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The fundamental energy gap of a periodic solid distinguishes insula-
tors from metals and characterizes low-energy single-electron
excitations. However, the gap in the band structure of the exact
multiplicative Kohn–Sham (KS) potential substantially underesti-
mates the fundamental gap, a major limitation of KS density-
functional theory. Here, we give a simple proof of a theorem: In
generalized KS theory (GKS), the band gap of an extended system
equals the fundamental gap for the approximate functional if the
GKS potential operator is continuous and the density change is
delocalized when an electron or hole is added. Our theorem ex-
plains how GKS band gaps from metageneralized gradient ap-
proximations (meta-GGAs) and hybrid functionals can be more
realistic than those from GGAs or even from the exact KS poten-
tial. The theorem also follows from earlier work. The band edges
in the GKS one-electron spectrum are also related to measurable
energies. A linear chain of hydrogen molecules, solid aluminum
arsenide, and solid argon provide numerical illustrations.

band gaps | solids | density-functional theory | Kohn–Sham theory |
generalized Kohn–Sham theory

The most basic property of a periodic solid is its fundamental
energy gap G, which vanishes for a metal but is positive for

semiconductors and other insulators. G dominates many prop-
erties. As the unbound limit of an exciton series, G is an exci-
tation energy of the neutral solid, but it is defined here as a
difference of ground-state energies: If EðMÞ is the ground-state
energy for a solid with a fixed number of nuclei and M electrons,
and if M =N for electrical neutrality, then

G= IðNÞ−AðNÞ= ½EðN − 1Þ−EðNÞ�− ½EðNÞ−EðN + 1Þ� [1]

is the difference between the first ionization energy IðNÞ and the
first electron affinity AðNÞ of the neutral solid. Whereas I and A
can be measured for a macroscopic solid, they can be computed
directly (as ground-state energy differences) either by starting
from finite clusters and extrapolating to infinite cluster size or
(for I-A) by starting from a finite number of primitive unit cells,
with periodic boundary condition on the surface of this finite
collection, and extrapolating to an infinite number. Here we shall
follow both approaches, which have been discussed in a recent
study (1). (The energy to remove an electron to infinite separa-
tion cannot depend upon the crystal face through which it is
removed, although the energy to remove an electron to a mac-
roscopic separation, but much smaller than the dimensions of
that face, may so depend. The gap is of course a bulk property.)

Band-Gap Problem in Kohn–Sham Density-Functional Theory
Kohn–Sham density-functional theory (2, 3) is a formally exact
way to compute the ground-state energy and electron density of

M interacting electrons in a multiplicative external potential.
This theory sets up a fictitious system of noninteracting elec-
trons with the same ground-state density as the real interacting
system, found by solving self-consistent one-electron Schrödinger
equations. These electrons move in a multiplicative effec-
tive Kohn–Sham (KS) potential, the sum of the external and
Hartree potentials and the derivative of the density functional
for the exchange–correlation (xc) energy, Exc½n↑, n↓�, which
must be approximated. The simplest local spin-density ap-
proximation (LSDA) (2) is already usefully accurate for many
solids. Better still are generalized gradient approximations
(GGAs) (e.g., ref. 4), meta-GGAs (e.g., refs. 5 and 6), and
hybrids of GGA with exact exchange (e.g., refs. 7 and 8). The
additional ingredients in higher-level functionals can in prin-
ciple satisfy more exact constraints, or fit data better, achieving
higher accuracy. KS theory has become the most widely used
(3) method to calculate the ground-state energies, energy dif-
ferences, electron densities, and equilibrium structures of
molecules and solids, and, with less justification, the electronic
band structures of solids. For a solid, KS theory produces a
band structure, one-electron energies as functions of Bloch
wavevector and band index, in which there can be a nonzero
band gap,
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g= «LU − «HO, [2]

the difference between the lowest-unoccupied (LU) and highest-
occupied (HO) one-electron energies. We show here that under
common computational conditions for solids, g equals G for a
given approximate functional. How close g is to the experimental
gap depends on how accurate the functional is for the ground-
state energy difference G (strongly and comparably underesti-
mated by LSDA and GGAs, but better estimated by meta-GGAs
and especially hybrids).
In principle, should the band gap g equal the fundamental

energy gap G? In the early 1980s, band-structure calculations
were accurate enough to show that LSDA band gaps for semi-
conductors were often about half the measured fundamental
energy gaps. Was this a failure of the LSDA effective potential to
mimic the exact KS potential, or an inability of the exact KS
potential (for the neutral solid) to predict the fundamental gaps,
or both?
Regarding the fundamental gap G as an excitation energy,

we do not expect it to equal the band gap g of the exact KS
potential. But, thinking of it as a ground-state energy differ-
ence, we might hope that it is. Williams and von Barth (9)
gave a clear argument to support this hope, based on three
assumptions: (i) Janak’s theorem (10, 11): The one-electron
energies of KS theory are derivatives of the total energy with
respect to occupation number, between integer occupations,
in both finite and extended systems. This is unquestionably
true. (ii) When an electron is added to or removed from a
solid, the density change is infinitesimal and periodic. This
assumption, only possible for an extended system, is often
true, although there may be exceptions in which added elec-
trons or holes get stuck in localized states; see refs. 12 and 13
for possible examples. (iii) When an electron is added or re-
moved, the KS potential changes only infinitesimally. This
assumption seemed to follow so naturally from (ii) that it was
only implicit in the argument, yet assumption (iii) is incorrect
for the exact KS potential.
Other work (14–17) of the early 1980s showed that the exact

KS potential jumps up by an additive-constant discontinuity
when an electron is added to a neutral solid, making

Gexact = gexact + xc discontinuity. [3]

The discontinuity spoils the interpretation of g, shifting the one-
electron energies without changing the density. The KS potential
is a mathematical fiction, acting on noninteracting electrons to
yield the true ground-state density of the neutral solid and mak-
ing the one-electron energy for the highest partly occupied one-
electron state equal to the true chemical potential μ= ∂E=∂M,
which is itself discontinuous at zero temperature for an insulator
when M crosses N. The xc discontinuity is absent in the LSDA
and GGA approximations to the multiplicative xc potential, for
which (17)

Gapprox = gapprox. [4]

In Eq. 4, G of Eq. 1 and g of Eq. 2 are evaluated with the same
approximate functional. Whereas GGA improves ground-
state energies and electron densities over LSDA, both approx-
imations yield nearly the same band gaps g and hence funda-
mental gaps G, excepting some special GGAs (18). It has long
been known (17) that Eq. 4 is true in LSDA and GGA, and it
has been suspected (e.g., refs. 15 and 17) that LSDA and
GGA band gaps are close to exact KS band gaps (but not to
true fundamental gaps).

Band-Gap Problem in Generalized KS Theory
A simple, self-contained proof of our theorem will be given here.
Refs. 19–22 by themselves also imply this result, as discussed in
a later section.
Based mostly upon empiricism, realistic fundamental gaps for

semiconductors (e.g., refs. 23 and 24) have been estimated from
band gaps of hybrid functionals in generalized KS (GKS) theory,
which is also an excellent starting point for simple quasi-particle
corrections (25). A global hybrid replaces a fraction [e.g., 25%
(7, 26, 27)] of GGA exchange with that of Hartree–Fock, and
replaces the same fraction of the GGA exchange potential with
that of Hartree–Fock (an integral operator, not a multiplication
operator). Screened hybrids (e.g., ref. 8) additionally screen the
interelectronic Coulomb potential in the exchange term, and
typically improve results for semiconductors (23).
We argue that Eq. 4 is also valid within typical approximations

in GKS theory, as typically implemented, extending the argu-
ment of Williams and von Barth (9) from KS to GKS theory.
Thus, the improvement in the band gap that comes from using a
hybrid functional reflects a corresponding improvement in the
value for G of Eq. 1. Our detailed argument, presented in Ap-
pendix B: Theoretical Methods, generalizes assumption (i) of the
Williams–von Barth argument (9) from KS to GKS theory, and
notes that the GKS potentials, like the LSDA and GGA and
unlike the exact one, have no discontinuity under change of
particle number, consistent with refs. 19–22.
Although there is a formally exact GKS theory (28), here we

view GKS as a small step out of KS theory, in which one can use
nonempirical approximations to Exc that are constructed to sat-
isfy the known exact constraints of KS theory. In rigorous KS
density-functional theory, the occupied KS one-electron states
are demonstrably implicit functionals of the electron density that
can be used to construct a density-functional approximation,
such as an explicit functional of the KS one-electron density
matrix. For example, use the noninteracting kinetic energy
density to construct a meta-GGA (e.g., ref. 5), or use the full KS
density matrix to construct the Hartree–Fock exchange energy
for a global hybrid as in ref. 7. Because the one-electron states
are only implicit functionals of the density, the KS potential can
be constructed only by the optimized effective potential (OEP)
method (29). It is computationally easier to find the variationally
optimized potential that minimizes the energy with respect to the
noninteracting density matrix. The resulting GKS potential is not
a multiplication operator but is in practice continuous (does not
change when one delocalized electron is added to or subtracted
from a solid) and self-adjoint for differentiable functionals of the
noninteracting density matrix. It is an integral (Fock) operator
(11) for hybrids but a differential operator (30, 31) for meta-
GGAs, the same operator for occupied and unoccupied one-
electron states.
The step outside KS to GKS barely affects the occupied one-

electron states, the electron density, and the total energy, but not
so the one-electron energies. This was first shown by comparing
exchange-only OEP (KS) and Hartree–Fock (GKS) results for
atoms (29, 32), and more recently by comparing the corre-
sponding KS and GKS implementations of meta-GGAs (ex-
change and correlation together) for atoms (33) and solids (31).
They produce closely similar results for total energies, but the KS
meta-GGA band gap is close to that of LSDA and GGA,
whereas the GKS meta-GGA band gap is significantly larger and
more realistic.
Within xc approximations using the noninteracting density ma-

trix, relaxing the KS demand for a multiplicative effective po-
tential is a “practical” approximation with an unexpected benefit:
It yields the interpretation of Eq. 4 for the GKS band gap of a
solid, explaining how meta-GGAs and especially hybrids can
improve the estimation of the fundamental energy gap of a solid:
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For a typical approximate functional, the GKS band gap g is the
ground-state energy difference G. Improvements in G correlate
at least roughly with other improvements in ground-state energy
differences for integer electron numbers, relevant to atomization
energies and lattice constants.

Numerical Demonstration
Because computational effort typically scales like the cube of the
number of atoms, finite 3- and even 2D clusters are much harder
to converge to the mesoscopic length scale, so we consider as a
first model a finite 1D linear chain of realistic H2 molecules. The
separation between the nuclei of neighboring molecules is taken
to be 1.25× the separation between nuclei within a molecule
(0.74 Å), to produce a gap of order 3 or 4 eV. To demonstrate
our conclusions, the model does not need to be realistic, and its
exact gap does not need to be known. With an even number
(two) of electrons per unit cell, this system is a band insulator.
We consider chains with 1–500 molecules. At large numbers Nmol
of molecules, the correction to the limit Nmol →∞ is (13, 34) of
order 1=Nmol, simplifying the extrapolation. Figs. 1 and 2 show
that for all tested approximate functionals, G− g tends to zero as
Nmol →∞. Table 1 shows limiting values. Within numerical ac-
curacy, as Nmol →∞, I→ − «HO, A→ − «LU, and G→ g.
The positive ions show delocalization of the extra positive

charge over the finite chain, even without periodic boundary
conditions, as expected from the approximate functionals studied
here. The negative ions are resonances, with negative electron
affinity of the chain, captured by the finite basis set. But, the
resonance can evolve smoothly (35) to a bound state with posi-
tive electron affinity as the chain length grows. In contrast to the
situation for atoms and molecules, the resonant one-electron
states of bulk solids can be converged with respect to basis set.
Ref. 36 states without an explicit proof a major result proved

here: For a hybrid functional implemented in a generalized KS
scheme, the band gap equals the fundamental gap within the
same approximation. Refs. 36 and 37 show how to calculate the
fundamental gaps of real extended solids from a given func-
tional without extrapolating from clusters of finite size (and ref.
37 thereby finds realistic band gaps for many solids from the
random phase approximation, by a method different from that
of ref. 38). This makes it possible to demonstrate our conclu-
sions for real 3D solids using a computer code with periodic
boundary conditions.
To that end, we report calculations for the semiconductor

aluminum arsenide and the large-gap insulator solid argon with

the Perdew–Burke–Ernzerhof (PBE) GGA (4) and the PBE0
hybrid (7, 26, 27) functionals as representatives for KS and GKS
methods, via the approach of refs. 36 and 37. Regular grids of
n × n × n k points containing the Γ-point are used, corresponding
to a collection of n × n × n primitive unit cells in periodic
boundary conditions. For n → ∞ an infinite periodic solid would
be obtained, forbidding symmetry-breaking localization of the
added electron or hole, which we do not expect for the solids and
functionals considered here. Symmetry breaking (forming po-
larons) can be captured by a related supercell approach (39). A
self-consistent calculation for the neutral system yields a band
gap g and an energy E(N). Removal of one electron from the HO
orbital or one-electron state (the k point at the top of the valence
band), while keeping the other occupations and orbitals un-
changed, yields the non–self-consistent Enon-SCF(N − 1), whereas
allowing orbital relaxation yields the self-consistent ESCF(N − 1).
Contributions to the Hartree energy and Hartree potential from
the zero reciprocal lattice vector are not taken into account in
the charged systems, or (as usual) in the neutral ones. This long-
known approach for charged systems (40) is better justified for
bulk periodic solids than for other cases (41). Thus, without any
code modification, a finite energy E(N − 1) is obtained. An
ionization potential I(N) is just the difference E(N − 1) − E(N),
where neither energy is divided by the number of primitive unit
cells. An energy E(N + 1) is obtained analogously by adding one
electron to the k point representing the bottom of the conduction
band. From Eq. 1 the fundamental energy gaps Gnon-SCF and
GSCF, for the cases without and with orbital relaxation, re-
spectively, are calculated. Convergence with mesh size is rapid

Fig. 1. PBE GGA fundamental gap G and band gap g for a linear chain of
Nmol H2 molecules. Note that G converges to the limit Nmol →∞ much more
slowly than g does.

Fig. 2. Difference between the fundamental gap G= I−A and the GKS
band gap g= «LU − «HO for a linear chain of Nmol hydrogen molecule.

Table 1. Ionization energy I, electron affinity A, and
fundamental gap G= I−A of an infinite linear chain of H2

molecules, evaluated by extrapolation from finite chains, and the
band edges eHO, eLU and band gap g= eLU − eHO, in the LSDA (2),
PBE GGA (4), SCAN meta-GGA (5), and HSE06 range-separated
hybrid (8) functionals

eV (I+A)/2 I -«HO A -«LU G g

LSDA 1.65 3.14 3.13 0.16 0.17 2.98 2.96
PBE 1.67 3.24 3.23 0.09 0.10 3.15 3.13
SCAN 1.68 3.33 3.31 0.01 0.02 3.32 3.29
HSE06 1.82 3.92 3.91 −0.29 −0.28 4.21 4.18

The extrapolated band energies agree closely with those from a periodic-
boundary-condition calculation (shown). ðI+AÞ=2, the energy difference
from the gap center to the vacuum level (15), depends only weakly on the
approximation.
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for PBE. For PBE0, convergence is accelerated by the method of
ref. 42. No physical (measurable) interpretation is intended for
the gaps in Tables 2 and 3, except in the limit of large n.
Tables 2 and 3 show that all three gaps, g, Gnon-SCF, and GSCF,

rapidly converge toward each other. The convergence of Gnon-SCF
and GSCF toward each other demonstrates that orbital relaxation
upon removal or addition of an electron does not play a role in
infinite periodic solids, whereas the convergence of g and GSCF
toward each other represents a numerical demonstration of the
theorem of this work. Comparison with the experimental gaps in
the table legends shows that, as expected, the 25% exact exchange
in PBE0 can be too much for small-gap solids like AlAs, and too
little for large-gap solids like Ar. As expected (15, 17), the OEP or
KS band gap g for PBE0 is closer to the PBE KS value than to the
PBE0 GKS value.

Relation to Other Previous Work
The relation between GKS frontier orbitals and electron addi-
tion/removal energies was first shown in refs. 19–22 for both
extended and finite systems and was demonstrated numerically
for molecules in ref. 19. Refs. 19–22 by themselves imply our
main result. Ref. 19 derives the generalized Janak theorem for a
differentiable functional of the one-particle density matrix (in its
equation 10), namely, the GKS LU/HO orbital energies are the
chemical potentials for electron addition/removal for both finite
and extended systems, in a way that differs from the derivation in
our theoretical methods section. Refs. 19 and 20 show that the
GKS one-electron energy gap matches the GKS derivative gap––
the discontinuity in chemical potentials for electron addition and
removal (equation 5 of ref. 20), which is equal to G for the exact
functional and for functionals with linear behavior inM on either
side of N, but generally differs from G for finite systems with
approximate functionals (equation 6 of ref. 20). Ref. 20 further
shows that the EðMÞ curves are linear over M on either side of N
for approximate functionals in periodic solids, and also for
nonperiodic systems as N→∞when the approximate functionals
have delocalization error. But, the GKS derivative gap is not
equal toG for nonperiodic systems as N→∞ for functionals with
localization error, such as hybrid functionals with high fractions
of exact exchange that localize an added electron or hole (20).
Combined, these statements yield our main conclusion.
For KS methods using the OEP method (29) to construct the

xc potential corresponding to orbital-dependent energy func-
tionals, e.g., the exact exchange energy, the KS band gap g, and
the fundamental energy gap G are different, as mentioned
above. Indeed, OEP potentials do not determine an additive
constant because the electron number is kept fixed. If the KS
band structures are adjusted by an appropriate shift of the gap,

as in ref. 36, they can be transformed into approximate quasi-
particle band structures.

Conclusions
The fundamental energy gap is the most basic property of a
periodic solid. It cannot be found from a single KS band-
structure calculation, even with the unattainable exact density
functional. Surprisingly, high-level approximations, implemented
in an efficient generalized KS scheme, yield band gaps equal to
the fundamental gap for a given approximate functional. Future
all-purpose nonempirical approximate functionals could predict
usefully correct gaps for most solids. The band edges (43) in the
GKS one-electron spectrum, relevant to interface formation and
redox catalysis, can also be interpreted as measurable energy
differences, as shown by Eq. 6 and illustrated in Table 1. They
can be found in principle by extrapolating the GKS one-electron
energies of a slab or cluster.
Typical approximate functionals, as typically implemented,

obey Eq. 4, as previously known (17) only for LSDA and GGA.
For 3D solids (31), there is little or no improvement in Gapprox

from LSDA to GGAs, but substantially more from GGAs to fully
nonlocal functionals, where the nonlocality of the density de-
pendence and the usefulness of the band gap gapprox increase
further from meta-GGAs to hybrids. This suggests that, in solids,
the xc effects can be more long-ranged (e.g., ref. 23) than in
atoms and small molecules.
The PBE0 and Heyd–Scuseria–Ernzerhof 2006 (HSE06) hy-

brids contain 25% of exact exchange, globally or at intermediate
range, chosen to yield accurate atomization energies for mole-
cules and related moderate-gap systems at integer electron
number. The nonlinear variation of approximate total energy
with electron number between adjacent integers is a problem in
finite systems, but vanishes in typical solids (1, 20). PBE0 and
especially HSE06 yield realistic GKS gaps for typical semicon-
ductors. But, they can over- or underestimate gaps of other
solids. For example, molecular crystals seem to need 1/e of long-
range exact exchange (44), where e is the dielectric constant (45).

Appendix A: Computational Methods
The self-consistent all-electron results for the chain of hydrogen molecules
reported here were found using the Gaussian code (46) with a small cc-pvDZ
basis set, to speed up the hybrid calculations for the longer chains. Many
results were checked with the ADF (47) (TZP basis) and FHI-aims (48) (NAO-
VCC-2Z basis) codes. The effect of increasing the basis from cc-pvDZ to TZP is
to increase the Nmol →∞ limits of I and A in PBE by 0.14 and 0.10 eV,

Table 2. KS (PBE) and OEP/KS and GKS (PBE0) band gap g and
fundamental energy gaps G of solid AlAs, calculated according to
Eq. 1 with orbitals of the neutral N-electron system Gnon-SCF, or
with orbitals of separate self-consistent calculations of N-,
(N −1)-, and (N + 1)- electron systems GSCF, in electron volts, as
described in the text

PBE PBE0

Grid size g Gnon-SCF GSCF gOEP g Gnon-SCF GSCF

2 × 2 × 2 1.162 1.164 1.131 1.276 2.669 2.681 2.645
4 × 4 × 4 1.321 1.324 1.321 1.490 2.635 2.639 2.638
6 × 6 × 6 1.345 1.346 1.344 1.526 2.598 2.599 2.599
8 × 8 × 8 1.349 1.349 1.348 1.534 2.583 2.584 2.584
10 × 10 × 10 1.349 1.349 1.349 1.537 2.577 2.577 2.577
12 × 12 × 12 1.349 1.349 1.349 1.536 2.575 2.575 2.575

The experimental band gap (52) of AlAs is 2.23 eV.

Table 3. KS(PBE) and OEP/KS and GKS(PBE0) band gap g and
fundamental energy gaps G of solid Ar, calculated according to
Eq. 1 with orbitals of the neutral N-electron system Gnon-SCF,
or with orbitals of separate self-consistent calculations of N-,
(N − 1), and (N + 1)-electron systems GSCF, in electron volts,
as discussed in the text

PBE PBE0

Grid size g Gnon-SCF GSCF gOEP g Gnon-SCF GSCF

1 × 1 × 1 7.621 9.130 8.482 7.901 12.079 11.944 11.311
2 × 2 × 2 8.640 8.793 8.658 8.831 10.947 11.065 10.948
3 × 3 × 3 8.688 8.735 8.694 8.923 11.091 11.108 11.073
4 × 4 × 4 8.691 8.711 8.699 8.938 11.120 11.123 11.108
5 × 5 × 5 8.692 8.702 8.693 8.942 11.121 11.126 11.119
6 × 6 × 6 8.692 8.697 8.693 8.944 11.122 11.126 11.122
7 × 7 × 7 8.692 8.695 8.692 8.945 11.123 11.126 11.123
8 × 8 × 8 8.692 8.694 8.692 8.945 11.123 11.125 11.124

The experimental band gap (53) of Ar is 14.20 eV. For a recent comparison
of GKS band gaps for many solids from GGA hybrid functionals, including
PBE0 and HSE, see ref. 54.
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respectively, and to stabilize the negative-ion resonances for some of the
larger finite chains. All codes show G−g→ ∼ 0.02 eV, which we attribute to
the slow convergence of G with increasing system size (Fig. 1). All extrapo-
lations display the increase of I and decrease of A from LSDA to HSE06.

The AlAs and Ar calculations were carried out with the plane-wave
program MCEXX (49) using norm-conserving PBE pseudopotentials gen-
erated by the code of ref. 50, which is based on the Troullier–Martins
scheme (51). The cutoffs used for the construction of the pseudopotentials
are the same as those used in ref. 37. In principle, the pseudopotential for
PBE0 should be different from that for PBE, but the difference is irrelevant
to our demonstration. For AlAs a lattice parameter of 5.66 Å and a plane-
wave cutoff of 15 a.u. were used. The corresponding values for Ar were
5.26 Å and 30 a.u.

Appendix B: Theoretical Methods
Here, we derive the generalized Janak theorem and prove that the band gap
and band edges of generalized KS theory are the appropriate ground-state
energy differences, for a given approximate functional. In any constrained
minimization, the Lagrange multiplier is the derivative of the minimized
quantity with respect to the value of the constraint. Consider minimizing the

orbital functional Ev ½ffjg, fψ jg�, where nð~rÞ= P

i
fi jψ ið~rÞj2 and the occupation

numbers are restricted to the range 0≤ fi ≤ 1 with
P

i
fi =N, subject to con-

straints fj
R
d3r

��ψ jð~rÞ
��2 = fj guaranteeing normalization of the occupied or

partly occupied orbitals. The Euler–Lagrange equation for this problem is
δfEv ½ffjg, fψ jg�−

P

i
«i fi

R
d3rjψ ið~rÞj2g= 0, where the «i are Lagrange multi-

pliers. The interpretation is

«i = ∂E=∂fi . [5]

This is a generalized Janak theorem. The same statement and derivation (11)
apply to the ungeneralized KS theory. The minimizing one-electron wave-
functions are solutions of a one-electron Schrödinger equation with an
optimal variational potential operator.

Consider a GKS calculation for an extended solid with an approximate xc
functional, in which the ground state delocalizes the density of the added
electron or hole over the infinite solid. The variation of the approximated E
is linear in fi because the relaxation effect on the optimal variational po-
tential associated with the removal or addition of one electron is negligi-
ble. Then, by Eq. 5,

EðNÞ− EðN− 1Þ= «HOðN− δÞ
EðN+ 1Þ− EðNÞ= «LUðN+ δÞ, [6]

where δ= 0+, and

IðNÞ−AðNÞ= «LUðN+ δÞ− «HOðN− δÞ. [7]

Here, HO and LU label the one-electron states of the (N-δÞ-electron system,
which change only infinitesimally when M increases through integer N. If
the approximate xc potential in GKS theory has no discontinuity as the
electron number crosses integer N, then

IðNÞ−AðNÞ= «LUðNÞ− «HOðNÞ. [8]

For a meta-GGA or hybrid functional, the optimum variational potential
operator has been found explicitly (e.g., equation 7 of ref. 30; equation 1.7 of
ref. 11) and is continuous. Thus, within LSDA, GGA, meta-GGA, or hybrid
approximations, when implemented in GKS, the band gap equals the
ground-state total energy difference.

In contrast, within an ungeneralized KS scheme, this statement remains
true in LSDA and GGA, but not in meta-GGA or hybrid approximations. For
meta-GGA and hybrid approximations, treated in OEP, as for (15) exact KS
theory,

IðNÞ−AðNÞ= «LUOEPðN+ δÞ− «HOOEPðN− δÞ=�
«LUOEPðN− δÞ− «HOOEPðN− δÞ�

+
�
«LUOEPðN+ δÞ− «LUOEPðN− δÞ�, [9]

where the first set of curly brackets is the OEP or KS band gap and the second
set is the contribution from the discontinuity (15, 16) of the OEP or
KS potential.
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