK parameter sweep AUC heat map for Demuxlet and Cell Hashing data.  
(D) ROC analysis of logistic regression models trained using DoubletFinder alone (blue), nUMIs alone (red), and both nUMIs and DoubletFinder (orange).  
(E) t-SNE visualizations of Demuxlet and DoubletFinder doublets (black) amongst PBMC cell types. Inset regions exemplify two types of discordance. 
False-negative DoubletFinder classifications (gold) localize amongst singlets in gene expression space, while putative false-negative Demuxlet 
classifications (red) localize amongst heterotypic doublets. Mono = monocytes, NK = natural killer cells, MK = megakaryocytes, DC = dendritic cells.  
(F) RNA UMI box plots for true positive doublets (red), putative false negative doublets (gold), and singlets (black). *** = statistically-significant (p < 2e-16), 
ns = not significant (p=0.40).  
(G) Marker gene heat maps for true positive doublets, false negative doublets, B cells, and CD14 monocytes.  
(H) Bar chart describing the number of additional marker genes identified following doublet removal.  
(I) Marker gene heat map of additional marker genes identified following doublet removal that have previously been described in the literature.
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2.3.2 DoubletFinder parameter interrogation, performance benchmarking on Cell Hashing and 

Demuxlet PBMC datasets. 

DoubletFinder requires three input parameters expressed as proportions of the merged 

real-artificial dataset: the number of expected real doublets, the number of artificial doublets (pN) 

and the neighborhood size (pK) used to compute the number of artificial nearest neighbors. For 

example, in a dataset with 15,000 real cells, a pN of 0.25 would represent the integration of 5,000 

artificial doublets, and a pK of 0.01 would represent a pK of 200 cells. To explore how parameter 

variation influences DoubletFinder performance, we used existing datasets of peripheral blood 

mononuclear cells (PBMCs) generated using sample multiplexing techniques (Demuxlet and Cell 

Hashing). Demuxlet identifies cells belonging to each sample group according to sample-specific 

SNPs and identifies doublets as cell barcodes associated with mutually exclusive sets of SNPs 

[9]. Cell Hashing identifies doublets using a conceptually analogous strategy, except sample-

specific SNPs are replaced by sample-specific DNA barcodes that are linked to cells by 

conjugation to antibodies targeting cell-surface proteins [15]. Notably, neither method can detect 

doublets formed from cells associated with the same SNPs or sample barcodes. 

We selected these two datasets because, at the time, they were the only publicly-available 

datasets where within-species doublets were empirically determined. Moreover, since each 

dataset was sequenced at variable depths (Demuxlet = 2,438 unique molecular identifiers (UMIs), 

Cell Hashing = 676 UMIs), we could assess whether sequencing depth influenced DoubletFinder 

performance. We compared the predictive capacity of DoubletFinder outputs (i.e., a vector of 

every real cell’s pANN) across a sweep of pN (0.05-0.3) and pK (5e4-0.3) values using receiver 

operating characteristic curve (ROC) analysis (Fig. 2-2a). Comparing the relative areas under the 

curve (AUCs) demonstrates that DoubletFinder performance is largely invariant of pN (Fig. 2-2b). 

Moreover, optimal parameter regimes are similar for each dataset, suggesting that DoubletFinder 

performance is insensitive to sequencing depth. These observations demonstrate that pK is the 
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main parameter that must be tuned when applying DoubletFinder to different scRNA-seq data. 

Therefore, we set pN to 0.25 for all DoubletFinder applications and optimized pK for each dataset. 

 

Using pK values with the highest AUC from Demuxlet and Cell Hashing ROC analysis (pK 

= 0.01 for both datasets), we next benchmarked DoubletFinder against a commonly used feature 

for doublet identification in real-world scRNA-seq data—the number of UMIs [22,23]. UMIs are 

uniquely associated with individual mRNA transcripts via reverse transcription and enable PCR 

amplification bias correction as UMIs link each sequenced molecule back to its original mRNA. 

Since droplets associated with two cells often have more total mRNA molecules than droplets 

associated with single cells, doublets are commonly removed by setting an upper nUMI threshold. 

However, this approach has well-established limitations [9], as it does not consider technical 

variability in mRNA capture efficiency or biological variability in cellular RNA content. 

 
Figure 2-2: Benchmarking DoubletFinder parameters and predictive capacity relative to nUMIs using ROC analysis.  
(A) Schematic describing pN-pK parameter sweep. Increasing pN corresponds with increasing numbers of artificial doublets (red) 
relative to singlets (black). Increasing pK corresponds with larger neighborhood sizes (red dotted circle, neighbors highlighted in 
yellow) used during pANN computation. 
(B) pN-pK parameter sweep AUC heat map for Demuxlet and Cell Hashing data.   
(C) ROC analysis of logistic regression models trained on Demuxlet data using DoubletFinder alone (blue), nUMIs alone (red), and 
both nUMIs and DoubletFinder (orange). 
(C) ROC analysis of logistic regression models trained on Cell Hashing data using DoubletFinder alone (blue), nUMIs alone (red), 
and both nUMIs and DoubletFinder (orange). 
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To compare the relative predictive capacities of DoubletFinder and nUMIs for doublet 

detection, we first randomly split the Demuxlet and Cell Hashing datasets into evenly sized test 

and training sets. Next, we used ROC analysis to compare logistic regression models trained 

using DoubletFinder alone (i.e., pANN values for every cell), nUMI alone, or a linear combination 

of both features. DoubletFinder-based models outperformed nUMI-based models for predicting 

ground-truth doublets in both the Demuxlet (Fig. 2-2c) and Cell Hashing data (Fig. 2-2d). 

Moreover, models trained with both DoubletFinder and nUMIs performed nearly indistinguishably 

to DoubletFinder-alone models, demonstrating that the method captures all of the doublet-specific 

information inherent to nUMIs in this context. 

Although DoubletFinder predicts doublets better than nUMIs, it remained unclear whether 

DoubletFinder results accurately recapitulated the ground-truth doublet labels provided by 

Demuxlet or Cell Hashing sample classifications. To make these comparisons, we needed to 

convert the DoubletFinder output (i.e., pANN values for every cell) into a list of singlet and doublet 

labels. To generate this list, we assigned doublet labels to cells in the Demuxlet and Cell Hashing 

datasets with the top n pANN values, where n was set to the total number of doublets expected 

from the empirical sample multiplexing results. For example, since 6,045 doublets were defined 

by Demuxlet SNP profiling of 8 individuals, and because doublets formed from cells with the same 

SNPs are classified as singlets by Demuxlet, we estimated that 12.5% of real doublets (864 cells) 

remained unclassified. To account for both the ground-truth false negatives and the true, 

Demuxlet-identified doublets, we assigned doublet labels to cells with the top 6,909 pANN values. 

A similar list was made for the Cell Hashing dataset. 

Running DoubletFinder on the same data and visualizing doublets on identical t-stochastic 

neighbor embedding (t-SNE) plots revealed that Demuxlet (Fig. 2-3a), Cell Hashing (Fig. 2-3b), 

and DoubletFinder doublet classifications were generally concordant, with DoubletFinder 

identifying few false positives relative to ground-truth (Demuxlet specificity = 0.91, Cell Hashing 
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= 0.91). However, DoubletFinder was insensitive to many ground-truth doublets exhibiting similar 

gene expression profiles to singlets (Demuxlet sensitivity = 0.73, Fig. 2-3a, orange inset, gold 

dots; Cell Hashing = 0.64). We hypothesized that these cells represented homotypic doublets—

i.e., doublets formed from transcriptionally similar cells that cluster among their composite cell- 

type singlets in gene expression space. Since DoubletFinder requires putative doublets to cluster 

separately from singlets in PC space, we did not expect DoubletFinder to robustly detect 

homotypic doublets. Supporting this hypothesis, DoubletFinder sensitivity was increased when 

homotypic doublets were identified (see Methods for homotypic doublet identification strategy) 

and excluded from the Demuxlet (Fig. 2-3c; sensitivity = 0.93) and Cell Hashing datasets (Fig. 2-

3d; sensitivity = 0.82), while specificity remained unchanged. Collectively, these results illustrate 

that DoubletFinder primarily detects heterotypic doublets—i.e., doublets formed from 

transcriptionally distinct cells. 

 
Figure 2-3: Benchmarking DoubletFinder predictions against Demuxlet and Cell Hashing classifications reveals 
concordance and DoubletFinder insensitivity to homotypic doublets. 
(A) t-SNE visualizations of Demuxlet and DoubletFinder doublets (black) among PBMC cell types. Inset regions exemplify two types 
of discordance. False-negative DoubletFinder classifications (gold) localize among singlets in gene expression space, while putative 
false-positive DoubletFinder classifications (red) localize among heterotypic doublets. Mono, monocytes; NK, natural killer cells; MK, 
megakaryocytes; and DC, dendritic cells. 
(B) t-SNE visualizations of Cell Hashing and DoubletFinder doublets (black) among PBMC cell types. 
(C) Density plot (left) describing the proportion of ground-truth doublet neighbors in Demuxlet gene expression space among ground-
truth singlets and doublets. Singlets (gray) have low doublet neighbor proportions, whereas doublets (red) have widely variable 
doublet neighbor proportions. Homotypic and heterotypic doublets were thresholded at the intersection of singlet and doublet 
densities (black dotted line). t-SNE visualization (right) demonstrates that homotypic doublets (red) localize among singlets (gray), 
unlike heterotypic doublets (black). 
(D) Analyses presented in Fig 2-3c, but for Cell Hashing data. 
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DoubletFinder additionally identified a set of doublets left unclassified by Cell Hashing and 

Demuxlet (Fig. 2-3a, red inset, red dots). As described above, we had estimated that 12.5% of 

real doublets were formed from cells with the same SNPs or sample barcodes. Thus, these 

doublets would have remained unclassified by Demuxlet or Cell Hashing but should be detected 

efficiently by DoubletFinder. If these apparent DoubletFinder false-positive cells were in fact 

ground-truth false negatives, two predictions would follow. First, if putative ground-truth false 

negatives were real doublets, then these cells should exhibit enriched nUMIs relative to singlets. 

Second, ground-truth false negatives should express marker genes associated with multiple 

distinct cell states. In line with these predictions, putative false negatives had nUMI levels 

indistinguishable from true-positive doublets (Wilcoxon rank-sum test, p = 0.4) and were enriched 

relative to singlets (p < 2e16) in both datasets (Fig. 2-4a). Moreover, these ground-truth false 

negatives expressed marker genes associated with hematopoietic cell types that do not share a 

common progenitor in peripheral blood (Fig. 2-4b). Collectively, these results suggest that 

DoubletFinder recapitulates heterotypic doublet classifications made by Demuxlet and Cell 

Hashing and accurately predicts sample multiplexing false negatives formed from cells associated 

with identical SNPs or sample barcodes. 

 

2.3.3 DoubletFinder improves differential gene expression analysis performance.  

A common application of scRNA-seq is to discover genes that are differentially expressed 

among distinct cell types that are obscured in bulk transcriptomic assays [19-21]. Doublets hinder 

differential gene expression analyses because doublets often cluster separately in gene 

expression space while sharing transcriptional features with the cell types from which they are 

derived. To demonstrate this effect, we compared differential gene expression analysis results 

between Demuxlet and Cell Hashing datasets before and after removing doublets. Doublet 

removal results in pronounced increases in the total number of differentially expressed genes 
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(Demuxlet with and without doublets = 2,567 and 4,339; Cell Hashing = 2,185 and 5,598) across 

nearly every PBMC cell type (Fig. 2-4c). Importantly, many newly identified differentially 

expressed genes are PBMC cell-type marker genes supported in the literature (Fig. 2-4d) 

[19,20,24-28]. These results illustrate how doublet detection and removal improves scRNA-seq 

analysis workflows. 

 

 

2.3.4 Defining the relationship between DoubletFinder parameter selection and performance 

using scRNA-seq data simulations. 

 DoubletFinder performance is demonstrably sensitive to changes in the input parameter 

specifying pK used to compute each cell’s pANN (Figs. 2-2a,b). To understand the relationship 

between scRNA-seq data structure and DoubletFinder performance, we used the “splatter” R 

package [29] to generate simulated scRNA-seq datasets with 3-8 distinct cell clusters that ranged 

from being intermixed to completely separated in gene expression space (Fig. 2-5a). Real 

 
Figure 2-4: DoubletFinder identifies ground-truth false-negative doublet classifications, improves differential gene 
expression analysis performance. 
(A) RNA UMI box plots for true positive doublets (red), putative false negative doublets (gold), and singlets (black) in Demuxlet (top) 
and Cell Hashing datasets (bottom). Data are represented as mean ± SEM.  *** = statistically-significant, ns = not significant.    
(B) Marker gene heat map for true positive Demuxlet doublets, false negative doublets, B cells, and CD14 monocytes (top) as well 
as for true positive Cell Hashing doublets, false negative doublets, B cells, NK cells, and CD8+ T-cells (bottom). 
(C) Bar chart describing the number of additional differentially-expressed genes identified following doublet removal for Demuxlet 
(top) and Cell Hashing datasets (bottom). 
(D) Heat map of differentially-expressed genes identified following doublet removal that have previously been described as marker 
genes in the literature. 
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doublets were simulated by adding the gene expression profiles of randomly selected cells such 

that 10% of the final data was doublets. We visualized parameter performance by finding the 

mean AUC for each pK value across all pN since pK selection was previously shown to dominate 

DoubletFinder performance. 

For most simulations, mean AUC distributions featured an inflection point representing the 

point at which pKs became too large to enable accurate doublet prediction (Fig. 2-5b). Mean AUC 

inflection point positions differed for simulations with variable numbers of cell states, suggesting 

that pK parameter selection is sensitive to the inherent diversity of scRNA-seq data (Fig. 2-5b, 

top). Moreover, among simulations with the same number of cell-state clusters but varying 

degrees of cluster separation, mean AUC inflection points were only observed for simulations with 

well-separated clusters (Fig. 2-5b, bottom).  

 

This observation suggests that DoubletFinder performance suffers as a whole when 

applied to data describing transcriptionally homogeneous cell states. This decrease in 

performance is common to other computational doublet detection strategies that utilize 

 
Figure 2-5: scRNA-seq data simulations highlight relationship between pK parameter selection, scRNA-seq data structure, 
and DoubletFinder performance.  
(A) Schematic overview of data simulation strategy. scRNA-seq data including doublets (red) with different numbers of cell states 
(top) and extent of cluster separation in gene expression space (bottom) were simulated. pDE, probability of differential expression. 
(B) Simulated pN-pK parameter sweep results. Range of pK values coinciding with high mean AUC differ between simulated data 
with varying numbers of equally separated cell states (pDE, 10.0% for all simulations, top). DoubletFinder performance suffers on the 
whole when applied to simulated data with variable degrees of cluster separation (number of cell states = 8 for all simulations, bottom). 
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transcriptomic information alone [30] and illustrates a key methodological limitation that should be 

carefully considered by all prospective users.  

 

2.3.5 pK optimization using mean-variance-normalized bimodality coefficient (BCMVN). 

To identify optimal pK values for real-world scRNA-seq data when ground-truth doublet 

information is not known (precluding ROC analysis and AUC maximization for pK selection), we 

suggest that DoubletFinder users calculate the mean-variance-normalized bimodality coefficient 

(BCMVN) [31] of pANN distributions produced during pN-pK parameter sweeps of their data (Fig. 

2-6a). BCMVN can be used to identify the pK that separates singlets and doublets effectively, 

without being sensitive to local density differences in gene expression space (Fig. 2-6b,c).  

 

 
Figure 2-6: DoubletFinder pK optimization using BCMVN maximization.  
(A) Schematic overview of relationships between pK, BC, and pANN. As pK becomes too large, pANN for doublets and singlets 
becomes more similar, resulting in unimodal pANN distributions with low BC (top). Neighborhood sizes that reflect the structure of 
clusters in gene expression space correspond to distinct pANN regimes for real singlets and doublets, resulting in non-unimodal 
pANN distributions with high BC (bottom). 
(B) Representative pANN distributions across the Cell Hashing pN-pK sweep. Borders correspond to pK bins in Fig. 2-6c.  
 (C) Maximizing BC mean (μ

BC
, orange) while minimizing BC variance (σ2

BC
, blue) enables identification of the optimal pK value for Cell 

Hashing data, as measured using AUC from ROC analysis (black). Highlighted pK bins correspond to pANN distribution borders in 
Fig. 2-6b. pK values are separated into pN bins by the black dashed lines. 
(D) Comparison of BCMVNMVN

 (teal) and mean AUC distributions (black) enables identification of high-AUC pK values. BCMVN distributions 
for mouse kidney and pancreas data inform pK parameter selection. Red dotted lines denote optimal pK values. 
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To demonstrate the utility of BCMVN for DoubletFinder parameter selection, we 

benchmarked BCMVN against the previously computed ROC results for Demuxlet and Cell Hashing 

data, as well as two scRNA-seq datasets generated without sample multiplexing [21,32]. Across 

all datasets tested, BCMVN distributions featured a single maximum that for the Cell Hashing and 

Demuxlet datasets, coincided with the pK range maximizing AUC (Fig. 2-6d). Therefore, we 

propose that BCMVN maximization selects a near-optimal DoubletFinder parameter across a range 

of scRNA-seq datasets.  

 

2.3.6 DoubletFinder application to mouse kidney scRNA-seq data illustrates insensitivity to bona 

fide ’hybrid’ cell states. 

 We next sought to demonstrate DoubletFinder’s capabilities in a real-world context where 

ground-truth doublets are not known and BCMVN maximization must be used to determine a 

reasonable pK. To this end, we applied DoubletFinder to a previously published scRNA-seq 

dataset describing the mouse kidney. In this study, the authors discover and experimentally 

validate the existence of a novel cell type—collecting duct transitional cells (CDTCs)—which 

expresses genes characteristic of two other kidney cell types: collecting duct principal cells 

(CDPCs) and collecting duct intercalated cells (CDIC) [21]. This dataset represented an intriguing 

“challenge-case” for DoubletFinder, as we reasoned that legitimate cell types with “hybrid” gene 

expression profiles may resemble artificial doublets, triggering DoubletFinder false positives.  

Beginning with a pre-processed Seurat object (Fig. 2-7a), we first used BCMVN 

maximization to identify a suitable pK value for these data (pK = 0.09, Fig. 2-6d). We then applied 

DoubletFinder to the full dataset and classified doublets as cells with the top n pANN values. 

Initially, n was set according to the Poisson doublet formation rate, as specified for the particular 

cell-loading density used in the study [21]. This resulted in 913 total doublet predictions, which 

were highly enriched for nUMIs (Fig. 2-7b) and included a region of heterotypic doublets 
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characterized by the co-expression of proximal tubule and distal convoluted tubule marker genes 

(Fig. 2-7c).  

 

DoubletFinder correctly identified 64% of CDTCs as singlets, despite CDTCs having 

exceptionally high nUMIs (Fig. 2-7d) and co-expressing both CDPC and CDIC marker genes 

(Fig. 2-7e). However, these ini3tial results represented an overestimation of the true number of 

detectable doublets as DoubletFinder was applied without taking homotypic doublets into 

account. We therefore adjusted the expected doublet number to account for homotypic doublets. 

Specifically, we grouped cells according to literature-supported cell-type annotations and 

estimated the proportion of homotypic doublets as the sum of squared cell-type frequencies. This 

strategy assumes (1) that a cell type’s frequency in the final dataset reflects that cell type’s 

contribution to the doublet pool, and (2) that user-defined cell-type groups approximate the 

magnitude of transcriptional divergence necessary to make a detectable heterotypic doublet. In 

contexts where such annotations are inaccurate or unavailable, unsupervised clustering results 

should be used instead. This analysis resulted in a revised 473 total heterotypic doublet 

predictions and allowed us to identify 97% of CDTCs as singlets. This result suggests that 

DoubletFinder can be insensitive to legitimate cell states with intermediate expression profiles. 

 
Figure 2-7: DoubletFinder is insensitive to bona fide ‘hybrid’ cell states in mouse kidney scRNA-seq data.  
(A) t-SNE visualization of DoubletFinder doublet predictions (black) amongst mouse kidney cell types. DCT = distal convoluted 
tubule, PT = proximal tubule, Endo = endothelial, LOH = loop of Henle.   
(B) RNA UMI box plots for doublets (red), and singlets (black). Data are represented as mean ± SEM.  
(C) Marker gene heat maps for doublets, PT cells (beige), and DCT cells (pink). 
(D) Mouse kidney CDTCs (peach) exhibit elevated nUMIs similar to doublets (black) and distinct from singlets (grey).   
(E) Mouse kidney CDTCs (peach) co-express marker genes associated with CDPCs (blue) and CDICs (turquoise). 
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We suggest that the heterotypic doublet frequency and Poisson doublet formation rates be used 

as lower and upper bounds for estimating the number of detectable doublets, respectively. We 

urge DoubletFinder users to interrogate the results of each thresholding strategy against the 

known biology of the system under study.  

 

2.4 Discussion 

DoubletFinder is a computational doublet detection method that integrates artificial 

doublets into existing scRNA-seq data and identifies real doublets as cells enriched for artificial 

nearest neighbors in gene expression space. DoubletFinder is implemented in the R programming 

language and is written to interface with the popular Seurat scRNA-seq analysis package [19,20]. 

However, DoubletFinder is prospectively generalizable to scRNA-seq data analyzed using 

alternative pipelines as well. In this study, we benchmarked DoubletFinder against ground-truth 

scRNA-seq data where doublets are directly measured using sample multiplexing techniques 

such as Demuxlet [9] and Cell Hashing [15]. We leveraged these results to define “best practices” 

for how DoubletFinder should be applied to real-world scRNA-seq data without ground-truth 

doublet labels. We then successfully demonstrated these practices on mouse kidney data 

featuring an experimentally validated cell state that could trigger DoubletFinder false positives 

[21].  

Ground-truth comparisons revealed a number of DoubletFinder strengths and limitations. 

For example, DoubletFinder outperforms nUMI thresholding in these data and accurately predicts 

heterotypic doublets with >90% sensitivity. In contrast, DoubletFinder is insensitive to homotypic 

doublets, as these cells do not diverge significantly from real singlets in gene expression space. 

DoubletFinder also identifies false negatives in the Demuxlet and Cell Hashing datasets that are 

formed from cells associated with identical sample barcodes. For this reason, we view 



 27 

DoubletFinder and sample multiplexing as complementary doublet removal approaches, 

especially in experimental contexts with relatively low sample numbers. When used in concert, 

sample multiplexing and computational doublet detection techniques provide an effective solution 

to the issue of doublets in scRNA-seq data, enabling users to “super-load” droplet microfluidic 

devices and thereby further increase scRNA-seq cell throughput.  

In contexts where sample multiplexing information is unavailable, DoubletFinder detects 

and removes the preponderance of heterotypic doublets while homotypic doublets remain. The 

presence of homotypic doublets is unlikely to negatively influence cell-type classification and 

differential gene expression analysis, as homotypic doublets cluster together with bona fide cell 

singlets. In fact, simply removing heterotypic doublets improved differential gene expression 

analysis results in every dataset tested in this study. However, certain scRNA-seq analyses may 

also benefit from the removal of homotypic doublets. For example, imputation uses the average 

gene expression profiles of transcriptionally similar cells to infer missing values caused by 

transcript dropout events [33,34]. It is possible that the structure of missing values in singlets and 

homotypic doublets is distinct, and thus, it remains unclear how the presence of homotypic 

doublets influences imputation performance.  

Beyond exposing DoubletFinder strengths and limitations, ground-truth benchmarking 

revealed three methodological features that should be considered as users apply DoubletFinder 

to scRNA-seq data lacking ground-truth doublet labels. First, applying DoubletFinder to simulated 

scRNA-seq data with poorly resolved clusters demonstrates that DoubletFinder cannot be 

accurately applied to scRNA-seq data describing transcriptionally similar cells. DoubletFinder 

users should therefore carefully consider the diversity of their dataset prior to using the method. 

Second, DoubletFinder input parameters (e.g., pK) must be tuned to datasets with variable 

numbers of cell states. We predicted pK for ground-truth scRNA-seq data using ROC analysis, 

which is not possible for real-world data. Instead, we developed a ground-truth-agnostic 
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parameter selection strategy—termed BCMVN maximization—which finds the pK value that 

optimally separates singlet and doublet pANN distributions. Third, since DoubletFinder is 

insensitive to homotypic doublets, thresholding DoubletFinder results according to the total 

number of doublets estimated via Poisson loading statistics will necessarily result in false 

positives. To account for this issue, we describe how the proportion of homotypic doublets can be 

estimated from cell-type frequencies described using existing annotations or unsupervised 

clustering. Using this strategy, one can threshold DoubletFinder results in a fashion that accounts 

for homotypic doublets and thereby limits false positives. 

 

2.5 Materials and Methods 

2.5.1 scRNA-seq data pre-processing using Seurat. 

DoubletFinder was implemented in the R programming language in a fashion that 

purposefully interfaces with the Seurat analysis package. DoubletFinder takes as an input a 

Seurat object that has been pre-processed using the standard Seurat analysis pipeline. Briefly, 

raw RNA UMI counts are normalized (e.g., log2-transform), centered, and scaled before 

regression is used to remove undesired sources of variability (e.g., total nUMI). In the standard 

Seurat workflow, variably expressed genes are then defined via dispersion and mean expression 

thresholds. In this study, thresholds were chosen that identified ~2000 total genes, as described 

previously [19,20]. PCA is then performed using this set of variably expressed genes, and 

statistically-significant PCs are selected (e.g., via inflection point estimation on PC elbow plots). 

These are the minimum pre-processing requirements prior to running DoubletFinder, although 

further dimensionality reduction (e.g., t-SNE) and unsupervised clustering were also utilized in 

this study.  
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2.5.2 DoubletFinder algorithm overview. 

The DoubletFinder workflow begins with a pre-processed Seurat object, prepared as 

described above. Artificial doublets are then generated from raw UMI count matrices by averaging 

the gene expression profiles of cell pairs selected via random sampling with replacement. 

Sufficient artificial doublets are then generated to comprise 25% of the resulting merged data (pN 

= 0.25). Next, real and artificial data are merged and pre-processed using the same normalization, 

scaling, and variable gene definition parameters employed during the original data analysis 

workflow. Notably, nUMI regression is not performed during merged real-artificial dataset pre-

processing in order to preserve differences between singlets and doublets. Using the same 

number of statistically-significant PCs selected during original data pre-processing, PC cell 

embeddings are then converted into a Euclidean distance matrix using the ‘rdist’ function from 

the ‘fields’ R package [35]. Each cell’s nearest neighbors are then defined from this distance 

matrix, and the proportion of artificial nearest neighbors (pANN) is computed for every real cell by 

dividing its number of artificial neighbors by the neighborhood size (pK). Final doublet 

classifications are then assigned to the cells with the n highest pANN, where n was set to the total 

number of expected doublets. 

 

2.5.3 ROC analysis for optimizing pK selection. 

For Cell Hashing and Demuxlet scRNA-seq data, optimal parameters were selected by 

maximizing the AUC from ROC analysis of pN-pK parameter sweeps. Specifically, Cell Hashing 

and Demuxlet datasets were first randomly sub-sampled to 10,000 cells in order to maximize 

computational efficiency during the parameter sweep. Second, artificial doublets were integrated 

at varying proportions (pN = 0.05-0.30), and merged real-artificial data was pre-processed as 

described above. Third, the proportion of artificial nearest neighbors was computed for varying 

neighborhood sizes (pK = 5e4-0.3) for each real cell. This produced a list of pANN vectors 
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corresponding to each pN-pK combination. Fourth, ground-truth doublet labels and pANN vectors 

were then evenly split into test and training sets via random sampling without replacement. Fifth, 

logistic regression models were fit on training cells using the ‘glm’ R function with the ‘family’ and 

‘link’ arguments set to ‘binomial’ and ‘logit’, respectively. Logistic regression was used because 

this technique specifically models the binary nature of singlet/doublet classifications. Sixth, 

models were applied to test cells and the predictive capacity of each model was compared by 

computing AUC during ROC analysis, as implemented in the ‘ROCR’ [36] and ‘pROC’ [37] R 

packages. Notably, in cases where ground-truth classifications are not available for DoubletFinder 

parameter selection, users should employ BCMVN maximization (see Section 2.5.8) 

 

2.5.4 ROC analysis for comparing predictive capacity of DoubletFinder and nUMIs. 

 DoubletFinder parameters optimized for the Cell Hashing and Demuxlet datasets using 

ROC analysis were then used to benchmark the method against nUMI thresholding. Test and 

training sets were defined as described above, and logistic regression models were fit using 

DoubletFinder alone, nUMI alone, or a linear combination of both features. Trained models were 

then applied to test cells, and ROC analysis was used to compare each of the three models. 

 

2.5.5 Estimating doublet numbers according to sample multiplexing results. 

For Demuxlet and Cell Hashing data, cells with the n highest pANN values were classified 

as doublets, where n was defined as the number of ground-truth doublets adjusted according to 

the expected ground-truth false-negative rate. Notably, we utilized this strategy prior to 

discovering that DoubletFinder is insensitive to homotypic doublets. Thus, we suggest users 

interpret DoubletFinder results using the Poisson doublet formation rate with and without 

adjustment for homotypic doublet proportions (see Section 2.5.9). 
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2.5.6 Predicting homotypic doublets via pANN thresholding. 

To illustrate that DoubletFinder is predominantly sensitive to heterotypic doublets, we 

sought a strategy to directly distinguish homotypic and heterotypic doublets within ground-truth 

doublet classifications. Specifically, since homotypic and heterotypic doublets respectively co-

localize with singlets and doublets in gene expression space, we reasoned that the two doublet 

types could be discerned according to the proportion of nearest neighbors that were real doublets. 

We computed this proportion for each real cell using the pK value optimized by ROC analysis (pK 

= 0.01). We then visualized the density distributions of doublet neighborhood proportions for real 

doublets and singlets. We then used the intersection of these distributions as a threshold to split 

real doublets into homotypic and heterotypic subsets, following the assumption that homotypic 

doublets and real singlets would have similar doublet neighborhood proportions (Figs. 2-3c, 2-

3d). Homotypic doublets identified using this strategy localize amongst singlets in gene 

expression space, as expected. 

 

2.5.7 scRNA-Seq data simulation using ‘splatter’. 

scRNA-seq data was simulated using the ‘splatter’ R package [29] as in [30]. Datasets 

were simulated with 3-8 equally-proportioned cell states, and cluster separation in gene 

expression space was controlled using the ‘de.prob’ parameter (0.005-0.1) of the ‘splatSimulate’ 

R function. Simulated doublets were added to these data by adding the UMI counts for random 

pairs of cells such that 10% of the final data were doublets. Simulated datasets containing 

doublets were then pre-processed using ‘Seurat’ as described previously, with the number of 

statistically-significant PCs set to the total number of cell states. Following pre-processing, 

parameter sweeps, logistic regression modeling, and ROC analysis were performed on each 

simulated dataset, as described above. Since pK is the main parameter requiring adjustment in 
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different contexts, we visualized our results by finding the mean AUC across all pN values for 

each pK. 

 

2.5.8 pK optimization with BCMVN maximization.  

When ground-truth doublets labels are unavailable for identifying optimal DoubletFinder 

pK values, pK must be selected using a ground-truth-agnostic strategy called mean-variance-

normalized bimodality coefficient (BCMVN) maximization. Bimodality coefficient (BC) measures 

deviations from unimodality in data distributions [31]. For DoubletFinder parameter fitting, we 

reasoned that parameter sets that produced non-unimodal pANN distributions would optimally 

separate singlets from doublets and, as a result, would perform the best. Thus, for the Demuxlet 

[9], Cell Hashing [15], mouse kidney [21], and mouse pancreas [32] scRNA-seq datasets, we 

tested every pANN distribution generated during pN-pK parameter sweeps to find those with 

elevated BC values. Specifically, we computed BC as is implemented in the 

‘bimodality_coefficient’ function in the ‘modes’ R package [38], which is formalized as: 

 

!" =	
g% + 1

k	 + 3(* − 1)%
(* − 2)(* − 3)

 

 

Where γ is the pANN distribution skewness (i.e., peak width), k is the kurtosis (i.e., peak 

sharpness), and n is the sample size. We then measured the BC mean and variance for each pK 

across all pN values tested, as it was previously shown that DoubletFinder performance is not 

influenced by the number of generated artificial doublets.  

We documented the results of this workflow when applied to the Cell Hashing data as a 

representative example (Fig. 2-6). When pK values are too high, singlets and doublets have 
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similar proportions of artificial nearest neighbors, and the resulting pANN distributions are 

associated with low BC and AUC. In contrast, when pK values are too low, DoubletFinder 

performance suffers because neighborhoods in gene expression space are dominated by local 

effects that result in multimodal pANN distributions (Fig. 2-6b, top left). Since these distributions 

are not unimodal, they are associated with high BC. However, local effects are sensitive to the 

number of artificial doublets integrated into the dataset (pN), resulting in elevated BC variance for 

the associated pK values (Fig. 2-6c, pink). Finally, ideal pK values generate long-tailed pANN 

distributions (Fig. 2-6b, mid left) that are characterized by high AUC and high BC with low 

variance (Fig. 2-6c, red). Since high BC values with low-variance predicted high AUC parameter 

sets in the Cell Hashing data, we leveraged these observations to devise a new metric for pK 

parameter selection – BCMVN – formalized as: 

 

!"./0 =
123
423%

 

 

Where μBC and σ2BC are the BC mean and variance, respectively, for each pK across pN 

values. BCMVN distributions feature a single, visually-discernible maximum for the four datasets 

tested in this study (Fig. 2-6d). For ground-truth datasets, this maximum corresponds with the 

ideal pK value identified via ROC analysis. 

 

2.5.9 Adjusting estimated doublet numbers to account for homotypic doublets.  

Since DoubletFinder is insensitive to homotypic doublets, thresholding results based on 

the Poisson doublet formation rate will necessarily result in false-positives. Thus, DoubletFinder 

results can be interpreted after adjusting the number of expected doublets to account for the 

estimated proportion of homotypic doublets in the data. To this end, homotypic doublet 
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proportions were modeled as the sum of squared cell state frequencies. For example, consider a 

scRNA-seq dataset with five unique cell states present at the following proportions:  

 

567 = {0.40, 0.25, 0.15,0.1, 0.1} 

 

Where pci is the proportion of cell state i. The proportion of homotypic doublets present in 

this data, phomo is then estimated as: 

 

5?@A@ = 	å	(56B% + 56%% + 56C% + 56D% + 56E% ) = 0.265 

 

The final number of detectable (i.e., heterotypic) doublets is then defined by adjusting the 

total number of doublets (i.e., as determined by the Poisson doublet formation rate) by the 

homotypic doublet proportion: 

 

GGH = (1 − 5?@A@) ∗ JGH 

 

Where DDR and TDR are the detectable and total doublet rates, respectively. This 

strategy follows the assumption that, during droplet microfluidics-based cell capture, the 

probability that an emulsion oil droplet is filled with a cell from state i matches the proportion of 

cell state i in the final scRNA-seq dataset. This assumption does not consider differential doublet 

formation propensities between cell types (e.g., due to adhesive properties, cell size, etc.). 

Notably, the accuracy of this strategy depends on whether cell state annotations accurately group 

cells with transcriptional profiles that are sufficiently similar to preclude formation of a heterotypic 

doublet. This magnitude of transcriptional similarity is difficult to define and is likely dataset-
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dependent. However, unsupervised clustering results and/or literature-supported cell state 

annotations from existing scRNA-seq data are the best approximations, and represent a lower 

bound for the total number of doublets.  

For the mouse kidney data with which this strategy was implemented, we assigned doublet 

labels to cells with the top n pANN values, where n was set to the Poisson doublet formation rate 

with and without homotypic doublet adjustment. This strategy results in two sets of doublet 

predictions associated with varying stringencies. With the unadjusted Poisson threshold, 

DoubletFinder users can be confident that all heterotypic doublets were removed, albeit along 

with a subset of real singlets. In contrast, the homotypic-adjusted threshold preserves the most 

existing data while potentially leaving real doublets remaining. 

 

2.5.10 Quantification and statistical analyses. 

 Statistically-significant differences between nUMIs in Demuxlet and Cell Hashing singlets 

and doublets were defined using the Wilcoxon rank sum test implemented with the 

‘pairwisewilcox.test’ R function. Multiple comparison correction was performed using the 

Benjamini-Hochberg procedure. In this context, n represents the total nUMIs associated with one 

cell (Demuxlet n = 33,328; Cell Hashing n = 15,178). Sensitivity and specificity were computed 

for ground-truth scRNA-seq data before and after homotypic doublet definition, as described 

above. Sensitivity and specific calculations were performed using the ‘caret’ R package [39]. 

Differential gene expression analysis comparisons between scRNA-seq datasets before and after 

doublet removal was performed with the ‘FindMarkers’ function in ‘Seurat’. Statistical significance 

was tested using the likelihood-ratio test for single-cell gene expression [40], and marker genes 

were defined as statistically-significant genes with 3-fold expression enrichment. For the Cell 

Hashing and Demuxlet datasets, doublet removal included all doublets classified either by 
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sample-multiplexing or DoubletFinder. For mouse kidney scRNA-seq data, only DoubletFinder-

defined doublets were removed. 

 

2.5.11 Data and software availability.  

Cell Hashing (GSE108313), Demuxlet (GSE96583), mouse kidney (GSE107585), and 

mouse pancreas (GSE101099) UMI count matrices were downloaded from the Gene Expression 

Omnibus. DoubletFinder is implemented as a fast, easy-to-use R package that interfaces with 

Seurat version 2.0 and higher. DoubletFinder can be downloaded from GitHub 

(https://github.com/chris-mcginnis-ucsf/DoubletFinder) and is available as an executable 

Compute Capsule on Code Ocean (DOI: https://doi.org/10.24433/CO.4902498.v1). 

 

2.6 Perspective 

Since DoubletFinder and Scrublet were co-published by Cell Systems in 2019, 

computational doublet detection has been readily adopted by the single-cell genomics community, 

and is now considered a standard component of scRNA-seq quality-control workflows [41-44]. 

Moreover, considerable effort and resources has been dedicated to developing alternative doublet 

detection algorithms. To date, 12 distinct doublet detection workflows have been described, 

including DoubletFinder, Scrublet [30], doubletCells [45], DoubletDetection [46], scds [47], Solo 

[48], DoubletDecon [49], BIRD [50], Chord [51], MLtiplet [52], GMM-Demux [53], and 

DoubletCollection [54]. Xi and Li eloquently summarize the differences between many of these 

methods in their pioneering benchmarking effort [54], wherein the authors apply each method to 

16 real scRNA-seq datasets and compute a variety of performance metrics related to prediction 

accuracy, improvements in downstream analyses (e.g., differential gene expression testing, 

unsupervised clustering, cell trajectory inference, etc.), and computational efficiency. 
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DoubletFinder performed the best amongst all doublet detection methods in this context, although 

it was one of the worst methods in terms of computational efficiency (an observation recapitulated 

elsewhere [55]). It is difficult to pinpoint exactly why DoubletFinder is the among the best (and 

slowest) methods. However, I speculate that this is because after artificial doublet generation, 

DoubletFinder incorporates end-to-end scRNA-seq data normalization and parameter 

optimization, which slows down the overall workflow while ensuring that the artificial doublets 

more closely recapitulate real scRNA-seq doublets.  

 I anticipate that efforts invested in scRNA-seq doublet detection algorithm development 

and optimization will soon peter out as these methods approach their sensitivity limit and 

consensus-based methods [51,54], which incorporate doublet predictions from large numbers of 

algorithms, become the gold-standard. However, as other single-cell genomics assay modalities 

such as proteomics [56-58] and epigenomics [59-61] continue to gain popularity, existing 

computational doublet detection algorithms will undoubtedly require further reformulation.  

For example, a doublet detection method conceptually-inspired by Scrublet and 

DoubletFinder was implemented in the recently-described single-cell epigenomics analysis 

software package, ArchR [62]. While ArchR-based doublet detection worked well on a cell-line 

mixing single-cell ATAC-seq dataset and PBMC Multiome (RNA+ATAC) dataset generated for 

the study, an alternative approach called ATAC-DoubletDetector [63] has exhibited superior 

performance in broader contexts (see Chapter 5 of this thesis). The key conceptual shift for ATAC-

DoubletDetector relative to ArchR is that instead of identifying real doublets via similarity to 

artificial doublets, ATAC-DoubletDetector leverages the trinary nature of single-cell ATAC-seq 

data (i.e., 0, 1, or 2 counts for closed, open in one allele, and open in two alleles, respectively) to 

predict doublets as cells with >2 next-generation sequencing reads aligning to significant numbers 

of genomic loci. This approach yields higher global doublet prediction accuracy and the ability to 

identify homotypic doublets which are otherwise missed by neighborhood detection algorithms. I 
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speculate that this theme – i.e., developing doublet detection algorithms which reflect the 

underlying structure of the datasets to which they are applied – will be repeatedly observed as 

new single-cell genomics assay modalities become more mainstream.  
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Chapter 3: MULTI-seq: sample multiplexing for single-cell RNA 

sequencing using lipid-tagged indices   

Elements of the following chapter are reprinted from the manuscript “MULTI-seq: sample 

multiplexing for single-cell RNA sequencing using lipid-tagged indices” by Christopher S. 

McGinnis, David M. Patterson, Juliane Winkler, Daniel N. Conrad, Marco Y. Hein, Vasudha 

Srivastava, Jennifer L. Hu, Lyndsay M. Murrow, Jonathan S. Weissman, Zena Werb, Eric D. 

Chow, and Zev J. Gartner, published in Nature Methods on June 17, 2019, Vol. 16, Issue 7, pages 

619-626. 

 

3.1 Abstract 

Sample multiplexing facilitates scRNA-seq by reducing costs and identifying artifacts such 

as cell doublets. However, universal and scalable sample barcoding strategies have not been 

described. We there3fore developed MULTI-seq: multiplexing using lipid-tagged indices for 

single-cell and single-nucleus RNA sequencing. MULTI-seq reagents can barcode any cell type 

or nucleus from any species with an accessible plasma membrane. The method involves minimal 

sample processing, thereby preserving cell viability and endogenous gene expression patterns. 

When cells are classified into sample groups using MULTI-seq barcode abundances, data quality 

is improved through doublet identification and recovery of cells with low RNA content that would 

otherwise be discarded by standard quality-control workflows. We use MULTI-seq to track the 

dynamics of T-cell activation, perform a 96-plex perturbation experiment with primary human 

mammary epithelial cells and multiplex cryopreserved tumors and metastatic sites isolated from 

a patient-derived xenograft mouse model of triple-negative breast cancer. 
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3.2 Introduction 

Single-cell and single-nucleus RNA sequencing (scRNA-seq, snRNA-seq) have emerged 

as powerful technologies for interrogating the heterogeneous transcriptional profiles of 

multicellular systems. Early scRNA-seq workflows were limited to analyzing tens to hundreds of 

single-cell transcriptomes at a time [1,2]. With the advent of single-cell sequencing technologies 

based on microwell [3], split-pool barcoding [4], and droplet-microfluidics [5-8] the parallel 

transcriptional analysis of 103-105 cells or nuclei is now routine. This increase in cell-throughput 

has catalyzed efforts to characterize the composition of organs [9] and entire organisms [4,10].  

These technologies will increasingly be used to reveal the mechanisms by which cell 

populations interact to promote development, homeostasis, and disease. This shift from 

descriptive to mechanistic analyses requires integrating spatiotemporal information, diverse 

perturbations, and experimental replicates in order to draw strong conclusions [11,12]. While 

existing methods can assay many thousands of cells, sample-specific barcodes (e.g., Illumina 

library indices) are incorporated at the very end of standard library preparation workflows, which 

limits scRNA-seq sample-throughput due to reagent costs and the physical constraints of droplet 

microfluidics devices. Sample multiplexing approaches address this limitation by labeling cells 

with sample-specific barcodes prior to pooling and single-cell isolation. Several multiplexing 

methods have been described that distinguish samples using pre-existing genetic diversity [13-

16], or introduce sample barcodes using either genetic [17-22] or non-genetic [23-25] 

mechanisms. However, each of these methods has liabilities, including issues with scalability, 

universality, and the potential to introduce secondary perturbations to experiments.  

We identified lipid- and cholesterol-modified oligonucleotides (LMOs, CMOs) as reagents 

that circumvent many of the limitations of other sample multiplexing techniques. We previously 

described LMO and CMO scaffolds that rapidly and stably incorporate into the plasma membrane 
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of live cells by step-wise assembly [28]. Here, we adapt LMOs and CMOs into MULTI-seq – 

scRNA-seq and snRNA-seq sample multiplexing using lipid-tagged indices. MULTI-seq localizes 

sample barcodes to live cells and nuclei regardless of species or genetic background. MULTI-seq 

is non-perturbative, rapid, and involves minimal sample processing. Here, MULTI-seq simplicity 

and modularity enabled the analysis of a T-cell activation time-course, 96 human mammary 

epithelial cell (HMEC) culture conditions, and cryopreserved primary cells isolated from patient-

derived xenograft (PDX) mouse models at varying stages of metastatic progression.  

 

3.3 Results 

3.3.1 MULTI-seq overview, comparison of LMO and CMO performance on intact cells and isolated 

nuclei using flow cytometry 

MULTI-seq localizes DNA barcodes to plasma membranes by hybridization to an ‘anchor’ 

LMO. The ‘anchor’ LMO associates with membranes through a hydrophobic 5’ lignoceric acid 

amide. Subsequent hybridization to a ‘co-anchor’ LMO incorporating a 3’ palmitic acid amide 

increases the hydrophobicity of the complex and prolongs membrane retention (Fig. 3-1).  

MULTI-seq sample barcodes include a 3’ poly-A capture sequence, an 8 base-pair sample 

barcode, and a 5’ PCR handle necessary for library preparation and anchor hybridization. Cells 

 
Figure 3-1: MULTI-seq Design. Diagram of the anchor/co-anchor scaffolds (black) with hybridized sample barcode oligonucleotide 
(red). LMOs and CMOs are distinguished by their unique lipophilic moieties (e.g., lignoceric acid, palmitic acid, or cholesterol).  
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or nuclei carry membrane-associated MULTI-seq barcodes into emulsion droplets where the 3’ 

poly-A domain mimics endogenous transcripts during hybridization to mRNA capture beads. 

Endogenous transcripts and MULTI-seq barcodes are then linked to a common cell- or nucleus-

specific barcode during reverse transcription, which enables sample demultiplexing. MULTI-seq 

barcode and endogenous expression libraries are separated by size selection prior to next-

generation sequencing library construction, enabling pooled sequencing at user-defined 

proportions. The same strategy can be applied to commercially-available CMOs.  

 
Figure 3-2: Flow cytometry demonstrates robust LMO and CMO labeling efficiency on living cells and nuclei, label stability 
over time, and LMO quenching with BSA.  
(A) Live-cell LMO (gold) and CMO (purple) labeling efficiency varies predictably across anchor and co-anchor concentrations.  
n = 10,000 events/sample.  
(B) Qualitative trends (contour plots, left) and quantitative analysis (scatter plot, right) of time-course experiment with live cells on 
ice. LMO (gold) and CMO (purple) labeled cells maintain fluorescence signal over unlabeled control cells (grey) over time, with LMOs 
exhibiting more membrane stability.  
(C) As in (B) but with nuclei on ice. LMOs and CMOs exhibit similar nuclear membrane stability.  
(D) As in (B) except with live cells at room temperature (RT). The LMO advantage in label stability shown at 4 °C is lost at RT as 
both CMO (purple) and LMO (gold) labels decrease at similar rates. 
(E) LMO- or CMO-labeled cells were diluted with PBS (black) or 1% BSA in PBS (red). Supernatant was then transferred to unlabeled 
cells to extent of BSA quenching off-target membrane labeling.  
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We used flow cytometry to evaluate whether LMOs and CMOs predictably label and 

minimally exchange between live cells at typical sample preparation temperatures of 4 °C (Figs. 

3-2a, 3-2b). Identical experiments were also performed using freshly-isolated nuclei (Figs. 3-2c, 

3-2d). These data revealed that LMOs exhibit longer membrane residency times than CMOs on  

live-cell membranes at 4 °C, whereas LMOs and CMOs exchange comparably between live cells 

at room temperature (Fig. 3-2e), suggesting cells should be maintained on ice to achieve optimal 

sample multiplexing results. For nuclei, both oligonucleotide conjugates showed minimal 

exchange between nuclear membranes (Fig. 3-2d), however, bovine serum albumin (BSA) in 

nuclei isolation buffer specifically quenched LMOs, reducing labeling efficiency (Fig. 3-2b). While 

problematic during nuclei labeling, we reasoned that LMO quenching could be strategically 

employed to reduce off-target barcoding and potentially minimize washes prior to sample pooling. 

Indeed, we found that diluting LMO-labeling reactions with 1% BSA in PBS resulted in 18-fold 

lower off-target labeling following pooling compared to dilution with PBS (Fig. 3-2f). 

 

3.3.2 MULTI-seq enables live-cell scRNA-seq sample demultiplexing  

We tested the capacity of MULTI-seq to demultiplex scRNA-seq samples by performing a 

proof-of-concept experiment using HEK293 cells (HEKs) and primary human mammary epithelial 

cells (HMECs) cultured in the presence or absence of TGF-β (Fig. 3-3). Cells were trypsinized, 

 
Figure 3-3: Proof-of-concept MULTI-seq experimental design. Three samples (HEKs and HMECs with and without TGF-β 
stimulation) were barcoded with either LMOs or CMOs and sequenced alongside unlabeled controls. MULTI-seq barcodes are 
captured alongside mRNA during reverse transcription (RT) within gel bead-in-emulsions (GEMs) and size-separated from 
endogenous cDNA following library amplification. MULTI-seq and cDNA libraries are then sequenced as a pool using next-generation 
sequencing (NGS), producing coupled gene expression and MULTI-seq barcode count matrices.  
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barcoded with LMOs or CMOs, and pooled prior to droplet microfluidic emulsion with the 10X 

Genomics Chromium system. In parallel, we prepared unbarcoded replicates to test whether 

MULTI-seq influenced gene expression or mRNA capture efficiency.  

Following data pre-processing, we analyzed a final scRNA-seq dataset containing 14,377 

total cells. We identified clusters in gene expression space according to known markers for HEKs 

as well as the two cellular components of HMECs, myoepithelial (MEPs) and luminal epithelial 

cells (LEPs, Fig. 3-4a). Projecting MULTI-seq barcode classifications onto gene expression space 

for LMO- and CMO-labeled cells (Fig. 3-4b) illustrates that both membrane scaffolds successfully 

demultiplexed each sample. Moreover, HMECs predicted to have been cultured with TGF-β 

exhibited enriched expression of the TGF-β-induced gen, TGFBI (data not shown), further 

 
 
Figure 3-4: MULTI-seq using LMOs and CMOs successfully multiplexes scRNA-seq samples, CMOs induce subtle 
transcriptional response to labeling. 
(A) Cell state annotations for aggregated LMO, CMO, and unlabeled control scRNA-seq data mapped onto t-SNE gene expression 
space (left). Violin plots (right) depict marker genes used to define HEKs (pink), MEPs (cyan), and LEPs (dark teal). 
(B) MULTI-seq classifications for LMO- and CMO-labeled cells mapped onto gene expression space. Sample classifications match 
their expected cell type annotations.  
(C) Violin plots (left) describing the number of detected UMIs and genes and the percentage of mitochondrial gene expression for 
LMO-labeled (gold), CMO-labeled (purple), and unlabeled control HEKs (black). Scatter plots (right) illustrating that MULTI-seq and 
RNA UMIs are not negatively correlated. These two observations suggest that MULTI-seq barcodes do not significantly interfere 
with mRNA capture. 
(D) Gene expression space (left) for LMO-labeled (gold), CMO-labeled (purple), or unlabeled HEKs (black) reveals sub-structure 
specific to CMO-labeling. Sub-structure manifests as CMO-labeled cells having more CMO-labeled neighbors amongst each cell’s 
100 nearest neighbors in gene expression space (right). 
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demonstrating the accuracy of MULTI-seq classification results. Importantly, RNA and MULTI-

seq barcode UMI counts in HEKs were not negatively correlated (Fig. 3-4c) and LMO-labeled 

HEKs did not exhibit distinct gene expression space localization patterns relative to unlabeled 

controls (Fig. 3-4d). Collectively, these results suggest that MULTI-seq does not impair mRNA 

capture, and that LMO-labeling (unlike CMO-labeling) does not induce a significant transcriptional 

response under the test conditions (Methods). 

 

3.3.3 Demultiplexing single nucleus RNA-seq (snRNA-seq) and time-course experiments  

snRNA-seq is widely used for the analyses of solid tissues that are difficult to dissociate 

[29]. We explored whether MULTI-seq could demultiplex snRNA-seq samples by purifying nuclei 

from HEKs and mouse embryonic fibroblasts (MEFs) and labeling each pool of nuclei with LMOs 

or CMOs prior to snRNA-seq. In parallel, we multiplexed Jurkat cells treated with ionomycin and 

phorbol 12-myristate 13-acetate (PMA) at eight time points (0-24 hours) to track T-cell activation 

dynamics (Fig. 3-5).  

 

MULTI-seq sample classifications matched their intended cell type clusters with a ~0.5% 

misclassification rate (Fig. 3-6a). Notably, MULTI-seq classifications were species-specific and 

predicted ~85% of mouse-human doublets, which approximates the theoretical doublet detection 

limit of ~92%. Matching live-cell results, MULTI-seq barcoding did not impair mRNA capture (Fig. 

 
 
Figure 3-5: Schematic overview of a proof-of-concept snRNA-seq experiment using MULTI-seq. Nuclei were isolated from 
HEKs (red), MEFs (blue), and Jurkats  stimulated with ionomycin and PMA for 8 distinct time points (green) prior to LMO barcoding 
and sequencing. CMO-labeled and unlabeled HEK and MEF nuclei were sequenced in parallel. 
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3-6b). In contrast to live-cell results, both CMO- and LMO-labeled nuclei were transcriptionally 

indistinguishable from unbarcoded controls (Fig. 3-6c). Moreover, CMO-labeled nuclei had higher 

average signal-to-noise ratio (SNR) and total number of barcode UMIs relative to LMO-labeled 

nuclei (CMO SNR = 91.5, LMO SNR = 2.3), consistent with previous flow cytometry results. 

Upon demultiplexing individual time points along the trajectory of T-cell activation (Fig. 3-

7a) we observed multiple literature-supported transcriptional dynamics (Fig. 3-7b). For example, 

genes undergoing early down-regulation (e.g., TSHR) [30] and transient (e.g., DUSP2) [31], 

sustained (e.g., CD69) [32], and late (e.g., GRZA) [33] up-regulation were readily identified. 

 

 

 
 
Figure 3-6: MULTI-seq using LMOs and CMOs successfully multiplexes snRNA-seq samples.  
(A) MULTI-seq sample classification proportions for each cell type identified by clustering in gene expression space. 
(B) Same analysis as described in Fig. 3-4c on snRNA-seq data. 
(C) Same analysis as described in Fig. 3-4d on MEFs present in multiplexed snRNA-seq data. 

 
 
Figure 3-7: MULTI-seq enables snRNA-seq time-course analysis of Jurkat T-cell activation with PMA and ionomycin.  
(A) MULTI-seq sample classifications illuminate temporal gene expression patterns in Jurkat cells following activation with ionomycin 
and PMA for varying amounts of time. Time-point centroids in gene expression space are denoted with larger circles. 
(B) Violin plots of gene expression marking different stages of T-cell cell activation. 
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3.3.4 MULTI-seq sample classification and doublet identification algorithm 

We next sought to demonstrate MULTI-seq scalability by multiplexing 96 unique HMEC 

samples spanning a range of microenvironmental conditions. We exposed duplicate cultures 

consisting of MEPs, LEPs, and both cell types grown in M87A media [34] without EGF to 15 

physiologically-relevant signaling molecules [35] or signaling molecule combinations (Fig. 3-8). 

We barcoded each sample before pooling and loaded cells across three 10X microfluidics lanes, 

resulting in a 32-fold reduction in reagent use relative to standard practices.  

To classify HMECs into sample groups, we implemented a sample classification workflow 

inspired by previous strategies [17,18,23]. Briefly, following pre-processing of the raw MULTI-seq 

data (Fig 3-9, Step 1), MULTI-seq barcode count matrices are normalized and a probability 

density function (PDF) is computed for each sample barcode.. Next, local maxima for each PDF 

are identified before ‘negative’ and ‘positive’ maxima are assigned to the most frequent and 

highest local maxima, respectively. Next, with positive and negative bounds for each MULTI-seq 

barcode count distribution identified, an inter-maxima threshold quantile sweep is performed 

wherein the number of singlets (i.e., cells surpassing a single barcode threshold), doublets (i.e., 

cells surpassing >1 threshold), and negatives (i.e., cells surpassing 0 thresholds) is determined 

 
 
 
Figure 3-8: Schematic overview of 96-plex HMEC MULTI-seq experimental design. 96 distinct HMEC cultures consisting of LEPs 
alone (blue), MEPs alone (green), or both cell types together (dark red) were grown in media supplemented with 15 distinct signaling 
molecules or signaling molecule combinations and one control. 
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for each quantile threshold value. Next, the inter-maxima quantile threshold resulting in the 

highest number of singlet classifications is applied to all barcode PDFs to codify sample 

classifications. Negative cells are then removed and this procedure is repeated until all cells are 

classified as singlets or doublets (Fig. 3-9, Step 2). Finally, subsets of negative cells are then 

reclassified using a semi-supervised classification approach, where singlets defined during the 

initial workflow are used to initialize cluster centers during k-means clustering of negative cells 

(Fig. 3-9, Step 3). See the Materials & Methods section for more information. 

 

Application of this sample classification workflow to our 96-plex HMEC MULTI-seq dataset 

resulted in the identification of 76 sample groups consisting of 26,439 total cells. Each group was 

 
 
Figure 3-9: MULTI-seq barcode pre-processing and sample classification workflows. Results from the 96-plex HMEC 
experiment are used as representative examples for the barcode classification workflow. Results from the 96-plex technical replicate 
HMEC experiment as used as representative examples for the semi-supervised negative cell reclassification workflow. PDF = 
probability density function. 
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exclusively enriched for a single barcode (Figs. 3-10a, 3-10b) an average of ~199-fold above the 

most abundant off-target barcode (Fig. 3-10c). Unlike sample multiplexing data with relatively few 

samples, MULTI-seq-defined doublets localized to the peripheries of singlet clusters in barcode 

space for this experiment (Fig. 3-10a, right). To understand why 96 samples were not robustly 

identified in this experiment, we visualized the total number of classified singlets mapping to each 

well of the original 96-well plate (Fig. 3-10d). This analysis revealed that a significant proportion 

of missing barcodes came from a single column of the 96-well plate, which suggests that samples 

were lost due to pipette handling errors. 

 
 
Figure 3-10: 96-plex HMEC MULTI-seq sample classification results. 
(A) Barcode UMI abundances (left) and doublet classifications (right) mapped onto barcode space.  MULTI-seq barcode #3 is used as 
a representative example. Doublets localize to the peripheries of sample groups in large-scale sample multiplexing experiments. 
(B) Normalized barcode UMI heat map demonstrating that sample groups are predominantly associated with single MULTI-seq 
barcodes.  
(C) Violin plots describing the mean barcode UMIs and SNR for negative cells, doublets, and singlets.  
(D) 96-well plate schematic overlaid with a heat map showing the number of cells assigned to each sample barcode group. Twenty 
samples — predominantly those arising from column 2 — were not represented in the original large-scale HMEC experiment due to 
technical error during sample preparation. 
(E-G) Same analyses as described in 3-10b, 3-10c, and 3-10d except for 96-plex HMEC technical replicate experiment. 
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Indeed, a technical replicate of this experimental design yielded successful classifications for all 

96 MULTI-seq barcodes (Figs. 3-10e, 3-10f, 3-10g). 

To assess demultiplexing accuracy, we grouped MULTI-seq classifications according to 

cell type composition (e.g., MEPs alone, LEPs alone, or both) and visualized these groups in gene 

expression space. Unsupervised clustering and marker analysis of the resulting transcriptome 

data distinguished LEPs from MEPs along with a subset of ambiguous cells expressing markers 

for both cell types (Fig. 3-11a). MULTI-seq classifications matched their expected cell type 

clusters (Fig. 3-11b), while cells co-expressing MEP and LEP markers were predominantly 

defined as doublets. MULTI-seq identified doublets that were overlooked when predicting 

doublets using marker genes (Fig. 3-11b, arrow).  

Additionally, MULTI-seq doublet classifications generally agreed with computational 

predictions (Fig. 3-11c, Sensitivity = 0.283 Specificity = 0.965), with the exception of ‘homotypic’ 

 
 
Figure 3-11: Benchmarking 96-plex HMEC MULTI-seq sample classification and doublet identification results against 
marker-based cell type annotations and computational doublet prediction algorithms.  
(A) Distributions of marker gene expression used to identify MEPs (KRT14, left) and LEPs (KRT19, middle) in gene expression space. 
Cell type annotations for MEPs (cyan) and LEPs (dark teal) in gene expression space (right). Ambiguous cells positive for multiple 
marker genes are displayed in grey. 
(B) MULTI-seq classifications grouped by culture composition: LEP-alone (blue), MEP-alone (green), and both cell types together 
(dark red). Discordant region where annotated MEPs are classified as MULTI-seq doublets (black) is indicated with arrow. 
(C) MULTI-seq doublet classifications (left) and computational predictions produced by DoubletFinder (right). Discordant region where 
DoubletFinder-defined doublets are classified as MULTI-seq singlets is indicated with arrows. 
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doublets,  to which computational doublet detection techniques are insensitive [36,37]. Moreover, 

DoubletFinder erroneously classified proliferative LEPs as doublets (Fig. 3-11c, arrow), 

illustrating how computational doublet inference performance suffers when applied to datasets 

with low cell type numbers [36,37]. 

 

3.3.5 MULTI-seq identifies transcriptional responses to co-culture conditions and signaling 

molecules in HMECs 

 Sample demultiplexing, doublet removal, and quality-control filtering resulted in a final 

scRNA-seq dataset including 21,753 total cells, revealing two transcriptional responses linked to 

culture composition. First, we observed that LEPs co-cultured with MEPs exhibited enriched 

proliferation relative to LEPs cultured alone (Fig. 3-12a). In contrast, MEPs were equally 

 
 
Figure 3-12: LEP-MEP co-culture induces TGF-b paracrine signaling, enrichment in proliferative LEPs.   
(A) Sample classification densities for co-cultured LEPs (dark red, middle left) and LEPs cultured alone (blue, middle right) projected 
onto gene expression space containing resting (black) and proliferative (green) LEPs identified using MKI67 expression (left). LEP-
MEP co-culture conditions are associated with enhanced TGFBI expression (right; *** = Wilcoxon rank sum test (two-sided), p = 
3.1x10-6) and proliferation (table).  
(B) Sample classification densities for co-cultured MEPs (dark red, middle left) and MEPs cultured alone (green, middle right) 
projected onto gene expression space containing resting (black) and proliferative (blue) MEPs identified using MKI67 expression 
(left). LEP-MEP co-culture conditions are associated with enhanced TGFBI expression (right; *** = Wilcoxon rank sum test (two-
sided), p = 1.5x10-6) but not proliferation (table). 
 



 59 

proliferative when cultured alone or with LEPs (Fig. 3-12b). Second, we observed that non-

proliferative co-cultured MEPs and LEPs are enriched for TGFBI expression relative to MEPs and 

LEPs cultured alone (Fig. 3-12c). 

We next used hierarchical clustering to assess how LEPs or MEPs responded to signaling 

molecule exposure. HMECs exposed to the EGFR ligands AREG and EGF exhibited gene 

expression profiles that were significantly different from control cells. AREG- and EGF-stimulated 

LEPs expressed increased levels of EGFR signaling genes (e.g., DUSP4) [38] and genes up-

regulated in HER2+ breast cancers (e.g., PHLDA1) [39] relative to control LEPs (Fig. 3-13a. 

AREG- and EGF-stimulated MEPs also express high levels of known EGFR-regulated genes 

(e.g., ANGPTL4; Fig. 3-13b) [40]. 

 

 

 
Figure 3-13: Detection of EGFR signaling responses in MEPs and LEPs.   
(A) Hierarchical clustering and differential gene expression (DEG) analysis results summarized as annotated heatmap for resting 
LEPs grouped by treatment. Emphasized genes are known EGFR signaling targets. RNA UMI abundances are scaled from 0-1 for 
each gene. Values correspond to the average expression within each signaling molecule treatment group. Dendrogram labels: E = 
EGF, W = WNT4, A = AREG, I = IGF-1, R = RANKL, C = Control. 
(B) Same analysis as described in Fig. 3-13a except for resting MEPs. 
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3.3.6 MULTI-seq identifies low-RNA cells in cryopreserved, primary PDX samples 

 Using scRNA-seq to analyze archival primary tissue samples is often difficult because 

these samples can have low cell viability that is compounded during cryopreservation, thawing, 

enzymatic digestion, and scRNA-seq sample preparation. We investigated whether the rapid and 

non-perturbative nature of MULTI-seq barcoding would enable cryopreserved tissue multiplexing 

using samples dissected from a PDX mouse model of metastatic triple-negative breast cancer 

[41]. In this model system, the diameter of primary tumors was used as a proxy for metastatic 

 
 
Figure 3-14. MULTI-seq application to cryopreserved organs isolated from PDX models of triple negative breast cancer.  
(A) Representative histology of lung tissue illustrates metastatic progression in early, mid, and late-stage PDX mice. Metastases 
denoted with black arrows.  
(B) Schematic overview of MULTI-seq PDX experiment.  
(C) MULTI-seq sample classifications (WT, early, mid, late tumor progression) mapped onto barcode space. Replicate tissues are 
denoted as ‘A’ or ‘B’.  
(D) Mouse immune cells in gene expression space colored according to tissue of origin. Lung immune cells (brown) cluster separately 
from primary tumor immune cells (teal) 
(E) Bar plots describing the proportion of mouse (pink) and human (blue) cells detected during FACS enrichment and detected in the 
final 10x dataset. 
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progression in the lung (Fig. 3-14a). We barcoded 9 distinct samples representing primary tumors 

and lungs from early- and mid-stage PDX mice (in duplicate), one late-stage PDX mouse, and a 

single lung from an immunodeficient mouse without tumors (Fig. 3-14b). We then pooled FACS-

enriched populations of barcoded hCD298+ human metastases with mCD45+ mouse immune 

cells prior to “super-loading” a single 10X Genomics microfluidics lane. 

Quality-control filtering, sample classification, and doublet removal resulted in a final 

scRNA-seq dataset of 9,110 mouse and human singlets spanning all 9 samples (Fig. 3-14c). 

Classification accuracy was supported by tissue-specific gene expression patterns (Fig. 3-14d) 

and comparisons to FACS enrichment results (Fig. 3-14e). Additionally, MULTI-seq 

classifications identified high-quality single-cell transcriptomes that would have been discarded 

using standard quality-control workflows (e.g., CellRanger RNA UMI inflection point threshold = 

1350, Fig. 3-15). When comparing cells with 100-1350 RNA UMIs, classified cells included 

immune cell types that are difficult to detect using single-cell and bulk transcriptomics (e.g., 

neutrophils) [42]. Strikingly, 90.8% of sequenced neutrophils would have been discarded by 

 
Figure 3-15. MULTI-seq classifications facilitate low-RNA and low-quality cell deconvolution. CellRanger discards cells 
barcodes with low RNA UMI counts (red dotted line). Gene expression profiles for classified low-RNA cells reflect established 
immune cell types (top right). Unclassified low-RNA cells resemble low-quality single-cell transcriptomes (bottom right). 
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CellRanger. In contrast, unclassified low-RNA cells had poor-quality gene expression profiles 

predominantly corresponding to broken cells (Methods). 

 

3.3.7 Characterizing the lung immune response to metastatic progression 

We next sought to describe how lung immune cells respond to metastatic progression. 

Beginning with a dataset comprised of 5,690 mCD45+ cells, we identified gene expression profiles 

associated with neutrophils, monocytes and macrophages (alveolar, interstitial, and (non)-

classical monocytes), dendritic cells (mature, immature, Ccr7+, and plasmacytoid DCs), and 

endothelial cells [9,44] (Fig. 3-16a). The use of immunodeficient PDX mice resulted in a lack of 

lymphocytes (e.g., T, B, and NK cells). 

 
Figure 3-16. PDX sample multiplexing reveals immune cell proportional shifts and classical monocyte heterogeneity in the 
progressively metastatic lung. 
(A) Marker gene heat map (left) describing markers utilized for defining immune cell type annotations. RNA UMI abundances are 
scaled from 0-1 for each gene. Mouse immune gene expression space embeddings colored by cell type annotations (left) and tumor 
stage (right) are shown to the right of the heat map. CM = Classical Monocyte, NCM = Non-Classical Monocyte, Mac = Macrophage, 
Int = Interstitial, Alv = Alveolar, DC = Dendritic Cell, pDC = Plasmacytoid DC, Imm DC = Immature DC, Endo = Endothelial cell, Neu 
= Neutrophil. 
(B) Statistically-significant shifts in lung immune cell type proportions for each tumor stage relative to WT.  Two-proportion z-test with 
Bonferroni multiple comparisons adjustment, * = 0.05 > p > 10-10; ** = 10-10 > p > 10-20; *** = p < 10-20. n = 44 tumor-stage/cell type 
groups. Statistically-insignificant proportional shifts omitted. 
(C) Subsetted classical monocyte gene expression space overlaid with sample classification densities corresponding to tumor stage. 
Inset illustrates heterogeneity within late-stage classical monocytes characterized by differential expression of Thbs1 and Cd14. 
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We observed literature-supported changes in immune cell proportions and transcriptional 

state at each tumor stage. For instance, neutrophils were enriched in early-stage PDX mice while 

alveolar macrophages were depleted over the course of metastasis (Fig. 3-16b) [45,46]. 

Moreover, stage-specific transcriptional heterogeneity among classical monocytes (CMs) reflects 

previous descriptions of lung CM state transitions in PDX breast cancer models [47-50]. 

Specifically, hierarchical clustering and DEG analysis of CMs revealed that CMs from late-stage 

PDX mice fell into two distinct transcriptional states discernible by Cd14 expression (Fig. 3-16c) 

matching previous observations [48]. Genes that are differentially-expressed between CM 

subsets include genes known to influence metastatic progression (e.g., Thbs1, S100a8/9, and 

Wfdc21) [47,49,50]. To discern whether the results were primarily attributable to inter-mouse 

variability, we used Earth Mover’s Distance (EMD) [51] to quantify the magnitude of transcriptional 

dissimilarity between lung CMs from each mouse and tumor stage. These results illustrate that 

CMs from early- and mid-stage mouse replicates (scaled EMD = 0.16) were more similar than 

CMs from distinct tumor stages (scaled EMD = 0.69). 

 

3.4 Discussion 

MULTI-seq is an ideal sample multiplexing approach because it is scalable, universal, and 

improves scRNA-seq data quality. MULTI-seq is scalable because it uses inexpensive reagents, 

involves minimal sample handling, and is rapid and modular in design. MULTI-seq modularity 

enables any number of samples to be multiplexed with a single pair of ‘anchor’ and ‘co-anchor’ 

LMOs. Moreover, since LMOs are quenchable with BSA and can be incorporated during 

proteolytic dissociation, we anticipate that further method optimization will facilitate wash-free 

sample preparation workflows. When integrated with automated liquid handling, these features 
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position MULTI-seq as a powerful technology enabling ‘screen-by-sequencing’ applications (e.g., 

L10004 [52], DRUG-seq [53]) in multicellular systems (e.g., organoids, PBMCs, etc.).  

In this study, we leveraged MULTI-seq scalability to perform a 96-plex HMEC perturbation 

assay, revealing noteworthy principles for future scRNA-seq sample multiplexing experiments. 

Specifically, we observed that responses to signaling molecules were less pronounced than 

responses linked to cellular composition. For instance, co-cultured MEPs and LEPs engage in 

TGF-β signaling that is absent in the associated monocultures. In contrast, MEPs and LEPs only 

exhibited pronounced transcriptional responses to the EGFR ligands AREG and EGF in these 

data, despite the established roles of all tested signaling molecules in mammary morphogenesis. 

We speculate that rich media formulations used to expand cells, such as the M87A media (-EGF) 

used here, likely buffer cells against microenvironmental perturbations. Thus, careful 

consideration of cell-type composition and media formulation will be essential to accurately 

interpret future scRNA-seq experiments. 

Beyond its scalability, MULTI-seq improves scRNA-seq data quality in two distinct ways. 

First, MULTI-seq identifies doublets as cells associated with multiple sample indices. The ability 

to detect doublets allows for droplet-microfluidics devices to be “super-loaded”, resulting in ~5-

fold improvement in cellular throughput [13,23]. Moreover, unlike computational doublet prediction 

methods [36,37], MULTI-seq detects homotypic doublets and performs well on scRNA-seq data 

with minimal cell-type complexity. However, since computational doublet detection methods 

detect doublets formed from cells with shared sample barcodes, doublet detection should ideally 

involve a synergy of computational and molecular approaches. 

Second, MULTI-seq improves scRNA-seq data quality by ‘rescuing’ cells that would 

otherwise be discarded by quality-control workflows utilizing RNA UMI thresholds. Such workflows 

are systematically biased against cell types with low RNA content [43]. MULTI-seq classifications 

provide an orthogonal metric to RNA UMIs for distinguishing low-RNA from low-quality cells. We 
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leveraged this feature (described initially by Stoeckius et al [23]) to improve the quality of the PDX 

dataset, where MULTI-seq classifications ‘rescued’ > 90% of the sequenced neutrophils while 

avoiding misclassification of broken cells.  

Finally, MULTI-seq is universally applicable to any sample including cells or nuclei with an 

accessible plasma membrane. As a result, we used the same set of MULTI-seq reagents to 

multiplex 15 distinct cell types or nuclei from both mice and humans. Notably, CMOs outperformed 

LMOs in nuclei isolation buffers containing BSA because BSA sequesters LMOs. Additionally, we 

anticipate that MULTI-seq is compatible with sample preservation strategies such as flash-

freezing and fixation.  

We leveraged all three of these features – scalability, universality, and data quality 

improvement – to multiplex cryopreserved primary tumors and lungs dissected from PDX mouse 

models at varying stages of metastatic progression. PDX sample multiplexing requires barcoding 

cells from (i) multiple species that may (ii) down-regulate surface epitopes commonly targeted by 

antibody-based multiplexing techniques (e.g., MHC-1 [54]), and (iii) have intrinsically-low viability 

requiring minimal sample handling. MULTI-seq successfully demultiplexed every sample, 

revealing novel and literature-supported immune cell responses to metastatic progression in the 

lung. For example, while metastasis-associated shifts in neutrophil, alveolar macrophage, and 

CM proportions were previously observed, we described significant shifts in interstitial 

macrophages, dendritic cells, and non-classical monocytes that, to our knowledge, are novel and 

require further experimental validation.  

Moreover, we identified CM subsets that were discernible by Cd14 expression and genes 

with diverse effects on metastatic progression. Perplexingly, Cd14-high CMs expressing the pro-

metastatic gene Thbs1 [49] and CD14-low CMs expressing the anti-metastatic genes S100a8/9 

and Wfdc21 [50] coexisted in metastasized lungs. Since we isolated immune cells from the whole 

lung in this study, we could not discern whether CD14-high and CD14-low states were spatially 
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correlated with metastatic sites. However, MULTI-seq could be employed to spatially barcode 

distinct regions of a single metastatic lung, enabling direct interrogation of CM spatial 

heterogeneity.  

In summary, MULTI-seq broadly enables users to incorporate additional layers of 

information into scRNA-seq experiments. In the future, we anticipate that more diverse types of 

information will be targeted including spatial coordinates, time-points, species-of-origin, and 

subcellular structures (e.g., nuclei from multinucleated cells). We also anticipate that increasing 

LMO membrane residency time using alternative oligonucleotide conjugate designs may enable 

MULTI-seq applications for non-genetic lineage tracing and/or cellular competition assays. 

 

3.5 Materials and Methods 

3.5.1 Design of LMOs, CMOs, and sample barcode oligonucleotides 

Anchor and co-anchor LMO and CMO designs were adapted from Weber et al [28]. Briefly, 

the anchor LMO has a 5’ lignoceric acid (LA) modification with two oligonucleotide domains. The 

5’ end is complimentary to the co-anchor LMO, which bears a 3’ palmitic acid (PA), and the 3’ end 

is complimentary to the PCR handle of the sample barcode oligonucleotide. The sample barcode 

was designed to have three components (as in Stoeckius et al [55]): (1) a 5’ PCR handle for 

barcode amplification and library preparation, (2) an 8 base-pair barcode with Hamming distance 

>3 relative to all other utilized barcodes, and (3) a 30 poly-A tail necessary for hybridization to the 

oligo-dT region of mRNA capture bead oligonucleotides. Identically designed anchor and co-

anchor CMOs are conjugated to cholesterol at the 3’ or 5’ ends via a triethylene glycol (TEG) 

linker and are commercially available from Integrated DNA Technologies. 

 
Anchor:      {LA/Chol-TEG}−5′GTAACGATCCAGCTGTCACTTGGAATTCTCGGGTGCCAAGG-3′  
Co-anchor:      5′-AGTGACAGCTGGATCGTTAC-3′-{PA/TEG-Chol}  
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Barcode oligo:      5′-CCTTGGCACCCGAGAATTCCANNNNNNNNA30-3′ 
 

3.5.2 Anchor and co-anchor LMO synthesis 

Oligonucleotides were synthesized on an Applied Biosystems Expedite 8909 DNA 

synthesizer, as previously described [28]. Specifically, Hexadecanoic (palmitic) acid, 

tetracosanoid (lignoceric) acid, N,N- diisopropylethylamine (DIPEA), N,N-diisopropylcarbodiimide 

(DIC), N,N-dimethylformamide (DMF), methylamine, ammonium hydroxide, and piperidine were 

obtained from Sigma-Aldrich. HPLC grade acetonitrile (CH3CN), triethylamine (NEt3), acetic acid, 

and anhydrous dichloromethane (CH2Cl2) were obtained from Fisher Scientific. 6-(4- 

Monomethoxytritylamino)hexyl-(2-cyanoethyl)-(N,N-diisopropyl)-phosphoramidite (5’-Amino- 

Modifier C6 Phopshoramidite), standard phosphoramidites, and DNA synthesis reagents were 

obtained from Glen Research. Controlled pore glass (CPG) supports (2- 

Dimethoxytrityloxymethyl-6-fluorenylmethoxycarbonylamino-hexane- 1-succinoyl)-long chain 

alkylamino-CPG (3'-Amino-Modifier C7 CPG 1000), 5'-Dimethoxytrityl-N-dimethylformamidine- 

2'-deoxyGuanosine, 3'-succinoyl-long chain alkylamino-CPG (dmf-dG-CPG 1000), and 5'- 

Dimethoxytrityl-N-Acetyl-2'-deoxyCytidine, 3'-succinoyl-long chain alkylamino-CPG (Ac-dC- CPG 

1000) synthesis columns were obtained from Glen Research. All materials were used as received 

from manufacturer. 

For the anchor LMO, after synthesis of the DNA sequence, the 5’ end was modified with 

an amine using 5’-Amino-Modifier C6 Phosphoramidite (100 mM) and a custom 15-minute 

coupling protocol. After synthesis of 5′ amino-modified DNA, the MMT protecting group was 

removed manually on the synthesizer by priming alternately with deblock and dry CH3CN at least 

three times until yellow color disappears. CPG beads were dried by priming several times with 

dry Helium gas. For the 3′ FMOC-protected amino-modified CPG, prior to oligonucleotide 

synthesis, the FMOC group was removed by suspending the CPG in a solution of 20% piperidine 
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in dimethylformamide for 10 minutes at room temperature. The beads were then washed three 

times each with DMF and CH2Cl2. This procedure was repeated twice more to ensure complete 

deprotection of the FMOC protecting group prior to coupling to the fatty acid. Residual solvent 

was removed with reduced pressure on a Savant SPD121P SpeedVac System (ThermoFisher).  

Fatty acid conjugation was performed on solid support by coupling the carboxylic acid 

moiety of the fatty acid to the 3’ or 5’ free amine—lignoceric acid and palmitic acid for the anchor 

and co-anchor, respectively. The solid support was transferred to a microcentrifuge tube and 

resuspended in a solution of anhydrous dichloromethane containing 200 mM fatty acid, 400 mM 

DIPEA, and 200 mM DIC. The microcentrifuge tubes were sealed with parafilm, crowned with a 

cap lock, and shaken overnight at room temperature. The beads were then washed 3X with 

CH2Cl2, 3X with DMF, and 2X CH2Cl2. Oligonucleotides were then deprotected and cleaved 

from solid support by suspending the resin in a 1:1 mixture of ammonium hydroxide and 40% 

methylamine (AMA) for 15 minutes at 65 °C with a cap lock followed by evaporation of AMA with 

a Savant SPD121P SpeedVac System. Cleaved oligonucleotides were dissolved in 0.7 mL of 0.1 

M triethylammonium acetate (TEAA) and filtered through 0.2 μM Ultrafree-MC Centrifugal Filter 

Units (Millipore) to remove any residual CPG support prior to HPLC purification.  

Fatty acid-modified oligonucleotides were purified from unmodified oligonucleotides by 

reversed-phase high-performance liquid chromatography (HPLC) using an Agilent 1200 Series 

HPLC System outfitted with a C8 column (Hypersil Gold, Thermo Scientific) and equipped with a 

diode array detector (DAD) monitoring at 230 and 260 nm. For HPLC purification, Buffer A was 

0.1 M TEAA at pH 7 and buffer B was CH3CN. running a gradient between 8 and 95% CH3CN 

over 30 minutes. Pure fractions were collected manually and lyophilized. The resulting powder 

was then resuspended in distilled water and lyophilized again two more times to remove residual 

TEAA salts prior to use. Purified fatty acid-modified oligonucleotides were resuspended in distilled 
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water and concentrations were determined by measuring their absorbance at 260 nm on a 

Thermo-Fischer NanoDrop 2000 series. 

 

3.5.3 Cell culture 

For the proof-of-concept scRNA-seq and snRNA-seq experiments, HEK293 cells, 

HMECs, Jurkat cells, and MEF cells were maintained at 37 °C with 5% CO2. HEK293 and MEF 

cells were cultured in Dulbecco’s Modified Eagle’s Medium, High Glucose (DMEM H-21) 

containing 4.5 g/L glucose, 0.584 g/L L-glutamine, 3.7 g/L NaHCO3, supplemented with 10% fetal 

bovine serum (FBS) and penicillin/streptomycin (100 U/mL and 100 μg/mL, respectively). HMECs 

were cultured in M87A media [34] with or without 24 hours of stimulation with 5 ng/mL human 

recombinant TGF-β (Peprotech). Jurkat cells were cultured in RPMI-1640 with 25 mM HEPES 

and 2.0 g/L NaHCO3 supplemented with 10% FBS and penicillin/streptomycin (100 U/mL and 

100 μg/mL, respectively).  

For the 96-sample HMEC experiments, fourth passage HMECs were lifted using 0.05% 

trypsin-EDTA for 5 minutes. The cell suspension was passed through a 45 μm cell strainer to 

remove any clumps. The cells were washed with M87A media once and resuspended at 107 

cells/mL. The cells were incubated with 1:50 APC/Cy-7 anti-human/mouse CD49f (Biolegend, 

#313628) and 1:200 FITC anti-human CD326 (EpCAM) (Biolegend, #324204) antibodies for 30 

minutes on ice. The cells were washed once with PBS and resuspended in PBS with 2% BSA 

with DAPI at 2-4 million cells/mL. Cells were sorted on BD FACSAria III. DAPI+ cells were 

discarded. LEPs were gated as EpCAMhi/CD49flo and MEPs were gated as EpCAMlo/CD49fhi 

(Fig. 3-17) [56].  

Notably, this gating strategy results in trace numbers of MEPs and LEPs sorted incorrectly. 

HMEC sub-populations were sorted into 24-well plates such that wells contained LEPs only,   
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MEPs only, or a 2:1 ratio of LEPs to MEPs. Sorted cell populations were cultured for 48 hours in 

M87A media before culturing for 72 hours in M87A media (-EGF) supplemented with different 

signaling molecules or signaling molecule combinations. Specifically, M87A media (-EGF) was 

supplemented with 100 ng/mL RANKL, 100 ng/mL WNT4, 100 ng/mL IGF-1, 113 ng/mL AREG, 

and/or 5 ng/mL EGF (all from Peprotech) alone or in all possible pairwise combinations. For the 

96-sample HMEC technical replicate experiment, in vitro cultures were prepared as described 

above, except all sorted wells contained both LEPs and MEPs. Cultures were then grown in 

complete M87A media for 72 hours prior to isolation. 

 

3.5.4 Analytical Flow Cytometry  

The BD FACSCalibur instrument was used to perform analytical flow cytometry 

experiments measuring live-cell and nuclear membrane labeling efficiency, LMO and CMO 

membrane residency kinetics on ice and at room temperature, and efficacy of BSA quenching 

 
 
Figure 3-17. FACS purification of LEP and MEP cells from bulk HMECs.  Bulk HMECs were labeled with FITC anti-EpCAM and 
APC-Cy7 anti-CD49f to identify and isolate LEPs and MEPs. LEPs are identified as EpCAM high and CD49f low, while MEPs are 
CD49f high and EpCAM low. Gating strategy causes minor cell type impurities in final sorted population [56]. 
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(Fig. 3-2). HEK293 cells and nuclei were utilized for all experiments. Samples were prepared 

using the same workflows as proof-of-concept scRNA-seq and snRNA-seq experiments with one 

exception. In place of barcode oligonucleotides, anchor LMOs or CMOs were pre-hybridized to 

equimolar concentrations of FAM- or AF647-conjugated oligonucleotides matching the barcode 

oligonucleotide 5’ PCR handle excluding the barcode and poly-A regions.  

For titration experiments, 5x105 cells or nuclei were suspended in 180 μL cold PBS 

followed by addition of 20 μL 10X anchor LMO or CMO pre-mixed with equimolar complimentary 

oligonucleotide conjugated to AF647 (final concentrations of 10 nM, 50 nM, 100 nM, 500 nM, or 

1000 nM). Cells were incubated on ice for 5 minutes followed by addition of 20 μL of 10X stock 

corresponding co-anchor. The experiment was repeated three times, mean fluorescence intensity 

was calculated for each condition, and linear regression was performed. For exchange 

experiments, HEK293 cells were labeled with 200 nM LMOs or CMOs bearing FAM- or AF647- 

conjugated oligonucleotides. FAM- and AF647-labeled cells were then mixed and kept on ice for 

2 hours in PBS with 1% BSA (2% for nuclei), during which cell aliquots were analyzed every 30 

minutes. For room temperature experiments, cells were incubated for 30 minutes at room 

temperature and analyzed every 10 minutes. Label stability was computed as proportional 

differences between FAM or AF647 intensity relative to time zero. Off-target labeling was 

computed as FAM abundance on AF647-labeled cells (or vice versa). Fluorophore only controls 

were included in nuclei flow cytometry experiments because fluorophore-conjugated 

oligonucleotides demonstrate non-specific labeling.  

For BSA quenching experiments, HEK293 cells were labeled with 200 nM LMOs or CMOs 

in 100 μL total volume PBS as described above. Prior to washing, each sample was diluted with 

ice cold PBS or PBS containing 1% BSA followed by centrifugation (160 rcf, 4 °C, 4 min). The 

150 μL supernatant was removed from each primary labeling mixture and used to resuspend 

unlabeled HEK293 cells (secondary labeling). All primary and secondary labeled cells were 
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washed 3X with ice cold PBS containing 1% BSA and analyzed by flow cytometry. Each 

secondary labeled sample was plotted as a proportion of the primary labeled sample. All analytical 

flow cytometry data analyses were performed in FlowJo and R.  

 

3.5.5 scRNA-seq sample preparation 

For the proof-of-concept experiment, cells were first treated with trypsin for 5 minutes at 

37 °C in 0.05% trypsin-EDTA before quenching with appropriate cell culture media. Single-cell 

suspensions were then pelleted for 4 minutes at 160 rcf and washed once with PBS before 

suspension in 90 μL of a 200 nM solution containing equimolar amounts of anchor LMO and 

sample barcode oligonucleotides in PBS. Anchor LMO-barcode labeling was performed for 5 

minutes on ice before 10 μL of 2 μM co-anchor LMO in PBS (for a final concentration of 200 nM) 

was added to each cell pool. Following gentle mixing, the labeling reaction was continued on ice 

for another 5 minutes before cells were washed twice with PBS, resuspended in PBS with 0.04% 

BSA, filtered, and pooled. The same workflow was also performed with CMOs. LMO-, CMO-, and 

unlabeled control cells were then loaded into three distinct 10X microfluidics lanes.  

For the original 96-plex HMEC experiment, LMO labeling was performed during 

trypsinization in order to minimize wash steps and thereby limit cell loss and preserve cell viability. 

HMECs cultured in 24-well plates were labeled for 5 minutes at 37 °C and 5% CO2 in 190 μL of 

a 200 nM solution containing equimolar amounts of anchor LMO and sample barcode 

oligonucleotides in 0.05% trypsin-EDTA. 10 μL of 4 μM co-anchor LMO in 0.05% trypsin-EDTA 

was then added to each well (for a final concentration of 200 nM) and labeling/trypsinization was 

continued for another 5 minutes at 37 °C and 5% CO2 before quenching with appropriate cell 

culture media. A similar labeling protocol was used for the technical replicate experiment, except 

LMOs were incorporated once the cells were in single-cell suspension. Cells were then 

transferred to a 96-well plate for washing with 0.04% BSA in PBS. Finally, cells were pooled into 
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a single aliquot, filtered through a 0.45 μm cell strainer, and counted before loading 10X 

microfluidics lanes.  

For the PDX experiment, primary tumors and lungs were cryopreserved after dissection 

from triple-negative breast cancer PDX models generated in NOD-SCID gamma (NSG) mice as 

described previously [57]. The UCSF Institutional Animal Care and Use Committee (IACUC) 

reviewed and approved all animal experiments. On the day of the experiment, cryopreserved 

tissues were thawed and dissociated in digestion media containing 50 μg/mL Liberase TL (Sigma-

Aldrich) and 2×104 U/mL DNase I (Sigma-Aldrich) in DMEM/F12 (Gibco) using standard 

GentleMacs protocols. Dissociated cells were then filtered through a 70 μm cell strainer to obtain 

a single-cell suspension prior to washing with PBS. Cells were then stained for 15 minutes on ice 

with 1:500 Zombie NIR (BioLegend, #423105) viability dye in PBS. Cells were then washed with 

2% FBS in PBS prior to blocking for 5 minutes on ice with 100 μL 1:200 Fc-block (Tonbo, #70–

0161-U500) in 2% FBS in PBS. After blocking, cells were stained for 45 minutes on ice with 100 

μL of an antibody cocktail containing anti-mouse TER119 (FITC, ThermoFisher, #11-5921-82), 

anti-mouse CD31 (FITC, ThermoFisher, #11-0311-85), anti-mouse CD45 (BV450, Tonbo, #75–

0451-U100), anti-mouse MHC-I (APC, eBioscience, #17-5999-82) and anti-human CD298 (PE, 

BioLegend, #341704). Cells were then washed with PBS prior to MULTI-seq labeling for 5 minutes 

on ice with 100 μL of 2.5 μM anchor LMO-barcode in PBS. 20 μL of 15 μM co- anchor LMO in 

PBS was added to each cell pool (for a final concentration of 2.5 μM) and labeling was continued 

for another 5 minutes.  

Notably, we used a 10-fold greater LMO concentration for this experiment to account for 

increases in the total number of cells and lipophilic molecules remaining after dissociation. 

Following LMO labeling, cells were diluted with 100 μL of 2% FBS in PBS to ‘quench’ LMOs and 

washed once in 2% FBS in PBS. Finally, mCD45+ mouse immune cells and hCD298+ human 

metastases from dissociated primary tumors and lungs were pooled after FACS enrichment, as 
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described previously [57] (Fig. 3-18). Cell pools were then sequenced in a single 10X microfluidics 

lane. 

 

3.5.6 snRNA-seq sample preparation 

For the Jurkat cell activation time-course, 2×105 Jurkat cells were added to 8 wells of a 

12-well plate and treated with 10 ng/μL phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich 

#P8139) and 1.3 μM ionomycin (Sigma-Aldrich #I0634) at 15 min, 30 min, 1 hr, 2 hr, 4 hr, 6 hr, or 

24 hr prior to barcoding with LMOs. A single well of Jurkat cells were left untreated. HEK293 and 

MEF cells were cultured as described above. Nuclei were isolated from cells using a protocol 

adapted from 10X Genomics. Briefly, suspensions of HEK293, MEF, or treated Jurkat cells were 

washed once with PBS, pelleted at 160 rcf (HEK293, MEFS) or 300 rcf (Jurkat) for 4 min at 4 °C 

and suspended in chilled lysis buffer (0.5% Nonidet P40 Substitute, 10 mM Tris-HCl, 10 mM NaCl, 

and 3 mM MgCl2 in milliQ water) to a density of 2.5 × 106 cells/mL. Lysis proceeded for 5 minutes 

 
 
Figure S-18. FACS gating strategy for PDX lung and primary tumor samples  
(A) Human metastases and mouse immune cells were separated from PDX mouse lungs using hCD298 and mCD45 following gating 
for live singlets. Mouse 847 (Sample L-A) is presented here as a representative example. 
(B) Human primary tumor cells and mouse tumor-associated immune cells were separated using hCD298 and mCD45 following gating 
for live, singlets. Sample A is presented here as a representative example for all other primary tumor samples. 
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on ice, after which the lysate was pelleted (500 rcf, 4 °C, 4 minutes) and washed three times in 

chilled resuspension buffer (2% BSA in PBS). Nuclei were then diluted to a concentration of ~106 

nuclei/mL prior to LMO or CMO labeling. HEK293 and MEF cells were each divided into two 

samples and labeled with LMOs or CMOs (500 nM in resuspension buffer) using the same 

procedure as described for live cells (presence of BSA during labeling is the lone alteration as it 

is required to prevent nuclei clumping). Each Jurkat sample was labeled with LMOs, alone. Each 

sample was washed 3X in 1mL resuspension buffer (500 rcf, 4 °C, 4 min). The four LMO- and 

CMO-labeled HEK293 and MEF samples were pooled in equal portions and, separately, Jurkat 

samples were pooled in equal proportions. These final two samples were combined in a 1:1 ratio 

and sequenced on a single 10X microfluidics lane.  

 

3.5.7 scRNA-seq and snRNA-seq library preparation 

Sequencing libraries were prepared using a custom protocol based on the 10X Genomics 

Single Cell V2 and CITE-seq [55] workflows. Briefly, the 10X workflow was followed up until cDNA 

amplification, where 1 μL of 2.5 μM MULTI-Seq additive primer was added to the cDNA 

amplification master mix:  

 

MULTI-seq Additive Primer:  5′-CCTTGGCACCCGAGAATTCC-3′  
 

This primer increases barcode sequencing yield by enabling the amplification of barcodes 

that successfully primed reverse transcription on mRNA capture beads but were not extended via 

template switching (Fig. 3-19). Notably, the MULTI-seq additive primer was erroneously excluded 

during the proof-of-concept snRNA-seq library preparation, and nuclei were still able to be 

robustly classified. Following amplification, barcode and endogenous cDNA fractions were 

separated using a 0.6X SPRI size selection. The endogenous cDNA fraction was then processed 
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according to the 10X workflow until next-generation sequencing (NGS) with the following formats: 

Proof-of-concept scRNA-seq (2x HiSeq 4000, 100%), Proof-of-concept snRNA-seq (NovaSeq, 

20%), HMEC (NovaSeq S4, 100%), HMEC technical replicate (NovaSeq S4, 5%), PDX (NovaSeq 

S4, 70%) 

 

To prepare the barcode fraction for NGS, contaminating oligonucleotides remaining from 

cDNA amplification were first removed using an established small RNA enrichment protocol 

(Beckman Coulter). Specifically, we increased the final SPRI ratio in the barcode fraction to 3.2X 

reaction volumes and added 1.8X reaction volumes of 100% isopropanol (Sigma-Aldrich). Beads 

were then washed twice with 400 μL of 80% ethanol and allowed to air dry for 2-3 minutes before 

elution with 50 μL of Buffer EB (Qiagen, USA). Eluted barcode cDNA was then quantified using 

QuBit before library preparation PCR (95 °C, 5’; 98 °C, 15”; 60 °C, 30”; 72 °C, 30”; 8 cycles; 72 

 
Figure 3-19. Bioanalyzer traces of representative MULTI-seq barcode library.  
(A) Bioanalyzer traces following cDNA amplification and MULTI-seq barcode enrichment using 3.2X SPRI with 1.8X 100% 
isopropanol exhibits two distinct peaks. Bioanalyzer traces are representative of all datasets presented in this study (n = 4). The first 
peak (p1) is an average of 65-70 base-pairs in length and likely corresponds to barcodes amplified via the MULTI-seq additive primer. 
The second peak (p2) is an average of 100 base-pairs in length and likely corresponds to barcodes that successfully underwent 
MMLV-RTase template switching and were subsequently amplified by the standard 10X Genomics Single Cell V2 primer.  
(B) Bioanalyzer analysis following library preparation PCR exhibits one distinct peak (p3) with an average length of 173 base-pairs, 
matching expectations. Bioanalyzer traces are representative of all datasets presented in this study (n = 4). 
(C) Schematic illustrating the two species of reverse-transcribed MULTI-seq barcodes with and without template switching. 
Processive reverse-transcription without template switching (p1) is more likely than reverse-transcription with template switching (p2), 
resulting in relative enrichment of the 65-70 base-pairs product following cDNA amplification. 
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°C, 1’; 4 °C hold). Each reaction volume was a total of 50 μL containing 26.25 μL 2X KAPA HiFi 

HotStart master mix (Roche), 2.5 μL of 10 μM TruSeq RPIX primer (Illumina), 2.5 μL of 10 μM 

TruSeq Universal Adaptor primer (Illumina), 3.5 ng barcode cDNA, and nuclease-free water.  

 
TruSeq RPIX:  

 
5′-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA-3′ 

 
TruSeq P5 Adaptor:   

 
5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3′ 

 

To prepare the barcode fraction for NGS, contaminating oligonucleotides remaining from 

cDNA amplification were first removed using an established small RNA enrichment protocol 

(Beckman Coulter). Specifically, we increased the final SPRI ratio in the barcode fraction to 3.2X 

reaction volumes and added 1.8X reaction volumes of 100% isopropanol (Sigma-Aldrich). Beads 

were then washed twice with 400 μL of 80% ethanol and allowed to air dry for 2–3 minutes before 

elution with 50 μL of Buffer EB (Qiagen, USA). Eluted barcode cDNA was then quantified using 

QuBit before library preparation PCR (95 °C, 5’; 98 °C, 15”; 60 °C, 30”; 72 °C, 30”; 8 cycles; 72 

°C, 1’; 4 °C hold). Each reaction volume was a total of 50 μL containing 26.25 μL 2X KAPA HiFi 

HotStart master mix (Roche), 2.5 μL of 10 μM TruSeq RPIX primer (Illumina), 2.5 μL of 10 μM 

TruSeq Universal Adaptor primer (Illumina), 3.5 ng barcode cDNA, and nuclease-free water.  

Following library preparation PCR, remaining sequencing primers and contaminating 

oligonucleotides were removed via a 1.6X SPRI clean-up. Barcode libraries were sequenced 

using the following NGS formats: Proof-of-concept scRNA-seq LMO (HiSeq 4000, 33.3%), Proof-

of-concept scRNA-seq CMO (HiSeq 4000, 33.3%), HMEC (HiSeq 4000, 100%), HMEC technical 

replicate (HiSeq 4000 50%), PDX (NovaSeq S4, 2.5%), Proof-of-concept snRNA-seq LMO 

(NovaSeq S4, 1.25%), Proof-of-concept snRNA-seq CMO (NovaSeq S4, 1.25%). Notably, 

sequencing reads predominantly aligned to the barcode reference sequences (average of 97.0% 
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across all datasets), and resulted in high SNRs with low rates of duplicated UMIs (average of 

16.07% across all datasets), suggesting that barcode libraries were not sequenced to saturation. 

 

3.5.8 Expression library pre-processing 

Expression library FASTQs were pre-processed using CellRanger (10X Genomics) and 

aligned to the hg19 (proof-of-concept scRNA-seq, HMEC), concatenated mm10-hg19 (PDX), or 

concatenated mm10-hg19 pre-mRNA (proof-of-concept snRNA-seq) reference transcriptomes. 

When multiple 10X lanes were sequenced in an experiment, CellRanger aggregate was used to 

perform read-depth normalization.  

 

3.5.9 Cell/Nuclei calling 

For the proof-of-concept scRNA-seq, snRNA-seq and HMEC technical replicate 

experiments, cell-associated barcodes were defined using CellRanger. For the original 96-plex 

HMEC experiment, cells were defined as cell barcodes (1) associated with >= 600 total RNA UMIs 

that (2) were successfully classified during MULTI-seq sample classification workflow. We 

manually selected 600 RNA UMIs as a threshold in order to exclude low-quality cell barcodes. 

For the PDX experiment, we defined cells as barcodes (1) associated with >= 100 total RNA UMIs 

that (2) were successfully classified during the MULTI-seq sample classification workflow. 

 

3.5.10 Expression library analysis 

Following pre-processing and cell/nuclei calling, RNA UMI count matrices were prepared 

for analysis using the ‘Seurat’ R package, as described previously [58,59]. Briefly, genes 

expressed in fewer than 3 cells were discarded before the percentage of reads mapping to 

mitochondrial genes (%Mito) was computed for each cell. Outlier cells with elevated %Mito were 

visually defined and discarded. Data was then log2-transformed, centered, and scaled before 
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variance due to %Mito and the total number of RNA UMIs were regressed out. Highly variable 

genes were then defined for each dataset by selecting mean expression and dispersion 

thresholds resulting in ~2000 total genes. These variable genes were then used during PCA, and 

statistically-significant PCs were defined by PC elbow plot inflection point estimation. Significant 

PCs were then utilized for unsupervised Louvian clustering and dimensionality reduction with t-

SNE [60]. Following pre-processing, differential gene expression analysis was performed using 

the ‘FindMarkers’ command in ‘Seurat’, with ‘test.use’ set to ‘bimod’ [61]. 

 

3.5.11 Proof-of-concept scRNA-seq and snRNA-seq analyses 

Testing the effects of MULTI-seq barcoding on scRNA-seq and snRNA-seq data: MULTI-

seq could negatively influence scRNA-seq and snRNA-seq data in two main ways: by (1) 

competing with endogenous mRNAs for capture bead hybridization regions, or (2) inducing a 

transcriptional response to LMO or CMO labeling. To test these possibilities, we first parsed our 

proof-of-concept scRNA-seq and snRNA-seq datasets to include only HEK293 (HEK) cells and 

MEF nuclei, respectively. Focusing on individual cell types ensures that any observed 

performance differences are primarily due to technical and not biological reasons.  

All HEK cells and MEF nuclei subsets were indistinguishable with regards to the total 

number of detected RNA UMIs and genes (Figs. 3-4c, 3-6b). Moreover, barcode and RNA UMIs 

were not negatively correlated (Figs. 3-4c, 3-6b). These observations suggest that MULTI-seq 

barcodes do not detrimentally compete with endogenous transcripts during mRNA capture. 

Additionally, LMO-, CMO-, and unlabeled HEK cells and MEF nuclei exhibited similar proportions 

of reads aligning to mitochondrial genes (Figs. 3-4c, 3-6b); therefore, LMO and CMO labeling are 

unlikely to induce an apoptotic cellular response. To explore whether MULTI-seq labeling perturbs 

endogenous gene expression in other ways, we compared the proportion of each cell/nuclei’s 100 

nearest neighbors in principal component (PC) space that were derived from LMO-, CMO-, or 
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unlabeled subsets. Neighborhoods were defined by computing the Euclidean distance matrix for 

statistically-significant PCs with the ‘rdist’ R function.  

For HEK cells, neighborhood analysis revealed that CMO-labeled cells preferentially co-

localized in gene expression space, while LMO-labeled and unlabeled neighborhoods were nearly 

indistinguishable (Fig. 3-4d). We then performed differential gene expression analysis between 

HEKs from each sample group, which demonstrated that 3 and 8 genes were 1.5-fold enriched in 

LMO- or CMO-labeled HEKs relative to unlabeled controls, respectively (Table 3-1). Intriguingly, 

even after only < 1 hour on ice, CMO-labeled HEKs exhibited differential expression of AP2B1, 

which has established roles in cholesterol and sphingolipid transport. When considered along with 

flow cytometry analyses demonstrating that CMOs exhibit reduced live-cell membrane residency 

compared to LMOs (Fig. 3-2b), these results collectively illustrate that LMOs are the preferred 

reagent for scRNA-seq sample multiplexing.  

In contrast to HEK cells, MEF nuclei from each labeling condition had uniform 

neighborhood proportions (Fig. 3-4c). Additionally, we did not detect any genes that were 

Table 3-1. List of genes with >1.5-fold expression difference between LMO/CMO-labeled and unlabeled HEKs from proof-of-concept 
scRNA-seq experiment. 
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differentially expressed > 0.7-fold between LMO-, CMO-, and unlabeled nuclei. These results 

demonstrate that the transcriptional response to CMO labeling observed in HEK cells was absent 

in nuclei. Moreover, we observed a ~10-fold increase in barcode nUMIs for CMO-labeled MEF 

nuclei relative to LMO-labeled nuclei (Fig. 3-4b). This observation was in-line with our previous 

flow cytometry titration experiments (Fig. 3-2c). We believe that this difference in sample barcode 

capture efficiency was due to the presence of BSA in nuclei resuspension buffer, which is 

necessary to prevent aggregation nuclei purification. BSA has a lipid-binding pocket which likely 

sequesters LMOs, leading to reduced sample barcode association with the nuclear membrane. 

When considered along with the commercial-availability of CMOs, these results collectively 

illustrate that CMOs are the preferred reagent for snRNA-seq sample multiplexing.  

 

3.5.12 96-plex HMEC scRNA-seq analyses 

Doublet analysis, comparison to computational doublet prediction methods: To fit 

DoubletFinder [36] parameters to our 96-plex HMEC scRNA-seq data, we began by performing 

a parameter sweep using the ‘paramSweep’ function in the ‘DoubletFinder’ R package. Ideal 

parameters were then defined using the ‘summarizeSweep’ function, which uses receiver 

operating curve analysis to compute the predictive capacity of each parameter set relative to 

ground-truth doublet labels. We used MULTI-seq doublet classifications as ground-truth in this 

application. With ideal parameters defined (e.g., pN = 0.25, pK = 0.03), we then thresholded 

DoubletFinder results by adjusting the total number of MULTI-seq-defined doublets to account for 

homotypic doublet formation. Homotypic doublets are doublets that are formed from 

transcriptionally-similar cells and are known to be undetectable using computational doublet 

detection methods that rely solely on gene expression features [36,37]. To account for homotypic 

doublets, we multiplied the total doublet number (3413) by the sum of squared cell type 

frequencies (0.51), resulting in 1738 total doublet predictions.  
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Exploring transcriptional responses to cell type composition: To explore the transcriptional 

responses to cell type composition, we began by pre-processing data subsets containing only 

MEPs or LEPs. Separating cell types revealed distinct resting and proliferative MEP and LEP 

subsets discernible by enriched MKI67 expression (Fig. 3-12). To assess whether co-culture 

influenced proliferation, we specified subsets of cells where each cell type composition (e.g., 

mono- or co-cultures) were equally abundant. We then determined whether mono- and co-

cultured cells were evenly represented in the resting and proliferative states. Down-sampling in 

this fashion revealed that the co-culture-induced increase in proliferation was specific to LEPs 

while controlling for differences  in the total numbers of cells from each comparison group. 

Focusing on the resting cells, we next pre-processed data subsets containing equal 

numbers of resting MEPs or LEPs from each sample condition. We then computed the average 

TGFBI expression amongst MEPs and LEPs grouped by signaling molecule exposure and 

observed that co-cultured LEPs and MEPs were associated with elevated TGFBI expression 

independent of perturbation (Fig. 3-12). In our proof-of-concept scRNA-seq experiment, we 

observed that TGFBI expression is increased specifically in HMECs responding to TGF-β (data 

not shown). Thus, these results suggest that co-culturing induces paracrine-mediated TGF-β 

signaling in both LEPs and MEPs.  

Exploring transcriptional responses to signaling molecule perturbation: Using the same 

dataset employed in the TGFBI analysis described above, we next sought to characterize 

transcriptional responses to signaling molecules. To this end, we grouped cells according to 

signaling molecule exposure and performed hierarchical clustering on the average gene 

expression profile for each group using the ‘BuildClusterTree’ function in ‘Seurat’. Hierarchical 

clustering revealed two distinct clades corresponding to cells stimulated with (1) the EGFR ligands 

AREG and EGF and (2) RANKL, IGF1, or WNT4. Notably, AREG/EGF stimulation dominated the 
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effect of RANKL/IGF1/WNT4, as cells grown in media supplemented with both AREG/EGF and 

RANKL/IGF1/WNT4 remained members the EGFR ligand clade.  

Differential gene expression analysis between these two clades revealed that AREG/EGF 

stimulated cells expressed elevated levels of a number of EGFR signaling target genes (Fig. 3-

13), as expected. Differentially-expressed genes amongst RANKL/IGF1/WNT4 stimulated cells 

could not be as readily connected to their corresponding signaling pathways. This observation 

suggests that the rich media used to culture HMECs buffered the cells against 

RANKL/IGF1/WNT4 induction. This notion is further supported by the fact that cells stimulated 

with EGFR ligands – which were purposefully depleted from the M87A media used in this 

experiment – represented the most pronounced transcriptional signature amongst signaling 

molecule conditions.  

Signal-to-noise ratio (SNR) computation: SNR for singlets, doublets, and negative cells 

was calculated as the quotient of the two most abundant raw barcode UMI abundances for each 

cell (Figs. 3-10c, 3-10f). Since cells are discarded as doublets when surpassing two or more 

barcode-specific thresholds during our sample classification workflow, we reasoned that the 

relative abundances of the top two barcodes was a sufficient SNR definition. In singlets from the 

original 96-plex HMEC experiment, on-target barcodes are an average of 199-fold higher than 

the most abundant off-target barcode. Doublets have much lower SNR but higher total barcode 

nUMIs. This observation matches expectations, as doublet formation results in the pooling of 

MULTI-seq barcodes from two cells. Negative cells exhibit very low SNR and total nUMIs, 

indicating that negative cells were not sufficiently labeled with LMOs to enable sample 

classification.  
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3.5.13 PDX scRNA-seq analyses 

MULTI-seq sample classifications distinguish low-RNA from low-quality cells: Following 

expression library pre-processing, raw RNA UMI count matrices must be parsed to define cell 

barcodes associated with intact cells versus ambient mRNA and cell debris. This challenge is 

commonly addressed by identifying the inflection point of log-log RNA UMI by RNA UMI rank 

distributions, which follows the assumption that droplets containing intact cells should feature 

elevated nUMIs. This strategy is inherently biased against cells with intrinsically low RNA content, 

and may be confounded by distributions with multiple inflection points (e.g., datasets with many 

cell types) [43].  

The RNA UMI distribution for mouse immune cells sequenced during our PDX experiment 

exemplifies this issue. Specifically, we observed a mode corresponding to cell barcodes with ~500 

total RNA UMIs that was discarded by the standard CellRanger UMI threshold (Fig. 3-15, top left). 

To assess whether this region represented intact low-RNA cells, we performed the MULTI-seq 

sample classification workflow on all cell barcodes with at least 100 RNA UMIs. We selected this 

threshold because droplets with < 100 RNA UMIs can be confidently assumed to be empty [43]. 

Intriguingly, sample classifications produced 2,580 singlets and 583 negatives amongst cells with 

RNA UMIs between 100 and the CellRanger threshold (1350 RNA UMIs).  

To test whether sample classification results could be used to distinguish low-RNA cells 

from ambient mRNA and cellular debris, we first pre-processed putative low-RNA singlets using 

‘Seurat’ and used unsupervised clustering and differential gene expression analyses to reveal 

discrete clusters in gene expression space characterized by established marker genes for 

neutrophils, monocytes, alveolar macrophages and endothelial cells (Fig. 3-16a). In contrast, 

equivalent analyses of unclassified cell barcodes with 100-1350 RNA UMIs revealed clusters 

corresponding to broken cells and a small number of neutrophils. We annotated broken cells into 

two subsets – one with enriched mitochondrial gene expression and another with elevated levels 
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of lncRNAs (e.g., Xist) and ribosomal RNAs. We speculate that the latter represents nuclei 

released from cells due to shear stress (see [23] for analogous analyses). 

Immune cell transcriptional and proportional shifts associated with metastatic progression: 

To assess whether lung immune cell type proportions shifted during metastatic progression in our 

PDX mice, we first defined a subset of cells where each tumor stage (e.g., WT, early, mid, and 

late) was equally represented. Down-sampling in this fashion controls for technical differences in 

the number of sequenced cells. We then computed the proportion of each cell type present in 

lung immune cells from each tumor stage. Statistically-significant proportional shifts relative to 

WT proportions were then defined using two-proportion z-tests (‘prop.test’ function in R) with 

Bonferroni multiple comparison correction (‘p.adjust’ function in R).  

We additionally focused on changes in classical monocyte (CM) gene expression patterns 

during metastatic progression. We began by pre-processing a dataset including only CMs using 

‘Seurat’. Unsupervised clustering of these data revealed sub-structure demarcating each tumor 

stage (Fig. 3-16c). Early-stage CMs were distinct from WT CMs despite the lack of detectable 

metastases, which suggests that this data could provide insight into CM transcriptional behavior 

during metastatic colonization. Early-stage CMs were also transcriptionally-similar to a subset of 

mid-stage CMs. However, mid- and late-stage CMs manifested as two distinct sub-states 

featuring heterogeneous expression of many genes previously linked to metastatic/aggressive 

behavior (Table 3-2).  

Computing inter-sample variability using Earth Mover’s Distance: Earth Mover’s Distance 

(EMD) measures the distance in gene expression space that is required to map two distinct high- 

dimensional manifolds onto one another. To this end, EMD is an emerging tool to quantify 

differences amongst sets of cells in scRNA-seq data. We used EMD, as implemented in the 

‘calculate_emd’ function from the ‘EMDomics’ R package [51], to quantify the variability between 

lung immune cells from biological replicate mice and mice from distinct tumor stages.  
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Specifically, we first down-sampled our existing data to include equal numbers of CMs 

from each tumor stage and mouse. Down-sampling in this fashion is necessary to control for 

differences in EMD results solely due to the total number of cells. We then extracted the PC space 

embeddings for this cell subset, and performed EMD on cells grouped by (1) tumor stage and (2) 

mouse ID. Notably, we only extracted embeddings for statistically-significant PCs (e.g., 10 for the 

CM-only dataset). We then scaled all of the EMD values from 0 to 1 and found the mean EMD 

between tumor stages and biological replicates (e.g., mice 1/4 and 2/5). CMs from biological 

replicates had a lower mean scaled EMD than CMs from each tumor stage (0.16 vs. 0.69), 

Table 3-2. List of genes with >1.5-fold expression difference between classical monocytes at distinct stages of metastatic 
progression. 
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demonstrating that the observed CM heterogeneity between different tumor stages is not solely 

attributable to variability between individual mice. 

 

3.5.14 MULTI-seq library pre-processing 

Raw barcode library FASTQs were converted to barcode UMI count matrices using 

custom scripts leveraging the ‘ShortRead’ [61] and ‘stringdist’ [62] R packages. Briefly, raw 

FASTQs were first parsed to discard reads where the first 16 bases of R1 did not perfectly match 

any of the cell barcodes associated a pre-defined list of cell barcodes. Second, reads where the 

first 8 bases of R2 did not align with < 1 mismatch to any reference barcode were discarded. 

Third, reads were binned by cell barcodes and duplicated UMIs were identified as reads where 

bases 17-26 of R2 exactly matched. Finally, reference barcode alignment results were then 

parsed to remove duplicated UMIs before being converted into a final barcode UMI count matrix. 

 

3.5.15 MULTI-seq sample classification algorithm 

MULTI-seq barcode UMI count matrices were used to classify cells into sample groups 

via a workflow inspired by previous scRNA-seq multiplexing approaches [17,18,23]. First, raw 

barcode reads were log2-transformed and mean-centered. The presence of each barcode was 

then visually inspected by performing t-SNE on the normalized barcode count matrix, as 

implemented in the ‘Rtsne’ R package with ‘initial_dims’ set to the total number of barcodes. 

Missing barcodes (observed only for the 96-plex HMEC experiment) were discerned as those 

lacking any enrichment in barcode space and were removed.  

Next, the top and bottom 0.1% of values for each barcode were excluded and the 

probability density function (PDF) for each barcode was defined by applying the ‘approxfun’ R 

function to Gaussian kernel density estimations produced using the ‘bkde’ function from the 

‘KernSmooth’ R package [63]. We then sought to classify cells according to the assumption that 
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groups of cells that are positive and negative for each barcode should manifest as local PDF 

maxima [17,18]. To this end, we computed all local maxima for each PDF and defined negative 

and positive maxima as the most frequent and highest local maxima, respectively. Notably, this 

strategy assumes that truly-barcoded cells will have the highest abundance for any given barcode, 

and that no individual sample group will have more members than the sum of all other groups.  

With these positive and negative approximations in hand, we next sought to define 

barcode- specific UMI thresholds. To find the best inter-maxima quantile for threshold definition 

(e.g., an inter-maxima quantile of 0.5 corresponds to the mid-point), we iterated across 0.02- 

quantile increments and chose the value that maximized the number of singlet classifications. 

Sample classifications were then made using these barcode-specific UMI thresholds by 

discerning which thresholds each cell surpasses, with doublets being defined as cells surpassing 

> 1 threshold [23]. Negative cells (i.e., cells surpassing 0 thresholds) were then removed, and this 

procedure was repeated until all cells were classified as singlets or doublets.  

Following this initial classification workflow, two varieties of negative classifications 

remain: true and false negatives. True negatives manifest in barcode space as high-density 

regions lacking enrichment for any particular barcode. True negatives result from cells with poor 

barcode labeling. In contrast, false negatives result from algorithmic misclassification. Since a 

single inter-maxima quantile threshold is applied to all barcodes during sample classification, we 

believe false negatives arise because this thresholding strategy may be sub-optimal for a subset 

of barcode distributions. Thus, although false negatives have poor absolute signal in comparison 

to high-confidence singlets, we reasoned that false negatives could be ‘rescued’ using a semi-

supervised approach (akin to [23]) by computing the relative strength of each barcode signal on 

a cell-by-cell basis. 

To distinguish which negative cells are the best candidates for reclassification before 

reclassifying negatives into their appropriate barcode groups, we used the following strategy:  



 89 

 

1. Repeat the original sample classification workflow, recording the total number of 94 

thresholds that each negative cell surpasses at each quantile. 

2. Compute each cell’s classification stability (CS) – defined as the number of quantiles 

across which a cell surpasses a single threshold.  

3. Subset equal numbers of ‘ground-truth’ cells from the original classification results.  

4. Perform semi-supervised k-means clustering on merged data including ‘ground-truth’ 

and negative cells. Clustering is semi-supervised because one member of each 

‘ground-truth’ sample group is used to initialize cluster centers. 

5. Compute the rate at which ‘ground-truth’ and negative cell classifications match the k- 

means results.  

6. Iteratively repeat steps 4 and 5 using a different ‘ground-truth’ cell to initialize cluster 

centers during each iteration. Repeat until all ‘ground-truth’ cells have been used.  

7. Compare k-means matching rates between ‘ground-truth’ and negative cells binned 

according to CS values. Negative cells with CS values resulting in matching rates that 

approximate ‘ground-truth’ matching rates are reclassified. 

 

Negative cell reclassification rescues 10%-20% of negative cells across the different 

datasets presented in this study (data not shown). While not insignificant, we believe that further 

optimization will improve performance.  

 

3.6 Perspective 

 Since MULTI-seq was published in 2019, efforts in the single-cell genomics sample 

multiplexing space has accelerated considerably. A slew of commercial sample multiplexing 
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products are now available from companies such as 10x Genomics, Beckton Dickinson, 

BioLegend, Singleron Biotechnologies, and Millipore-Sigma. These products will undoubtedly 

increase the adoption of sample multiplexing technologies by the broader single-cell genomics 

community, as will emerging benchmarking studies which aim to quantitatively clarify the 

strengths and weaknesses of each approach [64]. Moreover, technological development in the 

sample-multiplexing space remains active, as is evinced by methods such as Zip-Seq [65], which 

localize barcodes to user-defined spatial locations using photo-uncageable LMOs and antibody-

conjugated oligonucleotides; and CASB [66], which tags cells or nuclei with streptavidin-

conjugated concanavalin A beads bound to biotinylated sample barcode oligonucleotides.  

 Outside of these public demonstrations, at the time of writing this thesis, I have personally 

sent MULTI-seq reagents and protocols to over 350 academic labs in 21 territories around the 

world where researchers have applied MULTI-seq to 26 distinct model and non-model organisms. 

Moreover, I have directly collaborated on a wide diversity of MULTI-seq projects within the UCSF 

community and beyond. I have leveraged MULTI-seq to do spatial transcriptomic analyses of the 

developing and adult mouse gastrointestinal tract, perform high-throughput chemical 

transcriptomics on PBMCs (discussed in Chapter 6) and induced pluripotent stem cell-derived 

neurons, study primary samples comprised of mammary gland tissue, bone marrow biopsies, 

primary and metastasized tumors, and other tissue sources, and have adapted MULTI-seq for 

paired single-cell transcriptomic/epigenomic assays (discussed in Chapter 5) – all of which will be 

described in future publications. These collaborative experiences have clarified to me the diverse 

biological questions to which sample multiplexing technologies can be applied, while additionally 

highlighting a key problem in sample-multiplexed single-cell genomics data analysis that should 

be prioritized in the coming years.  

 While many statistical methods for inter-sample comparisons have recently been 

described including PopAlign [67], MELD [68], PhEMD [69], and others (as reviewed in [70]), a 
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foundational issue that supersedes this important and growing family of methods relates to the 

computational task of sample classification. There are currently 7 different sample classification 

algorithms which use a variety of strategies to assign cells to their sample-of-origin. For example, 

HTODemux [23] and FBA [71] use unsupervised clustering to identify cells marked by each 

barcode in sample barcode space, and use these clustering results to compute barcode-specific 

thresholds for downstream singlet, doublet, and negative identification (analogous to the semi-

supervised negative cell reclassification workflow described here). hashedDrops [43] classifies 

cells according to each cell’s most abundant barcode, and identifies doublets via manual or 

mixture model-informed thresholding of the log2 fold-change distribution describing the difference 

between each cell’s two most abundant sample barcodes. demuxEM [25], GMM-Demux [72], and 

Bimodal Flexible Fitting [73] also use gaussian mixture models, but instead apply this technique 

to normalized barcode counts (instead of log2 fold-change distributions, as in hashedDrops) to 

identify cells that are ‘positive’ and ‘negative’ for each barcode prior to singlet, doublet, and 

negative identification (conceptually analogous to the local maxima detection and quantile 

thresholding approach described here).    

 Despite this diverse landscape of sample classification algorithms, however, only minimal 

effort (with the notable exception of [72]) has been dedicated to systemically comparing the 

performance of each method on single-cell genomics datasets of varying structure and data 

quality. While some methods (e.g., HTODemux) are believed to over-estimate doublets (as 

described here and in [72]), it is unclear if this a general property of the method or a consequence 

of insufficient benchmarking and optimization. I believe that thorough ‘stress-testing’ of each 

algorithm across single-cell genomics datasets of varying structure, sequencing depth, ambient 

background, and overall sample quality will be central to ensuring that sample-multiplexed 

datasets are utilized to their fullest potential by the single-cell genomics community. Moreover, I 

believe that definitive guidelines on how to ‘rescue’ poor-quality sample multiplexing data using 



 92 

different quality-control metrics (e.g., SNR thresholding, barcode-specific quality checks, 

normalization method selection to maximize bimodality, removal of unbarcoded cells and debris-

filled droplets, ambient background subtraction, etc.) will further enable the wide adoption of 

sample multiplexing.  
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Chapter 4: Introduction 

Elements of the following chapter are reprinted from the manuscript “No detectable 

alloreactive transcriptional responses under standard sample preparation conditions during 

donor-multiplexed single-cell RNA sequencing of peripheral blood mononuclear cells” by 

Christopher S. McGinnis, David A. Siegel, Guorui Xie, George Hartoularos, Mars Stone, Chun J. 

Ye, Zev J. Gartner, Nadia R. Roan, and Sulggi A. Lee, published in BMC Biology on January 20, 

2021, Volume 19, Issue 1, Article Number 10.  

 

4.1 Abstract 

Single-cell RNA sequencing (scRNA-seq) provides high-dimensional measurements of 

transcript counts in individual cells. However, high assay costs and artifacts associated with 

analyzing samples across multiple sequencing runs limit the study of large numbers of samples. 

Sample multiplexing technologies such as MULTI-seq and antibody hashing using single-cell 

multiplexing kit (SCMK) reagents (BD Biosciences) use sample-specific sequence tags to enable 

individual samples to be sequenced in a pooled format, markedly lowering per-sample processing 

and sequencing costs while minimizing technical artifacts. Critically, however, pooling samples 

could introduce new artifacts, partially negating the benefits of sample multiplexing. In particular, 

no study to date has evaluated whether pooling peripheral blood mononuclear cells (PBMCs) 

from unrelated donors under standard scRNA-seq sample preparation conditions (e.g., 30 minute 

co-incubation at 4 °C) results in significant changes in gene expression resulting from 

alloreactivity (i.e., response to non-self). The ability to demonstrate minimal to no alloreactivity is 

crucial to avoid confounded data analyses, particularly for cross-sectional studies evaluating 

changes in immunologic gene signatures. Here, we applied the 10x Genomics scRNA-seq 

platform to MULTI-seq and/or SCMK-labeled PBMCs from a single donor with and without pooling 
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with PBMCs from unrelated donors for 30 minutes at 4 °C. We did not detect any alloreactivity 

signal between mixed and unmixed PBMCs across a variety of metrics, including alloreactivity 

marker gene expression in CD4+ T-cells, cell type proportion shifts, and global gene expression 

profile comparisons using Gene Set Enrichment Analysis and Jensen-Shannon Divergence. 

These results were additionally mirrored in publicly-available scRNA-seq data generated using a 

similar experimental design. Moreover, we identified confounding gene expression signatures 

linked to PBMC preparation method (e.g., Trima apheresis), as well as SCMK sample 

classification biases against activated CD4+ T-cells which were recapitulated in two other SCMK-

incorporating scRNA-seq datasets. Collectively, these observations establish important 

benchmarks for future cross-sectional immunological scRNA-seq experiments. 

 

4.2 Introduction 

Recent advances in single-cell RNA sequencing (scRNA-seq) technologies have 

dramatically increased assay throughput from ~102 to 104-106 cells per experiment [1]. However, 

many applications of scRNA-seq workflows (e.g., 10x Genomics) require individual samples to be 

processed in parallel, which translates to prohibitively-high assay costs for population-scale 

studies requiring large numbers of samples. Several scRNA-seq sample multiplexing techniques 

have been developed which enable users to circumvent this limitation by processing samples in 

a pooled format [2-12]. By avoiding the usual requirement for processing distinct samples 

individually, these technologies increase scRNA-seq cell and sample throughput while minimizing 

technical confounders (e.g., doublets and batch effects). Two main types of sample multiplexing 

approaches have been described: (i) in silico genotyping using natural [7-10] or artificial [11,12] 

genomic variants and (ii) tagging cell membranes with sample-specific DNA barcodes using lipid-

modified oligonucleotides (LMOs; e.g., MULTI-seq [2]), DNA-conjugated antibodies [3-5] (e.g., 
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BD single-cell multiplexing kit (SCMK) [5]), or methyltetrazine-modified DNA ‘ClickTags’ [6]). 

Despite the increasing popularity of sample multiplexing, benchmarking studies aiming to 

measure transcriptional changes induced by mixing cell suspensions during scRNA-seq sample 

preparation have not been described. Determining the extent to which these changes might occur 

is critical, as they would confound cross-sectional data interpretation. 

Mixing-specific transcriptional responses could occur when peripheral blood mononuclear 

cells (PBMCs) from unrelated donors are pooled during scRNA-seq sample preparation. Co-

culturing human leukocyte antigen (HLA) mismatched PBMCs causes a rapid and potent 

allogeneic response wherein T lymphocytes are stimulated through T-cell receptor binding to 

‘non-self’ major and minor histocompatibility complex proteins [13-16]. For example, CD154+ 

alloreactive CD4+ T-cells were detected within 2 hours after HLA-mismatched lymphocyte mixing 

[13], while bulk transcriptomics identified a ~5-fold increase within 24 hours of alloreactivity-

associated gene expression relative to HLA-matched lymphocytes [14]. Although pooled samples 

are maintained on ice for short durations during scRNA-seq sample preparation, it is unclear 

whether the allogeneic response may occur at low temperatures or whether transient periods of 

warming (e.g., during droplet emulsion at room temperature) are sufficient to drive alloreactivity. 

Considering that scRNA-seq is sensitive to transcriptional responses in rare cell sub-populations 

which are obscured by bulk assays, directly assessing whether alloreactivity will confound 

downstream scRNA-seq analyses is a critical benchmark for large immunological studies [17]. 

Here, we performed scRNA-seq using the 10x Genomics platform on PBMC samples 

isolated from eight unrelated healthy donors pooled under conditions where cells from a single 

donor were processed in isolation or after donor pooling. Donor identities for each cell were 

assigned using SCMK and MULTI-seq data, as well as the in silico genotyping pipeline, souporcell 

[8]. We observed cell-type biases amongst SCMK classification results which were not due to 

sub-optimal antibody labeling conditions or the presence of MULTI-seq LMOs. We additionally 
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did not observe robust, mixing-associated changes in PBMC cell type frequencies, global 

transcriptional profiles, or alloreactivity-associated gene expression in any PBMC cell type. 

Finally, we validated the observed lack of alloreactivity in a publicly-available scRNA-seq dataset 

where PBMCs from two unrelated donors were sequenced in isolation and after pooling [18]. As 

a result, we conclude that pooling PBMCs from unrelated donors under standard 10x Genomics-

based scRNA-seq sample preparation conditions (e.g., 30-minute co-incubation at 4 °C) does not 

result in any detectable alloreactivity at the RNA level. 

 

4.3 Results 

4.3.1 Study Design 

To assess whether mixing PBMCs from unrelated donors causes alloreactivity during 

scRNA-seq, we performed a cross-sectional study of PBMCs isolated from 8 unrelated healthy 

donors (Fig. 4-1). To record the donor-of-origin for each cell, PBMC samples were tagged with 

donor-specific MULTI-seq [2] and/or SCMK antibody-DNA [5] barcodes. PBMCs were mixed for 

30 minutes at 4 °C prior to emulsion across four droplet microfluidics lanes (10x Genomics) at 

room temperature. The 30-minute pooled incubation was chosen to mimic the typical processing 

 
 
Figure 4-1. Schematic overview of experimental design. PBMCs from 8 HLA-mismatched donors were barcoded with MULTI-seq 
LMOs (black double-helix with red DNA barcode) and SCMK antibodies (black antibody conjugated to teal DNA barcode). Cells were 
then strategically pooled to directly assess whether mixing HLA-mismatched PBMCs during scRNA-seq causes alloreactivity. 
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time required for preparing samples for multiplexed scRNA-seq analysis. Following scRNA-seq 

data pre-processing, quality-control, cell type annotation and sample demultiplexing 

(Computational Methods), we compared the expression profile of unmixed donor A PBMCs 

(microfluidic lane #1) to donor A PBMCs mixed with donors B-D (microfluidic lane #2), donors B-

H (microfluidic lane #3), and an unmixed donor A PBMC technical replicate prepared without 

antibody-DNA labeling (microfluidic lane #4). We hypothesized that if co-incubation of PBMCs 

from unrelated donors for 30 minutes at 4 °C causes detectable alloreactivity, then mixed and 

unmixed donor A PBMCs would exhibit more variable gene expression profiles than what is 

observed due to technical variation 

 

4.3.2 MULTI-seq classifies PBMCs more accurately than SCMK 

We first assessed the performance of MULTI-seq and SCMK by comparing the results of 

three distinct demultiplexing workflows on donor A-H PBMCs from microfluidic lane #3: (i) 

deMULTIplex, (ii) demuxEM, and (iii) souporcell. deMULTIplex [2] and demuxEM [4] are 

algorithms that function on sample barcode count matrices, while souporcell is an in silico 

genotyping pipeline that functions on gene expression data [8]. MULTI-seq and SCMK 

classifications were largely consistent with souporcell (Fig. 4-2) – e.g., amongst cells classified 

 
Figure 4-2. MULTI-seq and SCMK classifications largely match in silico genotyping, with lower SCMK classification 
efficiency. Sample classification results from three demultiplexing pipelines (e.g., deMULTIplex, souporcell, and demuxEM) 
projected onto MULTI-seq (top) and SCMK (bottom) sample barcode space for microfluidic lane #3. 
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as donors A-H using souporcell, 99.9% and 99.0% of donor classifications were consistent for 

MULTI-seq and SCMK, respectively. However, while 1.5% of cells remained unclassified following 

MULTI-seq demultiplexing, 36.2% of cells remained unclassified after SCMK demultiplexing. This 

decrease in classification efficiency was also observed when compared to the demuxEM results. 

To assess whether cells that remained unclassified following SCMK demultiplexing were 

randomly distributed throughout the scRNA-seq data, we computed the frequency of unclassified 

cells for each annotated PBMC cell type (Fig. 4-3a). This analysis revealed that T lymphocytes 

and NK cells were especially likely to remain unclassified in SCMK data (Fig. 4-3b). Moreover, 

annotation of CD4+ T-cell subsets (Fig. 4-3c) revealed that activated CD4+ T-cells were 

particularly prominent among the unclassified CD4+ T-cells (Fig. 4-3d).  

It is conceivable that the presence of LMOs and/or sub-optimal SCMK labeling buffer 

conditions caused the observed classification biases in PBMCs. To address whether LMOs 

 
Figure 4-3. SCMK classifications are biased against activated CD4+ T lymphocytes. 
(A) UMAP gene expression space for PBMCs colored by cell type annotations (left) or associated marker genes: CD4+ T-cells (IL7R), 
CD8+ T-cells (CD8A), NK cells (SPON2), B cells (MS4A1), CD14+ classical monocytes (CD14), dendritic cells (CLEC10A), and 
CD16+ patrolling monocytes (FCGR3A). 
(B) Classification frequencies across all PBMC cell types following SCMK sample demultiplexing. 
(C) UMAP gene expression space for CD4+ T-cells colored by subtype annotations (left) or associated marker genes: activated 
(SELL-high, S100A4-low, GPR183-high), memory (SELL-low, S100A4-high, GPR183-high), and naïve (SELL-low, S100A4-high, 
GPR183-high). 
(D) UMAP embedding for CD4+ T-cells colored by annotation and SCMK classification status. 
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interfere with SCMK labeling, we generated scRNA-seq data where cells from 7 PBMC donors 

were pooled after labeling with SCMK reagents but not LMOs. As was observed previously, 

SCMK classifications were similarly biased against T lymphocytes and NK cells (Fig. 4-4a), with 

activated CD4+ T-cells being particularly difficult to classify (Fig. 4-4b). 

To address whether SCMK classification biases in PBMCs is due to sub-optimal antibody 

labeling conditions, we determined the extent of classification bias in a publicly-available scRNA-

seq dataset provided by the SCMK reagent supplier where PBMCs were cultured in vitro for 24 

hours in the presence or absence of anti-CD3/anti-CD28 antibodies [19]. In these data, SCMK 

classifications were biased against T lymphocytes and NK cells, despite optimal SCMK labeling 

 
Figure 4-4. Validating SCMK classification biases in independent scRNA-seq datasets generated without LMOs. 
(A) UMAP gene expression space for PBMCs from 7-donor multiplexed scRNA-seq experiment colored by cell type annotations (left) 
or SCMK classification status (middle) with per-cell-type classification frequencies summarized as bar plots (right). 
(B) Same analysis as in Fig. 4-4a except for CD4+ T-cells from the 7-donor multiplexed scRNA-seq experiment. Proliferating T-cells 
(T-prolif) identified using MKI67 expression (data not shown).  
(C) Same analysis as in Fig. 4-4a except for PBMCs from the CD3/CD28-stimulation scRNA-seq experiment. Red blood cells (RBC), 
neutrophils (Neu), macrophages (Mac) and granulocytes (Gran) identified using HBB, LTF, GBP1, and GATA2, respectively. 



 108 

conditions (Fig. 4-4c). Collectively, these results illustrate that SCMK reagents produce biased 

classifications when applied to PBMCs. For these reasons, MULTI-seq donor classifications were 

used for all subsequent gene expression analyses.  

 

4.3.3 Trima apheresis introduces biologically-relevant confounders into PBMC scRNA-seq data 

The PBMCs that were used in this study came from whole blood that was processed using 

Ficoll-Paque density gradient centrifugation. Notably, these samples either underwent (donors D-

H) or did not undergo (donors A-C) apheresis using Trima filtration, a method to enhance 

leukocyte yield during sample preparation [20,21]. Initial inspection of MULTI-seq donor 

classifications revealed that PBMCs predominantly clustered according to processing method – 

e.g., Trima vs. Ficoll (Fig. 4-5a). Upon sub-clustering CD14+ classical monocytes and NK cells, 

we observed that Trima and Ficoll classical monocytes expressed variable levels of the histone 

component gene HIST1H1C, as well as two genes involved in monocyte differentiation, MNDA 

and CEBPB (Fig. 4-5b, left) [22]. Moreover, we observed that Trima and Ficoll NK cells 

differentially expressed the immune cytokine IFNG, cytolytic genes GZMA and PRF1, and the 

stress marker JUN (Fig. 4-5b, right) [23].  

 
 
Figure 4-5. Trima-associated gene expression signatures 
(A) UMAP gene expression space for PBMCs colored by cell type (left) or method of isolation (e.g., Ficoll or Trima; right). 
(B) UMAP gene expression space for classical monocytes (left) and NK cells (right) with  violin plots illustrating Trima-specific marker 
gene expression depicted as log1p-normalized counts.  
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These results suggest that apheresis using Trima filters induces confounding changes in 

gene expression patterns associated with differentiation state, cytolytic activity, and stress across 

multiple PBMC cell types. These signatures are consistent with prior observations [24] and should 

be accounted for in future analyses. Thus, to avoid these confounding effects when comparing 

donor- and mixing-specific expression profiles, we restricted our subsequent analyses to PBMC 

samples processed without Trima filtration. 

 

4.3.4 Mixing PBMCs from unrelated healthy donors during scRNA-seq sample preparation does 

not cause a detectable allogeneic transcriptional response 

To assess whether mixing PBMCs from unrelated donors induces alloreactivity during 

multiplexed scRNA-seq, we compared the expression profiles of mixed and unmixed donor A 

PBMCs. Mapping the densities of mixed and unmixed donor A sample classifications onto PBMC 

gene expression space (Fig. 4-6, top left) did not reveal any qualitative shifts in global gene 

expression profiles (Fig. 4-6, bottom). Notably, such shifts in classification densities were 

observed when including PBMCs from donors B and C (Fig. 4-6, top right), suggesting that natural 

 
Figure 4-6. Qualitative assessment of allogeneic transcriptional response. UMAP gene expression space for Ficoll-isolated 
PBMCs colored by cell type (top left) or as sample classification densities for unmixed donor A (bottom left), mixed Donor A (bottom 
right), and Donors A-C (top right). 
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inter-donor variation is more pronounced than intra-donor variation due to PBMC mixing. Indeed, 

PBMC cell-type frequencies were similarly-variable between donors, while no statistically-

significant shifts in cell-type frequencies were linked to mixing status (Fig. 4-7). 

 

Next, we focused on CD4+ T-cells because of their known involvement in alloreactivity 

[13-16]. Mixed and unmixed donor A CD4+ T-cells clustered together in CD4+ T-cell gene 

expression space, as was observed in the full dataset (Fig. 4-8a). Moreover, mixed and unmixed 

donor A CD4+ T-cells expressed genes known to be involved in an allogeneic response [13-16] 

at similar levels (Fig. 4-8b). Finally, no statistically-significant shifts in CD4+ T-cell subtype 

frequencies were linked to mixing status (Figs. 4-8c, 4-8d). 

Expanding our analysis to other PBMC cell types, we next applied two unbiased 

approaches to measure any putative allogeneic response signature. First, we used the 

dissimilarity metric Jensen-Shannon Divergence (JSD) [25] to compute sample-level differences 

for each PBMC cell type. To control for differences in cell type proportions, we randomly subsetted 

equal numbers of each cell type from each experimental group during PBMC sub-clustering and 

repeated this workflow 100 times. Across the 100 iterations, we then computed the average JSD  

 

 
Figure 4-7. PBMC cell type proportions are not influenced by mixing status 
(A) PBMC cell-type frequencies for each donor (e.g., A, B, C) and 10x lane (e.g., 1, 2, 3, 4).  
(B) Pairwise proportion test of PBMC cell type proportion differences between each donor and microfluidic lane, visualized as -log10 
p-value heatmaps for each cell type. Red boxes denote key comparisons for assessing putative effects of alloreactivity on cell type 
proportions.  
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scores between donors, unmixed and mixed donor A cells, and technical replicates (Methods). 

For all cell types, inter-donor JSD scores were greater than those linked to mixing status and 

technical replicate, while mixing status JSD scores were greater than technical replicate JSD 

scores for CD8+ T-cells, CD14+ monocytes, and NK cells (Fig. 4-9). 

 
Figure 4-9. Iterative inter-sample JSD comparison analysis quantifies lack of allogeneic response to donor mixing. 
Bar plots denote average JSD between PBMC donors (white), mixed/unmixed donor A cells (beige), technical replicates (grey), and 
donor A cells following label permutation (red). Difference in JSD scores between mixed/unmixed and technical replicates depicted in 
black. Error bars denote +/- 1 standard deviation. n = 100 iterations.   

 
Figure 4-8. Evidence of allogeneic response not detected in CD4+ T-cell gene expression state or subtype proportions. 
(A) UMAP gene expression space for Ficoll-isolated CD4+ T-cells colored by donor ID (e.g., A, B, C) and mixing status e.g., - = 
unmixed, + = mixed).  
(B) Expression of genes known to be up-regulated (e.g., IFNG and CD40LG) or down-regulated (e.g., DUSP1 and FOS) by CD4+ 
T lymphocytes during an allogenic response across unmixed (black) and mixed (red) donor A CD4+ T-cell subsets. 
(C) CD4+ T-cell subtype frequencies for each donor and 10x lane.  
(D) Pairwise proportion test of CD4+ T-cell subtype proportion differences between each donor and microfluidic lane, visualized as 
-log10 p-value heatmaps for each cell type. Red boxes denote key comparisons for assessing putative effects of alloreactivity on 
CD4+ T-cell subtype proportions. 
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To determine the likelihood of observing elevated mixing status JSD scores relative to 

technical replicates by chance, we repeated this workflow after permuting donor A classifications. 

Specifically, we reasoned that if permuted JSD scores were greater than the difference between 

observed mixing status and technical replicate JSD scores, then the observed differences are not 

significant. To this end, JSD scores after donor A label permutation were larger than the 

experimental JSD score differential in all cell types except CD14+ classical monocytes (Fig. 4-9). 

The second unbiased approach we utilized to look for allogeneic response signatures was 

Gene Set Enrichment Analysis (GSEA) [26,27]. Specifically, we applied GSEA to donor A cells 

from each PBMC cell type to determine whether pathways involved in immune activation and/or 

alloreactivity were enriched in mixed relative to unmixed cells. This analysis revealed that 

amongst unmixed donor A cells, activated CD4+ T-cells were enriched for humoral immune 

response genes and dendritic cells were enriched for epigenetic regulation and cell killing (Table 

4-1). Notably, these detected gene sets in unmixed cells are not consistent with an allogeneic 

response, and no enriched gene sets were identified amongst any mixed donor A cell types. 

 

It is conceivable that the presence of LMOs and antibody-DNA barcodes could delay or 

block any allogeneic response between PBMCs from unrelated donors. To explore this possibility, 

we repeated our analytical workflow on a publicly-available scRNA-seq dataset where PBMCs 

from two unrelated healthy donors were sequenced in isolation and after pooling and incubation 

on ice for 30 minutes [18]. Mirroring our previous observations, mixing was not robustly associated 

with any statistically-significant shifts in PBMC cell type proportions (Figs. 4-10a, 4-10b) or CD4+ 

Table 4-1. Enriched GO gene sets in unmixed PBMCs, 8-donor PBMC scRNA-seq data. 
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T-cell subtypes (Figs. 4-10c, 4-10d). Moreover, cells clustered primarily by donor and not mixing 

status (Fig. 4-10e), and inter-donor JSD scores were greater than mixing status JSD scores for 

all cell types (Fig. 4-10f). Although this experimental design did not allow comparisons between 

JSD scores linked to mixing status and technical replicates, permuted and mixing status JSD 

scores were on-par for most cell types (including CD14+ monocytes; Fig. 4-10f).  

Finally, while GSEA identified a number of enriched gene sets amongst mixed PBMCs in 

these data (e.g., protein trafficking, translation, non-sense mediated decay, viral gene expression, 

and amino acid metabolism; Table 4-2), these gene sets were unrelated to alloreactivity and were 

 
Figure 4-10. No detectable differences in PBMC cell type proportions, CD4+ T-cell proportions, or gene expression state 
linked to alloreactivity in Zheng et al scRNA-seq data. 
(A) PBMC cell-type frequencies grouped by donor (e.g., X, Y) and mixing status (e.g., - = unmixed, + = mixed). 
(B) Pairwise proportion test of PBMC cell type proportion differences between mixed and unmixed donors, visualized as -log10 p-
value heatmaps for each cell type. Red boxes denote key comparisons for assessing putative effects of alloreactivity on PBMC cell 
type proportions. Significant differences in cell type proportions are mostly linked to donor, while the singular difference between 
mixed and unmixed donor Y B-cells is not recapitulated in donor X B-cells.  
(C) CD4+ T-cell subtype frequencies grouped as in Fig. 4-10a. 
(D) Pairwise proportion test of CD4+ T-cell subtypes proportion differences between mixed and unmixed donors, visualized as in Fig. 
4-10b. Significant differences in cell type proportions are entirely linked to donor. 
(E) Representative CD4+ T-cell, CD8+ T-cell, CD14+ monocyte, NK cell, and B-cell UMAP gene expression embeddings following 
iterative subsetting to select equal numbers from each JSD comparison group. Cells are colored according to donor ID (e.g., X, Y) 
and mixing status (e.g., - = unmixed, + = mixed).  
(F) JSD analysis summary. Bar plots denote average JSD between PBMC donors (white), mixed/unmixed cells (beige), and cells 
following label permutation (red). Error bars denote +/- 1 standard deviation. n = 100 iterations. 
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shared across most PBMC cell types, suggesting they were caused by batch effects between the 

mixed and unmixed scRNA-seq libraries. 

Table 4-2. Enriched GO gene sets in mixed PBMCs, Zheng et al PBMC scRNA-seq data. 
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Collectively, these targeted and unbiased quantitative comparisons across all PBMC cell 

types in two, independently-generated scRNA-seq datasets demonstrate that mixing PBMCs from  

unrelated donors under standard multiplexed scRNA-seq sample preparation conditions (e.g., 30 

minute co-incubation at 4 °C) does not result in a detectable allogeneic transcriptional response. 

 

4.4 Discussion 

Sample multiplexing approaches for scRNA-seq are being increasingly utilized by the 

single-cell genomics field to reduce assay costs while improving data breadth and quality. 

However, the impact of pooling PBMCs from unrelated donors during scRNA-seq sample 

preparation on gene expression patterns has not yet been adequately quantified. Here, we used 

the 10x Genomics scRNA-seq platform to directly compare the gene expression profiles of 

PBMCs prepared for sequencing alone or after mixing with PBMCs from unrelated donors for 30 

minutes at 4 °C. We found no evidence of global changes in gene expression profiles in any 

PBMC cell type (quantified using JSD and GSEA), PBMC cell type proportions, or alloreactivity 

marker gene expression in CD4+ T-cells linked to PBMC mixing status. Although PBMCs actively 

participating in an allogeneic response were not included in this study, these observations were 

mirrored in an independently-generated, publicly-available PBMC scRNA-seq dataset [18], 

demonstrating that mixing unrelated PBMCs during sample-multiplexed scRNA-seq sample 

preparation does not result in a detectable allogeneic response. Notably, it is possible that cellular 

responses to pooling could be detected by assays measuring levels of biological information with 

faster regulatory kinetics (e.g., cell surface protein assays [28,29]) or under different scRNA-seq 

experimental conditions (longer periods of co-incubation at higher temperatures, mixing cells from 

distinct species, etc.). To this end, the experimental design employed in this study can be used 
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to benchmark the prevalence of sample mixing-specific confounders in future single-cell genomics 

experiments. 

In addition to the alloreactivity analysis, we found that Trima apheresis can introduce 

confounding variables into scRNA-seq data, which suggests that this PBMC preparation method 

should be avoided in future experiments. Moreover, we found that SCMK demultiplexing results 

were biased against activated CD4+ T-cells and other lymphoid cell types. This observation was 

mirrored in two scRNA-seq datasets generated (i) in the absence of LMOs and (ii) with optimized 

SCMK antibody-DNA labeling conditions. These findings are in contrast to the original Cell 

Hashing report [3], where PBMCs were systematically demultiplexed following incubation with a 

panel of DNA-conjugated antibodies selected for their uniform targeting of all known PBMC cell 

populations. Notably, the exact antigens targeted by the commercial SCMK reagents used in this 

study are proprietary and unknown, but our findings suggest that the “universal” antigens targeted 

by these antibody-DNA conjugates may be differentially-expressed by distinct cell types in ways 

that interfere with sample classification. It remains to be determined whether “universal” Cell 

Hashing reagents from BioLegend, which target human beta-2-microglobulin and CD298, suffer 

from similar performance issues. Thus, users should exercise caution before using SCMK 

reagents, for example by testing the uniformity of antibody binding conducting flow-cytometry 

experiments with fluorophore-conjugated DNA probes that hybridize to SCMK oligonucleotide 

domains. In any case, validation of surface antigen expression across all cells in a given 

experimental system and/or careful data quality-control is necessary to avoid systematically-

biased interpretations. 

Collectively, this study proposes three critical benchmarks for future sample-multiplexed 

scRNA-seq analyses of PBMCs. First, we demonstrate that alloreactivity can be disregarded as 

a potential confounder when analyzing scRNA-seq data from PBMCs of unrelated donors pooled 

under standard multiplexed scRNA-seq sample preparation conditions. These conclusions may 
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not, however, be generalizable to all single-cell genomics assays or sample preparation 

workflows. Second, we demonstrate that Trima apheresis of PBMCs introduces artifactual gene 

expression signatures which can confound downstream scRNA-seq data analyses. Third, we 

demonstrate that SCMK reagents are biased against certain PBMC cell types, which illustrates 

the importance of validating antibody-based sample multiplexing technology performance. 

 

4.5 Materials and Methods 

4.5.1 scRNA-seq sample preparation, 8-donor MULTI-seq/SCMK PBMC experiment 

PBMCs were provided by the Vitalant Research Institute. PBMCs were thawed at 37°C 

and washed one time with warm media (RPMI (Corning, Cat#10-040-CV), supplemented with 

10% FBS (VWR, Cat#97068-085) and Benzonase (1:1000, Sigma-Aldrich, Cat#E1014)) and one 

time with 2% FBS in PBS (Ca++ and Mg+ free, Corning, Cat#21-031-CV) before counting cells 

(Nexcelom K2). Live cells were then enriched using a dead-cell removal kit (STEM Cell, 

Cat#17899). Live cells were then washed with PBS and labeled with LMOs, as described 

previously [2]. LMOs were then quenched while washing cells with 1% BSA in cold PBS. Cells 

were then incubated with 5ul human Fc Block with 95ul 2% FBS in PBS at 4°C for 15 minutes 

before staining with SCMK and AbSeq antibodies (BD Biosciences) at 4°C for 60 minutes. 

Notably, AbSeq data was not analyzed in this study, and a subset of donor A PBMCs were not 

labeled with antibody-DNA conjugates (sequenced in microfluidics lane 4). Cells were then 

washed twice by using 0.04% BSA (Non-acetylate, Sigma-Aldrich; B6917)) in cold media before 

incubation for 30 minutes at 4°C either alone (e.g., donor A) or in a pooled format (e.g., donors 

A-D or A-H). Cell viabilities for each donor prior to pooling ranged from 89%-97%. Finally, cells 

were isolated via droplet emulsion across four 10x Genomics microfluidic lanes (V2) to yield 5,000 

cells. 
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4.5.2 scRNA-seq sample preparation, 7-donor SCMK PBMC experiment 

Healthy donor PBMCs were used from the ImmVar project [30], isolated from whole blood 

and frozen as described therein. Vials from 7 patients, each with 1 million, were thawed at 37°C 

and washed once with warm media before staining with SCMK antibodies. Briefly, cells were 

stained for 20 minutes at room temperature before being washed 3 times in 2mL BD stain buffer. 

Cells were then counted, pooled, resuspended in 0.04% BSA in PBS, and isolated via droplet 

emulsion across a single 10x Genomics microfluidic lane (V2) to yield 50,000 cells.   

 

4.5.3 Next-generation sequencing and library preparation 

cDNA expression, MULTI-seq, and SCMK libraries were prepared as described previously 

[2] or according to supplier recommendations. Notably, following size-selection of MULTI-seq and 

SCMK oligos after cDNA amplification, two separate sample-index PCRs were performed for the 

MULTI-seq and SCMK oligos using separate i7 indices. For the 8-donor and 7-donor PBMC 

experiments, cDNA expression and SCMK libraries were pooled and sequenced on a single 

NovaSeq 6000 lane (one lane per experiment). MULTI-seq libraries were sequenced separately 

using the MiSeq (V3).  

 

4.5.4 scRNA-seq data pre-processing 

 Eight next-generation sequencing libraries from four separate experiments were analyzed 

in this study. Data pre-processing details for each library are summarized in Table 4-3. Notably, 

because the MULTI-seq and SCMK barcode sequences are 8 and 40 nucleotides in length, 

respectively, the Hamming Distance alignment threshold applied to SCMK data was increased to 

5 (default = 1) to account for the increased probability of random sequencing errors. 
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4.5.5 scRNA-seq data quality-control 

The same quality-control workflows were applied to the 8-donor and Zheng et al PBMC 

datasets using Seurat [32,33]. First, cells with fewer than 250 RNA UMIs and genes with fewer 

than 3 UMIs across all cells were discarded. These parsed datasets were then normalized using 

‘SCTransform’ prior to unsupervised clustering and dimensionality reduction using PCA and 

UMAP. Low-quality cells selected via membership in clusters associated with low total RNA UMIs 

and/or high proportions of mitochondrial gene expression were then removed. 

Next, we split the cleaned datasets by microfluidic lane-of-origin and identified heterotypic 

doublets using DoubletFinder [34]. Notably, DoubletFinder was run on each lane independently 

to ensure that representative artificial doublets were constructed for each lane (e.g., multi-donor 

doublets were not generated for the unmixed data subsets). Moreover, we did not use MULTI-

seq, SCMK, or souporcell classification results for doublet detection because each approach 

would produce different results for each lane (e.g., no doublets would be detected for single-donor 

datasets). DoubletFinder resulted in the removal of 1,287 and 1,832 heterotypic doublets in the 

8-donor PBMC and Zheng et al PBMC datasets, respectively. DoubletFinder parameters were 

optimized using the ‘paramSweep_v3’, ‘summarizeSweep’, and ‘find.pK’ functions in the 

‘DoubletFinder’ R package, as described previously [34]. DoubletFinder pK parameters employed 

Table 4-3. Data pre-processing details for all presented datasets and modalities. 
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are as follows (pN = 0.25 for all datasets): 8-Donor PBMC (pK = 0.01), Zheng et al., Lane 1 (0.07), 

Zheng et al., Lane 2 (0.09), and Zheng et al., Lane 3 (0.08). 

Notably, a simplified quality-control workflow was applied to the 7-donor and 2-condition 

PBMC datasets to assess the influence of (i) LMO labeling and (ii) SCMK antibody-DNA labeling 

conditions on SCMK demultiplexing performance. More stringent quality-control steps were not 

employed because these datasets were not being used to assess alloreactivity gene expression 

signatures. Briefly, raw gene expression matrices were parsed as described above before the 

data was log2-transformed, centered, and scaled. Following unsupervised clustering, the top 

2,000 variable genes (selection.method = ‘vst’) were then used for dimensionality reduction using 

PCA and UMAP. Finally, low-quality cells were removed as described above. Summary statistics 

for each dataset following quality-control are as follows: 8-Donor PBMC (5,042 mean UMIs; 1,265 

mean genes; 15,340 total cells), Zheng et al PBMC (1,883; 681; 25,140), 7-Donor PBMC (2,222; 

695; 25,140), 2-Condition PBMC (2,836; 996; 5,419). 

 

4.5.6 PBMC cell type annotation 

We annotated cell types within each PBMC dataset using literature-supported cell type 

marker genes [32,33,35]. Marker genes employed are as follows: CD4+ T lymphocytes (IL7R), 

CD8+ T lymphocytes (CD8A), NK cells (SPON2), B lymphocytes (MS4A1), classical monocytes 

(CD14), non-classical monocytes (FCGR3A), dendritic cells (CLEC10A), platelets (PF4), 

proliferative cells (MKI67), plasma cells (MZB1), plasmacytoid dendritic cells (LILRA4), 

granulocytes (GATA2), neutrophils (LTF), erythrocytes (HBB), macrophages (GBP1), CD3/CD28-

stimulated NK cells (GNLY), and CD3/CD28-stimulated T-cells (ENO1). Marker genes employed 

for CD4+ T-cell subtype annotation are as follows: activated (SELL-high, S100A4-low, GPR183-

high), memory (SELL-low, S100A4-high, GPR183-high), and naïve CD4+ T-cells (SELL-high, 

S100A4-low, GPR183-low). 
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4.5.7 MULTI-seq, SCMK, and souporcell classification 

For the 8-donor PBMC dataset, cells were classified into donor groups using three 

different workflows. First, MULTI-seq and SCMK barcode count matrices were fed into the 

‘classifyCells’ and ‘findThresh’ functions in the deMULTIplex R package [2]. Second, MULTI-seq 

and SCMK barcode count matrices and the raw .h5 file (from Cell Ranger) were fed into demuxEM 

(p=8), an alternative sample classification pipeline [4]. Third, position-sorted BAM files (from Cell 

Ranger) were fed into the in silico genotyping pipeline, souporcell (k=8) [8]. For the 7-donor PBMC 

dataset, SCMK barcode count matrices were only analyzed using deMUTIplex, as deMULTIplex, 

DemuxEM, and souporcell results were observed to be consistent. For the Zheng et al PBMC 

dataset, donor identifies were inferred using souporcell (k=2), as MULTI-seq/SCMK barcode 

count matrices were unavailable. For the 2-condition PBMC dataset, classifications were provided 

from the supplier.  

 

4.5.8 PBMC cell type proportion analysis 

To determine whether mixing PBMCs from unrelated donors results in changes in PBMC 

cell type proportions in the 8-donor and Zheng et al PBMC datasets, we first computed the 

frequency of each cell type grouped according to donor and microfluidic lane. Statistically-

significant proportional differences between groups were then identified on a per-cell-type basis 

using the ‘pairwise.prop.test’ function in the stats R package using default arguments. Evidence 

of alloreactivity-associated shifts in cell type proportions were assessed by comparing p-values 

for donor A cell type proportions. Statistically-significant shifts were never identified between 

donor A cells from microfluidic lane 1 (A1) and A2/A3 cells, although shifts were detected between 

A1/A2/A3 and A4, perhaps due to technical variability. This workflow was additionally repeated 

for CD4+ T-cell subsets yielding similar results.  
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4.5.9 Jensen Shannon Divergence (JSD) analysis 

To perform global comparisons of gene expression profiles between mixed and unmixed 

PBMCs in the 8-donor and Zheng et al PBMC datasets, we used JSD in the following workflow. 

First, each PBMC cell type was randomly down-sampled to include equal numbers of cells from 

each donor and microfluidic lane. Down-sampling in this fashion ensures that any observed 

differences are due to gene expression state and not cell type proportions. Next, UMAP 

embeddings were computed for each cell type, and UMAP coordinates for each donor/lane group 

were used to compute group-wise 2-dimensional kernel density estimations with the ‘kde2d’ 

function in the ‘MASS’ R package [36]. Next, kernel density estimations were fed into the ‘JSD’ 

function in the ‘philentropy’ R package [37] to generate a JSD matrix representing the global 

dissimilarity between each donor/lane group. Finally, JSD scores for each cell type were scaled 

from 0-1, and this process was repeated 100 times. Notably, CD4+ T-cells were down-sampled 

to include equal numbers of each CD4+ T-cell subtype from each donor/lane group, and cell types 

with <50 cells in any donor/lane group were excluded (e.g., 8-donor: B cells and dendritic cells; 

Zheng et al: CD16+ monocytes, dendritic cells, and platelets).  

Global differences in gene expression were then summarized as the average and 

standard deviation of JSD scores across the 100 iterations. Specifically, we quantified the 

difference between donors (donor A cells from microfluidics lane 1 (A1) vs B2/B3/C2/C3), 

between mixed and unmixed donor A cells (A1/A4 vs A2/A4), and between technical replicates 

(A1 vs A4). We then quantified the magnitude of variability due to algorithm performance by 

repeating this entire workflow after permuting donor A classifications 100 times. Finally, we 

contextualized the significance of differences in JSD scores associated with mixing status and 

technical noise via comparison to the average and standard deviation of permuted JSD scores. 
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4.5.10 Gene set enrichment analysis (GSEA) 

To perform global comparisons of gene expression profiles between mixed and unmixed 

PBMCs in the 8-donor and Zheng et al PBMC datasets, we used GSEA in the following workflow. 

First, we used the ‘FindMarkers’ differential gene expression analysis function (test.use = ‘MAST’; 

logfc.threshold = 0) in Seurat to compute p-values for every expressed gene amongst each mixed 

and unmixed donor A PBMC cell type. Signed p-values were then fed into GSEA using ‘pre-

ranked’ mode, and enriched gene sets were identified as those with nominal p-values and false 

discovery rate q-values below 0.05. 
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Chapter 5: MULTI-ATAC-seq: sample multiplexing for single-cell 

epigenomics using lipid-tagged indices  

 

5.1 Abstract 

 Single-cell genomics sample multiplexing technologies dramatically increase the number 

of samples that can be analyzed in a single experiment and thereby expand the types of biological 

questions that can addressed at single-cell resolution. As has been described for single-cell 

transcriptomics, sample multiplexing technologies additionally improve data quality through 

doublet detection and batch effect minimization. Single-cell epigenomics assays such as single-

nucleus ATAC-seq (snATAC-seq) have also been described which leverage existing cellular 

isolation and library preparation workflows developed for single-cell transcriptomics. However, 

single-cell epigenomics sample multiplexing techniques remain in relative infancy. Here, we adapt 

our previously-documented singe-cell transcriptomics sample multiplexing technique, MULTI-seq, 

for snATAC-seq applications. Specifically, we benchmark this technology – MULTI-ATAC-seq – 

on pooled peripheral blood mononuclear cells (PBMCs) from three unrelated healthy donors. 

These analyses demonstrate the accuracy of MULTI-ATAC-seq classifications and outline 

preferred practices for doublet identification in snATAC-seq data. We then scale MULTI-ATAC-

seq to perform a snATAC-seq-coupled drug screen analyzing titrating doses of two epigenetic 

modifying agents (the pan histone deacetylase inhibitor, SAHA, and the EZH2 methyltransferase 

inhibitor, GSK126) on resting and CD3/CD28-stimulated PBMCs. Collectively, this work 

demonstrates the utility of MULTI-ATAC-seq for snATAC-seq sample multiplexing. 
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5.2 Introduction 

 Single-cell genomics provides high-dimensional measurements of diverse levels of 

biological information in individual cells. Building on early single-cell RNA sequencing (scRNA-

seq) efforts which were limited to tens or hundreds of cells in a single experiment [1,2], advances 

in droplet microfluidics [3-6], microwell [7,8], and combinatorial indexing [9,10] technologies 

routinized the simultaneous analysis of 103-106 cells. Leveraging this tremendous gain in cell-

throughput, sample multiplexing technologies such as Cell and Nuclei Hashing [11,12], MULTI-

seq [13], and ClickTags [14] have produced marked improvements in scRNA-seq sample 

throughput without requiring pre-existing genomic variability (as in [15-18]) or manipulation (as in 

[19,20]). Beyond improving scRNA-seq data quality through batch effect minimization, doublet 

identification [21,22], and improved data quality control [11,13]; sample multiplexing increases the 

sample-throughout of single-cell genomics assays by 1-2 orders of magnitude and, thus, enables 

entirely new types and scales of experiments. For example, sample multiplexing has been used 

to perform scRNA-seq-coupled chemical screens [23-25], time-course and perturbation analyses 

of organismal development and differentiation [26-29], and spatial transcriptomics [30,31].  

 More recently, technologies enabling high-throughput single-cell analyses of the 

epigenome have been described, including methods measuring global patterns of chromatin 

accessibility such as single-nucleus assay for transposase-accessible chromatin with sequencing 

(snATAC-seq) [32-34], methods measuring genomic loci associated with specific transcription 

factors and chemical histone modifications such as single-nucleus Cleavage Under Targets and 

Tagmentation (snCUT&Tag) [34,35] and single-cell ChIP-seq [36], as well as methods which 

enable paired measurements of single-cell transcriptomes and epigenomes [38-41]. Single-cell 

epigenomics methods have been successfully employed to answer fundamental questions in the 

field of cancer immunology [42], expand perturbation-free single-cell lineage tracing capabilities 
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[43], and infer the gene regulatory networks underlying cellular identity [44]. However, snATAC-

seq sample multiplexing technologies are only beginning to be described [45], resulting in 

foundational limitations in the types of questions these assays can be used to answer.  

 We previously showed that lipid-modified oligonucleotides (LMOs) rapidly and stably 

incorporate into the nuclear membrane in a fashion that can be leveraged for scRNA-seq sample 

multiplexing using MULTI-seq [13]. Here, we expand on this platform to develop MULTI-ATAC-

seq – snATAC-seq sample multiplexing using lipid-tagged indices. We begin by demonstrating 

the ability of MULTI-ATAC-seq to accurately demultiplex PBMCs from unrelated healthy donors. 

These analyses additionally highlight the accuracy of MULTI-ATAC-seq doublet identification, 

while providing insight into algorithm selection for computational snATAC-seq doublet detection. 

Next, we leverage MULTI-ATAC-seq to analyze chromatin accessibility changes in PBMCs 

stimulated in vitro with titrating doses of epigenetic modifier compounds in both resting and 

inflammatory conditions. These analyses revealed immunomodulatory responses to the histone 

deacetylase inhibitor, SAHA, as well as nuanced shifts in T-cell differentiation induced by the 

EZH2 methyltransferase inhibitor, GSK126.  

 

5.3 Results 

5.3.1 MULTI-ATAC-seq overview. 

MULTI-ATAC-seq localizes DNA barcodes to nuclear membranes using hybridization to 

LMO scaffolds which spontaneously and stably embed into the plasma membrane of cells or 

nuclei (Fig. 5-1a). LMO scaffolds are comprised of complementary ‘anchor’ and ‘co-anchor’ LMOs 

that are conjugated to a lignoceric acid and palmitic acid moiety, respectively. MULTI-ATAC-seq 

sample barcodes include a 5’ anchor LMO hybridization site, a TruSeq R2 PCR handle used for 

barcode amplification and library preparation, an 8 base-pair sample barcode, an 8 base-pair 



 131 

unique molecular identifier (UMI) [46], and a 3’ R1 PCR handle which also serves as the capture 

domain for the 10x Genomics snATAC-seq bead. MULTI-ATAC-seq barcodes differ from the 

original MULTI-seq sample barcode design due to the inclusion of distinct PCR handles and a 

UMI domain, which is not included on snATAC-seq bead oligonucleotides. During snATAC-seq, 

nuclei bearing MULTI-ATAC-seq barcodes are isolated in emulsion oil droplets, where transposed 

genomic DNA (gDNA) and sample barcodes are captured and associated with a common nucleus 

barcode during linear PCR which is used for downstream sample-of-origin classification. Nuclei-

barcoded MULTI-ATAC-seq oligos and transposed gDNA are then separated via selective 

amplification during library preparation and can be sequenced in a pooled format at user-defined 

proportions (Methods; Fig. 5-1b). 

 

5.3.2 MULTI-ATAC-seq prototyping using flow cytometry. 

 We previously observed that cholesterol-modified oligonucleotides (CMOs) were 

preferred to LMOs for labeling nuclear membranes prepared for scRNA-seq [13]. To determine 

whether LMOs or CMOs were preferred for labeling nuclei purified using snATAC-seq buffers, we 

isolated and transposed nuclei according to standard snATAC-seq protocols (Methods) before 

 
 
Figure 5-1: MULTI-ATAC-seq design and library preparation workflow.  
(A) Diagram of the anchor/co-anchor LMO scaffold (black) with hybridized sample barcode (red). LMO scaffolds assemble via 
hybridization of anchor and co-anchor LMOs (LOCK). Sample barcode oligonucleotides hybridize to the anchor LMO (HYB), and 
include a TruSeq R2 PCR handle, a unique molecular identifier (UMI), an 8-bp sample barcode, and a R1/bead-capture domain. 
(B) MULTI-ATAC-seq library preparation overview. Following capture of transposed gDNA and MULTI-ATAC-seq sample barcodes 
by the shared R1 domain (red), both oligonucleotide fractions are amplified during in-droplet linear PCR. Prior to next generation 
sequencing (NGS), the scATAC-seq and MULTI-ATAC-seq libraries are prepared via selective amplification off of the distinct R2 
domains (orange and green), enabling pooled sequencing at user-defined proportions. The final result are couple chromatin 
accessibility and MULTI-ATAC-seq barcode count matrices. 
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labeling with LMOs or CMOs hybridized to fluorophore-conjugated MULTI-ATAC-seq sample 

barcodes. We then used flow cytometry to measure membrane labeling kinetics over 1 hour on 

ice. This analysis showed that LMOs are retained better than CMOs on transposed nuclear 

membranes (Fig. 5-2a).  

Next, we prepared nuclei in the same fashion before labeling with titrating doses of LMOs 

and computed the absolute number of molecules localized to the nuclear membrane using 

fluorescence calibration beads. This analysis enabled the identification of an optimal LMO labeling 

concentration resulting in similar numbers of MULTI-ATAC-seq barcode and transposed gDNA 

molecules (e.g., 104-105 molecules; Fig. 5-2b), which we anticipated would avoid competition for 

bead capture sites and library preparation primers between MULTI-ATAC-seq barcodes and 

transposed gDNA.  

 

5.3.3 Proof-of-concept MULTI-ATAC-seq experimental design. 

 After determining optimal labeling conditions for transposed nuclei, we next performed a 

proof-of-concept MULTI-ATAC-seq experiment on the 10x Genomics snATAC-seq platform which 

aimed to answer three key questions (Fig. 5-3). First, we sought to demonstrate whether MULTI- 

 
 
Figure 5-2: Flow cytometry using fluorophore-conjugated MULTI-ATAC-seq oligonucleotide probes demonstrates robust   and 
quantitative LMO and CMO nuclear membrane tagging following transposition. 
(A) Time-course analysis of CMO (blue) and LMO (red) abundances following mixture of AF647- and FAM-labeled transposed  nuclei 
on ice for 1hr. n = 10,000 events/time-point. 
(B) LMO titration (red gradient) and calibration using Bang’s fluorescence calibration beads (grey) facilitates absolute quantification of 
LMO molecules localized to the nuclear membrane following transposition across varying LMO concentrations. Absolute number of 
molecules (x103) present on calibration beads are denoted with bold text. 
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Figure S1: Flow cytometry using fluorophore-conjugated MULTI-ATAC-seq oligonucleotide probes demonstrates robust  
and quantitative LMO and CMO nuclear membrane tagging following transposition. 
(A) Time-course analysis of CMO (blue) and LMO (red) abundances following mixture of AF647- and FAM-labeled transposed  
nuclei on ice for 1hr. n = 10,000 events/time-point. 

(B) LMO titration (red gradient) and calibration using Bang’s fluorescence calibration beads (grey) facilitates absolute quantification  
of LMO molecules localized to nuclear membrane following transposition across varying LMO concentrations. Absolute number of  
molecules (x103) present on calibration beads are denoted in bold text.
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We previously demonstrated that while both LMOs and CMOs can successfully label nuclear membranes during scRNA-seq experiments, CMOs were  
preferred because of the common use of BSA in nuclei preparation buffers, which quenches LMOs prior to membrane embedding (McGinnis et al., 2019).  
However, it remained unclear which oligonucleotide conjugate would work best on transposed nuclei, as both BSA and digitonin (which extracts cholesterol  
from plasma membranes) are present in transposition buffers. To this end, we performed an analytical flow cytometry experiment in which transposed nuclei  
were labeled with LMOs or CMOs that were hybridized to two distinct fluorophore-conjugated oligonucleotide probes. Differently-labeled LMO- or CMO-tagged 
nuclei were then pooled and incubated on ice for 1hr before the extent of label loss and exchange was measured. This experiment revealed that while both  
reagents effectively labeled nuclei, LMOs exhibited more stable membrane embedding and were thus used for all successive experiments.

To minimize competition between MULTI-ATAC-seq oligonucleotides and transposed DNA during the DNA capture, linear amplification, and sample-index PCR  
steps of the scATAC-seq workflow, we sought to identify an LMO concentration which would mimic to total number of 
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ATAC-seq could accurately demultiplex snATAC-seq samples relative to an orthogonal set of 

ground-truth sample classifications. To this end, we processed PBMC nuclei isolated from three 

healthy donors which were computationally demultiplexed according to donor-specific genomic 

variants inferred using the in silico genotyping tool, Vireo [17]. Second, we sought to determine 

whether transposition reagents from other commercial vendors (e.g., Illumina) could be used 

during 10x Genomics-based snATAC-seq, as 10x Genomics provides limited reagent stocks with 

their snATAC-seq kits which are rapidly depleted when performing large-scale sample multiplexed 

experiments. To this end, we purified nuclei from all three PBMC donors and split them into three 

sets – two sets were transposed with 10x Genomics reagents (10x-Tn5) and the third set was 

transposed with Illumina reagents (Illumina-Tn5). Third, to determine whether MULTI-ATAC-seq 

barcodes interfere with gDNA capture and/or library preparation, we barcoded Illumina-Tn5 and 

one set of 10x-Tn5 nuclei to enable downstream comparisons to unbarcoded 10x-Tn5 controls. 

Finally, PBMC donors from each experimental condition (e.g., 10x-Tn5, 10x-Tn5+LMO, and 

Illumina-Tn5+LMO) were pooled and sequenced across three separate 10x Genomics snATAC-

seq microfluidic lanes.  

 

 
 
Figure 5-3: Proof-of-concept MULTI-ATAC-seq experimental design.  
Nuclei were purified from PBMCs from three healthy donors, and split into three sets. Two sets were transposed using 10x reagents, 
one set was transposed using Illumina reagents. Illumina-transposed and one 10x-transposed set of nuclei were barcoded with LMOs, 
while the other 10x-transposed set was left unlabeled. Nuclei from each donor were then pooled according to sample preparation 
workflow prior to 10x Genomics snATAC-seq analysis. 
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5.3.4 MULTI-ATAC-seq demultiplexes PBMC donors during snATAC-seq. 

 Following pre-processing and quality control (Methods), we first analyzed the 10x-

Tn5+LMO snATAC-seq data to determine whether MULTI-ATAC-seq can successfully 

demultiplex PBMC donors. Amongst the 2,081 total nuclei passing quality-control, literature-

supported marker analysis revealed diverse immune cell types including naïve and cytotoxic T-

cells, natural killer (NK) cells, B-cells, monocytes, dendritic cells (DCs), and doublets predicted 

by the co-detection of multiple cell-type-specific markers (Figs. 5-4a, 5-4b). Mapping MULTI-

ATAC-seq sample classifications (Methods) onto ATAC space illustrated that nuclei from each 

donor were spread across all PBMC cell type clusters while exhibiting donor-specific sub-

structure, matching expectations (Fig. 5-4c). Moreover, MULTI-ATAC-seq doublet classifications 

 
 
Figure 5-4: MULTI-ATAC-seq accurately demultiplexes PBMC donors during snATAC-seq. 
(A,C,E) ATAC space for 10x-Tn5+LMO nuclei colored by (A) cell type annotation, (C) MULTI-ATAC-seq sample classification, and 
(E) Vireo in silico genotyping classifications. n = 2,081 nuclei. 
(B) Literature-supported marker gene heatmap. Three literature-supported marker genes for each detected PBMC cell type are 
arranged in the following column order: T, naïve T, cytotoxic T/NK, B, monocyte, and DC. Averaged scaled gene scores are shown 
for each annotated cell type (coral = naïve T, dark red = cytotoxic T/NK, gold = B, dark blue = monocyte, cyan = DC, black = doublet). 
(D) Scatter plots of MULTI-ATAC-seq barcode (BC) nUMI distributions colored by MULTI-ATAC-seq sample classifications (as in 
Fig. 5-4c). Nuclei with greater than 200 BC UMIs are excluded for visualization purposes. 
(F) Heatmap summary of concordance between MULTI-ATAC-seq and Vireo classifications. Association proportions less than 1% 
are not annotated. Blank circles correspond to cells left unclassified by MULTI-ATAC-seq or Vireo. 
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included heterotypic doublets (formed between transcriptionally-distinct cell types) predicted from 

marker analysis, as well as homotypic doublets (formed between transcriptionally-similar cell 

types) that are difficult to predict using marker analysis [21,22].  

To assess the accuracy of these MULTI-ATAC-seq classifications, we first visualized the 

raw MULTI-ATAC-seq barcode UMI distributions and observed (i) barcode orthogonality between 

classification groups and (ii) co-detection of multiple MULTI-ATAC-seq barcodes amongst 

classified doublets (Fig. 5-4d). These patterns are reminiscent of the “barnyard” plots generated 

during the original scRNA-seq mouse-human species mixing experiments [3-5], and support the 

accuracy of MULTI-ATAC-seq classifications. We next compared MULTI-ATAC-seq classification 

results to in silico genotyping predictions generated using Vireo. Qualitative comparison of Vireo 

and MULTI-ATAC-seq donor classifications in ATAC space suggests concordance between the 

two methods (Fig. 5-4e). Quantification of these results revealed that 99.8% (1752/1753) of 

singlets classified by both methods were assigned to the same donor (Fig. 5-4f). Moreover, 

MULTI-ATAC-seq classified 48 Vireo-unclassified nuclei, while classifying 106/1908 Vireo 

singlets as doublets.    

 

5.3.5 Benchmarking MULTI-ATAC-seq doublet classifications. 

 To further explore the discrepancy between MULTI-ATAC-seq and Vireo doublets, we 

benchmarked these results against two computational snATAC-seq doublet prediction tools: 

ArchR [47] and AMULET [48]. Notably, ArchR and AMULET use distinct approaches to identify 

snATAC-seq doublets. Specifically, ArchR identifies doublets as real nuclei co-localizing with in 

silico-generated artificial doublets in ATAC space, as has been described for analogous scRNA-

seq doublet detection methods [21,22]. In contrast, AMULET identifies doublets as nuclei with 

elevated levels of bi-allelic read counts. Due to the relative novelty of these approaches, the 

preferred method for snATAC-seq doublet detection remained unclear. 
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 To explore the differences between MULTI-ATAC-seq, Vireo, AMULET, and ArchR-

defined doublets, we first qualitatively compared the distributions of doublets in ATAC space (Fig. 

5-5a). This analysis, along with subsequent quantification (Fig. 5-5b), revealed high concordance 

between MULTI-ATAC-seq, Vireo, and AMULET predictions (Fig. 5-5b, bracket *). Notably, while 

AMULET predictions aligned closely with Vireo and MULTI-ATAC-seq, many putative doublets 

were left undetected (Fig. 5-5b, bracket **). In contrast, default ArchR predictions resulted in DCs 

 
 
Figure 5-5: MULTI-ATAC-seq doublet detection benchmarking against Vireo, AMULET, and ArchR. 
(A) ATAC space for 10x-Tn5+LMO nuclei colored by doublet predictions for MULTI-ATAC-seq, Vireo, AMULET, and ArchR (using 
default parameters). 
(B) Heatmap summary of doublet prediction concordance between MULTI-ATAC-seq (M), Vireo (V), AMULET, default Archr, and 
pK-optimized ArchR run on UMAP and LSI embeddings for 10x-Tn5+LMO (left) and Illumina-Tn5+LMO datasets (middle). Heatmap 
asterisks correspond to key interpretations from this analysis, as summarized in the accompanying legend (right). 
(C) ROC curves of ArchR doublet enrichment scores generated across multiple neighborhood sizes (pK) with associated AUC values  
for the 10x-Tn5+LMO dataset. Highest AUC value highlighted in bold. 
(D) ATAC space for 10x-Tn5+LMO nuclei colored by doublet predictions following ArchR pK optimization. 
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being called as doublets (Fig. 5-5a, right, red arrow) while entirely missing the T-cell/B-cell doublet 

cluster (Fig. 5-5a, right, black arrow). 

 We previously showed that the neighborhood size used to compute similarity to artificial 

doublets is the key parameter for community-detection-based doublet detection algorithms [21]. 

Thus, to explore whether ArchR predictions could be improved through parameter optimization, 

we submitted ArchR outputs generated across a range of neighborhood sizes (measured as the 

proportion of the full dataset, pK) to receiver operator curve (ROC) analysis and identified optimal 

pK values for doublet identification in both UMAP and latent-semantic indexing (LSI) space (Fig. 

5-5c). Optimizing neighborhood size only modestly improved ArchR doublet detection results 

across all datasets tested (Fig. 5-5b, bracket ***) and did not lead to the correct classification of 

DCs and T-cell/B-cell doublets (Fig. 5-5d), suggesting fundamental limitations of community-

detection-based doublet detection for snATAC-seq data.  

We next sought to untangle whether discordant MULTI-ATAC-seq and Vireo doublet 

classifications represented MULTI-ATAC-seq misclassifications. To this end, we computed the 

number of detected snATAC-seq fragments and total MULTI-ATAC-seq nUMIs amongst 

concordant and discordant classifications between the two methods, as true doublets would 

exhibit elevated levels for both metrics. This analysis revealed that MULTI-ATAC-seq-specific 

doublets exhibited levels of snATAC-seq fragments and MULTI-ATAC-seq nUMIs that resembled 

shared (i.e., high-confidence) doublets, suggesting that they were Vireo false-negatives (Fig. 5-

6a, gold box). In contrast, Vireo-specific doublets had lower levels fragments and nUMIs than 

high-confidence singlets, suggesting that they were false-positives due to low per-nucleus 

sequencing depth (Fig. 5-6a, green box). Finally, MULTI-ATAC-seq-specific doublets localized 

preferentially to singlet rather than heterotypic doublet clusters in ATAC space (Fig. 5-6b), which 

suggests that Vireo suffers from insensitivity to homotypic doublets. These results were 

additionally observed in the Illumina-Tn5+LMO dataset (Fig. 5-6c; Fig. 5-6d). 
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We next applied this same analytical workflow to assess the true identity of cells 

discordantly called by MULTI-ATAC-seq and AMULET. As was observed previously, MULTI-

ATAC-seq-specific doublets were enriched for both the number of snATAC-seq fragments and 

MULTI-ATAC-seq nUMIs, suggesting that these nuclei were AMULET false-negatives (Fig. 5-

7a). However, AMULET-specific doublets displayed a similar trend, suggesting that were MULTI-

 
 
Figure 5-6: MULTI-ATAC-seq identifies Vireo false-positive and false-negative doublet classifications. 
(A) Box plots describing the number of snATAC-seq fragments and MULTI-ATAC-seq nUMIs for singlets (S) and doublets (D) called 
by both MULTI-ATAC-seq and Vireo, MULTI-specific doublets (M), and Vireo-specific doublets (V) in the 10x-Tn5+LMO dataset. 
(B) ATAC space for mutual doublets (red) and MULTI-specific doublets (gold) suggest Vireo insensitivity to homotypic doublets. 
(C) Same analysis as in Fig. 5-6a and Fig. 5-6b for the Illumina-Tn5+LMO dataset. 
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Figure 5-7: MULTI-ATAC-seq and AMULET provide complementary doublet prediction results. 
(A) Box plots describing the number of snATAC-seq fragments and MULTI-ATAC-seq nUMIs (right) for singlets (S) and doublets (D) 
called by both MULTI-ATAC-seq and AMULET, MULTI-ATAC-seq-specific doublets (M), and AMULET-specific doublets (DD) in the 
10x-Tn5+LMO dataset. 
(B) Same analysis as in Fig. 5-7a except for the Illumina-Tn5+LMO dataset. 
(C) Same analysis as in Fig. 5-7a except for the 10x-Tn5 control dataset using Vireo doublet classifications as the reference. 
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ATAC-seq false-negatives. These results were additionally observed in the Illumina-Tn5+LMO 

dataset (Fig. 5-7b) and the 10x-Tn5 control dataset (Fig. 5-7c) when compared to Vireo. 

Collectively, this benchmarking analysis illustrates the accuracy of MULTI-ATAC-seq doublet 

predictions, while additionally highlighting AMULET as the preferred computational snATAC-seq 

doublet prediction tool. 

 

5.3.6 Benchmarking effects of Illumina transposition and LMO labeling on snATAC-seq data. 

 After validating that MULTI-ATAC-seq successfully demultiplexes PBMC donors, we next 

sought to assess how LMO labeling and Illumina transposition reagents influence 10x Genomics-

based snATAC-seq data quality. TO this end, we first aggregated and read-depth normalized all 

three snATAC-seq datasets. Mapping sample preparation condition labels onto ATAC space for 

the 8,074 read-depth-normalized nuclei passing quality-control illustrated that LMO-labeled and 

control nuclei transposed with 10x Genomics Tn5 are evenly intermixed, while nuclei transposed 

with Illumina reagents form distinct clusters (Fig. 5-8a).  

Notably, all PBMC cell types were detected across all sample preparation conditions and 

exhibited similar chromatin accessibility profiles for literature-supported cell type markers (Fig. 5-

8b). Differences in fragment size periodicity and transcription start site (TSS) enrichment 

underlied the differences between 10x- and Illumina-transposed nuclei (Fig. 5-8c), with Illumina-

transposed nuclei exhibiting increased TSS enrichment and nucleosome-free fragments. 

Differences in snATAC-seq quality-control metrics are expected when using distinct reagents 

sources, and the ability to detect PBMC cell types demonstrates the suitability of using alternative 

transposition reagents for 10x Genomics-based snATAC-seq. 

 To quantitatively assess the impact of MULTI-ATAC-seq LMO labeling on snATAC-seq 

data, we used Jensen-Shannon Divergence (JSD) and hierarchical clustering to compute the 

global dissimilarity between monocytes and naïve T-cells binned by PBMC donor and sample 
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preparation conditions. This analysis revealed that monocyte and naïve T-cell nuclei 

predominantly cluster by transposition condition (i.e., 10x vs Illumina), matching our previous 

observations (Fig. 5-8d). Moreover, within 10x-transposed monocytes, nuclei clustered according 

to PBMC donor and not by the presence or absence of LMOs (Fig. 5-8d, top). Donor-specific 

clustering was not as clean for naïve T-cells, although LMO labeling status did not dominate the 

hierarchical clustering results (Fig. 5-8d, bottom). Collectively, these analyses demonstrate that 

 
 
Figure 5-8: MULTI-ATAC-seq LMO labeling does not alter snATAC seq data-quality, while Illumina transposition produces 
high-quality snATAC-seq data with increased nucleosome-free tagmentation. 
(A) ATAC space for all nuclei following read-depth normalization colored by sample preparation (10x-Tn5 control (grey), 10x-Tn5 with 
MULTI-ATAC-seq LMO labeling (red), Illumina-Tn5 with LMO labeling (blue)). Cell type annotations highlighted with colored dotted 
lines. n = 8,074 nuclei. 
(B) Literature-supported marker gene heatmap with genes arranged as in Fig. 5-4b. Columns correspond to distinct cell types (colored 
by circle fill) and are split by sample preparation (colored by circle outline). 
(C) snATAC-seq quality-control metrics – fragment size distribution and TSS enrichment as a function of distance from aggregated 
ENCODE-defined TSSs plotted as line plots (top), as well as nucleosome ratio, total number of snATAC-seq fragments, and global 
TSS enrichment scores plotted as ridge plots (bottom) – grouped according to sample preparation conditions.  
(D) Heat map of mean Jensen Shannon Divergence (JSD) between monocytes (top) and naïve T-cells (bottom) grouped according 
to Vireo-defined donor and sample preparation condition and ordered using hierarchical clustering.  
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LMO labeling does not significantly alter snATAC-seq data quality and does not introduce 

variability in snATAC-seq that is more pronounced than natural inter-individual variability. 

 

5.3.7 MULTI-ATAC-seq epigenetic modifier screen design. 

 Our proof-of-concept experiment demonstrated how MULTI-ATAC-seq can accurately 

demultiplex snATAC-seq samples while improving data-quality through doublet detection. 

However, this experiment did not illustrate how MULTI-ATAC-seq can enable snATAC-seq 

experimental designs that would otherwise be untenable due to high reagent costs (e.g., chemical 

compound screens). To this end, we designed a larger MULTI-ATAC-seq experiment where 

PBMCs were perturbed ex vivo in resting or inflammatory conditions (i.e., with anti-CD3/CD28 

antibodies) with varying doses of epigenetic modifying agents which have established 

immunomodulatory capacities [49,50]: the pan-histone deacetylase (HDAC) inhibitor SAHA and 

the EZH2 methyltransferase inhibitor GSK126 (Fig. 5-9a). 

 Before performing MULTI-ATAC-seq, we first used flow cytometry to identify SAHA and 

GSK126 doses which induce detectable shifts in relevant epigenetic modifications (e.g., H3K9ac 

for SAHA, H3K27me3 for GSK126) over 24 hours in PBMCs (Fig. 5-9b). Using these conditions, 

we then employed MULTI-ATAC-seq to multiplex 14 total samples representing resting and 

 
 
Figure 5-9: MULTI-ATAC-seq epigenetic modifier screen experimental design and dose selection using flow cytometry. 
(A) Experimental design schematic overview. PBMCs were cultured ex vivo for 24 hours in media supplemented with varying doses 
of SAHA (blue), GSK126 (red), or DMSO (grey) in the presence (black outline) or absence of anti-CD3/CD28 antibodies (dark gold 
outline). Following ex vivo perturbation, nuclei were isolated, transposed, and LMO labeled prior to snATAC-seq. 
(B) Flow cytometry analysis of H3K27me3 marks across varying GSK126 doses (left column, blue) and H3K9ac marks across varying 
SAHA doses (right column, red) in both resting (top row, black outline) and stimulated conditions (bottom row, gold outline). 
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CD3/CD28-stimulated PBMCs treated with three SAHA doses (0.1, 1, and 10 µM), three GSK126 

doses (0.05, 0.5, and 5 µM) or vehicle (DMSO) into a single 10x Genomics snATAC-seq 

microfluidic lane.  

 

5.3.8 MULTI-ATAC-seq identifies shits in immune cell identity and population structure associated 

with acute inflammation, inflammation-independent responses, and dose-dependent signatures. 

 Following data pre-processing and quality-control, we analyzed a final snATAC-seq 

dataset consisting of 5,036 nuclei spanning major PBMC cell types (e.g., T-cells, NK cells, B-

cells, and myeloid cells; Fig. 5-10, top left). Mapping MULTI-ATAC-seq classifications onto ATAC 

space revealed that CD3/CD28 stimulation drove unique chromatin accessibility states across all 

PBMC cell types (Fig. 5-10, bottom left). Notably, although anti-CD3/CD28 antibodies only 

 
 
Figure 5-10: Survey of MULTI-ATAC-seq epigenetic modifier screen results highlights PBMC drug response signatures 
detectable using snATAC-seq. 
ATAC space colored by PBMC cell type (top left) and ex vivo perturbation conditions grouped by drug (DMSO, GSK126, SAHA) and 
CD3/CD28-stimulation status (Rest, Stim). Arrows in SAHA-colored ATAC spaces correspond to relevant phenotypes: SAHA dose-
specific response independent of CD3/CD28-sitmulation (1) and myeloid toxicity (2). Insets in GSK126-colored ATAC spaces 
correspond to GSK126 dose-specific myeloid response only resting myeloid cells.  
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activate T-cells directly through T-cell receptor activation, T-cell activation subsequently leads to 

the release of cytokines which induce responses in other immune lineages [51]. MULTI-ATAC-

seq is able to systematically detect these responses. 

Beyond the CD3/CD28-specific responses, MULTI-ATAC-seq additionally identified three 

patterns of responses to epigenetic modifier perturbation. First, we observed T-cell clusters in 

ATAC space corresponding to intermediate and high SAHA doses that were robust to CD3/CD28-

stimulation (Fig. 5-10, top middle/right, arrow #1). Second, we observed myeloid-specific toxicity 

to the highest SAHA dose (Fig. 5-10, top middle/right, arrow #2; inset histograms). Notably, this 

phenotype would be difficult to discern from global repression of myeloid-specific chromatin 

domains using bulk measurements. Finally, we observed distinct GSK126 dose-specific trends in 

both resting and CD3/CD28-stimulated myeloid cells (Fig. 5-10, bottom middle/right, inset). 

Considered together, these results demonstrate how MULTI-ATAC-seq can be used for high-

throughput compound screens coupled to snATAC-seq, illustrates how responses to epigenetic 

modulation can be context (in)-dependent, and highlights how single-cell resolution 

measurements can deconvolve phenotypes (e.g., cell-type-specific drug toxicity and effects of 

cell-cell communication) that are obscured by bulk assays. 

 

5.3.9 MULTI-ATAC-seq identifies global de-repressive effect of SAHA treatment on chromatin 

organization and influence of GSK126 on Th1 differentiation. 

After assessing the types of global drug responses that can be detected by MULTI-ATAC-

seq, we next sought to determine whether single-cell resolution measurements were sufficiently 

sensitive to detect the established effect of EZH2 inhibition on CD3/CD28-induced T-cell 

differentiation. Specifically, EZH2 is known to inhibit Th1 differentiation while promoting the 

survival of Th1 cells [49]. As an EZH2 inhibitor, we thus expected GSK126 to increase Th1 

differentiation while leading to increased Th1 cell death. 
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To assess this nuanced immunomodulatory phenotype, we first subsetted T-cells from our 

existing dataset and used literature-supported marker genes to annotate T-cell sub-types (Fig 5-

11a, Fig. 5-11b). In resting T-cells, we identified naïve T-cells associated with state-specific 

 
 
Figure 5-11: T-cell sub-type analysis demonstrates global de-repressive effect of SAHA on chromatin state and influence 
of GSK126 treatment on Th1 differentiation 
(A) ATAC space colored by T-cell sub-type (top left) and perturbation conditions grouped by drug (DMSO, GSK126, SAHA) and 
colored by CD3/CD28-stimulation status. 
(B) Literature-supported marker gene heatmap. Three literature-supported marker genes for each detected T-cell sub-type are 
arranged in the following column order: Naïve T, memory T, Th1, MAIT, cytotoxic CD8+ T. Averaged scaled gene scores are shown 
for each annotated cell type (coral = naïve T, red = memory T, dark-red = Th1, orange = MAIT, gold = cytotoxic CD8+ T, light blue = 
SAHA-int naïve T, dark blue = SAHA-int MAIT, light purple = SAHA-high naïve T, dark purple = SAHA-high MAIT. 
(C) T-cell sub-type proportions binned according to CD3/CD28-stimulation status (CD3), drug (GSK or SAHA), and dose (low, 
intermediate, and high). Black box highlights CD3/CD28-stimulated, GSK126-treated T-cells and corresponds to black inset (top left) 
showing Genome Browser track for the TNFRSF10A and TNFRSF10B loci. Red box highlights SAHA-treated T-cells and 
corresponds to red inset (top right) statistically-summarizing differentially-accessible peaks between DMSO-treated naïve T-cells and 
naïve T-cells treated with varying doses of SAHA. 
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transcription factors (e.g., ID3 [52]) and genes that are down-regulated after TCR engagement 

(e.g., LEF1 and WNT7A [53]), cells resembling mucosal-associated invariant T (MAIT) cells 

associated with known MAIT markers (e.g., KLRB1 [54] and CCR6 [55]), and cytotoxic CD8+ T-

cells marked by cytotoxic genes such as PRF1. In CD3/CD28-stimulated T-cells, we identified T-

cell sub-types known to arise during Th1 differentiation such as memory T-cells associated with 

known memory T-cell markers (e.g., CD38 [56]) and genes up-regulated during TCR signaling 

(e.g., STAT1 [57]), as well as Th1 cells marked by IFNG, IL23R, and CTLA4 [58,59]. Finally, we 

also observed naïve T-cell and MAIT clusters linked to the intermediate (Fig 5-11a, blue) and high 

SAHA doses (Fig 5-11a, purple) in a CD3/CD28-independent fashion. 

We next aimed to verify these annotations by comparing the sub-type frequencies 

associated with each perturbation condition. These analyses revealed that resting PBMCs treated 

with any dose of GSK126, the lowest SAHA dose, or DMSO were highly-enriched for naïve T-

cells, matching expectations due to the lack of TCR engagement (Fig. 5-11c). Moreover, 

comparing the total number of differentially-accessible transcription factor binding motifs between 

control and SAHA-treated T-cells demonstrated that the magnitude of global chromatin 

accessibility scaled with SAHA dose (Fig. 5-11c, red box). This matches the known de-repressive 

mechanism of HDAC inhibitors and explains the observed apportionment of T-cells into dose-

specific sub-type clusters in ATAC space. Finally, CD3/CD28-stimulated PBMCs were enriched 

for memory and Th1 cells at the expense of naïve T-cells, matching expectations. 

Having established the accuracy of the annotation workflow, we next analyzed the T-cell 

sub-type frequencies amongst GSK126-treated CD3/CD28-stimulated T-cells to assess whether 

MULTI-ATAC-seq detected effects of EZH2 inhibition on Th1 differentiation. These analyses 

revealed that GSK126 treatment was associated with enriched proportions of memory T-cells 

across all doses (Fig. 5-11c). Moreover, we observed that the proportion of naïve T-cells 

increased with GSK126 dose, while the proportion of Th1 cells showed the opposite trend. Finally, 
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T-cells treated with the highest GSK126 dose exhibited increased open chromatin proximal to the 

promoters for the TNFRSF10A/B loci, which are genes with known roles in Th1 apoptosis [60]. 

Collectively, these results demonstrate that MULTI-ATAC-seq can detect nuanced 

immunomodulatory responses such as the effect of EZH2 inhibition on Th1 differentiation. 

Supporting this claim, we observe that GSK126 exposure increased Th1 differentiation (as 

inferred from increased memory T-cell proportions) and decreased Th1 survival (as inferred from 

dose-dependent decreases in Th1 proportions and chromatin accessibility proximal to the 

TNFRSF10A/B loci), matching the documented effects of GSK126 in this context.  

 

5.4 Discussion 

 Sample multiplexing technologies expand the purview of single-cell genomics 

experiments and have been effectively applied to generate high-quality, large-scale single-cell 

transcriptomics datasets. Despite these efforts, analogous methods for multiplexing single-cell 

epigenomics assays are relatively under-developed. In this study, we present an extension of the 

MULTI-seq single-cell sample multiplexing technology for snATAC-seq – MULTI-ATAC-seq.  

 To demonstrate the utility of MULTI-ATAC-seq for snATAC-seq sample multiplexing, we 

performed a proof-of-concept experiment on PBMCs from three unrelated donors where ground-

truth sample-of-origin classifications were obtained from in silico genotyping. These analyses 

demonstrated high concordance between MULTI-ATAC-seq and in silico genotyping results, 

illustrated how MULTI-ATAC-seq does not alter snATAC-seq data quality, and showed how 

alternative transposition reagents are compatible with snATAC-seq workflows on the 10x 

Genomics platform. Moreover, we used this proof-of-concept dataset to illustrate snATAC-seq 

doublet detection algorithms such as AMULET which identify doublets using bi-allelic read-count 

ratios can outperform community-detection-based doublet detection methods. 
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To demonstrate the types of large-scale experiments that MULTI-ATAC-seq makes 

possible, we next multiplexed 14 snATAC-seq samples of resting and CD3/CD28-stimulated 

PBMCs perturbed with titrating doses of two epigenetic modifying agents (SAHA and GSK126) 

into a single 10x Genomics microfluidics lane. These analyses illustrated three types of global 

immunomodulatory responses that can assessed using multiplexed snATAC-seq – namely, 

perturbation responses that are independent of stimulation status (e.g., SAHA effects on T-cells), 

dose- and cell-type-specific drug toxicities (e.g., high-dose SAHA effect on myeloid cells), and 

dose-dependent shifts in chromatin state (e.g., GSK126 effects on resting and CD3/CD28-

stimulated myeloid cells). We also demonstrate how coupling perturbation-response experimental 

designs to high-dimensional single-cell measurements can detect nuanced immunomodulatory 

phenotypes – specifically, dose-dependent effects of GSK126 on Th1 differentiation and survival.  

 Collectively, this work represents an effective extension of the MULTI-seq sample 

multiplexing platform for scATAC-seq experiments. To date, snATAC-seq applications of 

antibody- and click-chemistry-based multiplexing techniques have not been described, although 

they are feasible in theory but would similarly suffer from limitations such as species-specificity 

and sample processing constraints (as summarized previously [13]). In contrast, the recently 

described multiplexing platform CASB, which localizes biotinylated sample barcodes to cell or 

nuclear membranes labeled with streptavidin-conjugated concavilin A molecules [45], shares 

many of the same benefits as MULTI-seq and MULTI-ATAC-seq. However, comparing MULTI-

ATAC-seq to CASB highlights strengths and weakness for each method.  

One relative strength of MULTI-ATAC-seq is that MULTI-ATAC-seq sample barcodes 

incorporate a PCR handle that is orthogonal to those introduced during gDNA transposition. The 

presence of an orthogonal PCR handle enables MULTI-ATAC-seq and snATAC-seq libraries to 

be prepared independently via selective PCR amplification, which in turn facilitates sequencing 

of each library at user-defined proportions. In contrast, CASB – in its current implementation – 
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does not introduce an orthogonal PCR handle for the sample barcode library, and thus requires 

sample barcode and snATAC-seq libraries to be prepared in a single pool. This can lead to 

sequencing inefficiencies, as sample barcode libraries require an order of magnitude fewer reads 

than snATAC-seq libraries. Moreover, as CASB was only used for one documented snATAC-seq 

experiment, it remains unclear how the performance of the method will vary across different 

samples or assay types with varying amounts of transposed gDNA. For example, targeted single-

cell epigenomics assays such as snCUT&Tag generate less transposed gDNA than in snATAC-

seq, which could further compound sequencing inefficiencies when using CASB 

In contrast, one strength of CASB relative to MULTI-ATAC-seq is that the biotin-

streptavidin interaction between membrane-bound concavilin A and sample barcode 

oligonucleotides is stable at high temperatures. This allows for nuclei to be tagged and pooled 

prior to transposition, which in turn minimizes technical difficulty of the downstream workflow, as 

well as batch effects that may be introduced due to slight variations in transposition reaction 

conditions. In its current iteration, MULTI-ATAC-seq requires sample tagging after transposition, 

which limits the scalability of the method. However, strategies for increasing the membrane 

retention of LMOs at higher temperatures may prove to be sufficient for enabling pooled 

transposition after MULTI-ATAC-seq labeling.  

Looking forward, we anticipate that single-cell epigenomics experiments will be further 

propelled by interfacing the MULTI-ATAC-seq platform with targeted single-cell epigenomics 

assays such as snCUT&Tag, as well as paired single-cell transcriptomics and epigenomics 

assays. Coupling snCUT&Tag to MULTI-ATAC-seq will make it possible to interrogate multiple 

epigenetic marks, transcription factors, and/or nuclear compartments in large numbers of samples 

in an economical fashion. Moreover, coupling snCUT&Tag and MULTI-ATAC-seq to a paired 

scRNA-seq read-out will further improve the interpretability of multiplexed snCUT&Tag datasets, 

as each layer of the epigenome will be ilnked to a common level of biological information. As a 
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result, it will become possible to define causal links between the raw read-out of the assay (e.g., 

genomic loci) to specific regulatory molecules (e.g., transcription factor X or histone modification 

Y) in a fashion that provides mechanistic insights into how epigenomic states are defined at single-

cell resolution. 

 

5.5 Materials and Methods 

5.5.1 Design LMOs and sample barcode oligonucleotides.  

Anchor and co-anchor LMOs were synthesized as described previously [13]. Briefly, the 

anchor LMO has a 3’ lignoceric acid (LA) modification with two oligonucleotide domains. The 5’ 

end is complimentary to the co-anchor LMO, which bears a 5’ palmitic acid (PA), and the 3’ end 

is complimentary to the 5’ end of the sample barcode oligonucleotide. The sample barcode 

oligonucleotide was designed to have five domains: (1) 5’ anchor LMO hybridization site, (2) 

TruSeq R2 PCR handle for barcode amplification and library preparation, (3) 8 base-pair sample 

barcode with Hamming distance > 3 relative to all other utilized barcodes, (4) 8 base-pair unique 

molecular identifier [46], and (5) 3’ R1 PCR handle used for scATAC-seq bead hybridization and 

downstream NGS. Identically designed anchor and co-anchor CMOs are conjugated to 

cholesterol at the 3’ or 5’ ends via a triethylene glycol (TEG) linker and are commercially available 

from Integrated DNA Technologies (IDT). 

 

Anchor LMO:  5’-TGGAATTCTCGGGTGCCAAGGGTAACGATCCAGCTGTCACT-{LA}-3’ 

Co-anchor LMO:  5’-{PA}-AGTGACAGCTGGATCGTTAC-3‘ 

Sample barcode (V1):  5’-CCTTGGCACCCGAGAATTCCAGTGACTGGAGTTCAGACGTGTGC 

TCTTCCGATCT-{BC}-{UMI}-GACGCTGCCGACGA-3’ 

Sample barcode (V2):  5’-CCTTGGCACCCGAGAATTCCAGTGACTGGAGTTCAGACGTGTGC 
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TCTTCCGATCT-{BC}-{UMI}-CTGTCTCTTATACACATCTGACGCTGCCGACGA-3’ 

 

5.5.2 Cell culture. 

For analytical flow cytometry experiments to compare LMO and CMO labeling kinetics and 

to perform the LMO titration experiment, HEK293 cells were cultured in DMEM H-21 with 10% 

FBS and 1% pen/strep on 6-well plates (Corning cat#353046) at 37 °C and 5% CO2. For all 

experiments involving PBMCs, cells were obtained from HemaCare and were thawed according 

to the ‘Fresh Frozen Human Peripheral Blood Mononuclear Cells for Single Cell RNA Sequencing’ 

protocol from 10x Genomics. PBMCs were thawed into RPMI 1640 Medium, GlutaMAX™ 

Supplement, HEPES (ThermoFisher cat#72400047) supplemented with 10% FBS and 1% 

pen/strep (RPMI-FBS-PS) and plated at 0.5-1x107 cells/dish in 10cm ultra-low attachment culture 

dishes (Corning cat#3262). PBMCs were then rested overnight at 37 °C and 5% CO2 and 

suspension PBMCs were transferred to a 15 mL conical tube. Adherent cells were then lifted with  

TrypLE Express (ThermoFisher cat#12605036) and pooled with the suspension PBMCs. After 

washing with PBS, trypsinized PBMCs were then subjected to distinct workflows. 

For the MULTI-ATAC-seq proof-of-concept experiment, trypsinized PBMCs were 

immediately used for MULTI-ATAC-seq. For analytical flow cytometry experiments to assess 

epigenetic modifications across titrating SAHA and GSK126 doses, trypsinized PBMCs were re-

plated into ultra-low attachment 6-well plates (Corning cat#3471) at ~1x106 cells/well and cultured 

at 37 °C and 5% CO2 for 24 hours in RPMI-FBS-PS with or without 25 µL/mL ImmunoCult™ 

Human CD3/CD28 T Cell Activator (Stemcell Technologies cat# 10971) supplemented with 50 

nM, 500 nM, or 5 µM GSK126 (Selleck  cat#S7061) or 100 nM, 1 µM, or 10 µM SAHA (Selleck 

cat#S1047). For the MULTI-ATAC-seq epigenetic modifier screen experiment, trypsinized 
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PBMCs were re-plated into ultra-low attachment 24-well plates (Corning cat#3473) at ~7x105 

cells/well and cultured as described for the PBMC analytical flow cytometry experiment.  

 

5.5.3 Analytical flow cytometry. 

All analytical flow cytometry data was analyzed using FlowJo and R. For experiments to 

compare LMO and CMO labeling kinetics and to perform the LMO titration experiment, nuclei 

were isolated from HEK293 cells according to the “Nuclei Isolation for Single Cell ATAC 

Sequencing” protocol from 10x Genomics. Briefly, ~5x105 cells were pelleted and resuspended 

in 100 µL ice-cold lysis buffer containing: 10mM Tris-HCl, 10mM NaCl, 3mM MgCl2, 0.1% Tween-

20, 0.1% Nonidet P40 substitute, 0.01% digitonin, 1% BSA and 173 µL nuclease-free water. Cells 

were incubated in lysis buffer for 5’ on ice before being diluted with 1mL of ice-cold wash buffer 

(i.e., lysis buffer without Nonidet P40 substitute or digitonin). Nuclei were then pelleted and 

resuspended in 50 µL ice-cold 1X nuclei buffer (10x Genomics) and counted. 

 Following nuclei isolation, 50,000 nuclei were aliquoted into 1.5 mL Eppendorf tubes, 

pelleted, and resuspended in 50 µL Illumina transposition mix (Illumina, cat# 20034197) 

containing: 25 µL 2X TD buffer, 16.5 µL 1X PBS, 0.1% Tween-20, 0.01% digitonin, 2.5 µL Tn5 

transposase, and 5 µL nuclease-free water. Nuclei were transposed on a thermomixer 

(Eppendorf) for 1hr at 37 °C without mixing. After transposition, nuclei were labeled with LMOs or 

CMOs as described previously [8]. For the LMO vs CMO comparison experiment, nuclei were 

labeled with 100 nM anchor LMO/CMO pre-hybridized to either FAM or AF647-conjugated 

oligonucleotide probes before labeling with 100 nM co-anchor LMO/CMO. For the LMO titration 

experiment, nuclei were labeled with 1 nM, 5 nM, 10 nM, 50 nM, or 100 nM anchor LMO pre-

hybridized to an AF647-conjugated oligonucleotide probe before labeling with matching 

concentrations of co-anchor LMO.  
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LMO/CMO-labeled nuclei labeling reactions were quenched with 1.2mL 1% BSA and 

pelleted prior to resuspension in ice-cold PBS.  For the LMO vs CMO comparison experiment, an 

aliquot of nuclei from each LMO/CMO and FAM/AF647 condition was immediately analyzed using 

a BD FACSCalibur instrument, while the remaining LMO- or CMO-labeled nuclei were pooled and 

incubated on ice for 1hr prior to analysis. For the LMO titration experiment, nuclei were analyzed 

immediately after LMO labeling, and the number of AF647 oligonucleotide probes present on 

each nuclear membrane was quantified using AF647 calibration beads (Bangs Laboratories, 

cat#647). 

For analytical flow cytometry experiments to assess epigenetic modifications across 

titrating SAHA and GSK126 doses, PBMCs were lifted and stained for 30 minutes using a Far 

Red LIVE/DEAD Fixable Dead Cell Stain (Invitrogen Catalog #L34973). Fixation, 

permeabilization, and immunostaining were performed according to the “Flow Cytometry, 

Methanol Permeabilization Protocol for Rabbit Antibodies” protocol from Cell Signaling 

Technology. Briefly, cells were pelleted, resuspended in 4% PFA, and fixed for 15 minutes at 

room temperature, followed by two washes with PBS. Fixed cells were permeabilized for 10 

minutes on ice in 90% MeOH in PBS, after which MeOH was washed out by pelleting in excess 

PBS. SAHA-treated PBMCs and corresponding DMSO controls were incubated for 1 hour in 

1:200 monoclonal Rabbit anti-H3K9ac (Cell Signaling Technology cat#9649), while GSK126-

treated PBMCs and DMSO controls were incubated in 1:200 dilution monoclonal Rabbit anti-

H3K27me3 (Cell Signaling Technology cat#9733). Afterwards, cells were washed twice with 0.5% 

PBS-BSA and then incubated in 1:200 AF488-conjugated Goat anti-Rabbit secondary antibody 

(Invitrogen cat#A-11008) for 30 minutes at room temperature. Cells were then washed twice with 

0.5% PBS-BSA and then resuspended in PBS, followed immediately by analytical flow cytometry 

using a BD FACSCalibur instrument. 
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5.5.4 MULTI-ATAC-seq sample preparation. 

 For the proof-of-concept MULTI-ATAC-seq experiment, cryopreserved PBMCs from three 

healthy unrelated donors were thawed, cultured, and trypsinized (see section 5.5.2). Nuclei were 

then purified from trypsinized PBMCs (see section 5.5.3). Three sets of 15,000-nuclei aliquots 

from each PBMC donor were then subjected to transposition in 1.5mL low-retention tubes  for 1 

hour at 37 °C in either 10x Genomics or Illumina transposition reagents (see section 5.5.3). After 

transposition, all samples were immediately put on ice and two sets of nuclei were gently pipette-

mixed and labeled with 5 µL of 100 nM anchor LMO pre-hybridized to MULTI-ATAC-seq sample 

barcode oligonucleotides for 5 minutes. After anchor LMO labeling, nuclei were gently pipette-

mixed before 5 µL of 125 nM co-anchor LMO was added to each sample. Nuclei were then 

incubated on ice for another 5 minutes before all samples were diluted with 1% BSA in PBS and 

centrifuged at 4 °C and 500xg for 5 minutes. The supernatant was then aspirated, pellets were 

resuspended in 450 µL 1% BSA in PBS, and nuclei samples from each set were pooled and 

pelleted. The supernatant was then carefully aspirated before nuclei pellets were resuspended to 

a total volume of 15 µL in 10x Genomics ATAC buffer. 15 µL aliquots from each nuclei pool were 

then loaded into three 10x Genomics microfluidics lanes according to the “Chromium Next GEM 

Single Cell ATAC Reagent Kits v1.1” user-guide from 10x Genomics. 

The sample preparation workflow for the MULTI-ATAC-seq epigenetic modifier screen 

experiment was identical to the proof-of-concept experiment, with the following exceptions. First, 

Illumina transposition reagents were not used. Second, all samples were labeled with MULTI-

ATAC-seq LMOs and sample barcode oligonucleotides, and no ‘no-LMO’ control samples were 

used. Third, nuclei were resuspended in 100 µL 1% BSA in PBS instead of 450 µL 1% BSA in 

PBS after LMO quenching and pelleting to enable pooling of all 14 samples into a single 1.5mL 

low-retention tube. Fourth, pooled nuclei were resuspended in 30 µL 10x Genomics ATAC buffer, 
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counted, and diluted to 1,000 nuclei/µL prior to loading a single 10x Genomics microfluidics lane.  

 

5.5.5 MULTI-ATAC-seq library preparation and next-generation sequencing. 

Sequencing libraries were prepared using a custom protocol based on the 10X Genomics 

scATAC-seq and MULTI-seq [13] workflows. Briefly, the 10x workflow was followed until after the 

post-linear PCR 1.2X SPRI clean-up, where 1 µL of the scATAC-seq library was removed for the 

MULTI-ATAC-seq library prep PCR (95 °C, 5’; 98 °C, 20”; 67 °C, 30”; 72 °C, 20”; 14 cycles; 72 

°C, 1’; 4 °C hold). Each reaction volume was a total of 50 μL containing 26.25 μL 2X KAPA HiFi 

HotStart master mix (Roche), 2.5 μL of 10μM Illumina TruSeq i7 index (IDT), 2.5 μL of 10μM SI-

PCR-B (IDT), 1 µL scATAC-seq library, and 17.75 µL nuclease-free water. 

 

SI-PCR-B:  5’-AATGATACGGCGACCACCGAGA-3’ 

TruSeq I7: 5’-CAAGCAGAAGACGGCATACGAGAT-{I7}-GTGACTGGAGTTCAGACGTGTGCT 

CTTCCGATCT-3’ 

 

Following the MULTI-ATAC-seq library prep PCR, low molecular weight oligonucleotides 

were removed via a 2.0X SPRI clean-up, SPRI beads were washed twice with 80% EtOH, and 

the final MULTI-ATAC-seq library was eluted in 7.5 μL Buffer EB. The remaining 39μL of the 

scATAC-seq library was then used for the ATAC library prep PCR, where 7.5 μL of 100 μM SI-

PCR-B (IDT) was substituted for the standard 7.5 μL of SI-PCR-B (10x Genomics). Excess 

primers were included in this step in order to avoid deleterious effects of SI-PCR-B competition 

between transposed DNA and MULTI-ATAC-seq sample barcode oligonucleotides. MULTI-

ATAC-seq and snATAC-seq libraries were then pooled and sequenced on NovaSeq SP flow cells 

according to recommendations from 10x Genomics.  
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5.5.6 MULTI-ATAC-seq proof-of-concept experiment computational analysis. 

 snATAC-seq data from the MULTI-ATAC-seq proof-of-concept experiment were pre-

processed using cellranger-atac (10x Genomics). Briefly, snATAC-seq FASTQs were pre-

processed using cellranger-atac count and aligned to the hg19 reference genome (v1.2.0). 

Cellranger-atac outputs were then analyzed using the ArchR analysis package [47]. For the 10x-

Tn5+LMO and Illumina-Tn5+LMO datasets, nuclei barcodes passing the ArchR quality-control 

workflow (minTSS = 2, minFrags = 1000) were then used during MULTI-ATAC-seq FASTQ pre-

processing and sample classification using the deMULTIplex R package, as described previously 

[13]. For all three datasets, nuclei barcodes passing the ArchR quality-control workflow were used 

for Vireo in silico genotyping [17] with the following settings: cellSNP: minMAF = 0.1, UMItag = 

None; vireo: N = 3. After MULTI-ATAC-seq and Vireo sample classification, datasets were parsed 

to their final form by selecting nuclei associated with ATAC profiles matching literature-supported 

marker genes that could be assigned to their sample-of-origin using MULTI-ATAC-seq. Default 

ArchR parameters were then used for dimensionality reduction using iterative LSI and UMAP, 

Louvain clustering, and data imputation. 

These cleaned datasets were used to benchmark doublet predictions for MULTI-ATAC-

seq, Vireo, AMULET [48] and ArchR. To generate AMULET doublet predictions, AMULET was 

run on the cellranger-atac ‘possorted_bam.bam’ and ‘singlecell.csv’ outputs using human 

autosomes masked for repetitive elements in the hg19 reference genome. AMULET doublets 

were thresholded using a p-value cut-off of 0.05. For ArchR, ‘default’ doublet predictions were 

generated using the ‘addDoubletScores’ function (k = 10, knnMethod = ‘UMAP’, LSIMethod = 1) 

and thresholded according to doublet formation rate estimates (10x Genomics) relative to the total 

number of detected nuclei (e.g., 10x-Tn5 = 125, 10x-Tn5+LMO = 60, Illumina-Tn5+LMO = 80).  

To optimize ArchR doublet detection parameters, the following workflow was performed. 

First, doublet score vectors spanning different ‘knnMethod’ inputs (e.g., ‘UMAP’ and ‘LSI’) and ‘k’ 
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inputs (e.g., 0.1%-25% of the total number of nuclei in each dataset) were computed using the 

‘addDoubletScores’ function. Second, logistic regression models were fit for each doublet score 

vector using the ‘glm’ R function (family = ‘binomial’, link = ‘logit’). Third, the predictive capacity of 

each model was computed on the MULTI-ATAC-seq or Vireo doublet classifications using ROC 

analysis as implemented in the ‘ROCR’ and ‘pROC’ R packages [61,62]. Optimal ArchR 

parameters were identified as those resulting in the lowest AUC value.  

To assess how Illumina transposition reagents and the presence of MULTI-ATAC-seq 

barcodes influence snATAC-seq data quality, .h5 outputs for all three datasets generated by 

cellranger-atac count were read-depth normalized using cellranger-atac aggr. The resulting 

aggregated dataset was then parsed to include high-quality cells identified using the previously-

described analysis workflow. Naïve T-cells and classical monocytes were then subsetted and JSD 

analysis for quantifying global differences in ATAC space between PBMC donors in each 

experimental condition was performed using the following workflow. First, UMAP embeddings 

were computed for subsetted naïve T-cells and classical monocytes. Second, UMAP coordinates 

for each donor and experimental condition were used to compute 2-dimensional kernel density 

estimations with the ‘kde2d’ function in the ‘MASS’ R package [63]. Third, kernel density 

estimations were fed into the ‘JSD’ function in the ‘philentropy’ R package [64] to generate a JSD 

matrix representing the global dissimilarity between each donor in each experimental condition. 

Finally, JSD scores were scaled from 0-1, and the scaled matrices were clustered using 

hierarchical clustering and plotted as heatmaps using the ComplexHeatMap R package [65] 

 

5.5.7 MULTI-ATAC-seq epigenetic modifier screen experiment computational analysis. 

For the epigenetic modifier screen experiment, ATAC-seq and MULTI-ATAC-seq data 

were pre-processed, quality-controlled, classified into MULTI-ATAC-seq samples, and submitted 

for downstream dimensionality reduction, unsupervised clustering, and data imputation using the 
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same workflow described for the proof-of-concept experiment. To maximize nuclei counts for 

immune cell sub-type annotation, nuclei which exhibited ATAC profiles matching literature-

supported marker genes but which could not be assigned to their MULTI-ATAC-seq sample-of-

origin were retained but excluded from all documented comparisons between samples. Moreover, 

default ArchR parameters were used for pseudo-bulking T-cell sub-types, peak calling (with 

Macs2), and motif analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 158 

5.6 References 

1. Ramsköld D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from 

single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology. 2012; 

30(8): 777-82. 

2. Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed 

linear amplification. Cell Reports. 2012; 2(3): 666-73. 

3. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel 

genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015; 

161(5): 1202-14. 

4. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for 

single-cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5): 1187-1201. 

5. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, et al. Massively parallel digital 

transcriptional profiling of single cells. Nature Communications. 2017; 8: 14049. 

6. Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K, Hofree M, et al. Massively parallel 

single-nucleus RNA-seq with DroNc-seq. Nature Methods. 2017; 14(10): 955-8. 

7. Gierahn TM, Wadsworth MH 2nd, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-Well: 

portable, low-cost RNA sequencing of single cells at high throughput. Nature Methods. 2017; 

14(4): 395-8. 

8. Hughes TK, Wadsworth MH 2nd, Gierahn TM, Do T, Weiss D, Andrade PR, et al. Second-

Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals Cellular States and 

Molecular Features of Human Inflammatory Skin Pathologies. Immunity. 2020; 53(4): 878-94. 

9. Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, et al. Comprehensive single-

cell transcriptional profiling of a multicellular organism. Science. 2017; 357(6352): 661-7. 



 159 

10. Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, et al. Single-cell profiling 

of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018; 

360(6385): 176-82. 

11. Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, Mauck WM 3rd, et al. Cell Hashing 

with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. 

Genome Biology. 2018; 19(1): 224. 

12. Gaublomme JT, Li B, McCabe C, Knecht A, Yang Y, Drokhlyanksy E, et al. Nuclei multiplexing 

with barcoded antibodies for single-nucleus genomics. Nature Communications. 2019; 10(1): 

2907. 

13. McGinnis CS, Patterson DM, Winkler J, Conrad DN, Hein MY, Srivastava V, et al. MULTI-seq: 

sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nature 

Methods. 2019; 16(7), 619-26. 

14. Gehring J, Park JH, Chen S, Thomson M, Pachter L. Highly multiplexed single-cell RNA-seq 

by DNA oligonucleotide tagging of cellular proteins. Nature Biotechnology. 2019; 38(1): 35-8. 

15. Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, et al. Multiplexed 

droplet single-cell RNA-sequencing using natural genetic variation. Nature Biotechnology. 

2017; 36(1): 89-94. 

16. Heaton H, Talman AM, Knights A, Imaz M, Gaffney DJ, Durbin R, et al. Souporcell: robust 

clustering of single-cell RNA-seq data by genotype without reference genotypes. Nature 

Methods. 2020; 17(6): 615-20.  

17. Huang Y, McCarthy DJ, Stegle O. Vireo: Bayesian demultiplexing of pooled single-cell RNA-

seq data without genotype reference. Genome Biology. 2019; 20(1): 273.  

18. Xu J, Falconer C, Nguyen Q, Crawford J, McKinnon BD, Mortlock S, et al. Genotype-free 

demultiplexing of pooled single-cell RNA-seq. Genome Biology. 2019; 20(1): 290.  



 160 

19. Guo C, Kong W, Kamimoto K, Rivera-Gonzalez GC, Yang X, Kirita Y, Morris SA. CellTag 

Indexing: genetic barcode-based sample multiplexing for single-cell genomics. Genome 

Biology. 2019; 20(1): 90. 

20. Shin D, Lee W, Lee JH, Bang D. Multiplexed single-cell RNA-seq via transient barcoding for 

simultaneous expression profiling of various drug perturbations. Science Advances. 2019; 

5(5): eaav2249. 

21. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet detection in single-cell RNA 

sequencing data using artificial nearest neighbors. Cell Systems. 2019; 8(4): 329-37.e4. 

22. Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single- 

cell transcriptomic data. Cell Systems. 2019; 8(4): 281-91.e9. 

23. Cook DP, Vanderhyden BC. Context specificity of the EMT transcriptional response. Nature 

Communications. 2020; 11(1): 2142. 

24. Srivatsan SR, McFaline-Figueroa JL, Ramani V, Saunders L, Cao J, Packer J, et al. Massively 

multiplex chemical transcriptomics at single-cell resolution. Science. 2020; 367(6473): 45-51. 

25. McFarland JM, Paolella BR, Warren A, Geiger-Schuller K, Shibue T, Rothberg M, et al. 

Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and 

therapeutic mechanism of action. Nature Communications. 2020; 11(1): 4296. 

26. Miyamoto M,  Kannan S,  Uosaki H, Kakani T, Murphy S, Andersen P, Kwon C. Cardiac 

progenitors auto-regulate second heart field cell fate via Wnt secretion. bioRxiv. 2021. doi: 

10.1101/2021.01.31.428968. 

27. Hurskainen M, Mižíková I, Cook DP, Andersson N, Cyr-Depauw C, Lesage F, et al. Single cell 

transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nature 

Communications. 2021; 12(1):1565. 



 161 

28. Rifes P, Isaksson M, Rathore GS, Aldrin-Kirk P, Møller OK, Barzaghi G, et al. Modeling neural 

tube development by differentiation of human embryonic stem cells in a microfluidic WNT 

gradient. Nature Biotechnology. 2020; 38(11): 1265-73. 

29. Jong H. Park, Tiffany Tsou, Paul Rivaud, Matt Thomson, Sisi Chen. Designing signaling 

environments to steer transcriptional diversity in neural progenitor cell populations. bioRxiv. 

2020. doi: 10.1101/2019.12.30.890087. 

30. Fawkner-Corbett D, Antanaviciute A, Parikh K, Jagielowicz M, Gerós AS, Gupta T, et al. 

Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell. 2021; 

184(3): 810-26. 

31. Hu KH, Eichorst JP, McGinnis CS, Patterson DM, Chow ED, Kersten K, et al. ZipSeq: 

barcoding for real-time mapping of single cell transcriptomes. Nature Methods. 2020; 17(8): 

833-43. 

32. Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD, Kohlway AS, et al. Droplet-based 

combinatorial indexing for massive-scale single-cell chromatin accessibility. Nature 

Biotechnology. 2019; 37(8): 916-24. 

33. Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi FM, McDermott GP, et al. Massively parallel 

single-cell chromatin landscapes of human immune cell development and intratumoral T cell 

exhaustion. Nature Biotechnology. 2019; 37(8): 925-36. 

34. Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, et al. Multiplex 

single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science. 

2015; 348(6237): 910-4. 

35. Wu SJ, Furlan SN, Mihalas AB, Kaya-Okud HS, Feroze AH, Emerson SN, et al. Single-cell 

CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nature 

Biotechnology. 2021. doi: 10.1038/s41587-021-00865-z. 



 162 

36. Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone 

modifications and transcription factors in complex tissues. Nature Biotechnology. 2021. doi: 

10.1038/s41587-021-00869-9. 

37. Grosselin K, Durand A, Marsolier J, Poitou A, Marangoni E, Nemati F, et al. High-throughput 

single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nature 

Genetics. 2019; 51(6): 1060-6. 

38. Zhu C, Zhang Y, Eric Li YE, Lucero J, Behrens MM, Ren B. Joint profiling of histone 

modifications and transcriptome in single cells from mouse brain. Nature Methods. 2021; 

18(3): 283-92. 

39. Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin 

accessibility in the same cell. Nature Biotechnology. 2019; 37(12): 1452-7. 

40. Cao JC, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, et al. Joint profiling of 

chromatin accessibility and gene expression in thousands of single cells. Science. 2018; 

361(6409): 1380-5. 

41. Zhu C, Yu M, Huang H, Juric I, Abnousi A, Hu R, Lucero J, et al. An ultra high-throughput 

method for single-cell joint analysis of open chromatin and transcriptome. Nature Structural 

and Molecular Biology. 2019; 26(11): 1063-70. 

42. Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. clonal replacement of 

tumor-specific t cells following pd-1 blockade. Nature Medicine. 2019; 25(8): 1251-9. 

43. Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, Li LH, et al. Lineage Tracing in 

Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics. Cell. 2019; 176(6): 

1325-39. 

44. Shema E, Bernstein B, Buenrostro JD. Single-cell and single-molecule epigenomics to 

uncover genome regulation at unprecedented resolution. Nature Genetics. 2019; 51(1): 19-

25. 



 163 

45. Fang L, Li G, Sun Z, ZHu Q, Cui H, Li Y, et al. CASB: a concanavalin A-based sample 

barcoding strategy for single-cell sequencing. Molecular & Systems Biolgoy. 2021; 17(4): 

e10060. 

46. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Maria Kasper M, et al. Quantitative single-

cell RNA-seq with unique molecular identifiers. Nature Methods. 2014; 11(2): 163-6. 

47. Granja JM, Corces MR, Pierce SE, Bagdatli T, Choudhry H, Chang HY, Greenleaf WJ. ArchR 

is a scalable software package for integrative single-cell chromatin accessibility analysis. 

Nature Genetics. 2021; 53(3): 403-11. 

48. Thibodeau A, Eroglu A, McGinnis CS, Lawlor N, Nehar-Belaid D, Kursawe R, et al. AMULET: 

a novel read count-based method for effective multiplet detection from single nucleus ATAC-

seq data. Genome Biology. 2021; in press.  

49. Karantanos T, Christofides A, Bardhan K, Li L, Boussiotis VA. Regulation of T Cell 

Differentiation and Function by EZH2. Frontiers in Immunology. 2016; 7: 172. 

50. Licciardi PV, Ververis K, Tang ML, El-Osta A, Karagiannis TC. Immunomodulatory effects of 

histone deacetylase inhibitors. Current Molecular Medicine. 2013; 13(4): 640-7. 

51. Lawlor N, Nehar-Belaid D, Grassmann JDS, Stoeckius M, Smibert P, Stitzel ML, et al. Single 

Cell Analysis of Blood Mononuclear Cells Stimulated Through Either LPS or Anti-CD3 and 

Anti-CD28. Frontiers in Immunology. 2021; 12: 636720. 

52. Miyazaki M, Rivera RR, Miyazaki K, Lin YC, Agata Y, Murre C. The opposing roles of the 

transcription factor E2A and its antagonist Id3 that orchestrate and enforce the naive fate of 

T cells. Nature Immunology. 2011; 12(10): 992-1001. 

53. Willinger T, Freeman T, Herbert M, Hasegawa H, McMichael AJ, Callan MFC. Human naive 

CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid 

enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen 

encounter in vitro and in vivo. Journal of Immunology. 2006; 176(3): 1439-46. 



 164 

54. Parrot T, Gorin J, Ponzetta A, Maleki KT, Kammann T, Emgård J, et al. MAIT cell activation 

and dynamics associated with COVID-19 disease severity. Science Immunology. 2020; 5(51): 

eabe1670. 

55. Chen P, Deng W, Li D, Zeng T, Huang L, Wang Q, et al. Circulating Mucosal-Associated 

Invariant T Cells in a Large Cohort of Healthy Chinese Individuals From Newborn to Elderly. 

Frontiers in Immunology. 2019; 10: 260. 

56. Sandoval-Montes C, Santos-Argumedo L. CD38 is expressed selectively during the activation 

of a subset of mature T cells with reduced proliferation but improved potential to produce 

cytokines. Journal of Leukocyte Biology. 2005; 77(4): 513-21. 

57. Gamero AM, Larner AC. Signaling via the T cell antigen receptor induces phosphorylation of 

Stat1 on serine 727. Journal of Biological Chemistry. 2000; 275(22): 16574-8. 

58. Feng J, Hu Y, Song Z, Liu Y, Guo X, Jie Z. Interleukin-23 facilitates Th1 and Th2 cell 

differentiation in vitro following respiratory syncytial virus infection. Journal of Medical 

Virology. 2015; 87(4): 708-15. 

59. Tagar TN, Turley DM, Padilla J, Karandikar NJ, Tan L, Bluestone JA, Miller SD. CTLA-4 

regulates expansion and differentiation of Th1 cells following induction of peripheral T cell 

tolerance. Journal of Immunology. 2004; 172(12): 7442-50. 

60. Falschlehner C, Schaefer U, Walczak H. Following TRAIL's path in the immune system. 

Immunology. 2009; 127(2): 145-54. 

61. Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in 

R. Bioinformatics. 2005; 21: 3940-1. 37.  

62. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Mu ̈ller M. pROC: an open- 

source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 

2011; 12: 77. 

63. Venables WN, Ripley BD. Modern Applied Statistics with S, Fourth edition. 2002.  



 165 

64. Dorst H. Philentropy: Information Theory and Distance Quantification with R. Journal of Open 

Source Software. 2018; 3: 765. 

65. Gu Z, Ellis R, Schlesner M. Complex heatmaps reveal patterns and correlations in 

multidimensional genomic data. Bioinformatics. 2016; 32(18): 2847-9. 



 166 

Chapter 6: Single-cell ‘screen-by-sequencing’ with peripheral blood 

mononuclear cells reveals immunomodulation trajectories, off-target 

drug activities, and novel effects on immune population homeostasis 

 

6.1 Abstract 

 High-throughput chemical screens are traditionally performed on cell line systems and are 

limited to low-dimensional read-outs due to measurement scalability concerns. In contrast, bulk 

‘screen-by-sequencing’ approaches generate high-dimensional measurements of drug-induced 

gene expression patterns using bulk RNA-seq, but are similarly limited to simple experimental 

systems due to the aggregative nature of the approach. Single-cell RNA-sequencing sample 

multiplexing approaches can couple chemical perturbation screens to high-dimensional, single-

cell measurements which, in turn, facilitates the use of complex in vitro systems which better 

recapitulate in vivo disease biology. To demonstrate the potential of single-cell ‘screen-by-

sequencing’, we use MULTI-seq to generate single-cell gene expression response profiles of 

peripheral blood mononuclear cells to >500 drug compounds in resting and/or inflammatory 

conditions. These analyses reveal the ability of single-cell screen-by-sequencing to detect the 

primary modes of immunomodulation in lymphoid and myeloid cells, the phenotypic 

consequences of off-target drug activities, the effect of a subset of non-steroidal anti-inflammatory 

drugs on immune population homeostasis, and the utility of target-enrichment strategies for 

improving single-cell screen-by-sequencing scalability in the future.  
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6.2 Introduction 

 Cell-based chemical screening faces a tradeoff: to maximize the number of tested 

compounds, the amount of information collected must be minimized. For example, screens to 

discover cancer chemotherapeutics typically measure a single parameter across thousands of 

candidate drugs – usually cell growth or viability – and thereby necessarily discover drugs which 

limit the growth or viability of cancer cells [1]. As a result, therapies aiming to induce other 

clinically-relevant phenotypes (e.g., blocking tumor metastasis and therapy resistance, inducing 

systemic anti-tumor immune responses, etc.) are lacking, as such complex phenotypes are 

difficult to assess in a high-throughput fashion. ‘Screen-by-sequencing’ approaches [2-7] 

represent a potential solution to this limitation, as bulk RNA sequencing data can identify chemical 

perturbations which induce phenotypes (vis-à-vis gene expression signatures) that are ordinarily 

obscured by low-dimensional read-outs. However, bulk screen-by-sequencing studies fail to 

capture two critical features of human disease: intercellular heterogeneity and communication.  

 The advent of single-cell genomics sample multiplexing technologies [8-12] enables 

‘single-cell screen-by-sequencing’ studies, wherein the effects of large numbers of chemical 

perturbations can be deeply interrogated without obscuring intercellular heterogeneity. For 

example, pioneering methods such as sci-Plex [13] and MIX-seq [14] have demonstrated how 

single-cell screen-by-sequencing can uncover variable responses to drug treatment within 

ostensibly homogenous cell lines, disentangle biological covariates (e.g., drug-induced 

expression signatures vs toxicity [14]), and uncover previously-unknown drug activities (e.g., 

metabolic effects of histone deacetylase (HDAC) inhibitor treatment due to acetyl-CoA depletion 

[13]). Building on these efforts, Zhao and colleagues recently described the use of patient-derived 

glioblastoma slice cultures for scRNA-seq-coupled chemical screens [15]. Although the authors 

tested only 6 compounds in this proof-of-principle study, their work highlights how single-cell 
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screen-by-sequencing can be expanded beyond cell lines to systems which better recapitulate in 

vivo disease biology, while additionally uncovering how drugs alter intercellular communication 

networks (e.g., glioblastoma tumor-immune interactions). 

 To further demonstrate the promise of single-cell screen-by-sequencing, we used MULTI-

seq [8] to profile the transcriptional impact of >500 immunomodulatory compounds in >1.5M 

resting and stimulated peripheral blood mononuclear cells (PBMCs) at single-cell resolution using 

scRNA-seq. We selected PBMCs for this study because they represent a complex in vitro system 

with heterogenous and interacting cell types [16] which mirror in vivo peripheral immune 

responses such as inflammation [17], viral infection [18], and chemical perturbation [19]. This 

effort represents the largest per-sample single-cell screen-by-sequencing dataset generated to 

date, and yielded key insights that we hope will inspire future single-cell screen-by-sequencing 

endeavors. These insights will be presented in four vignettes. 

 First, we provide a broad survey of the scRNA-seq data where we highlight immune cell 

sub-types, differentiation trajectories, and other biological processes that are recapitulated in our 

in vitro system. We then use this framework to characterize the primary modes of drug-induced 

patterns of immunomodulation across T-cells and myeloid cells. Second, we discuss how 

divergent responses to tyrosine kinase inhibitors (TKIs) with identical primary molecular targets – 

as well as convergent responses to TKIs with distinct targets – illustrate how single-cell screen-

by-sequencing can capture off-target drug activities. Third, we describe a previously-undescribed 

effect of a subset of non-steroidal anti-inflammatory drugs (NSAIDs) on T-cell-mediated 

macrophage apoptosis which demonstrates the types of insights that can be gained by screening 

on complex in vitro systems. And fourth, we document how targeted transcript enrichment 

strategies can be used to maximize information content while minimizing next-generation 

sequencing costs for future studies.   
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6.3 Results 

6.3.1 Study design. 

Standard screen-by-sequencing practices involve characterizing individual compounds 

across a wide range of doses with biological and technical replicates [20]. Due to the high costs 

associated with single-cell genomics experiments, however, we first sought to perform a pilot 

screen which maximized the number of compounds tested at the expense of other experimental 

parameters. To this end, we treated PBMCs isolated from a single healthy donor with 516 unique 

chemical compounds sourced from commercially-available immunomodulatory and FDA-

approved drug libraries (Selleck Chem) at a single-dose (1 µM) and time-point (24 hours) without 

replicates. Collectively, these compounds span >30 major drug classes and >150 unique primary 

molecular targets. Since many of the screened compounds are clinically used to treat diverse 

inflammatory diseases, we concurrently treated PBMCs with drugs and soluble anti-CD3/CD28 

tetrameric antibodies, which mimic acute inflammation by activating T-cells through T-cell 

receptor (TCR) and co-receptor engagement. Drug perturbations were additionally performed on 

resting PBMCs (i.e., without anti-CD3/CD28 antibody exposure) for 279/516 of the compounds. 

Perturbations were performed in ten batches of 96 (with vehicle-only controls), and were labeled 

with condition-specific MULTI-seq sample barcodes prior to pooling and scRNA-seq using the 

10x Genomics platform (Fig. 6-1; Methods).  

 

6.3.2 Vignette I: PBMC single-cell screen-by-sequencing data survey – PopAlign identifies high-

impact perturbations and ‘broad’ or ‘local’ patterns of immunomodulation.  

Following sample demultiplexing and quality-control filtering (Methods), we analyzed a 

final scRNA-seq dataset comprised of 995,173 single-cell transcriptomes representing 801 

unique experimental conditions. Focusing on a subset of CD3/CD28-activated cells, we identified 
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major PBMC cell types including T-cells (CD3D+), monocytes/macrophages (LYZ+), B-cells 

(MS4A1+), natural killer cells (CD3D-NKG7+), and dendritic cells (CD3D-CCR7+). We 

additionally identified low-abundant cell populations such as granulocytes (GATA2+), plasma 

cells (MZB1+), and a cluster consisting of cells treated with the proteasome inhibitor bortezomib 

which expressed high levels of protein homeostasis genes (e.g., HSPA1A) and localized 

separately from all other cell types in gene expression space (Fig. 6-2a).  

Using these cell type annotations, we then used PopAlign [21] to quantify the magnitude 

and cell-type-specificity of perturbation responses. After stringent significance thresholding, 

PopAlign identified a number of experimental conditions which deviated significantly from 

controls. Among the PopAlign hits, we identified compounds which induced broad responses 

across three major PBMC cell types (T-cells, B-cells, and myeloid cells) as well as drugs which 

prompted localized responses in individual or pairs of cell types (Fig. 6-2b). While both broad and 

local immunomodulatory compounds were comprised of drugs with myriad molecular targets, 

many of these classifications were supported by the existing literature and could be discerned via 

differential localization in gene expression space (Fig. 6-2c). For example, drugs inhibiting the 

phosphatase calcineurin were classified as broad modulators in CD3/CD28-activated conditions.  

 
Figure 6-1: Schematic overview of PBMC scRNA-seq pilot screen.  
PBMCs from a single healthy donor comprised of diverse immune cell types (1) were cultured in 96-well plates prior to drug treatment 
in the presence or absence of anti-CD3/CD28 tetrameric antibodies (2). After 24 hours, PBMCs were tagged with MULTI-seq barcodes 
marking each specific condition (3), pooled, and subjected to scRNA-seq and next-generation sequencing (4). Experimental conditions 
were then computationally demultiplexed according to MULTI-seq barcode counts and analyzed to identify drug- and cell-type-specific 
transcriptional responses in major immune cell types such as myeloid lineage cells and B and T lymphocytes (5).  
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This classification reflects the role of calcineurin in the TCR intracellular signaling cascade which, 

in turn, alters intercellular signaling patterns between T-cells and other immune cell types [22]. In 

contrast, the TLR7 agonist motolimod and TLR8 agonist GS-9620 were classified as ‘local’ 

myeloid and B-cell modulators, respectively, which matches the cell-type-restricted expression of 

TLR7/8 [23]. Taken together, these analyses illustrate how PopAlign provides an abstracted view 

of single-cell screen-by-sequencing datasets, highlighting high-impact perturbations and 

compounds eliciting phenotypes only in therapeutically-relevant cell populations.  

 
Figure 6-2: PopAlign analytical framework identifies global trends across PBMC scRNA-seq drug screen data.  
(A) Gene expression space for PBMCs co-treated with PopAlign-defined high-impact compounds and anti-CD3/CD28 antibodies 
(along with CD3/CD28-stimulated controls). Cells colored according to cell type annotation workflow (left) with literature-supported 
marker genes (right). n=143,872 cells  
(B) Scatter plots describing the gene expression divergence between each experimental condition and vehicle-alone controls in 
myeloid cells and T and B lymphocytes (right). Point size corresponds to the number of cells assigned to each scRNA-seq sample. 
Point color corresponds to PopAlign classifications of immune cell type modulation patterns (see descriptive schematic (left)). High-
impact compounds exhibit significant divergence values for any PBMC cell type (demarcated with black box).  
(C) PBMC gene expression space colored to highlight PopAlign prioritization results. PopAlign-defined broad modulators (e.g., 
calcineurin inhibitors; blue) localize separately from control PBMCs (black) in myeloid cells and T and B lymphocytes. Local 
modulators for B-cells (e.g., GS-9620, goldenrod) and myeloid cells (e.g., Motolimod, red) exhibit differential localization only in 
specific immune cell type clusters. 
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6.3.3 Vignette I: PBMC single-cell screen-by-sequencing data survey – Immune sub-type 

annotation and identification of drug-specific gene expression programs.    

 Although PopAlign enables rapid and facile parsing of single-cell screen-by-sequencing 

datasets, uncovering the fine-grained details of transcriptional responses requires further 

analysis. To this end, we next analyzed scRNA-seq data subsets representing the top 

perturbations (n = 72 drugs) in CD3/CD28-stimulated T-cells, B-cells, and myeloid cells. 

Among the 91,110 T-cells in our subsetted data, we observed a variety of sub-types 

including FOXP3+ regulatory T-cells (Tregs) and three groups representing previously-described 

CD4+ and CD8+ T-cell responses to TCR engagement (Fig. 6-3a). Specifically, we identified a 

CD4+ T-cell differentiation group comprised of naïve (IL7R+), central memory (TCM; SELL+ 

CCR7+) and effector-memory T-cells (TEM; IL2RA+) resembling T helper 1 (Th1) cells [24]. 

Visual inspection of control cells in gene expression space demonstrated that naïve T-cells were 

depleted from CD3/CD28-alone controls (Fig. 6-3a, inset), matching expectations. Amongst 

CD8+ T-cells, we identified two differentiation trajectories leading to memory precursor effector 

cells (MPECs; CD27+ XCL1+) or short-lived effector cells (SLECs; CCL5+) expressing limited 

(SLEC-1, SLEC-St) or high (SLEC-2, SLEC-3) levels of cytotoxicity genes (e.g., GNLY, GZMB) 

[25]. Finally, we observed drug-specific sub-types including steroid-treated CD8T+ SLECs 

expressing glucocorticoid receptor targets (e.g., TXNIP, TSC22D3) [26], as well as HDAC 

inhibitor-treated T-cells expressing HIST1H1C/D which did not resemble other T-cell sub-types. 

B-cell sub-types manifested in a similar fashion as CD4+ T-cells, as we observed naïve 

(TCL1A+ CXCR4+), memory (IGHA+ CD27+ CXCR4+), and activated B-cells (MIR155HG+ 

CXCR4-) among the 14,308 B-cells in our subsetted data (Fig. 6-3b) [27-29]. Analogous 

corticosteroid and HDAC-treated B-cell sub-types were also identified (Fig. 6-3b, inset), which 

collectively demonstrates the consistency of T- and B-lymphocyte phenotypes in the context of 

CD3/CD28-induced acute inflammation. 
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Figure 6-3: PBMC scRNA-seq drug screen data sub-type annotations.  
Gene expression space colored by sub-type annotation (left) with associated marker gene heatmaps (right) for T-cells (A), B-cells 
(B), and monocytes/macrophages (C) co-treated with anti-CD3/CD28 antibodies and high-impact chemical perturbations. Heatmap 
fill reflects the scaled average expression of normalized marker gene counts across sub-types. Sub-type and gene order was defined 
using hierarchical clustering on the scaled matrix. Bolded genes were used for literature-informed sub-type annotation, while non-
bolded genes were identified through differential expression analysis. Gene expression space insets show the distribution of vehicle-
alone control cells and thereby highlight non-overlapping drug-induced sub-types. TCM: CD4+ central memory T-cells; TEM: CD4+ 
effector memory T-cells; Treg: regulatory T-cells; MP-1/2: CD8+ memory precursor effector cell sub-types; SL-1/2/3/Steroid: CD8+ 
short-lived effector cell sub-types; HDAC: histone deacetylase inhibitor-treated T-cells, B-cells, or myeloid cells; DC: dendritic cells; 
Act.: activated B-cells. 
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Among the 27,443 monocytes and macrophages in our subsetted data, we observed a 

number of sub-types reflecting different stages of polarization (Fig. 6-3c). For example, we 

observed macrophages expressing the polarization regulator IDO1 [30] along with variable levels 

of pro-inflammatory (e.g., CXCL9 and IL1B) or anti-inflammatory genes (e.g., CSF1, A2M, and 

OCSTAMP) [31]. These macrophage sub-types exist along a continuum and are analogous to 

‘M1’ and ‘M2’ macrophage polarization states that are observed in vivo at the onset and resolution 

of an acute inflammatory response, respectively [32]. Interestingly, we also identified unpolarized 

(IDO1-) monocytes expressing canonical monocyte markers such as CD14 and M-ficolin (FCN1) 

[33] which did not overlap with control macrophages in gene expression space (Fig. 6-3c, inset). 

Similar to the depletion of naïve T-cells following CD3/CD28 stimulation, the lack of un-polarized 

monocytes in control samples matches expectations since polarization is induced by cytokine 

signaling (e.g., IFNG) from differentiated effector T-cells [32]. Beyond un-polarized monocytes, 

we also observed a number of drug-specific (i.e., non-overlapping with control samples) cell 

clusters corresponding in part to HDAC inhibitor (HIST1H1C/D+ macrophages) or corticosteroid 

exposure (CD163+ TSC22D3+ ‘M2c-like’ macrophages) which, together with the associated T- 

and B-cell counterparts, demonstrate the global immunomodulatory effects of these drug classes. 

 Finally, we annotated a cluster co-expressing markers of pro-inflammatory macrophages 

(e.g., IDO1 and CXCL9) and cytotoxic CD8+ SLECs (e.g., CD3D, CD8B, CCL5, and GZMB) which 

also exhibited higher numbers of RNA UMIs and enriched expression of apoptosis genes (e.g., 

FAS, FASLG, and TRAF1). Interestingly, these cells were uniformly classified as singlets 

according to MULTI-seq barcode counts despite the co-expression of lymphoid and myeloid 

markers and were only detected in CD3/CD28-stimulated PBMC conditions. Based on these 

observations, we annotated these cells as ‘biological’ doublets – i.e., doublets formed 

independently of Poisson droplet filling due to a bona fide biological process [34]. Macrophage/T-

cell biological doublets were observed previously in scRNA-seq data of PBMCs stimulated in vitro 
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with anti-CD3/CD28 antibodies [25], and are likely produced in part through a FAS/FASLG-

dependent T-cell-mediated macrophage apoptosis pathway that is active during inflammation [35-

37], matching our observations.  

Considered collectively, our fine-grained data annotation workflow demonstrates the 

ability of PBMC-based single-cell screen-by-sequencing to detect immune cell sub-types (e.g., 

naïve T-cells, Tregs, monocytes, etc.) and biological processes (e.g., macrophage polarization, 

CD8+ SLEC/MPEC bifurcation, T-cell mediated macrophage apoptosis, etc.) which mimic in vivo 

biology and perturbation responses. Moreover, these analyses identified a number of 

perturbations which induce demonstrably distinct gene expression programs relative to controls 

(e.g., HDAC inhibitors, bortezomib, and corticosteroids). However, the majority of perturbations 

identified as PopAlign high-impact ‘hits’ did not induce dramatic transcriptional reprogramming in 

PBMCs, as determined by their significant overlap with control samples in gene expression space. 

This observation suggests that the immunomodulatory capacity of these compounds manifests 

more at the level of population structure (i.e., the relative frequencies of cell sub-types) than of 

immune cell identity (i.e., differentially-expressed genes). 

 

6.3.4 Vignette I: PBMC single-cell screen-by-sequencing data survey – Population response 

clustering reveals primary modes of T-cell and myeloid cells immunomodulation. 

To explore the possibility that immunomodulatory compounds perturb immune population 

structure, we performed hierarchical clustering on an immune cell-type frequency matrix binned 

according to perturbation condition (Methods). In T-cells, this analysis identified four types of 

responses which reflect varying degrees of inhibition of the T-cell activation response to 

CD3/CD28 stimulation (Fig. 6-4). For example, population response clustering identified a ‘control 

response’ group where T-cell activation remained intact (Fig. 6-4, black labels). This group was 

depleted of naïve T-cells and enriched for differentiated T-cell sub-types at relatively consistent 
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frequencies which reflect the multi-lineage differentiation ‘set-point’ after 24 hours of CD3/CD28 

activation. At the other extreme, population response clustering grouped corticosteroids together 

due to their strong enrichment for naïve T-cells and steroid-induced non-cytotoxic CD8+ SLECs 

(Fig. 6-4, purple labels). This phenotype suggests a complete block on T-cell activation, which 

reflects the ability of corticosteroids to inhibit T-cell activation through myriad mechanisms [38,39]. 

 In addition to the control and corticosteroid response groups, we additionally observed two 

groups of drugs exhibiting marginal enrichment for naïve T-cells, which suggests an inhibitory 

effect on T-cell activation. However, this modest T-cell activation inhibition was linked to distinct 

 
 
Figure 6-4: Population response clustering reveals primary modes of T-cell immunomodulation after CD3/CD28 stimulation.  
T-cell sub-type frequency heatmap ordered by hierarchical clustering of sub-types (rows) and perturbation conditions (columns; top). 
Condition labels are colored according to clade assignment and are associated with distinct legends and T-cell gene expression space 
embeddings (bottom). Clade-specific legends include information about drug classes, effects on frequencies of CD4+ T-cell, CD8+ 
SLEC, and CD8+ MPEC lineages (major effects relative to control are underlined), and a brief summary of the population-level 
response. Reference distribution of control samples in T-cell gene expression space provided for comparison (bottom left). ‘Control 
Response’ embeddings only highlight non-control samples. TCM: CD4+ central memory T-cells; TEM: CD4+ effector memory T-cells; 
MP-1/2: CD8+ memory precursor effector cell sub-types; SL-1/2/3/St.: CD8+ short-lived effector cell sub-types; CTL: controls; TKI: 
tyrosine kinase inhibitor; Calcin: calcineurin inhibitors. 
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effects on downstream T-cell differentiation trajectories in these two drug groups. Specifically, we 

observed a population response group (Fig. 6-4, red labels) including inhibitors of JAK (e.g., 

tofacitinib, cerdulatinib, and ruxolitinib) and mTOR (e.g., rapamycin, everolimus, and 

temosirolimus) where a subset of cytotoxic CD8+ SLECs were detected while CD4+ TEM 

differentiation was specifically diminished (Fig. 6-5, top). Notably, these shifts in population 

structure were supported by significance testing using the single-cell proportion test [40] (Table 

6-1) and mTOR and JAK inhibitors have well-documented attenuative effects on Th1 

differentiation [41-43], supporting the suitability of our analytical approach.  

In contrast to the mTOR/JAK inhibitor phenotype, we also observe a population response 

group (Fig. 6-4, green labels) including calcineurin inhibitors and a subset of tyrosine kinase 

inhibitors (TKIs; dasatinib, bosutinib, and nintedanib) which are depleted of both CD4+ TEMs and 

cytotoxic CD8+ SLECs (Fig. 6-5, bottom) in a statistically-significant fashion (Table 6-1). 

 
 
Figure 6-5: Differential effects of distinct drug classes on CD4+ TEM and cytotoxic CD8+ SLEC activation trajectories.  
T-cell gene expression space colored by drug annotation for JAK inhibitors (top left, purple), mTOR inhibitors (top right, green), 
calcineurin inhibitors (bottom left, red), and a subset of TKIs (bottom right, blue). Control cells shown in grey while other drugs are 
shown in beige. Clusters in gene expression space annotated as Th1 cells and cytotoxic CD8+ SLECs are denoted with dotted lines. 
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Calcineurin is one of many components of the TCR signal transduction cascade, and calcineurin 

inhibitors attenuate T-cell activation primarily by blocking NFATc-induced gene expression [22]. 

Interestingly, dasatinib and nintedanib do not have any known direct effects on calcineurin activity, 

but instead are known to suppress TCR-mediated signal transduction by inhibiting LCK 

phosphorylation [44,45].  

 

Collectively, these results illustrate the main modes of T-cell immunomodulation in our 

experimental system – namely, varying degrees of T-cell activation inhibition resulting in 

differential abundances of effector CD4+ T-cells and cytotoxic CD8+ SLECs. Notably, many of 

these phenotypes are supported by decades of clinical and basic immunology research (e.g., 

mTOR and JAK inhibitor effects on Th1 differentiation, complete-inhibition effect of 

corticosteroids, etc.). However, these types of drug response signatures would be particularly 

difficult to assess systematically using bulk screen-by-sequencing approaches (or even 

differential expression analysis of scRNA-seq data binned by drug), as the relative frequencies of 

immune cell sub-types are difficult to deconvolve. Moreover, these results illustrate the 

Table 6-1: T-cell sub-type fold-changes for immunomodulatory drugs relative to control samples. 
Fold-change in T-cell sub-type proportions for JAK inhibitors, mTOR inhibitors, calcineurin inhibitors, and a subset of TKI relative to 
CD3/CD28-alone control samples. Positive and negative fold-changes passing significance testing are shown in bolded red and blue, 
respectively. Positive and negative fold-changes not passing significance testing are shown in italicized light red and light blue, 
respectively. TCM: CD4+ central memory T-cells; TEM: CD4+ effector memory T-cells; MPEC-1/2: CD8+ memory precursor effector 
cell sub-types; SLEC-1/2/3.: CD8+ short-lived effector cell sub-types. 
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Ruxoltinib 4.8 1.8 -7.9 2.4 -2.2 -11.6 1.1 -3.7
Cerdulatinib 3.7 1.5 -3.6 2.9 -2.9 -15.9 1.4 -1.9
Tofacitinib 3.1 1.6 -5.8 1.2 -1.8 -17.4 2.0 -1.4
Tofacitinib citrate 3.5 1.5 -7.6 1.7 -1.2 -9.2 1.4 -3.3
Rapamycin 2.3 1.5 -1.5 1.0 -1.1 -7.6 1.2 -6.5
Everolimus 2.5 1.4 -2.5 1.2 -1.1 -4.8 1.7 -13
Temsirolimus 1.3 1.3 -2.1 1.5 1.3 -2.6 1.1 -10.3
Cyclosporine 4.4 1.2 -1.6 4 -7.7 -8.6 1.2 -36.8
Cyclosporin A 4.1 1.3 -1.9 3.9 -12.8 -29.9 1.2 -64.3
Pimecrolimus 4.3 1.5 -3.2 4.1 -5.8 -19.9 1.0 -21.4
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Nintedanib 3.8 1.5 -4.1 4.4 -7.3 -24.4 1.0 -52.4
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convergent effects of diverse drug classes on T-cell activation (e.g., calcineurin inhibitors and 

LCK-targeting TKIs blocking Th1 and cytotoxic SLEC differentiation) which would be challenging 

to observe using traditional screening methods which measure limited numbers of biomolecules.    

Having identified the primary modes of T-cell immunomodulation using population 

response clustering, we next applied the same analytical workflow to myeloid cells. Myeloid 

population response clustering identified six types of responses which generally reflect different 

stages of macrophage polarization (Fig. 6-6). For example, we identified a ‘control-response’ 

group which was slightly enriched for pro-inflammatory over anti-inflammatory macrophages and 

was depleted of un-polarized monocytes and corticosteroid-specific M2c-like macrophages, 

matching expectations. We also identified two population response groups which mapped cleanly 

onto the corresponding T-cell responses, namely a corticosteroid-specific group (Fig. 6-6, purple 

 
Figure 6-6: Population response clustering reveals primary modes of myeloid cell immunomodulation.  
Myeloid sub-type frequency heatmap ordered by hierarchical clustering of sub-types (rows) and perturbation conditions (columns; 
top). Condition labels are colored according to clade assignments from T-cell analysis (Fig. 6-4) and are associated with distinct 
legends and myeloid gene expression space embeddings (bottom). Reference distribution of control samples in myeloid gene 
expression space provided for comparison (bottom left), and pro- and anti-inflammatory macrophages are delineated with a dotted 
yellow line in all embeddings. ‘Control Response’ embeddings only highlight non-control samples. Italicized drug labels denote drugs 
with significant myeloid cell depletion relative to control samples. CTL: controls; Biol. Dub: biological doublets; TLR: toll-like receptor; 
TKI: tyrosine kinase inhibitor; Mono: monocyte. 
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labels) enriched for M2c-like macrophages, and a group including T-cell activation inhibitors (Fig. 

6-6, green labels) which were enriched for un-polarized monocytes (Fig. 6-7, top). 

In contrast to these consistent connections between T-cell and myeloid responses, we 

additionally observed that T-cell ‘control-response’ drugs (Fig. 6-6, black labels) and compounds 

linked to impaired Th1 differentiation (Fig. 6-6, red labels) were split across a variety of myeloid 

population response groups. For instance, JAK inhibitors clustered with T-cell activation inhibitors 

 
 
Figure 6-7: Differential effects of distinct drug classes on macrophage polarization.  
Myeloid cell gene expression space colored by drug annotation for calcineurin inhibitors (top left, red), a subset of TKIs (top right, 
blue), JAK inhibitors (middle left, purple), mTOR inhibitors (middle right, green), and M1-biasing agents such as the TLR agonists 
motolimod and resiquimod (bottom left, red) and topotecan and rociletinib (bottom right, blue). Control and other drugs are colored as 
in Fig. 6-5. Clusters in gene expression space annotated as monocytes, pro-inflammatory macrophages, and anti-inflammatory 
macrophages are denoted with dotted lines. DCs, M2c-like macrophages, HDAC-treated macrophages, and biological doublets were 
omitted from this embedding for visualization purposes.   
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due to enrichment for un-polarized monocytes, while mTOR inhibitors were associated with anti- 

inflammatory macrophages (Fig. 6-7, middle), despite the observed similarity between mTOR 

and JAK T-cell responses. In an analogous vein, drugs associated with altered Th1 differentiation 

(e.g., the type-I topoisomerase inhibitor topotecan) clustered with a subset of T-cell ‘control-

response’ drugs (e.g., the EGFR inhibitor rociletinib) in a clade marked by enrichment for pro-

inflammatory over anti-inflammatory macrophages relative to control samples (Fig. 6-7, bottom).  

Notably, the TLR7 against motolimod and TLR7/8 agonist resiquimod were also members in this 

clade, which reinforces the accuracy of this classification due to the known pro-inflammatory effect 

of these drugs on macrophages [46]. Finally, many T-cell ‘control-response’ drugs exhibited cell-

type-specific toxicity in myeloid cells, causing >90% depletion in total myeloid cell counts relative 

to controls (Fig. 6-6, italicized labels), which are the focus of later analyses on perturbations to 

immune population homeostasis mechanisms (see Section 6.3.6). 

Considered together, these results complement our T-cell analyses by outlining the main 

modes of myeloid immunomodulation in our system – namely, blocking/altering macrophage 

activation and biasing polarization towards pro- or anti-inflammatory phenotypes. When mapping 

between these immunomodulatory modes, many drug perturbations elicited responses that match 

expectations – e.g., drugs blocking T-cell activation also block macrophage polarization, TLR7 

agonists do not alter T-cells but induce pro-inflammatory macrophages, etc. However, other 

perturbations defied these expectations by inducing cell state transitions in a cell-type-specific 

fashion – e.g., JAK and mTOR inhibitors induce similar population-level responses in T-cells but 

distinct responses in myeloid cells. As a result, these results reinforce the need to assess the 

immunomodulatory effects of candidate drug compounds across the entire immunological milieu, 

and position single-cell screen-by-sequencing as an ideal approach to address this need. 

 



 182 

6.3.5 Vignette II: Off-target activities of TKIs against T-cell activation and macrophage polarization 

regulators dictate phenotypic responses. 

 Immune cell sub-type annotation and population response clustering workflows delineated 

the primary modes of immunomodulation in our single-cell screen-by-sequencing dataset. 

Moreover, many of the observed drug-induced immunomodulatory effects were consistent with 

existing knowledge of the function of these drugs’ primary molecular targets during inflammation. 

One notable exception, however, relates to the TKIs dasatinib, bosutinib, imatinib, and nilotinib, 

which are dedicated Bcr-Abl transgene inhibitors currently used in the clinic to treat chronic 

myelogenous leukemia [47]. Dasatinib and bosutinib functioned as macrophage polarization and 

T-cell activation inhibitors in our data, while these process remained intact following exposure to 

nilotinib and imatinib. Moreover, TKIs whose primary targets are not Bcr-Abl including nintedanib 

(primary target: VEGFR/PDGFR), crizotinib (ALK/MET), and sunitinib malate (KIT/VEGFR/FLT3) 

were similarly split across these two stereotyped immune responses (Fig. 6-8), which 

demonstrates that TKI primary targets did not predict phenotypic response. 

 Notably, the Bcr-Abl-inhibiting TKIs analyzed in our dataset are known to interact with the 

Bcr-Abl fusion protein via distinct mechanisms. Specifically, imatinib and nilotinib inhibit Bcr-Abl 

by binding and stabilizing the inactive conformation of the enzyme, while bosutinib and dasatinib 

bind Bcr-Abl in its active conformation and limit kinase activity [47].  This fact, considered along 

with the overlapping immunomodulatory effects of TKIs whose primary proposed targets are 

independent of Bcr-Abl suggest that off-target drug activities contributed to immune phenotypic 

responses in our experimental system.  

To investigate this hypothesis, we analyzed publicly-available data describing the 

dissociation constants (Kd) of 72 distinct TKIs and 442 purified wild-type or mutant kinases using 

multiplexed competition binding assays [48]. Specifically, we parsed these data to identify kinases 

with associated Kd values less than the drug dose used for this study (1 µM) across all Group I 
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TKIs (i.e., dasatinib, bosutinib, and nintedanib) and/or Group II TKIs (i.e., imatinib, nilotinib, 

crizotinib, and sunitinib malate). We then checked this parsed list for kinases exhibiting uniformly 

lower Kd values amongst Group I relative to Group II TKIs, or vice versa. This analysis revealed 

that Group I TKIs have unique affinities for the kinases BTK, MAP2K5, YES1, SIK1, and LCK 

compared to Group II TKIs (Table 6-2). Notably, BTK and Src family kinases (e.g., LCK and 

YES1) are known regulators of T-cell activation and macrophage polarization [49-51], while SIK1 

inhibition is linked to decreased pro-inflammatory macrophage polarization (reviewed in [52]). 

Moreover, a subset of these predicted off-target drug activities have been empirically validated at 

the level of immune phenotypes (e.g., dasatinib and nintedanib limit T-cell activation via LCK 

inhibition [44,45], dasatinib and bosutinib limit pro-inflammatory activity in myeloid cells [53], etc.).  

   

 

 
 
Figure 6-8: Divergent myeloid and T-cell responses to TKIs with overlapping and divergent primary molecular targets.  
Gene expression space for T-cells (left column) and myeloid cells (right column) colored by drug annotation for two subsets of TKIs 
inducing distinct immune cell responses (split by row) as in Fig. 6-5. Clusters in gene expression space annotated as monocytes, pro-
/anti-inflammatory macrophages, Th1 effector cells, and cytotoxic CD8+ SLECs are denoted with dotted lines.  
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Collectively, these results demonstrate how off-target drug activities can dictate immune 

responses in a fashion that is independent of a given drug’s primary mechanism of action. Such 

off-target drug activity is thought to be ubiquitous amongst therapies currently used in the clinic 

(with both positive and negative consequences), and predicting the poly-pharmacology of drugs 

is an active area of research [54]. Our data illustrate how cell-based screens coupled to scRNA-

seq enable researchers to empirically measure the cumulative effects of off-target drug activities 

at the level of immune cell phenotypes in the presence of active intercellular communication 

networks. We anticipate that this feature of single-cell screen-by-sequencing data will prove to be 

an invaluable approach in the context of cancer immunology as traditional chemotherapies and 

immunotherapies are used in concert to perturb complex tumor microenvironments.   

Table 6-2: Off-target drug activities for TKIs inducing divergent T-cell and myeloid phenotypes. 
Table repurposed from [47] and subsetted to only include kinases with Kd values lower than 1 µM across all three Group I TKIs (blue 
headings) and/or all four Group II TKIs (red headings). Numerical values are in nM. Cell fill corresponds to recorded Kd values (dark 
red: Kd < 10 nM; red: Kd < 100 nM; light red: Kd < 1 µM; grey: Kd < 10 µM). Bolded row names correspond to genes where Kd values 
are uniformly higher for all Group I TKIs relative to Group II TKIs.  
  

 

Bosutinib
Nintedanib

Dasatinib

Control
Other Hits

TKI  
(Group I)

Nilotinib
Sunitinib

Crizotinib

Control
Other Hits

Imatinib

TKIs 
(Group II)Th1

UMAP1

UM
AP

2

GZMB+ 
SLEC

Th1

UMAP1

UM
AP

2

GZMB+ 
SLEC

UMAP1

UM
AP

2

Mono

Anti-Inf

Pro-Inf

Mono

Anti-Inf

Pro-Inf

UMAP1

UM
AP

2

Dasatinib Nintedanib Bosutinib Crizotinib Imatinib Nilotinib Sunitinib
BTK 1.4 310 4.8 >1e4 >1e5 >1e5 >1e4
LCK 0.2 6.2 0.59 30 40 47 230
MAP2K5 3.3 1.8 8.2 >1e5 >1e5 190 46
SIK1 3.9 670 30 >1e5 >1e5 >1e5 >1e4
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6.3.6 Vignette III: Macrophage-depleting NSAID response associated with enhanced T-cell-

mediated macrophage apoptosis 

 Comparing population-level responses to drug perturbation in T-cells and myeloid cells 

revealed diverse cell-type-specific effects on T-cell activation and macrophage polarization. 

Beyond these primary immunomodulatory modes, however, we additionally observed a subset of 

drugs associated with significant macrophage-specific toxicity (Fig. 6-6, italicized labels). 

Interestingly, this effect was dependent on CD3/CD28-stimulation (Fig. 6-9a), and among the top 

10 macrophage-depleting compounds, 50% belonged to a single class – non-steroidal anti-

inflammatory drugs (NSAIDs). Comparing the NSAIDs in our dataset which did and did not exhibit 

the macrophage-depleting phenotype revealed no correlations with cyclooxygenase (COX)-1/2 

specificity, chemical structure, or published IC50 values (data not shown). Moreover, fluorescence  

imaging of PBMCs stimulated for 24 hours with anti-CD3/CD28 antibodies and treated with either 

a macrophage-depleting NSAID (naproxen sodium) or two non-depleting NSAIDs (zaltoprofen 

 
 
Figure 6-9: Context-specific macrophage depletion is dependent on CD3/CD28-stimulation.  
(A) Bar plots showing the number of myeloid and T-cell counts for drugs exhibiting a macrophage-depletion phenotype including 
NSAIDs (red) and non-NSAIDs (gold) along with control samples (grey) in CD3/CD28-stimulated and resting conditions. Mean counts 
for each cell type and condition are demarcated with dotted lines for controls (grey) and macrophage-depleting compounds (red). 
Differences between mean counts are displayed as percentages in red text. 
(B) Fluorescence imaging of PBMCs stained for CD14 (green) following stimulation for 24 hours with anti-CD3/CD28 antibodies and 
treatment with two non-macrophage-depleting NSAIDs (zileuton and zaltoprofen) and one macrophage-depleting NSAID (naproxen 
sodium) in duplicate. Proportion of CD14+ cells displayed as percentages on top of representative images. 
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and zileuton) recapitulated these observations, as naproxen sodium caused significant reductions 

in CD14+ immune cells in this context (Fig. 6-9b). 

 Considering these results along with the previous observation of T-cell/macrophage 

biological doublets in our dataset, we hypothesized that the mechanism of macrophage-depletion 

was related to an increase in the rate of T-cell-mediated macrophage apoptosis. To test this 

hypothesis, we performed a MULTI-seq experiment where PBMCs were stimulated with anti-

CD3/CD28 antibodies and perturbed with titrating doses (10 nM, 32 nM, 100 nM, 320 nM, 1µM, 

3.2 µM, and 10 µM) of the macrophage-depleting NSAID naproxen sodium and the non-depleting 

NSAID etodolac for 24 hours. We additionally included titrating doses of the mTOR inhibitors 

rapamycin as a positive control for a bona fide perturbation of both T-cells and macrophages. 

 Following MULTI-seq sample classification and scRNA-seq data quality-control, we 

proceeded with an analysis of 11,537 PBMCs. Similar to our previous dataset, we identified 

clusters in gene expression space corresponding to the major PBMC cell types that were 

comprised of cells from all drug conditions (Fig. 6-10a). Moreover, we identified T-cell sub-types 

including CD4+ naïve/TCMs and TEMs and CD8+ MPECs and SLECs (Fig. 6-10b), as well as 

macrophage sub-types including anti- and pro-inflammatory macrophages and T-cell/ 

macrophage biological doublets (Fig. 6-10c). Notably, we observed two subsets of biological 

doublets in these data which were primarily distinguished by the total number of detected RNA 

UMIs, which perhaps represents different stages of apoptosis. 

To interrogate how T-cells and macrophages respond to (non-)macrophage-depleting 

NSAIDs, we first computed the relative proportions of immune cell sub-types in each drug 

condition relative to CD3/CD28-stimulated DMSO controls. In rapamycin-perturbed cells, we 

observed differences recapitulating our previous results, namely enrichment for naïve/TCM T-

cells (Fig. 6-11a) and anti-inflammatory macrophages (Fig. 6-11b) at the expense of Th1 cells 
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and pro-inflammatory macrophages. Although the shifts in T-cell sub-type proportions did not 

pass significance testing using the single-cell proportion test [40], we interpreted these results as 

being generally supportive of our analytical workflow.  

 
 
Figure 6-10: PBMC cell type and T-cell and myeloid sub-type annotations in the naproxen sodium, etodolac, and rapamycin 
dose-response scRNA-seq dataset. 
Gene expression space for PBMCs (A), T-cells (B), and myeloid cells (C) colored according to cell type annotations or sub-type 
annotations, classified drug perturbation, and the expression of informative marker genes. NK: natural killer cell; DC: dendritic cell; 
TCM: CD4+ central memory T-cells; TEM: CD4+ effector memory T-cells; MPEC-1/2: CD8+ memory precursor effector cell sub-types; 
SLEC: non-cytotoxic CD8+ short-lived effector cells; SLEC-cyto: cytotoxic CD8+ short-lived effector cells; Treg: regulatory T-cell. 
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 In cells treated with naproxen sodium, we observed a marginal decrease in early and 

cytotoxic CD8+ SLECs (Fig. 6-11a) and a significant increase in high-UMI T-cell/macrophage 

biological doublets at the expense of low-UMI biological doublets compared to both DMSO 

controls and etodolac (Fig. 6-11b). Moreover, comparing the numbers of cells assigned to 

etodolac and naproxen sodium treatment groups revealed a 52% reduction in total PBMC cell 

counts (etodolac: 599 cells/sample; naproxen sodium: 289 cells/sample), despite each titration 

series being seeded with the same number of cells and culture wells. Considered together, these 

observations support the hypothesis that naproxen sodium increases the tendency of 

macrophages and cytotoxic CD8+ SLECs to form biological doublets and likely engage in T-cell-

mediated macrophage apoptosis. Moreover, the proportion of low- or high-UMI biological doublets 

amongst etodolac-treated macrophages was not significantly different from DMSO controls, 

 
 
Figure 6-11: Naproxen sodium induces T-cell/macrophage biological doublet formation. 
Bar plots showing immune sub-type frequencies across drug conditions (top) and significance testing results from the single-cell 
proportion test (bottom) for T-cells (A) and macrophages (B). Significance thresholds: Fold-change > 1.5, FDR < 0.05.  
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suggesting that the cellular response to naproxen sodium which underlies this phenotype is 

independent of the drug’s inhibitory effects on COX1/2. 

 To better refine our understanding of how naproxen sodium enhances T-cell-mediated 

macrophage apoptosis, we performed differential gene expression analysis using cells grouped 

by immune sub-types and drug treatment. While many statistically-significant differentially-

expressed genes (DEGs) were detected between rapamycin and DMSO control conditions, no 

genes passed significance testing for any immune cell sub-type when comparing naproxen 

sodium to etodolac or DMSO controls (data not shown). The same pattern was observed when 

binning cells by both immune sub-type and drug-dose, nor did we observe overt differences in 

sub-type proportions across drug doses (Fig. 6-12).  

Collectively, this MULTI-seq dose-response experiment revealed that compared to the 

non-macrophage-depleting NSAID etodolac, naproxen sodium treatment was associated with 

decreased PBMC cell counts, decreased proportions of cytotoxic CD8+ SLECs, and increased 

proportions of pre-apoptotic T-cell/macrophage biological doublets with high numbers of RNA 

UMIs. Interestingly, naproxen sodium-treated samples were depleted of low-RNA biological 

doublets, which perhaps reflects sub-optimal MULTI-seq labeling performance due to the 

increased number of apoptotic cells in these conditions. As a result, we conclude that naproxen 

sodium – and likely the other macrophage-depleting NSAIDs observed in our single-cell PBMC 

 
 
Figure 6-12: Immune sub-type frequencies do not show overt dose-sensitive trends. 
Bar plots showing immune cell sub-type frequencies across drugs binned by dose for T-cells (left) and macrophages (right).  

lo
g1

0 
nC

el
ls

3

2

1

0

Myeloid (stim) T-cells (stim)

A

Myeloid (rest) T-cells (rest)

Control
NSAIDs

Non-NSAIDs

Control
Depletors 

Mean Counts

Drug Groups

B

Aspirin Zaltoprofen

Zileuton Licofelone

Naproxen Sodium

2x GFP and Phase images were taken 

for each drug condition (10uM drug 

concentration).

Number of CD14+ cells and total 

number of cells were counted to show 

the proportion of CD14+ macrophages.

0

5

10

15

20

25

30

35

40

45

Aspirin Zileuton Naproxen

Sodium

Zaltoprofen Licofelone

% CD14+/total # cells

image1 image2

“Macrophage-killing NSAID,” Naproxen Sodium had lowest number of CD14+ 
cells. Phenotype is different from Licofelone (a dual COX-LOX inhibitor) which 

seems to have similar CD14+ numbers to “non-macrophage killing” drugs; 
however, there were far fewer cells in this condition (is this real?).

total # cells CD14+ CD14- % CD14+ % CD14-

Aspirin 63 25 38 0.40 0.60

Aspirin 56 23 33 0.41 0.59

Zileuton 96 25 71 0.26 0.74

Zileuton 196 63 133 0.32 0.68

Naproxen Sodium 319 54 265 0.17 0.83

Naproxen Sodium 119 21 98 0.18 0.82

Zaltoprofen 99 27 72 0.27 0.73

Zaltoprofen 85 22 63 0.26 0.74

Licofelone 20 6 14 0.30 0.70

Licofelone 27 8 19 0.30 0.70

Aspirin Zaltoprofen

Zileuton Licofelone

Naproxen Sodium

2x GFP and Phase images were taken 

for each drug condition (10uM drug 

concentration).

Number of CD14+ cells and total 

number of cells were counted to show 

the proportion of CD14+ macrophages.

0

5

10

15

20

25

30

35

40

45

Aspirin Zileuton Naproxen

Sodium

Zaltoprofen Licofelone

% CD14+/total # cells

image1 image2

“Macrophage-killing NSAID,” Naproxen Sodium had lowest number of CD14+ 
cells. Phenotype is different from Licofelone (a dual COX-LOX inhibitor) which 

seems to have similar CD14+ numbers to “non-macrophage killing” drugs; 
however, there were far fewer cells in this condition (is this real?).

total # cells CD14+ CD14- % CD14+ % CD14-

Aspirin 63 25 38 0.40 0.60

Aspirin 56 23 33 0.41 0.59

Zileuton 96 25 71 0.26 0.74

Zileuton 196 63 133 0.32 0.68

Naproxen Sodium 319 54 265 0.17 0.83

Naproxen Sodium 119 21 98 0.18 0.82

Zaltoprofen 99 27 72 0.27 0.73

Zaltoprofen 85 22 63 0.26 0.74

Licofelone 20 6 14 0.30 0.70

Licofelone 27 8 19 0.30 0.70

Aspirin Zaltoprofen

Zileuton Licofelone

Naproxen Sodium

2x GFP and Phase images were taken 

for each drug condition (10uM drug 

concentration).

Number of CD14+ cells and total 

number of cells were counted to show 

the proportion of CD14+ macrophages.

0

5

10

15

20

25

30

35

40

45

Aspirin Zileuton Naproxen

Sodium

Zaltoprofen Licofelone

% CD14+/total # cells

image1 image2

“Macrophage-killing NSAID,” Naproxen Sodium had lowest number of CD14+ 
cells. Phenotype is different from Licofelone (a dual COX-LOX inhibitor) which 

seems to have similar CD14+ numbers to “non-macrophage killing” drugs; 
however, there were far fewer cells in this condition (is this real?).

total # cells CD14+ CD14- % CD14+ % CD14-

Aspirin 63 25 38 0.40 0.60

Aspirin 56 23 33 0.41 0.59

Zileuton 96 25 71 0.26 0.74

Zileuton 196 63 133 0.32 0.68

Naproxen Sodium 319 54 265 0.17 0.83

Naproxen Sodium 119 21 98 0.18 0.82

Zaltoprofen 99 27 72 0.27 0.73

Zaltoprofen 85 22 63 0.26 0.74

Licofelone 20 6 14 0.30 0.70

Licofelone 27 8 19 0.30 0.70

20um

26% CD14+

CD14

32% 27% 26% 17% 18%

-25.9%

-94.6% -18.1%
-2.4%

DMSO 10nM 32nM 100nM 320nM 1μM 3.2μM 10μM 10nM 32nM 100nM 320nM 1μM 3.2μM 10μM 10nM 32nM 100nM 320nM 1μM 3.2μM 10μM

Etodolac Naproxen Rapamycin

Fr
eq

ue
nc

y

TCM TEM SLEC SLEC-Cyto MPEC-1 MPEC-2 Treg

0.2

0.1

0.0

0.3

Pro-Inf Anti-Inf Doublet Doublet (low RNA)

0.4

0.2

0.0

0.6



 190 

screen-by-sequencing dataset – reduce macrophage cell counts by enhancing T-cell-mediated 

macrophage apoptosis during CD3/CD28 stimulation. Unfortunately, differential gene expression 

and immune sub-type proportion analyses did not reveal additional insights into the mechanism 

by which this phenotype manifests.  

However, in addition to demonstrating how single-cell screen-by-sequencing offers the 

requisite resolution for uncovering novel drug activities, these results illustrate the importance of 

screening drug activities in complex cellular systems. Put simply, the macrophage-depleting 

capacity of these NSAIDs would not have been uncovered had T-cell or myeloid cell lines been 

employed for this study, as T-cell-mediated macrophage apoptosis requires the presence of both 

T-cells and macrophages. Thus, this vignette epitomizes how the ability to incorporate complex 

in vitro systems into single-cell screen-by-sequencing pipelines holds the potential to redefine our 

understanding of how existing and novel drug compounds influence the immune system. 

 

6.3.7 Vignette IV: Targeted transcript enrichment maintains scRNA-seq data information content 

while minimizing next-generation sequencing costs. 

scRNA-seq sample multiplexing technologies dramatically lower the cost of large-scale 

scRNA-seq experiments and make studies that were previously economically-unfeasible 

possible. For example, using MULTI-seq to generate this PBMC single-cell screen-by-sequencing 

dataset in a pooled-sample format resulted in a reduction of >$900,000 in droplet microfluidics 

reagents compared to parallel sample processing. However, next-generation sequencing 

requirements for highly-multiplexed experimental designs which require large numbers of cells 

remain incredibly high. For instance, sequencing a 1,500,000 cell dataset at a depth of 40,000 

reads per cell (RPC) translates to >$100,000 in next-generation sequencing costs alone.  

One potential solution to this issue is to use cDNA target enrichment strategies [54,55] to 

limit next-generation sequencing read allotment to genes associated with informative levels of 
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biological information [56]. Such approaches have been successfully applied in other scRNA-seq 

experiments [57], but to the best of our knowledge, have not been tested on PBMCs following 

chemical perturbation. To determine whether target enrichment is suitable for our PBMC single-

cell screen-by-sequencing platform, we performed a follow-up experiment wherein PBMCs were 

co-cultured for 24 hours with anti-CD3/CD28 antibodies and immunomodulatory drugs that were 

found to induce distinct gene expression responses in our initial screen (e.g., corticosteroids, 

mTOR inhibitors, and TKIs). We also included stimulated and resting control samples that were 

cultured without drugs in the presence or absence of anti-CD3/CD28 antibodies, respectively. 

Samples from each condition were tagged with MULTI-seq sample barcodes and pooled prior to 

scRNA-seq using two 10x Genomics microfluidic lanes. One cDNA library was then submitted for 

full-transcriptome sequencing, while the other was subjected to target enrichment using the 

Human Immunology Panel from 10x Genomics. Specifically, one final cDNA library was 

concentrated and reconstituted in the presence of biotinylated ‘bait’ oligonucleotides which feature 

complementarity to distinct mRNA domains of 1,056 genes with established immunological 

functions. Following bait hybridization, targeted transcripts are then purified onto streptavidin-

conjugated magnetic beads while the remaining cDNA library is discarded. The target-enriched 

library is then subjected to a final library preparation PCR amplification step prior to sequencing.  

Following MULTI-seq sample classification and quality-control filtering, we proceeded with 

an analysis of 7,148 and 14,986 PBMCs from the full-transcriptome and target-enriched scRNA-

seq datasets, respectively. We identified major PBMC cell types in both datasets, including T-

cells, B-cells, myeloid cells, DCs, and NK cells (Fig. 6-13a) despite the expected decrease in the 

number of detected genes and UMIs in the target-enriched data (Fig. 6-13b). Moreover, T-cell 

and myeloid subtypes including CD4+ lineage cells (naïve, TCM, and TEM), CD8+ MPECs and 

SLECs, M2c-like, pro-, and anti-inflammatory macrophages, monocytes, and T-cell/macrophage 

biological doublets were also identifiable in both scRNA-seq datasets (Fig. 6-14). Collectively,  
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Figure 6-13: PBMC cell type annotation in full-transcriptome and target-enriched scRNA-seq data. 
(A) Gene expression space for PBMCs in full-transcriptome (top) and target-enriched (bottom) scRNA-seq datasets colored according 
to cell type annotations (left) and informative marker gene expression 
(B) Histograms describing the number of detected genes (top) and RNA UMIs (bottom) in the full-transcriptome (black) and target-
enriched (dark red) scRNA-seq datasets.  
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these results demonstrate the preservation of biological information needed for immune cell sub-

type annotation following target-enrichment in drug-perturbed PBMC scRNA-seq data. 

Beyond maintaining the accuracy of immune annotation workflows, these data additionally 

highlighted how next-generation sequencing costs can be minimized using targeted transcript 

enrichment strategies, as our target-enriched library was sequenced to 47% of the depth of the  

full-transcriptome library (e.g., 12,634 RPC vs 27,091 RPC). However, optimizing the economics 

of future single-cell screen-by-sequencing experiments would benefit from identifying the 

minimum sequencing depth needed to resolve immune cell sub-types and drug responses. In this 

vein, we next characterized the distribution of immune cell sub-type and drug perturbation labels 

in gene expression space following iterative down-sampling of reads to ~1,000 RPC and ~2,500 

RPC for the target-enriched and full-transcriptome libraries, respectively. We additionally 

compared the number of detected DEGs between immune cell sub-types and drug vs control 

conditions, as well sub-type/drug group information purity (vis-à-vis the entropy-based metric, 

ROGUE [58]) for each down-sampled dataset.  

Qualitative interrogation of how T-cell and myeloid sub-types were distributed in gene 

expression space for progressively down-sampled datasets demonstrates that sub-types were 

visually-discernible with as few as 1,000 RPC in the target-enriched data (Fig. 6-15a). For 

example, monocytes and anti-inflammatory macrophages were non-overlapping in gene 

expression space in both the down-sampled target-enriched data, as well as the full-transcriptome 

dataset after down-sampling to 2,500 RPC (Fig. 6-15a, right). In contrast, many T-cell subsets 

(e.g., naïve T-cells, CD4+ TCMs, and immature CD8+ MPECs) were intermixed in gene 

expression space for the down-sampled full-transcriptome data (Fig. 6-15a, left, panel #7), while 

these subsets were resolvable in the 1,000 RPC target-enriched data (Fig. 6-15a, left).  

These qualitative observations were generally reflected in subsequent quantitative 

comparisons of immune sub-type label information purity (i.e., ROGUE score) and the number of 
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detected sub-type-specific DEGs. Specifically, we observed that the number of DEGs and 

magnitude of preserved heterogeneity were depleted across all immune sub-types in the 2,500 

RPC full-transcriptome dataset (Fig. 6-15b, light coral). In contrast, both metrics were elevated in 

the 1,000 RPC target-enriched dataset (Fig. 6-15b, dark blue) relative to the 2,500 RPC full-

transcriptome dataset, and for the full-transcriptome dataset (Fig. 6-15b, red) relative to all other 

datasets. These observations illustrate that some biological signal is lost during target-enrichment  

(as expected), and that target-enrichment maintains biological information at shallow sequencing 

depths to a greater extent than full-transcriptome sequencing. Moreover, amongst the down-

sampled target-enriched datasets, both metrics decreased to varying extents in different immune 

sub-types and did not exhibit a clear inflection point, making identification of an ‘optimal’ minimum 

sequencing depth for cell sub-type annotation difficult. 

 
Figure 6-15: Qualitative and quantitative comparisons of immune cell sub-types after iterative down-sampling of next-
generation sequencing reads in target-enriched and full-transcriptome scRNA-seq data. 
(A) Gene expression space for T-cells (left) and myeloid cells (right) across target-enriched and full-transcriptome scRNA-seq data 
following iterative down-sampling of sequencing reads (denoted with UMAP panel numbers). Cells are colored by sub-type annotation 
as in Fig. 6-15. Dotted lines highlight anti-inflammatory macrophages and monocytes. 
(B) Bar plots describing the number of detected differentially-expressed genes (top) and preserved heterogeneity (bottom) for T-cell 
(left) and myeloid cell sub-types (right). Bars are colored according to dataset (target-enriched using the ‘viridis’ palette; full-
transcriptome in red) and extent of read down-sampling. 
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 We next repeated this analytical workflow using drug perturbation labels instead of 

immune sub-type labels. Mirroring our previous qualitative observations, most condition-specific 

shifts in gene expression space were cleanly resolved in the target-enriched dataset. Specifically, 

resting and CD3/CD28-stimulated control samples (Fig. 6-16a, top) were distinguished according  

to enrichment for monocytes and polarized macrophages in myeloid cell gene expression space 

(Fig. 6-16a, top right), and by enrichment for naïve and differentiated T-cells in T-cell gene 

expression space (Fig. 6-16a, top left), respectively. Moreover, resting and stimulated controls 

 
Figure 6-16: Qualitative and quantitative comparisons of immune drug responses after iterative down-sampling of next-
generation sequencing reads in target-enriched and full-transcriptome scRNA-seq data. 
(A) Gene expression space for T-cells (left) and myeloid cells (right) across target-enriched and full-transcriptome scRNA-seq data 
following iterative down-sampling of sequencing reads (denoted with UMAP panel numbers). Cells are colored by resting and 
CD3/CD28-stimulated controls (top) or non-control drug perturbations (bottom). Dotted lines denote monocytes, M2c-like, and anti-
inflammatory macrophages and highlight drug perturbations which drive enrichment for those myeloid sub-types. 
(B) Bar plots describing the number of differentially-expressed genes relative to CD3/CD28-stimulated controls (top) and preserved 
heterogeneity (bottom) for T-cells (left) and myeloid cells (right) grouped by drug perturbation. Bars are colored as in Fig. 6-16. 
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exhibited significant overlap in T-cell gene expression space for the 2,500 RPC full-transcriptome 

dataset(Fig. 6-16a, top left, panel #7), as was observed during the T-cell sub-type analyses. 

Beyond control samples, drug-specific shifts such as corticosteroid-specific enrichment for M2c-

like macrophages and naïve T-cells (Fig. 6-16a, bottom, purple) and dasatinib-specific 

enrichment for monocytes and naïve T-cells (Fig. 6-16a, bottom, teal) were also retained in the 

target-enriched dataset. Notably, dasatinib-treated T-cells were not resolvable in the 2,500 RPC 

full-transcriptome data (Fig. 6-16a, bottom left, panel #7), while macrophages treated with the 

mTOR inhibitors rapamycin and temsirolimus overlapped with control anti-inflammatory 

macrophages in all target-enriched datasets (Fig. 6-16a, bottom left, panels #1-5) unlike the full-

transcriptome datasets (Fig. 6-16a, bottoms left, panels #6-7). 

 Beyond these qualitative observations, quantitative comparisons of drug-specific DEGs 

and information preservation across decreasing sequencing depth reveal trends similar to those 

observed for our immune sub-type annotation analyses. Specifically, both metrics were lowest for 

the 2,500 RPC full-transcriptome dataset, both metrics were highest for the original full-

transcriptome dataset, and both metrics decreased variably across different drug sub-sets for the 

target-enriched datasets (Fig. 6-16b). Considered collectively, these analyses demonstrate that 

existing target-enrichment panels are well-suited for detecting immune sub-types and drug 

responses at as low as 1,000 RPC. However, detecting the nuances of some drug responses 

(e.g., mTOR inhibitor-treated anti-inflammatory macrophages) may require further panel 

optimization and/or deeper sequencing.   

 

6.4 Discussion 

 Single-cell genomics sample multiplexing technologies make it possible to generate high-

dimensional single-cell measurements across large numbers of experimental conditions. In the 
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context of high-throughput compound screening, these technologies can be employed to perform 

single-cell screen-by-sequencing studies using complex in vitro systems comprised of diverse 

interacting cell types which better recapitulate in vivo biology. Moreover, scRNA-seq can provide 

more nuanced views on how cells respond to chemical perturbation, which we anticipate will 

improve clinical trial success rates and open new therapeutic avenues beyond metrics that can 

be readily assessed using low-dimensional read-outs and/or bulk transcriptomics.  

In this descriptive study, we outline the key insights gained from the largest per-sample 

single-cell screen-by-sequencing experiment performed to date, which produced a final scRNA-

seq dataset of ~1,000,000 resting or CD3/CD28-stimulated PBMCs spanning 801 perturbation 

conditions. First, we describe how PopAlign can rapidly parse single-cell screen-by-sequencing 

datasets to identify high-impact perturbations and classify compounds according to their cell-type-

specific effects on PBMCs. We then dig deeper into the high-impact perturbations and use 

population-response clustering to describe the primary modes of immunomodulation in T-cells 

and myeloid cells. Specifically, we identify drugs which block T-cell activation but have diverse 

effects on CD4+ T-cell and CD8+ SLEC differentiation, as well as drugs which block or bias 

macrophage polarization towards pro- or anti-inflammatory states. Considering the role of the 

immune system in battling cancer and the fact that many of the drugs identified in this vignette 

are commonly used in the clinic as chemotherapeutics (e.g., Bcr-Abl inhibitors, mTOR inhibitors, 

topoisomerase inhibitors, etc.), we believe that these results illustrate the importance of using 

single-cell screen-by-sequencing to interrogate and thereby learn to leverage (or avoid) the 

immunomodulatory capacities of existing treatments in certain disease contexts.   

After identifying the primary modes of immunomodulation in our in vitro PBMC model of 

acute inflammation, we next focused on two confounding results from our screen. First, we 

explored the divergent immune cell responses to Bcr-Abl targeting TKIs in order to understand 

why the primary molecular targets of these drugs were not predictive of immune cell phenotype 
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following perturbation. After incorporating publicly-available TKI binding affinity data, these 

analyses revealed that off-target effects were predictive of immune response, and demonstrated 

how single-cell screen-by-sequencing can capture the cumulative effects of off-target drug 

activities. Second, we performed a follow-up MULTI-seq experiment to understand how treatment 

with a subset of NSAIDs resulted in >90% depletion of macrophages specifically in CD3/CD28-

stimulated PBMCs. These analyses revealed that at least one macrophage-depleting NSAID, 

naproxen sodium, was associated with increased formation of T-cell/macrophage biological 

doublets compared to DMSO controls and the non-macrophage-depleting NSAID etodolac, which 

suggests that macrophage-depleting NSAIDs enhance T-cell-mediated macrophage apoptosis 

through a currently-unknown mechanism.  

Finally, we performed a final MULTI-seq experiment which incorporated target-enrichment 

strategies to demonstrate how next-generation sequencing costs can be limited in future single-

cell screen-by-sequencing studies. Specifically, we observed the immune cell sub-type detection 

was similarly-accurate between target-enriched and full-transcriptome scRNA-seq data, and that 

sub-type resolution was maintained with 1,000 RPC shallow sequencing in the target-enriched 

data but was lost at 2,500 RPC in the full-transcriptome data. Moreover, we observed that many 

drug-specific transcriptional responses were recovered at 1,000 RPC shallow sequencing in the 

target-enriched data, but the effect of the mTOR inhibitor rapamycin on macrophages was not 

well-resolved at any sequencing depth. This suggests that further refinement of PBMC-tailored 

target-enrichment panels is necessary for future single-cell screen-by-sequencing efforts. 

Notably, while the majority of the analyses in this study were centered on CD3/CD28-

stimulated T-cells and monocytes/macrophages, we see these data as a rich resource for future 

hypothesis generation regarding the context-specificity of drug responses (e.g., CD3/CD28-

stimulated vs resting) as well as how compounds influence other immune cell types (e.g., B-cells, 

NK cells, and DCs). Moreover, for dynamic experimental systems such as CD3/CD28-stimulated 
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PBMCs, we anticipate that much can be gained by using time-course experimental designs (along 

with the more traditional dose-responses studies) to validate drug phenotypes observed in initial 

single-cell screen-by-sequencing experiments. Time-course experiments will be especially 

insightful in contexts where perturbations appear to limit different stages of a given trajectory (e.g., 

JAK and mTOR inhibitors which enable CD4+ TCM differentiation but not Th1 effector T-cell 

formation; drugs likes rociletinib/topotecan and mTOR inhibitors which bias macrophage 

polarization towards pro- or anti-inflammatory fates, respectively), as these tests can shed light 

on the causal nature of the drug responses – e.g., whether the main trajectory is intact but the 

transition kinetics are slower vs the main trajectory is incommensurably altered.  

 

6.5 Methods 

6.5.1. PBMC sample preparation, scRNA-seq library preparation, and next-generation 

sequencing. 

For all single-cell screen-by-sequencing experiments, PBMCs from a single healthy donor 

obtained from HemaCare were thawed according to the ‘Fresh Frozen Human Peripheral Blood 

Mononuclear Cells for Single Cell RNA Sequencing’ protocol from 10x Genomics. PBMCs were 

thawed into RPMI 1640 Medium, GlutaMAX™ Supplement, HEPES (ThermoFisher 

cat#72400047) supplemented with 10% FBS and 1% pen/strep (RPMI-FBS-PS) and plated at 

0.5-1x107 cells/dish in 10cm ultra-low attachment culture dishes (Corning cat#3262). PBMCs 

were then rested overnight at 37 °C and 5% CO2, lifted with TrypLE Express (ThermoFisher 

cat#12605036), washed, and re-plated at 2x105 cells/well of 96-well flat-bottom ultra-low 

attachment culture plates (Corning cat#3474). Upon re-plating, PBMCs were cultured at 37 °C 

and 5% CO2 for 24 hours in RPMI-FBS-PS with or without 25 µL/mL ImmunoCult™ Human 
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CD3/CD28 T Cell Activator (Stemcell Technologies cat# 10971) supplemented with materials 

specific to each described experiment.  

For the primary single-cell screen-by-sequencing experiment, PBMCs were cultured with 

1 µM of a single chemical compound from the Selleckchem Immunology/Inflammation Compound 

Library (Selleckchem cat#L4100) or FDA-approved Drug Library (Selleckchem cat#L1300) or 

equal volumes of DMSO in a total volume of 200 µL. For the dose-response experiment, PBMCs 

were cultured with 10 nM, 32 nM, 100 nM, 320 nM, 1 µM, 3.2 µM, or 10 µM of naproxen sodium, 

etodolac, or rapamycin obtained from the Immunology/Inflammation Compound Library. For the 

target-enrichment experiment, PBMCs were cultured with 1 µM of dasatinib, bosutinib, imatinib, 

or nintedanib obtained from the FDA-approved Drug Library or budesonide, difluprednate, 

rapamycin, or temsirolimus from the Immunology/Inflammation Compound Library.  

After 24 hours of drug and/or anti-CD3/CD28 antibody stimulation, PBMCs were prepared 

for scRNA-seq on the 10x Genomics V3 platform. Specifically, suspension PBMCs were 

transferred to unique wells of a 96-well conical-bottom (Corning cat#249935) or round-bottom 

(Corning cat#3799) culture plate and placed on ice as adherent PBMCs were lifted using TrypLE 

Express. Once lifted, trypsinization reactions were quenched with RPMI-FBS-PS and pooled with 

suspension cells in corresponding wells of the 96-well plate on ice. Cells were then centrifuged 

for 3 minutes at 400xg, the supernatant was aspirated, and cells were resuspended in ice-cold 

PBS. This washing procedure was repeated once before resuspension in 180 µL PBS. PBMCs 

were then MULTI-seq barcoded, quenched with 1% BSA in PBS, washed 1-2 times with 1% BSA 

in PBS, and pooled as described previously [8]. After MULTI-seq labeling, cells were loaded into 

10x Genomics microfluidics lanes with distinct strategies for each described experiment. 

For the primary single-cell screen-by-sequencing experiment, PBMCs were loaded into 6-

7 microfluidics lanes per 96-well plate at a density targeting 20,000 yielded cells/lane. For the 
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dose-response experiment, PBMCs were loaded into a single microfluidic lane at a density 

targeting 24,000 cells. For the target-enrichment experiment, PBMCs were loaded into two 

microfluidic lanes at two densities targeting either 24,000 yielded cells (target-enriched library) or 

8,000 yielded cells (full-transcriptome library). Following droplet microfluidic emulsion, cDNA 

libraries were prepared according to either the “Chromium Single Cell 3ʹ Reagent Kits v3” or 

“Chromium Single Cell 3ʹ Reagent Kits v3.1” user guides from 10x Genomics. MULTI-seq libraries 

were prepared as described previously [8]. For the target-enrichment experiment, transcript 

enrichment was performed using the Human Immunology Panel (10x Genomics cat#1000246) as 

described in the “Targeted Gene Expression - Single Cell” user guide from 10x Genomics.  

After PBMC library preparation, cDNA and MULTI-seq libraries were pooled and subjected 

to next-generation sequencing using the following formats. For each 96-well plate of the primary 

single-cell screen-by-sequencing experiment, cDNA and MULTI-seq libraries were sequenced on 

two lanes of a NovaSeq S4 flow cell (28x8x0x91) at intended read-depths of 45,000 RPC (cDNA) 

and 2,000 RPC (MULTI). For the dose-response experiment, cDNA and MULTI-seq libraries were 

sequenced on two lanes of a NovaSeq S1 flow cell (28x8x0x94) at intended read-depths of 34,000 

RPC (cDNA) and 2,000 RPC (MULTI). For the target-enrichment experiment, cDNA and MULTI-

seq libraries were sequenced on two lanes of a NovaSeq SP flow cell (151x12x12x151) at 

intended read-depths of 30,000 RPC (full-transcriptome), 12,500 RPC (target-enriched) and 

2,000 RPC (MULTI). 

 

6.5.2 scRNA-seq data pre-processing, MULTI-seq sample classification, and quality-control 

 scRNA-seq FASTQs from the primary single-cell screen-by-sequencing, dose-response, 

and target-enrichment experiments were pre-processed using Cellranger (10x Genomics) and 

aligned to the GRCh38 reference transcriptome. For the primary single-cell screen-by-sequencing 

experiment, raw Cellranger outputs were subjected to the scVI [59] quality-control and batch-
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normalization workflow with default parameters. Cell barcodes passing scVI quality-control were 

then used for MULTI-seq sample classification by thresholding MULTI-seq barcode count 

distributions using Otsu’s method [60]. 

For the dose-response and target-enrichment experiments, raw Cellranger outputs were 

read into R and cell-containing droplets were roughly defined by manual thresholding of the RNA 

UMI count distribution. These parsed datasets were then normalized using ‘SCTransform’ [61] 

prior to unsupervised clustering and dimensionality reduction using PCA and UMAP as 

implemented in the Seurat R package [62]. Low-quality cells selected via membership in clusters 

associated with low total RNA UMIs and/or high proportions of mitochondrial gene expression 

were then removed. Cell barcodes passing this quality-control workflow were then used for 

MULTI-seq sample classification as described previously [8]. 

 

6.5.3 PopAlign hit classification 

 scRNA-seq data from the primary single-cell screen-by-sequencing experiment pre-

processed using the previously-described PopAlign workflow [21]. The impact of drug 

perturbations was quantified for each major PBMC cell type by computing the similarity to 

unperturbed controls using the minimum Jeffreys’ divergence metric. High-impact perturbations 

were defined as drugs with FDR-adjusted p-values less than 0.05 in T-cells, B-cells, and/or 

myeloid cells using the minimum Jeffreys’ divergence outputs.  

 

6.5.4 Population response clustering  

 Population response clustering on T-cells and myeloid sub-types was performed using the 

following workflow. First, immune cell sub-types were annotated according to enriched expression 

for these literature-supported marker genes. For T-cells, we used naïve T-cell (IL7R+), TCM 

(CCR7+ CD27+ CD8B-), TEM (CD4+ IL2RA+), MPEC-1 (CCR7+ CD27+ CD8B+), MPEC-2 
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(CCR7- CD27+ CD8B+), SLEC-1 (CCL5+ CD52+ GNLY-), SLEC-2 (CCL5+ GZMB+ GNLY+), 

SLEC-3 (CCL5+ GZMB+ GNLY-), and SLEC-steroid (CCL5+ CD52+ TSC22D3+) annotations. 

Treg and HDAC-treated T-cell clusters were excluded from this analysis. For myeloid cells, we 

used pro-inflammatory macrophage (IDO1+ CXCL9+ IL1B +/-), anti-inflammatory macrophage 

(IDO1+ A2M+ OCSTAMP+ CSF1+), M2c-like macrophage (IDO1+ CD163+), monocyte (IDO1- 

CD9+ FCN1+), and T-cell/macrophage biological doublet (IDO1+ CD3D+ GZMB+) annotations. 

DCs and HDAC-treated myeloid clusters were excluded from this analysis. Second, the sub-type 

proportions of T-cell or myeloid sub-types for each drug were converted into a drug x sub-type 

frequency matrix. Third, frequency matrices were visualized and clustered using hierarchical 

clustering as implemented in the ComplexHeatmap R package [63]. Statistically-significant (fold-

change > 1.5, FDR < 0.05) shifts in immune sub-type frequencies were determined using the 

single-cell proportion test [40], which computes p-values using a permutation test and confidence 

intervals via bootstrapping.  

 

6.5.5 Next-generation sequencing read down-sampling comparative analysis of target-enriched 

and full-transcriptome scRNA-seq data 

 To determine the extent to which gene expression signatures associated with immune cell 

sub-types and drug responses degrade at decreasing sequencing depths in the target-enriched 

and full-transcriptome scRNA-seq datasets, we performed the following workflow. First, FASTQ 

reads were randomly down-sampled to the intended proportions, and these data were processed 

using Cellranger and Seurat as described in section 6.5.2. Cell barcodes and metadata initialized 

in the original datasets were used for the down-sampled data. Second, differential gene 

expression analysis was then performed for immune cell sub-types as implemented in the Seurat 

‘FindAllMarkers’ function (logfc.threshold = log(1.5), only.pos = T) and for drug responses relative 

to CD3/CD28-stimulated DMSO control samples as implemented in the ‘FindMarkers’ function 
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(logfc.threshold = log(1.5), only.pos = T). Third, the amount of between-sub-type or between-

perturbation information retained at different sequencing depths was computed using the entropy-

based ROGUE metric using default parameters [58]. Notably, ROGUE calculations were not 

successful for comparing T-cell sub-type information preservation in the 2,500 RPC down-

sampled full-transcriptome data.  
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