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Abstract

Application of 2-Scale 13C Metabolic Flux Analysis to Growth Phenotypes in S. cerevisiae

by

Christopher Michael Shymansky

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Jay D. Keasling, Chair

Fluxes are useful because they are the most phenotypically relevant output we can infer.
The dominant methods of obtaining these profiles, FBA and 13C MFA, have advantages
and disadvantages. 2S-13C MFA combines the advantages of both to obtain more reliable
genome-scale flux profiles that are self-consistent with both the carbon transition model and
data used to infer them. This makes them a better basis for troubleshooting phenotypic
changes and for making predictions.

We do not fully understand the role of Sip1 in glucose repression systems. A better
understanding of it and the general phenomenon of carbon catabolite-repression could result
in better ways to engineer cells and utilize various feedstocks. Previous work in our lab re-
sulted in an unreported growth phenotype upon knockout of SIP1 in mixed glucose/galactose
medium. To better understand the relative roles of galactose and knockout of SIP1, we
constructed base and sip1∆ mutant strains in a CEN.PK113-7D ura3∆ gal1∆ background
and compared their 2S-13C MFA-derived flux profiles in both glucose-only and mixed glu-
cose/galactose media. Our original hypothesis, that deletion of SIP1 was necessary to see
an effect from the presence of galactose, was incorrect. The presence of galactose was nec-
essary to see a phenotypic difference in growth rate upon knockout of SIP1. Both the base
and mutant strains exhibited, upon addition of galactose, increases in specific growth rate,
decrease of PPP pathway activity to 1/100 of its initial value, shift from use of NAD- to
NADP-dependent malic enzyme, and redistribution of flux towards branched-chain amino
acid biosynthesis. Despite the expected lack of change in growth rate upon knockout of
SIP1 in glucose repressing conditions, extracellular ethanol flux decreased, mitochondrial
flow completely shut down, and flow was directed toward a part of the network involving
arginine and threonine biosynthesis. Regardless of the noted differences, all strain/condition
pairs were accompanied by certain normal glucose-repressing phenotypes (i.e. ethanol pro-
duction and repression of TCA/glyoxylate cycle activity). Additionally, a cycle from cytosolic
pyruvate through cytosolic malate and the mitochondria back to cytosolic pyruvate through
NAD-dependent malic enzyme occurred. Clearly, glucose repression and the role of Sip1 is
more complicated than we realized. Recent work makes it plausible that galactose enters the
cell at the galactose/glucose ratio in this study. The more-reliable and self-consistent flux
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profiles generated by 2S-13C MFA were instrumental in studying this problem at unprece-
dented detail. However, more work is necessary to fully elucidate the role of Sip1 in carbon
catabolite-repressing conditions.

Carbon lost to non-target metabolites (e.g. ethanol) represents a missed opportunity. It
might be possible to redirect this lost flux towards biomass and/or target-molecule produc-
tion. Additionally, the question of whether we can use an NADH oxidase to correct cofactor
imbalances is an interesting one. We attempted to rescue the growth of an ADH1 null mutant
via low-copy plasmid expression of 15 different promoter/gene pairs. These promoter/gene
pairs consisted of all combinations of 5 mutated TEF1 promoters and 3 species-specific
NADH oxidases from L. lactis, S. pneumoniae, and A. capsulatus. The growth of these
15 variants were characterized, along with that of base and adh1∆ mutant strains, in low-
replicate shake flask, 96-well, 24-well, and high-replicate shake flask experiments. Expression
of the NADH-oxidase appeared to result in a growth rescue in the initial low-replicate flask
and the 96-well plate experiments. There was no clear difference in 24-well plate experiments
and the high-replicate shake flask experiment definitively showed that heterologous expres-
sion of one particular variant resulted in no growth rescue. More experiments are necessary
to determine if growth rescue by balancing cofactor utilization is a viable strategy. Higher
replicate experiments with the same variant, high-copy expression, chromosomal integration,
and/or codon-optimization could all be tried as extensions of this work. It’s interesting how
there appeared to be a difference in the 96-well experiment, admittedly with about half the
replicates of the final one. Differing rates of aeration at these two scales may be responsible
for this observation, since all NADH oxidases used in this study converted oxygen to water.

Flux profiles are the most phenotypically relevant output we can infer from experimental
data. Any advance in the speed or accuracy of flux profile inference from 13C labeling data
could increase the range of its applications. The optimization inherent to 13C MFA is a
high-dimensional, nonconvex least squares minimization subject to third-order polynomial
constraints. Nonconvex systems tend to be harder to solve due to local minima. We were
interested to see if we could find bounds or solver starting points and/or even recover the same
global minimum solution using a convex semidefinite program relaxation with forms of rank-
sparcity encouragement. For a six-reaction toy model, we found that the SDP-relaxation
resulted in a lower bound on the objective and the rank-sparcity encouragement methods
had their advantages and disadvantages. The weighted-trace objective method resulted in
an optimal solution and argument closer to that found in the paper, albeit requiring more
user supervision and resulting in a less-feasible point. The eigenvalue inflation method was
more automatable, faster, and possessed better mass balance constraint satisfaction. Though
these results are encouraging, more work remains to be done to determine whether convex
relaxations could improve overall 13C MFA flux profile inference. The space of solutions
possesses a semi-linear nature so, it is plausible that convex relaxations could be useful.
The SDP relaxation attempted here and the rank-sparcity encouragement methods, among
others, should be attempted on larger networks.
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Chapter 1

Introduction

1.0.1 The role of the fluxome in systems biology

Cells are dynamic. Thus understanding their behavior requires understanding how cellular
components change with respect to each other. It would be easier to understand cellular be-
havior if rates of expression determined rates of translation and these determined metabolic
reaction rates. Unfortunately, this is greatly complicated by transcriptional, translational,
and post-translational regulation1,2. Genetic sequences and regulator proteins modify the
rates of transcription. Secondary structure of mRNA and modifications of ribosomal re-
cruitment rate modify rates of translation. Protein folding and metabolite inhibition modify
protein function, including reaction rates. Other mechanisms such as chromosomal location
of genes, histone acetylation, and chromosomal structure further complicate our understand-
ing.

While a full mathematical model of all cellular component interactions has yet to be
realized, our understanding of metabolic interconversion rates, or the fluxome, has probably
been our most successful. Fluxes represent the flow of mass through a metabolic network
and are effectively a proxy for the number of reactions per hour per cell. Our ability to
calculate them and the resolution at which we’re able to do so have greatly increased as
our experimental techniques and computational power have. Thankfully, flux profiles are
the network output most relevant to a large number of cellular behaviors we are most in-
terested in. Growth rate is essentially a flux to biomass, cellular composition results from
relative individual component fluxes to biomass, rates of excretion/consumption of extra-
cellular metabolites are fluxes, etc. Various techniques have been developed to infer these
intracellular reaction rates, as discussed below.

1.0.2 Flux balance analysis

The common assumptions of fluxomics, in general, are conservation of mass and the com-
pleteness of the metabolic model used to derive it. Stoichiometric intracellular metabolite
balances are the manifestation of these assumptions in flux calculations. They are con-
structed by recognizing that the rate of accumulation of each intracellular metabolite’s mass
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is equal to the sum of the individual rates from each reaction it is involved in. Oftentimes,
these individual rates of accumulation are set to zero for exponential phase situations where
excretion/consumption fluxes appear to be constant. This results in a set of algebraic instead
of differential equations.

Extracellular metabolite and cellular concentration data are often used in fluxomic meth-
ods. Extracellular fluxes are calculated from these metabolite concentrations. Often referred
to as ”exchange” fluxes, these excretion/consumption rates are used to place bounds on
metabolic network inputs and outputs. Another core assumption of many fluxomic methods
is that of cellular metabolite composition percentages, encoded in a biomass rate equation.
Specific growth rates are, sometimes, used to place bounds on these biomass rate equations.

One approach to obtaining flux profiles is Flux Balance Analysis (FBA). FBA uses these
stoichiometric balances, the biomass equation linked to specific growth rate, and flux sign
constraints. Modern FBA uses highly-curated genome scale models representing the most
complete models of an organism’s metabolic network available. These genome-scale stoichio-
metric equations coupled with the constraints imposed by the measured data result in an
underdetermined system of linear equations with an infinite solution set, thus requiring a
biological objective (e.g. maximization of growth rate or ATP production) to obtain a single
flux profile. Flux balance analysis usually takes the form of a linear program (LP), similar
to that displayed in Equation 1.2.

The main advantage of this approach is the completeness of the genome-scale model.
Also, FBA can be used to, in some cases, to accurately predict growth and excreted metabo-
lites. Additionally, certain methods (e.g. MOMA) require genome-scale flux profiles to
make predictions. However, the biological objective isn’t always true and the technique has
difficulty resolving fluxes in bidirectional reactions and cycles.

1.0.3 13C metabolic flux analysis

An alternative method of obtaining flux profiles is 13C metabolic flux analysis (13C MFA).
The basic idea is to introduce extra information, other than the normally measured extra-
cellular flux and specific growth rates of FBA, by performing a tracer experiment where
an organism is cultured in medium containing 13C-labeled substrate(s). The labeled car-
bons accumulate in cellular biomass that is processed and analyzed using nuclear magnetic
resonance (NMR) or mass spectrometry to obtain 13C labeling probability distributions for
cellular components (e.g. intracellular metabolites and/or proteinogenic amino acids). La-
beled species mass balances (usually steady-state) are used to model the flow of labeled
carbons and are derived from reaction carbon transitions. These, coupled with their corre-
sponding stoichiometric balances and sign constraints, are used to generate simulated species
labeling distributions. An iterative fitting is conducted until a modified Euclidean distance
between the simulated and measured labeling data is minimized.

13C MFA improves upon FBA by replacing the biological assumption objective with
one that ties flux profiles to measured data and by being able to resolve bidirectional reac-
tion rates and those in cycles through the use of a more detailed model. FBA often uses
extracellular flux- and biomass equation-constraining extracellular metabolite and cellular
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concentration data. 13C MFA uses both this data and the measured metabolite labeling
probability distributions resulting from the tracer experiment. Also, the labeled data allows
a measure of data and model consistency by replacing the biological assumption objective
of FBA with a Euclidean distance between measured and simulated labeling data. Addi-
tionally, confidence intervals of fluxes obtained via 13C MFA are tighter and the finer-scale
model allows determination of reaction fluxes involved in cycles and forward/reverse values in
reversible reactions. Despite these advantages, 13C MFA uses a non-comprehensive stoichio-
metric model, including a simplified biomass equation that doesn’t include all components
necessary to produce cells, and the limited size of the network makes it less than ideal for
predictive methods. Despite the constraining nature of the labeled species balances resulting
in a finer flux profile resolution, they are the source of nonconvexity that results in multiple
local minima and greatly increased computational complexity. Finally, 13C MFA assumes
the reactions it doesn’t include would have no effect on the simulated labeling output.

1.0.4 Elementary metabolite unit decomposition

We, in particular, use an elementary metabolite unit (EMU) decomposition algorithm3 to
derive steady-state labeling balances that retain the information of previous methods while
reducing the number of equations and unknowns by about 1/10 relative to previous methods.
Labeled species mass balance equations are obtained from a given network of reactions
and their corresponding carbon transitions, which describe where each carbon atom in the
reactants ends up in the products of a given reaction.

An elementary metabolite unit (EMU) is any distinct subset of carbon atoms in a metabo-
lite for which the fractional labeling is being considered. That is, an EMU is a piece of a
molecule. Each piece has a corresponding labeling distribution known as its mass distribu-
tion vector (MDV), designated fe (Equation 1.1), for which each entry, fe,m is the probability
that any m number of carbons is labeled (13C instead of 12C). As such, the first entry con-
tains the probability that EMU, e, has no labeled carbons (m=0), the second entry contains
the probability that any one of the carbons is labeled (m=1), etc.

fe =

{
fe,m :

me∑
m=0

fe,m = 1, fe,m ≥ 0

}
∈ Rme+1 (1.1)

The EMU algorithm uses the carbon transitions to decompose the network into multiple
small networks consisting of EMUs. This is accomplished by starting from the molecules
with measured labeling patterns, defining what pieces of other molecules were used to create
them and through what reactions, then defining these newly encountered EMUs in terms
of others as well, and continuing this process until the labeling of all EMUs is completely
determined from those encountered and that of the feed molecule’s. For instance, for the
six-reaction toy model obtained from the founding EMU paper and presented in Table 1.1
the EMU reaction network resulting from the decomposition is displayed in Figure 1.1.

These EMU decompositions are used to derive steady-state mixing equations for each
EMU labeling state that serve as the 13C MFA labeled species balance constraints in Equa-
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Table 1.1: Set of reactions and corresponding carbon transitions for a six-reaction toy model

Reaction number Reaction stoichiometry Atom transitions

1 A → B abc → abc
2 and 3 B ↔ D abc ↔ abc
4 B → C + E abc → bc + a
5 B + C → D + E + E abc + de → bcd + a + e
6 D → F abc → abc

Figure 1.1: EMU decomposition of a six-reaction toy model3. Metabolite (nodes) subscripts
denote carbon atoms for which 13C labeling probabilities are being kept track of.

tion 1.4e. The labeling variables of these equations are MDVs mentioned earlier. The
mathematical structure of the models resulting from our models containing 130 reactions
about 6000 dimensional (i.e. MDV entries and fluxes) 3rd-order polynomials (i.e. sums of
products of 1 or 2 unknown labeling values and 1 unknown flux), depending on the size of
the model.

1.0.5 2-scale 13C metabolic flux analysis

2-scale 13C metabolic flux analysis (2S-13C MFA)4, developed at the Joint BioEnergy In-
stitute (JBEI), is an attempt to combine the advantages of both FBA and 13C MFA. The
name reflects the fact that the metabolic model has two scales of resolution. A comprehen-
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sive genome scale model is used, yet with a ”core” subset of reactions containing finer-scale
carbon transition information.

2S-13C MFA uses a cycle of computations that are iteratively performed until the possible
ranges of simulated labeling distribution data is minimized. This cycle of computations starts
with a ”limit-flux-to-core” step, then a 13C MFA, and then an External Labeling Variability
Analysis (ELVA).

The first step involves identifying reactions contributing flux to the core network from
the non-core network. A procedure is separately performed for each of these non-core-
to-core reactions to determine the minimum flux through it that is consistent with the
network stoichiometry of the full genome-scale model. This is achieved by iterating through
certain percentages of the incoming glucose flux for that single reaction until a genome-scale
flux balance analysis is successful. The mathematical form of the Flux Balance Analysis
computation is displayed in Equation 1.2 and descriptions of the sets and variables involved
are in Equation 1.3.

max
v

vobj (1.2a)

s.t.
∑
j∈J

Sijvj = 0 , ∀i ∈ IN (1.2b)

lbj ≤ vj ≤ ubj , ∀j ∈ J (1.2c)

IN ⊂ I : Set of non-exchange metabolites

J = j : Set of fluxes

Sij : Stoichiometric coefficient of metabolite i in reaction j

ubj, lbj : Upper/lower bounds for reaction j

vj : Flux value of reaction j, in mmol/gDcW/h

vobj : Objective flux to maximize (e.g. biomass or atp)

(1.3)

Once minimum values for all non-core-to-core reactions are found their values are set for
these fluxes for a modified 13C MFA. The mathematical form of this problem is displayed in
Equation 1.4 and the corresponding set and variable descriptions are in Equation 1.5.
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min
v,V,f

√√√√ ∑
e∈Emeas

(∑
m∈Me

(
f exp
em − fem

∆em

)2

/|Me|

)
/|Emeas| (1.4a)

s.t.
∑
j∈J

Sijvj = 0 , ∀i ∈ IN (1.4b)

lbj ≤ vj ≤ ubj , ∀j ∈ J (1.4c)∑
m∈Me

fem = 1 , ∀e ∈ Eco (1.4d)

 ∑
l|S∗il<0

S∗ilVl

 fem +
∑

e′∈Eco


 ∑

l|EMM l
e′−>e

>0

EMM l
e′−>eVl

 fe′m

 = 0 , (1.4e)

∀m ∈Me, ∀e ∈ Ei,∀i ∈ INco (1.4f)

fem =
∑

w∈Wem

|Ee|∏
n=1

fenmn , ∀m ∈Me, e ∈ Ec
co (1.4g)

vj =
∑
l∈JB

co

(mapjl)Vl,∀j ∈ J (1.4h)
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I = {i} : Set of all metabolites

Ico ⊂ I : Set of core metabolites

IN ⊂ I : Set of non-exchange metabolites

INco ⊂ Ico : Set of non-exchange core metabolites

J : Set of fluxes

Jco ⊂ J : Set of core fluxes

JB : Set of fluxes with backward and forward fluxes differentiated

JB
co ⊂ JB : Set of core fluxes with reverse/forward fluxes differentiated

E = {e} : Elementary Metabolite Units (EMUs) or carbon groups

Ec ⊂ E : Combined EMUs

Ei ⊂ E : EMUs from metabolite i ∈ I
Ec

co ⊂ Ec : Core combined EMUs

Ee ⊂ E : EMUs that produce combined EMU e

Eco ⊂ E : EMUs corresponding to core metabolites

Emeas ⊂ E : EMUs corresponding to measured EMUs

Wem : Set of every possible mass isotopomer multiplet

of Ee that produce the mass isotopomer m of e

Me : m values ofr MDV of emu e: 0, 1, . . . , # of carbons in e

EMM l
e′−>e :

1

k
if e′ produces e through reaction l ∈ JB

co, 0 otherwise

Sij : Stoichiometric coefficient of metabolite i in reaction j

S∗ij : Stoichiometric coefficient of metabolite i in reaction j in network

corresponding to that with backward/forward fluxes differentiated

ubj, lbj : Upper/lower bounds for reaction j

f exp
em ∈ [0, 1] : Experimentally measured MDV for emu e from metabolite m

∆em : Measurement error for f exp
em

mapjl : Vglucupt if l corresponds to forward flux of j and

-Vglucupt if l corresponds to backward flux of j

vj : Flux value of reaction j ∈ J , in mmol/gDcW/h

Vl : Flux value of reaction l ∈ JB
co, normalized to glucose input rate

fem ∈ [0, 1] : Mass isotopomer fraction (MDV) for emu e from metabolite m

(1.5)

There are a number of differences between a normal 13C MFA and this version. The dif-
ferences consist of there being two types of flux variables, the use of a set of genome-scale
stoichiometric equations utilizing only one of these flux variable types, a mapping between
the two flux variable sets, and the upper and lower flux bounds are limited by the previous
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limit-flux-to-core step. The two sets of flux variables used are: 1) absolute net fluxes where
some of them can be negative or positive and 2) positive relative fluxes that are normalized
to the absolute incoming glucose flux. The genome-scale stoichiometric balances in Equation
1.4b correspond to all fluxes of the absolute flux type, whose values are positive if flow is in
the designated ”forward” direction and negative if flow is the designated ”reverse” direction.
The EMU balances are in terms of the second set of relative fluxes that correspond only
to the core. For clarity, core reactions have both types of flux variables corresponding to
them. The relationship between these two flux variables is expressed in the mapping equa-
tion between them in Equation 1.4h. This mapping is simply that the absolute value of a
particular reaction, j, is calculated by its relative value times the positive or negative glucose
consumption flux, depending on the direction. This is encoded in the mapjl variable, whose
value is the glucose consumption flux if net flow of reaction l is in the forward direction or the
negative of the glucose consumption flux if net flow is in the reverse direction. All equations
involving flux variables, other than the EMU balances and flux mapping equations, are in
terms of the absolute fluxes, vj.

Note how the objective is a modified Euclidean distance between simulated and measured
fractional labelings. The modification manifests in three different normalizations designed
to give more weight to better data and to counteract overrepresentation of distributions with
more values (i.e. more carbons) in the objective and to make it a little more comparable
among different data sets. The division of each difference between simulated and measured
mass isotopomer distribution values by its measured error, ∆em, causes those with higher
error to have a smaller term in the sum. The division of the sum of squares corresponding to
each EMU’s MDV by its number of entries, |Me|, is meant to decrease the value of that term
to decrease the weight of vectors with higher lengths. The final division by the number of
EMUs is an attempt to counteract the higher objectives that result from having more data
so that data sets of different sizes have some measure of comparison.

Once a 13C MFA flux profile is obtained, we characterize the effect of the hypothetical
labeling contributed to the core network by the non-core section by finding minimum and
maximum simulated labeling probabilities corresponding to the measured data using an
ELVA. We can not track the non-core contribution because we do not have carbon transition
information for the reactions in that part of the network. Small simulated ranges give us
confidence that the simulated value is actually close to the corresponding measured value
from the 13C MFA. This is accomplished by first identifying metabolites on the edge of
the core network that have reactions generating them from the non-core network. These
reactions are replaced by a single ”extended flux” with a value given by their sum. The
labeling contributed by this reaction is an ”extended” metabolite with the same number
of carbons. The labeling of all extended metabolites represents the labeling non-core-to-
core network flow contributes to the core network. These extended labeling probability
distributions are varied to minimize and maximize the simulated data corresponding to that
measured subject to the 13C MFA constraints and the flux profiles found in the 13C MFA
step. The mathematical form of ELVA is represented in Equation 1.6 and the corresponding
set/variable definitions are in Equation 1.7.
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min/max fem , ∀m ∈Me, e ∈ Emeas (1.6a)

s.t. Vj = V j , j ∈ JB
coext (1.6b)∑

j∈JB
coext

S∗ijVj = 0 , ∀i ∈ INcoext (1.6c)

LBj ≤ Vj ≤ UBj , ∀j ∈ JB
coext (1.6d)∑

m∈Me

fem = 1 , ∀e ∈ E (1.6e)

 ∑
j|S∗ij<0

S∗ijVj

 fem +
∑
e′∈E


 ∑

j|EMMj

e′−>e
>0

EMM j
e′−>eVj

 fe′m

 = 0 , (1.6f)

∀m ∈Me,∀e ∈ Ei,∀i ∈ IN (1.6g)∑
w∈Wem

|Ee|∏
n=1

fenmn , ∀m ∈Me, e ∈ Ec
coext (1.6h)

IBcoext : Set of extended metabolites

JB
coext : Set of extended fluxes with backward and forward fluxes differentiated

V j : Solutions to the 13C MFA problem given by Equation 1.4

(1.7)

The cycle of the limit-flux-to-core, 13C MFA, and ELVA steps is repeated until the sim-
ulated data ranges are tightened. This usually involves identifying the highest valued non-
core-to-core flux. An example of this process is displayed in Figure 1.2. It took the addition
of carbon transitions to a new reaction at the end of 3 separate cycles to tighten simulated
data ranges to a satisfactory degree. Each cycle takes about 25-45 minutes to complete. The
overall process is highly variable, taking anywhere from 1 hour to 4 days to complete in our
hands. The reactions added to the core and their order of addition varies for each data set.
Even minor changes to data inputs require that the process be completed over again.

Once simulated data ranges are tightened to a point where confidence in their values is
established, a separate 13C Flux Variability Analysis (13C FVA) is performed to find the
absolute minimum and maximum values for all fluxes in the network compatible with the
labeling. This, essentially, involves minimizing and maximizing each flux subject to 13C MFA
constraints from earlier and new bounds on the simulated data variables in Equation 1.8i.
The mathematical form of this computation can be found in Equation 1.8. The label bounds
are constructed such that the worst error encountered, δem, is set to either the corresponding
measured standard deviation or 110% of corresponding difference between measured and
simulated values found from solution of Equation 1.4. More detail can be found in 2S-13C
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(a) Starting point ELVA plot
(b) ELVA plot after addition of a carbon
transition for reaction 2HBt2

(c) ELVA plot after addition of a carbon
transition for reaction ALAt2r

(d) ELVA plot after addition of a carbon
transition for reaction FRDcm

Figure 1.2: External Labeling Variability Analysis (ELVA) plots illustrating the process of ex-
panding the core network to improve simulated data confidence intervals. Each data point is an
individual simulated versus measured labeling distribution mass isotopomer percentage. Horizontal
error bars represent one standard deviation from the mean of the measured data. Vertical error
bars represent the absolute minimum and maximum simulated labeling values from the ELVA.
Each cycle of computations was performed ending with the ELVA plot. Carbon transitions were
added for the reactions with the highest non-core-to-core flux and the cycle was repeated until the
simulated ranges tightened.
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MFA paper4.

min/max vj, ∀j ∈ J (1.8a)

s.t.
∑
j∈J

Sijvj = 0 , ∀i ∈ IN (1.8b)

lbj ≤ vj ≤ ubj , ∀j ∈ J (1.8c)∑
m∈Me

fem = 1 , ∀e ∈ Eco (1.8d)

 ∑
l|S∗il<0

S∗ilVl

 fem +
∑

e′∈Eco


 ∑

l|EMM l
e′−>e

>0

EMM l
e′−>eVl

 fe′m

 = 0 , (1.8e)

∀m ∈Me,∀e ∈ Ei,∀i ∈ INco (1.8f)

fem =
∑

w∈Wem

|Ee|∏
n=1

fenmn , ∀m ∈Me, e ∈ Ec
coext (1.8g)

vj =
∑
l∈JB

co

mapjlVl , ∀j ∈ J (1.8h)

(fem − f exp
em )2 ≤ δ2em , ∀e ∈ Emeas,m ∈Me (1.8i)

(1.8j)

1.1 Dissertation Scope

The main theme of this dissertation is the use of 2S-13C MFA to investigate different growth
phenotypes resulting from genetic and environmental perturbations. Additionally, it includes
our investigation of approximations to the mathematical structure of 13C MFA. Chapter 2
will cover our application of 2S-13C MFA to investigate an unusual growth phenotype involved
in the interaction between the knockout of SIP1, a gene involved in glucose-repression, and
the presence of galactose. Chapter 3 covers our attempt to perturb redox metabolism and
rebalance it using expression of heterologous NADH oxidases. Chapter 4 describes our
attempt to improve our 13C MFA calculations using a novel series of convex approximations
and rank-sparcity encouragement corrections.
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Chapter 2

Investigation of an unusual growth
phenotype upon knockout of SIP1

2.1 Introduction

Saccharomyces cerevisiae prefers fermentative growth in the presence of glucose. This phe-
nomenon, known as glucose repression, involves the repression of genes and pathways in-
volved in respiration (TCA cycle, etc), the use of alternative fermentable (e.g. sucrose and
galactose) and non-fermentable (e.g. ethanol and acetate) carbon sources, and gluconeoge-
nesis5,6. Consisting of a catalytic α-subunit Snf1, a regulatory γ-subunit Snf4, and one of
three β-subunits Gal83, Sip1, or Sip2, the Snf1 kinase complex plays a central role in glucose
repression. Upon depletion of glucose, Snf1 is phosphorylated by one of its upstream kinases
(Sak1, Elm1, and Tos3) and the complex forms. That associated with Sip1 is sequestered
in the vacuole, that with Sip2 remains in the cytosol, and that containing Gal83 localizes to
the nucleus and activates genes involved in catabolism of other carbon sources5 (Figure 2.1).
This heterotrimer is completely dissociated and all of its components remain in the cytosol
in the presence of glucose. Little is known about the role of Sip1 under these conditions due
to a lack of phenotypic difference between wildtype and sip1∆ mutants5,7,8.

While attempting to increase heterologously expressed biofuel production under a GAL1
promoter in a previous study9, we noticed an unreported increase in specific growth rate
upon deletion of SIP1 in a S288c ura3∆ gal1∆ background in medium containing both glu-
cose and galactose. Sip1 has been shown to be a negative regulator of genes involved in
galactose catabolism10 and has been found to play a role in adherent growth11. A depiction
of the relationship of Sip1 with the GAL gene system is shown in Figure 2.2. Galactose
enters the cell through its transporter, Gal2, and is known to indirectly activate the main
activator of the system, Gal4, via activation of Gal3, the repressor of Gal4’s repressor, Gal80.
We originally thought it possible that increased growth rate could have resulted from galac-
tose entering the cell, upon the reported 2-to-3-fold increase in galactose transporter gene
transcription upon knockout of SIP1, thereby indirectly activating Gal4, which is known to
increase expression of genes involved in protein metabolism and transcription machinery7,12.
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Figure 2.1: Simplified depiction of the role of Snf1 in glucose repression, its upstream promot-
ers and repressors, and the role of its β-subunits in localization of the Snf1 kinase complex
during high-glucose conditions. Reconstructed and modified from a 2008 paper by Zaman
et. al.5

In this study, we investigate the relative roles of galactose and knockout of SIP1 from a
fluxomic perspective. We construct base and sip1∆ mutants in an industrially more-relevant
CEN.PK113-7D ura3∆ gal1∆ background, similar to that from our previous work9, and
characterize their growth and flux profiles in minimal medium containing either glucose-only
or glucose and galactose using 2-scale 13C metabolic flux analysis.
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Figure 2.2: Depiction of GAL gene interactions with Sip1 in a GAL1 knockout background.
Green arrows indicate activation and red blunt arrows indicated repression

2.2 Materials & Methods

2.2.1 Media & culturing conditions

Media used in this study, along with their component concentrations are listed in Table 2.1.
For both genetic manipulations and growth and tracer experiments, all strains were grown in
non-baffled shake flasks at 30oC at 200 rpm in either minimal glucose medium (Min), minimal
glucose medium with galactose (Min+Gal), YPD, or Sc-Ura. All stable strain intermediates
were kept in 20% glycerol stocks at -80oC. Labeled media used 80% 1-13C glucose and 20%
U-13C glucose at the same total concentration of 2% glucose. Exponential phase cells were
obtained, in general, by streaking from -80oC glycerol stocks on YPD plates, incubating 5
mL YPD cultures overnight, inoculating into 40 mL of unlabeled media of the final desired
composition, and grown until exponential phase (usually 0.6-0.9 OD).

2.2.2 Strain construction

Prototrophic base (U) and mutant (S) S. cerevisiae strains were constructed in a haploid
CEN.PK113-7D13 (Mata MAL2-8c SUC2 ) background containing a URA3 knockout pro-
vided by Bilge Ozaydin of JBEI. Intermediate and final base and sip1∆ mutant strains
are listed in Table 2.2 with their strain designations, parent strain, genotype descriptions,
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Table 2.1: Media and component concentrations

Media Component Concentration [g/100 mL]

Min Glucose 2
Yeast nitrogen base w/o amino acids 0.67

Min+Gal Glucose 2
Galactose 0.2
Yeast nitrogen base w/o amino acids 0.67

Min+Ura+5-FOA Glucose 2
Yeast nitrogen base w/o amino acids 0.67
Uracil (Ura) 0.002
5-Fluoroorotic acid (5-FOA) 0.1

YPD Glucose 2
Bacto-yeast extract 1
Bacto-peptone 2

YPD+G418 Glucose 2
Bacto-yeast extract 1
Bacto-peptone 2
Geneticin (G418) 0.02

Sc-Ura Glucose 2
Yeast nitrogen base w/o amino acids 0.67
CSM-Ura 0.077

pSH47 Glucose 0.2
Galactose 1.8
Yeast nitrogen base w/o amino acids 0.67
CSM-Ura 0.077

Note: All plates contained 2 g/100 mL bacto-agar

and references. All knockouts were constructed via a near-markerless loxP/Cre recombinase
strategy14 and PCR verified. Briefly, each knockout cassette was amplified from a loxP-
kanMX-loxP plasmid, pUG614, using the primers listed in Table 2.3, transformed into yeast
using a heat shock method15, selected on YPD+G418 (geneticin) plates, and PCR verified
using primers listed in Table 2.4. In order to loop out the kanMX marker, a Cre recom-
binase plasmid was transformed in the resulting kanMX cassette integrants and plated on
selective medium. The selective plate varied depending on the knockout. For knockout of
SIP1, the cre recombincase promoter was Gal1p (pSH4714) and selection occurred on pSH47
plates. A different plasmid was necessary for knockout of GAL1, since the strain couldn’t
grow on galactose. We opted for expression of the cre recombinase under a constitutive
TEF1 promoter. This new plasmid, pCMS1, was constructed via yeast cloning using SacI
and XbaI digested pSH47, to excise Gal1p, and Tef1p amplified with regions homologus to
the cut ends and subsequent selection on Sc-Ura plates. All loop-outs were PCR verified
using the same verification primers in Table 2.4 and pCMS1 was sequence verified. Cre
recombinase plasmids were cured by streaking on YPD plates, growing overnight in liquid
YPD medium, streaking to single colonies on YPD plates, simultaneously streaking on YPD
and Sc-Ura plates, and glycerol storing YPD plate colonies whose corresponding Sc-Ura
colonies didn’t grow. Plasmids pUG6 and pSH47 were graciously provided by Dr. Ozaydin.
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Prototrophic final base and mutant strains were completed via transformation of a URA3
plasmid, pRS41616, provided by Dr. Amanada Reider Apel of JBEI.

Table 2.2: List of strains, their parents, genotypes, and references

Strain name Parent strain Description Reference

CPU CEN.PK113-7D CEN.PK113-7D ura3∆ From Bilge Ozaydin (JBEI)
CMSY3 CPU CPU SIP1::loxP-kanMX-loxP This work
CMSY4 CMSY3 CPU sip1∆ This work
CMSY5 CPU CPU GAL1::loxP-kanMX-loxP This work
CMSY7 CMSY5 CPU gal1∆ This work
CMSY6 CMSY4 CPU sip1∆ GAL1::loxP-kanMX-loxP This work
CMSY8 CMSY6 CPU sip1∆ gal1∆ This work
U CMSY7 CPU gal1∆ [pRS416] This work
S CMSY8 CPU sip1∆ gal1∆ [pRS416] This work

Table 2.3: Deleted genes and corresponding templates and forward/reverse primers used to
construct knockout cassettes. Uppercase indicates homologous flanking regions and lowercase
designates regions binding to pUG6 plasmid

Knocked out gene Template F-primer R-primer

GAL1 pUG6 AAAAATTGTTAATATACCTC
TATACTTTAACGTCAAGGA
GAAAAAACTATAagctgaagcttc
gtacgc

GTAGAAAAAAATGAGAAGT
TGTTCTGAACAAAGTAAAA
AAAAGAAGTATACcataggccac
tagtggatctg

SIP1 pUG6 CTGACATCTTGGAAAGTTG
AACTGTCATATTATATAGTT
GTTGCAGCCGCCagctgaagcttc
gtacgc

AGAAAAAAATTGAATTAAT
AGAGTTCGTGAGAATCATT
GCGAATTGAGATTcataggccac
tagtggatctg

Table 2.4: Primers used to PCR verify specific gene deletions

Knocked out gene F-primer R-primer

GAL1 TTATTTCTGGGGTAATTAATCAGCGAAG TCCCTGTGTTTCAAAGTTTG
TGG

SIP1 GCACTTCTTTTTTTGCGTGTGG CGTTCTAGGAGCCATAGGA
ATC

2.2.3 Growth characterization and tracer experiments

Cell and extracellular metabolite concentrations were monitored during exponential phase
in strain characterization batch experiments. This data was necessary to calculate extracel-



17

lular fluxes and specific growth rates used to mathematically constrain flux profile inference.
Exponentially growing cells, obtained as described in Section 2.2.1, were used to inoculate,
in quadruplicate, the final 40 mL shake flask cultures to achieve exponential growth the fol-
lowing morning. Optical density was monitored at 600 nm via UV-VIS and 200 µL samples
were spin-filtered and kept at -20oC for subsequent HPLC analysis.

Labeled mid-log biomass samples were taken during similar labeled batch experiments
and immediately quenched for subsequent processing and analysis. The measured labeling
obtained from analyzing these samples was used to judge the quality of the inferred flux
profiles. Flux profiles that resulted in the best fit between measured and simulated label-
ing distributions were kept for further analysis. Exponentially growing cells (obtained as
described above) were used to inoculate 40 mL labeled shake flask cultures in quadrupli-
cate and monitored via UV-VIS. 1 ml samples were taken during mid-log ( 0.75 OD) and
quenched, To prevent changes in intracellular metabolite labeling patterns, 1 mL mid-log
samples were taken, spun down (1 min, max speed, 4oC), immediately quenched with 300
µL ice-cold methanol, and kept at -80oC.

2.2.4 Labeled biomass sample processing

Labeling distributions were obtained from processed labeled biomass samples for intracellu-
lar 3-phosho-D-glycerate (3pg), alanine (Ala), arginine (Arg), asparagine (Asp), glutamine
(Gln), glutamate (Glu), isoleucine (Ile), leucine (Leu), lysine (Lys), phenylalanine (Phe),
threonine (Thr), tyrosine (Tyr), valine (Val), citrate (cit m), fructose 1,6-bisphosphate (fdp),
and succinate (succ m). We assumed that the succinate and citrate were mitochondrial. The
closeness of fit of this data with corresponding simulated values provided a measure of the
quality of inferred flux distributions. Labeled biomass samples were mixed with 300 µL
ice-cold chloroform and 150 µL ice-cold water, spun down, bead-beated with 500 µL acid-
washed beads (10 times, 10 s, 1 min ice breaks) in 1.7 mL screw cap tubes, the bottom of
the tube was punctured with a needle, and the beads were separated from the solution by
spinning (1 min, 1000g, 4oC) into a 2 mL collection tube. The aqueous layer was filtered
(3K MW cut-off (Amicon), 1.5h, 13000g, 4oC), mixed with 1 mL ice-cold H2O, and snap
frozen in liquid nitrogen. Three holes were punched in the tube cap and the samples were
lyophilized for 24 hours. Lyophilized samples were resuspended in 40 µL 50/50 MeOH/H2O,
and stored at -80oC. Samples were analyzed by George Wang to obtain intracellular amino
acid and non-amino acid labeling data via LCMS as previously described17,18.

2.2.5 Extracellular concentration determination

Extracellular concentrations for glucose, galactose, ethanol, glycerol, succinate, lactate, ac-
etate, and formate were measured via HPLC. These concentrations, along with corresponding
culture specific growth rates, were necessary to calculate extracellular fluxes. A 1200 Series
HPLC (Agilent Technologies, CA) outfitted with UV and refraction index detectors and an
Organic Acid Analysis Column (Aminex HPX-87H Ion Exclusion Column, 300 mm 7.8 mm,
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Cat# 125-0140 Bio-Rad, CA) was used along with standards to identify metabolite retention
times and sample concentrations.

2.2.6 Extracellular flux and intracellular labeling input
calculations

Extracellular fluxes and specific growth rates were derived from extracellular concentration
and optical density time curves. Their means and standard deviations were used to constrain
exchange fluxes for consumed and excreted metabolites and biomass fluxes during flux profile
inference. Flask-specific maximum specific growth rates were determined from the slope of
lnOD versus time data in manually determined linear ranges. The same time points were
used with corresponding concentration data to calculate extracellular fluxes using Equation
2.1. The extracellular flux of metabolite p is νp, Mp is its corresponding molecular weight, α
is the conversion factor between OD and cell mass concentration in gDcW/L, and dCp/dOD
is the slope of the concentration of metabolite p versus OD. The value of α was taken to
be 0.7742 based on multiple in-house experiments (data not shown). The average plus and
minus the corresponding standard deviation was used to constrain all extracellular fluxes
and specific growth rates.

νp = 1000
µ

Mpα

dCp

dOD
(2.1)

2.2.7 Flux profile inference via 2S-13C MFA

Flux profiles were inferred from growth and tracer experiment data using 2-scale-13C metabolic
flux analysis (2S-13C MFA)4. They, along with specific growth rates and extracellular fluxes
were used to characterize the relative effects of the presence of galactose and/or knockout
of SIP1. 2S-13C MFA was chosen over 13C MFA for its ability to infer cofactor balances
and quantify the internal consistency of resulting flux profiles with the carbon transition
model and feasible growth. The means and standard deviations for strain/condition-specific
extracellular fluxes, intracellular metabolite LCMS fractional labeling distributions, specific
growth rates, and feed glucose labeling were used as inputs to in-house code. We used the
iMM904 S. cerevisiae genome-scale model19 where applicable. The higher-resolution carbon
transition model differed for each strain/condition pair as demanded by the ELVA require-
ments. Starting from a base core reaction network, carbon transition information was added
to reactions (i.e. the reaction was added to the core network) with the largest non-core-to-
core flux. This was performed iteratively until ELVA plot simulated data confidence intervals
were minimized. A final 13C Flux Variability Analysis (13C FVA) was used to determine in-
dividual flux ranges (See Introduction for more details). Our code uses the CONOPT Solver
in a GAMS framework to perform the 13C MFA step using 30 initial flux starting points.
That resulting in the closest simulated-to-measured labeling distributions is kept for the next
step.
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2.3 Results

2.3.1 Growth rates

An unexpected increase in growth rate occurred for the base strain in medium containing
both glucose and galactose relative to that containing glucose only. This is, to our knowl-
edge, the first reported incidence of increased growth rate upon exposure to galactose in the
presence of glucose. The average maximum specific growth rates for the 4 strain/condition
pairs are presented in Figure 2.3. An 8.5% increase was observed when the base strain
was grown in medium with supplemented galactose instead of glucose-only medium (U ver-
sus UG). Similarly, the sip1∆ mutant grew 18.2% faster in galactose-supplemented medium
relative to that without (S versus SG).

Also, the presence of galactose appeared to be necessary for knockout of SIP1 to increase
growth rate. Consistent with the literature7,8, no change in maximum specific growth rate
was observed upon knockout of SIP1 in glucose-only medium (U versus S). It wasn’t until
galactose was present that knockout of SIP1 resulted in an 8.2% higher specific growth rate
(UG versus SG).

2.3.2 Extracellular fluxes

Lactate, formate, and succinate were not detected in any strain/pair condition, hence their
extracellular fluxes were set to zero. All absolute fluxes were the same for all strain/condition
pairs within error except for the ethanol flux of the sip1∆ mutant. When comparing the
base and mutant strains, there appeared to be a 89% decrease in glucose-only medium (U
versus S). The addition of galactose to the medium of the SIP1 null mutant appeared to
restore the ethanol flux to its value before the gene knockout (S versus SG), within error.
The extracellular flux input ranges, as the mean plus or minus one standard deviation, for
the code for strain condition pairs U, S, UG, and SG are presented in the Tables 2.5, 2.6,
2.7, and 2.8, respectively.

2.3.3 Fits and ELVA plots

The External Labeling Variability Analysis (ELVA) plots for all strain/condition pairs are
presented in Figure 2.4. Strain/condition pair SG exhibited more variability in both its
measured and simulated data errors. Also, SG had a somewhat worse fit.

Detailed fits between simulated and measured LCMS data for metabolites 3-phosho-D-
glycerate (3pg), alanine (Ala), arginine (Arg), asparagine (Asp), glutamine (Gln), glutamate
(Glu), isoleucine (Ile), leucine (Leu), lysine (Lys), phenylalanine (Phe), threonine (Thr),
tyrosine (Tyr), valine (Val), citrate (cit m), fructose 1,6-bisphosphate (fdp), and succinate
(succ m) are displayed in Figures 2.5, 2.6, 2.7, and 2.8. We decided to exclude the data for
citrate from the fitting to see how well the other data predicted its labeling. Overall, the
predicted citrate labeling looks good. That for strain/condition SG is a little less tight.
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Figure 2.3: Average maximum specific growth rates for the strain/condition pairs U, S, UG,
and SG. U refers to the base strain, S refers to the SIP1 knockout mutant, and the presence
of a ”G” in the label indicates 2% galactose minimal medium (Min+Gal) (Ex ”UG” is the
base strain in Min+Gal) instead of glucose-only medium (Min). Error bars represent one
standard deviation from the mean

The whole flux profiles corresponding to these strain/condition pair ELVA plots are
displayed in the appendix in Figures 2.12, 2.13, 2.14, and 2.15 for U, S, UG, and SG,
respectively. All values are normalized to the absolute glucose uptake rate. As indicated
in the legend in the lower-right of the figure, differently colored small arrows indicate the
use of particular cofactors. Cofactors displayed are NADPH, NADH, ATP, GLN-L, AKG-
L, NADP, NAD, ADP, GLU-L, ACCOA (acetyl-CoA), FOR (formate), CO2, AMP, and
CoASH.

2.3.4 Pentose phosphate pathway activity

The presence of galactose appeared to greatly reduce pentose phosphate pathway (PPP)
activity. PPP fluxes for strain/condition pairs U, S, UG, and SG are displayed in Figure 2.9.
When switching from Min to Min+Gal the base strain’s PPP activity reduced by 98% (U
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(a) U (b) S

(c) UG (d) SG

Figure 2.4: External Labeling Variability Analysis (ELVA) plots for strain/condition pairs U, S,
UG, and SG. A plot of the simulated versus measured mass isotopomer probabilities for all measured
intracellular metabolites. The center line is that corresponding to equal simulated/measured values.
Horizontal error bars represent one standard deviation from the mean of measured values. Vertical
error bars represent the maximum/minimum possible values of each mass isotopomer labeling
probability based on the ELVA.
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versus UG). That for the SIP1 null mutant decreased about 93% when additional galactose
was present in the medium (S versus SG).

2.3.5 Inactive glyoxylate and TCA cycles

The glyoxylate cycle, as expected from glucose repression, appeared to be completely re-
pressed across all strain/condition pairs. This was virtually true for the TCA cycle as well.
This is mostly consistent with the 13C MFA literature, though these studies tend to indi-
cate a small amount of activity (usually about 1-2% of total glucose consumption flux) in
glucose-repressing conditions for CEN.PK113-7D20–23. A comparison of fluxes surrounding
mitochondrial import and export is displayed for strain/condition pairs U, S, UG, and SG
in Figure 2.10. Only the mitochondrial conversion of malate to oxaloacetate and then to
citrate appears to have a small amount of flux (∼2% of total glucose flux).

2.3.6 Mitochondrial import/export

Our analysis appears to indicate, for the base strain in glucose-repressing conditions, most
mitochondrial flux flows from cytosolic pyruvate to oxaloacetate via pyruvate carboxylase,
then to cytosolic malate through malate dehydrogenase (MDH), which is then imported into
the mitochondria where most of it is converted to mitochondrial pyruvate through NAD-
dependent malic enzyme, and is finally exported to the cytosol.

Interestingly, the addition of galactose to the medium at 0.2% appears to increase flow
through MDH, subsequent import of malate into the mitochondria, reroutes flow through
NADP-dependent malic enzyme, and switches to import of pyruvate to the mitochondria
for redirection towards export of 3-methyl-2-oxobutanote to the cytosol and branched-chain
amino acid biosynthesis. Import of malate into the mitochondria increased by 490% for the
base strain (U versus UG). That for the mutant (S versus SG) went from virtually no import
to import.

Despite no interesting growth phenotype, in glucose-only medium, deletion of SIP1 ap-
pears to reduce mitochondrial activity almost to inactivation (U versus S). There was also a
less pronounced decrease in the rate of mitochondrial import of malate by 60% in medium
containing both carbon sources (UG versus SG).

2.3.7 Asparagine/threonine biosynthesis

In addition to the correlated decrease in mitochondrial activity upon deletion of SIP1, in
glucose-only medium flux was rerouted from the mitochondria to the part of the metabolic
network responsible for asparagine and threonine biosynthesis (U versus S). This section
of the network is displayed in Figure 2.11 for all strain/condition pairs. The same trend
occurred in glucose/galactose medium with a 165% increase in flux towards this part of the
network. Finally, the addition of galactose to the sip1∆ mutant appears to have reversed
this trend with a 77% reduction in flow (S versus SG).
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2.4 Discussion

We encountered a number of unexpected phenotypic differences in this study. The addition
of galactose to normally glucose-repressing conditions resulted in unreported differences in
growth and flux profile phenotypes in both base and mutant strains. Knockout of SIP1
in glucose-only conditions resulted in no change in specific growth rate as expected, yet
flux profile redistributed and changes in ethanol flux resulted. Despite changes noted in
this study, glucose repression still appeared to result largely in ethanol fermentation and
repression of TCA and glyoxylate cycle activity in all strain/condition pairs.

SIP1 appears to be an obligatory footnote in yeast glucose repression literature. If men-
tioned at all, its mostly described as the β-subunit of the Snf1 kinase complex. Sometimes
details about its localization or role in sequestering the complex in the vacuole are mentioned
but it appears to be largely ignored. We suspect this is due to the lack of growth phenotype
accompanying knockout of SIP1. To our knowledge this and our previous work9 are the
only studies to even attempt to monitor excreted metabolites and infer fluxes in a SIP1 null
mutant. Hence, we were surprised when deletion of SIP1 in glucose-only medium appeared
to effectively shut down mitochondrial fluxes, reroute flow towards asparagine and threonine
biosynthesis, and decrease absolute ethanol production. The same effects occurred in glucose
and galactose medium but to a lesser extent.

Even more surprising, the addition of galactose to the medium containing the base strain
resulted in increased growth rate, in what would normally be considered glucose-repressing
conditions. More so, upon the addition of galactose, pentose phosphate activity dropped to
about 1/100 of its original value, rate of import of malate into the mitochondria increased,
a resulting switch from NAD- to NADPH-dependent malic enzyme occurred, and flux was
directed toward mitochondrial 3-methyl-2-oxobutanote export and subsequent flow towards
branched-chain amino acid biosynthesis. This occurred for both strains.

We suspect this apparent violation of glucose repression was plausible based on a paper
from earlier this year. Escalante-Chong et. al.24 found that the space of galactose-to-glucose
ratios were sparsely sampled in the literature and that a particular galactose/glucose con-
centration ratio resulted in YFP expression under a GAL1 promoter. The beginning of this
expression activation happened to occur at the same 1/10 ratio of galactose-to-glucose used
in this study. It’s possible that the results of that study might not apply since they mon-
itored growth in microwell plates and their strain background was S288c while this study
took place in shake flasks using a CEN.PK113-7D background. CEN.PK113-7D is known
to exhibit different phenotypic differences relative to S288c25, though the Escalante study
at least makes it plausible that a similar effect might be occurring. Perhaps the phenotypic
changes noted in this study represent some sort of sensing of and preparation for degradation
of galactose. Further studies using strains with an intact GAL1 gene that can catabolize
galactose might reveal more information on this.

Our original hypothesis, that the deletion of SIP1 allowed galactose to enter the cell
and affect growth by increasing expression of its transporter, appears to be incorrect. This
assumes that the SIP1 knockout was necessary to see an effect from the presence of galactose.
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In fact, the opposite was observed; the presence of galactose was required to see a growth
phenotype from knockout of SIP1. Sip1 is known to be a negative regulator of GAL gene
activity10. Perhaps the absence of Sip1 allowed the effect of galactose to be more pronounced.

The cytosolic/mitochondrial cycle of pyruvate for the base strain in glucose-only medium
through the mitochondria is itself interesting. This route diverts carbon flux away from
ethanol production through two NADH-producing pathways. It’s possible the cell is routing
flux through this cycle to produce more NADH for ethanol fermentation, since both MDH
and NAD-dependent malic enzyme produce this cofactor. It should be noted that most 13C
metabolic flux analysis studies do not include these mitochondrial transport reactions. In
fact, the initial carbon transition model we used didn’t include them. It was only through
the process of adding them to tighten the simulated data ranges in the ELVA plot and then
to the map visualizations did it become apparent that this cycle was occurring.

This is the first study to investigate the relative effects of the presence of galactose and
knockout of SIP1 in normally carbon repressing conditions from a fluxomic perspective. It’s
also one of the first to apply the 2-scale version of 13C metabolic flux analysis to yeast,
allowing an unprecedented confidence in the self-consistency of the mass isotopomer model
and data. We also encountered unreported increases in growth rate upon the addition of
galactose to normally glucose-repressing medium.
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pUG6 and pSH47 vectors. We would also like to thank Amanda Apel for providing the
pRS416 backbone plasmid.



25

F
ig

u
re

2.
5:

D
et

ai
le

d
fi
ts

b
et

w
ee

n
si

m
u
la

te
d

(b
lu

e
b
ar

s)
an

d
m

ea
su

re
d

(r
ed

b
ar

s)
in

tr
ac

el
lu

la
r

m
et

ab
ol

it
e

la
b

el
in

g
d
is

tr
i-

b
u
ti

on
s

fo
r

st
ra

in
/c

on
d
it

io
n

p
ai

r
U

.
T

h
e

gr
ee

n
b

ox
co

rr
es

p
on

d
s

to
a

m
et

ab
ol

it
e

w
h
os

e
m

ea
su

re
d

d
at

a
w

as
ex

cl
u
d
ed

fr
om

co
m

p
u
ta

ti
on

s
an

d
th

e
p
re

d
ic

te
d

la
b

el
in

g
w

as
co

m
p
ar

ed
to

th
at

m
ea

su
re

d



26

F
ig

u
re

2.
6:

D
et

ai
le

d
fi
ts

b
et

w
ee

n
si

m
u
la

te
d

an
d

m
ea

su
re

d
in

tr
ac

el
lu

la
r

m
et

ab
ol

it
e

la
b

el
in

g
d
is

tr
ib

u
ti

on
s

fo
r

st
ra

in
/c

on
d
it

io
n

p
ai

r
S
.

T
h
e

gr
ee

n
b

ox
co

rr
es

p
on

d
s

to
a

m
et

ab
ol

it
e

w
h
os

e
m

ea
su

re
d

d
at

a
w

as
ex

cl
u
d
ed

fr
om

co
m

p
u
-

ta
ti

on
s

an
d

th
e

p
re

d
ic

te
d

la
b

el
in

g
w

as
co

m
p
ar

ed
to

th
at

m
ea

su
re

d



27

F
ig

u
re

2.
7:

D
et

ai
le

d
fi
ts

b
et

w
ee

n
si

m
u
la

te
d

an
d

m
ea

su
re

d
in

tr
ac

el
lu

la
r

m
et

ab
ol

it
e

la
b

el
in

g
d
is

tr
ib

u
ti

on
s

fo
r

st
ra

in
/c

on
d
it

io
n

p
ai

r
U

G
.

T
h
e

gr
ee

n
b

ox
co

rr
es

p
on

d
s

to
a

m
et

ab
ol

it
e

w
h
os

e
m

ea
su

re
d

d
at

a
w

as
ex

cl
u
d
ed

fr
om

co
m

-
p
u
ta

ti
on

s
an

d
th

e
p
re

d
ic

te
d

la
b

el
in

g
w

as
co

m
p
ar

ed
to

th
at

m
ea

su
re

d



28

F
ig

u
re

2.
8:

D
et

ai
le

d
fi
ts

b
et

w
ee

n
si

m
u
la

te
d

an
d

m
ea

su
re

d
in

tr
ac

el
lu

la
r

m
et

ab
ol

it
e

la
b

el
in

g
d
is

tr
ib

u
ti

on
s

fo
r

st
ra

in
/c

on
d
it

io
n

p
ai

r
S
G

.
T

h
e

gr
ee

n
b

ox
co

rr
es

p
on

d
s

to
a

m
et

ab
ol

it
e

w
h
os

e
m

ea
su

re
d

d
at

a
w

as
ex

cl
u
d
ed

fr
om

co
m

-
p
u
ta

ti
on

s
an

d
th

e
p
re

d
ic

te
d

la
b

el
in

g
w

as
co

m
p
ar

ed
to

th
at

m
ea

su
re

d



29

(a) U (b) S

(c) UG (d) SG

Figure 2.9: PPP fluxes for strain/condition pairs U, S, UG, and SG
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(a) U (b) S

(c) UG (d) SG

Figure 2.10: Mitochondrial import/export fluxes for strain/condition pairs U, S, UG, and SG
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(a) U (b) S

(c) UG (d) SG

Figure 2.11: Fluxes near asparagine and threonine biosynthesis for strain/condition pairs U, S,
UG, and SG
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2.6 Appendix

Table 2.5: Extracellular metabolite flux bounds as the mean plus or minus one standard
deviation for strain/condition pair U

biomass_SC5_notrace: 0.368076597958 [==] 0.380967956696

GLCt1: 20.1775027573 [==] 32.7249994091

EX_glc(e): -32.7249994091 [==] -20.1775027573

EX_ac(e): 0.649171302952 [==] 0.807467832378

EX_etoh(e): 18.7087083907 [==] 22.4121111429

EX_for(e): -0.042937921881 [==] 0.0115051814927

EX_glyc(e): 1.39040825811 [==] 1.58632290283

EX_succ(e): 0.0 [==] 0.0

EX_lac_L(e): 0.0 [==] 0.0

EX_fum(e): 0.0 [==] 0.0

EX_mal_L_e_: 0.0 [==] 0.0

ACt2r: 0.0 [==] 0.0

Table 2.6: Extracellular metabolite flux bounds as the mean plus or minus one standard
deviation for strain/condition pair S

biomass_SC5_notrace: 0.364770870897 [==] 0.379551153717

GLCt1: 5.54594695637 [==] 41.4228038048

EX_glc(e): -41.4228038048 [==] -5.54594695637

EX_ac(e): 0.545019159258 [==] 0.7502366638

EX_etoh(e): -0.0805353085846 [==] 4.74144877392

EX_for(e): 0 [==] 0

EX_glyc(e): -0.978472290387 [==] 2.01628121859

EX_succ(e): 0.0 [==] 0.0

EX_lac_L(e): 0.0 [==] 0.0

EX_fum(e): 0.0 [==] 0.0

EX_mal_L_e_: 0.0 [==] 0.0

ACt2r: 0.0 [==] 0.0
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Table 2.7: Extracellular metabolite flux bounds as the mean plus or minus one standard
deviation for strain/condition pair UG

biomass_SC5_notrace: 0.403289617257 [==] 0.409715634064

GLCt1: 12.7988591665 [==] 61.8351699967

EX_glc(e): -61.8351699967 [==] -12.7988591665

EX_ac(e): 1.02930219015 [==] 1.21244774938

EX_etoh(e): 12.1449617938 [==] 21.3745300987

EX_for(e): 0.0 [==] 0.0

EX_glyc(e): 1.38970011823 [==] 2.03596203336

EX_succ(e): 0.0 [==] 0.0

EX_lac_L(e): 0.0 [==] 0.0

EX_fum(e): 0.0 [==] 0.0

EX_mal_L_e_: 0.0 [==] 0.0

ACt2r: 0.0 [==] 0.0

Table 2.8: Extracellular metabolite flux bounds as the mean plus or minus one standard
deviation for strain/condition pair SG

biomass_SC5_notrace: 0.437253740884 [==] 0.442552150354

GLCt1: 36.7422490021 [==] 43.3764465986

EX_glc(e): -43.3764465986 [==] -36.7422490021

EX_ac(e): 1.42911300659 [==] 1.78851951154

EX_etoh(e): 17.4413404772 [==] 20.9769286945

EX_for(e): 0.0 [==] 0.0

EX_glyc(e): 2.32527136848 [==] 3.31789211791

EX_succ(e): 0.0 [==] 0.0

EX_lac_L(e): 0.0 [==] 0.0

EX_fum(e): 0.0 [==] 0.0

EX_mal_L_e_: 0.0 [==] 0.0

ACt2r: 0.0 [==] 0.0
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Table 2.9: Intracellular metabolite labeling distribution input for strain/condition U

Amino acid Mass distribution
m0 m1 m2 m3 m4 m5 m6 m7 m8 m9

3pg M-0 0.3936 0.3963 0.0238 0.1863
Ala M-0 0.3854 0.4034 0.0398 0.1713
Arg M-0 0.1045 0.2643 0.3117 0.2089 0.0864 0.0217 0.0026
Asp M-0 0.3176 0.3810 0.1122 0.1429 0.0464
Gln M-0 0.1352 0.2860 0.3219 0.1935 0.0634 0.0000
Glu M-0 0.1219 0.2855 0.3123 0.2021 0.0655 0.0127
Ile M-0 0.1466 0.2877 0.2536 0.1739 0.0954 0.0427 0.0000
Leu M-0 0.0705 0.2265 0.3238 0.1862 0.1434 0.0496 0.0000
Lys M-0 0.0662 0.1883 0.2944 0.2476 0.1359 0.0597 0.0080
Phe M-0 0.0979 0.2272 0.2021 0.1656 0.1207 0.0898 0.0533 0.0150 0.0127 0.0158
Thr M-0 0.3247 0.3787 0.1133 0.1531 0.0302
Tyr M-0 0.1012 0.2292 0.1996 0.1724 0.1220 0.0900 0.0563 0.0000 0.0293 0.0000
Val M-0 0.1727 0.3367 0.2583 0.1684 0.0267 0.0371
fdp M-0 0.1288 0.3830 0.1744 0.1164 0.1365 0.0119 0.0489
cit_m M-0 0.1279 0.2737 0.2643 0.1841 0.0993 0.0422 0.0085
succ_m M-0 0.2665 0.3554 0.1848 0.1554 0.0379

Table 2.10: Intracellular metabolite labeling distribution standard deviation input for
strain/condition U

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9
3pg M-0 0.0059 0.0053 0.0020 0.0047
Ala M-0 0.0040 0.0025 0.0013 0.0005
Arg M-0 0.0023 0.0088 0.0046 0.0025 0.0007 0.0003 0.0000
Asp M-0 0.0082 0.0063 0.0130 0.0054 0.0041
Gln M-0 0.0017 0.0069 0.0025 0.0009 0.0032 0.0000
Glu M-0 0.0077 0.0091 0.0083 0.0053 0.0019 0.0010
Ile M-0 0.0076 0.0066 0.0045 0.0057 0.0032 0.0015 0.0000
Leu M-0 0.0047 0.0323 0.0396 0.1083 0.0219 0.0117 0.0000
Lys M-0 0.0005 0.0025 0.0030 0.0040 0.0011 0.0094 0.0007
Phe M-0 0.0034 0.0092 0.0047 0.0046 0.0033 0.0020 0.0029 0.0150 0.0009 0.0071
Thr M-0 0.0070 0.0083 0.0030 0.0021 0.0198
Tyr M-0 0.0018 0.0085 0.0017 0.0027 0.0026 0.0014 0.0019 0.0033 0.0033 0.0033
Val M-0 0.0090 0.0171 0.0108 0.0097 0.0463 0.0027
fdp M-0 0.0032 0.0090 0.0023 0.0156 0.0049 0.0002 0.0058
cit_m M-0 0.0026 0.0037 0.0004 0.0005 0.0027 0.0007 0.0004
succ_m M-0 0.0159 0.0053 0.0204 0.0015 0.0008
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Table 2.11: Intracellular metabolite labeling distribution input for strain/condition S

Amino acid Mass distribution
m0 m1 m2 m3 m4 m5 m6 m7 m8 m9

3pg M-0 0.3895 0.3977 0.0258 0.1870
Ala M-0 0.3879 0.3976 0.0405 0.1740
Arg M-0 0.1063 0.2631 0.3121 0.2083 0.0866 0.0210 0.0026
Asp M-0 0.3328 0.3948 0.0780 0.1485 0.0460
Gln M-0 0.1341 0.2882 0.3199 0.1895 0.0655 0.0028
Glu M-0 0.1209 0.2922 0.3090 0.2011 0.0646 0.0122
Ile M-0 0.1524 0.2956 0.2512 0.1680 0.0902 0.0425 0.0000
Leu M-0 0.0684 0.2018 0.2916 0.2578 0.1370 0.0435 0.0000
Lys M-0 0.0680 0.1893 0.2972 0.2526 0.1391 0.0466 0.0071
Phe M-0 0.0972 0.2358 0.2087 0.1565 0.1181 0.0883 0.0518 0.0213 0.0126 0.0098
Thr M-0 0.3160 0.3789 0.1106 0.1490 0.0456
Tyr M-0 0.1019 0.2377 0.1967 0.1728 0.1223 0.0920 0.0556 0.0000 0.0171 0.0039
Val M-0 0.1759 0.3450 0.2679 0.1728 0.0000 0.0384
fdp M-0 0.1239 0.3716 0.1749 0.1313 0.1445 0.0128 0.0410
cit_m M-0 0.1269 0.2876 0.2476 0.1894 0.0992 0.0420 0.0072
succ_m M-0 0.2687 0.3553 0.1809 0.1562 0.0388

Table 2.12: Intracellular metabolite labeling distribution standard deviation input for
strain/condition S

Amino acid Mass distribution
m0 m1 m2 m3 m4 m5 m6 m7 m8 m9

3pg M-0 0.0140 0.0164 0.0025 0.0046
Ala M-0 0.0021 0.0035 0.0002 0.0031
Arg M-0 0.0035 0.0063 0.0071 0.0087 0.0009 0.0006 0.0001
Asp M-0 0.0054 0.0025 0.0006 0.0047 0.0046
Gln M-0 0.0054 0.0284 0.0129 0.0073 0.0029 0.0000
Glu M-0 0.0061 0.0058 0.0019 0.0005 0.0022 0.0002
Ile M-0 0.0134 0.0035 0.0046 0.0049 0.0018 0.0003 0.0000
Leu M-0 0.0032 0.0061 0.0099 0.0020 0.0016 0.0031 0.0000
Lys M-0 0.0009 0.0024 0.0012 0.0018 0.0017 0.0015 0.0003
Phe M-0 0.0027 0.0037 0.0026 0.0008 0.0022 0.0010 0.0123 0.0007 0.0002 0.0010
Thr M-0 0.0057 0.0029 0.0039 0.0010 0.0009
Tyr M-0 0.0024 0.0037 0.0066 0.0018 0.0013 0.0007 0.0010 0.0000 0.0083 0.0039
Val M-0 0.0050 0.0015 0.0019 0.0030 0.0000 0.0007
fdp M-0 0.0030 0.0127 0.0037 0.0156 0.0024 0.0001 0.0008
cit_m M-0 0.0096 0.0103 0.0125 0.0074 0.0044 0.0033 0.0005
succ_m M-0 0.0078 0.0049 0.0128 0.0006 0.0005
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Table 2.13: Intracellular metabolite labeling distribution input for strain/condition UG

Amino acid Mass distribution
m0 m1 m2 m3 m4 m5 m6 m7 m8 m9

3pg M-0 0.3833 0.4029 0.0239 0.1898
Ala M-0 0.3905 0.3920 0.0407 0.1768
Arg M-0 0.1058 0.2587 0.3098 0.2134 0.0883 0.0213 0.0026
Asp M-0 0.3278 0.3820 0.1051 0.1435 0.0415
Gln M-0 0.1345 0.2884 0.3160 0.1879 0.0609 0.0122
Glu M-0 0.1248 0.2953 0.3100 0.1944 0.0644 0.0110
Ile M-0 0.1753 0.2909 0.2398 0.1615 0.0842 0.0406 0.0077
Leu M-0 0.0756 0.2009 0.2896 0.2496 0.1318 0.0440 0.0084
Lys M-0 0.0674 0.1910 0.3000 0.2515 0.1372 0.0456 0.0073
Phe M-0 0.0991 0.2250 0.2263 0.1539 0.1169 0.0894 0.0456 0.0266 0.0113 0.0059
Thr M-0 0.3213 0.3835 0.1072 0.1459 0.0421
Tyr M-0 0.0973 0.2133 0.2118 0.1540 0.1237 0.0939 0.0515 0.0000 0.0264 0.0281
Val M-0 0.1582 0.3213 0.2497 0.1577 0.0807 0.0324
fdp M-0 0.1411 0.3165 0.1850 0.1696 0.1283 0.0119 0.0476
cit_m M-0 0.1279 0.2726 0.2662 0.1801 0.1058 0.0403 0.0073
succ_m M-0 0.2636 0.3593 0.1876 0.1531 0.0364

Table 2.14: Intracellular metabolite labeling distribution standard deviation input for
strain/condition UG

Amino acid Mass distribution
m0 m1 m2 m3 m4 m5 m6 m7 m8 m9

3pg M-0 0.0078 0.0083 0.0011 0.0127
Ala M-0 0.0026 0.0016 0.0019 0.0011
Arg M-0 0.0013 0.0013 0.0013 0.0013 0.0012 0.0003 0.0000
Asp M-0 0.0112 0.0054 0.0036 0.0030 0.0017
Gln M-0 0.0012 0.0028 0.0005 0.0021 0.0004 0.0007
Glu M-0 0.0009 0.0013 0.0003 0.0012 0.0004 0.0008
Ile M-0 0.0067 0.0038 0.0024 0.0020 0.0008 0.0010 0.0002
Leu M-0 0.0019 0.0042 0.0029 0.0025 0.0009 0.0010 0.0009
Lys M-0 0.0008 0.0014 0.0012 0.0007 0.0021 0.0010 0.0003
Phe M-0 0.0058 0.0082 0.0046 0.0110 0.0042 0.0040 0.0020 0.0003 0.0004 0.0002
Thr M-0 0.0017 0.0021 0.0023 0.0022 0.0019
Tyr M-0 0.0015 0.0105 0.0076 0.0021 0.0017 0.0025 0.0010 0.0000 0.0028 0.0022
Val M-0 0.0012 0.0021 0.0018 0.0007 0.0031 0.0003
fdp M-0 0.0102 0.0208 0.0196 0.0036 0.0015 0.0003 0.0025
cit_m M-0 0.0015 0.0051 0.0045 0.0026 0.0019 0.0012 0.0003
succ_m M-0 0.0108 0.0046 0.0146 0.0015 0.0007
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Table 2.15: Intracellular metabolite labeling distribution input for strain/condition SG

Amino acid Mass distribution
m0 m1 m2 m3 m4 m5 m6 m7 m8 m9

3pg M-0 0.3098 0.4402 0.0082 0.2419
Ala M-0 0.3950 0.3952 0.0386 0.1712
Arg M-0 0.1056 0.2602 0.3153 0.2094 0.0859 0.0211 0.0025
Asp M-0 0.3115 0.3878 0.1058 0.1506 0.0444
Gln M-0 0.1331 0.2794 0.3163 0.1864 0.0712 0.0135
Glu M-0 0.1201 0.2866 0.3043 0.2070 0.0707 0.0113
Ile M-0 0.1795 0.2859 0.2384 0.1637 0.0869 0.0405 0.0050
Leu M-0 0.1024 0.2124 0.2385 0.2606 0.1348 0.0464 0.0050
Lys M-0 0.0717 0.1888 0.2991 0.2506 0.1352 0.0473 0.0072
Phe M-0 0.1084 0.2161 0.2267 0.1552 0.1168 0.0882 0.0547 0.0209 0.0112 0.0018
Thr M-0 0.2808 0.3283 0.2193 0.1294 0.0423
Tyr M-0 0.1186 0.2301 0.1383 0.1833 0.1288 0.1009 0.0830 0.0000 0.0170 0.0000
Val M-0 0.1842 0.3021 0.2294 0.1528 0.0894 0.0421
fdp M-0 0.1068 0.4036 0.1500 0.1331 0.1220 0.0122 0.0723
cit_m M-0 0.1483 0.2825 0.2626 0.1938 0.0647 0.0431 0.0051
succ_m M-0 0.3319 0.3541 0.1146 0.1602 0.0392

Table 2.16: Intracellular metabolite labeling distribution standard deviation input for
strain/condition SG

Amino acid Mass distribution
m0 m1 m2 m3 m4 m5 m6 m7 m8 m9

3pg M-0 0.1021 0.0786 0.0115 0.0377
Ala M-0 0.0041 0.0034 0.0031 0.0033
Arg M-0 0.0006 0.0011 0.0016 0.0027 0.0002 0.0003 0.0000
Asp M-0 0.0058 0.0051 0.0040 0.0031 0.0007
Gln M-0 0.0024 0.0082 0.0063 0.0041 0.0119 0.0015
Glu M-0 0.0029 0.0088 0.0117 0.0180 0.0053 0.0011
Ile M-0 0.0146 0.0043 0.0057 0.0035 0.0013 0.0008 0.0035
Leu M-0 0.0319 0.0145 0.0725 0.0214 0.0052 0.0035 0.0037
Lys M-0 0.0047 0.0015 0.0024 0.0024 0.0024 0.0012 0.0004
Phe M-0 0.0117 0.0029 0.0087 0.0069 0.0044 0.0044 0.0071 0.0149 0.0004 0.0025
Thr M-0 0.0311 0.0452 0.0939 0.0161 0.0047
Tyr M-0 0.0208 0.0225 0.0981 0.0209 0.0133 0.0088 0.0316 0.0000 0.0240 0.0000
Val M-0 0.0445 0.0059 0.0112 0.0017 0.0634 0.0118
fdp M-0 0.0074 0.0198 0.0230 0.0059 0.0085 0.0006 0.0053
cit_m M-0 0.0252 0.0165 0.0122 0.0006 0.0458 0.0020 0.0023
succ_m M-0 0.1574 0.1669 0.0561 0.0755 0.0185
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Chapter 3

Attempted growth rescue of adh1∆
via heterologous NADH oxidase
expression

3.1 Introduction

Carbon flow to cellular biomass and/or some designated target metabolite is preferred over
ethanol production, yet deletion of the gene responsible for the majority of ethanol pro-
duction, ADH1, roughly halves growth rate26. Since this is partially due to reduction of S.
cerevisiae’s ability to oxidize NADH, it may be possible to correct this growth defect via ex-
pression of an enzyme that performs this oxidation. Previous studies have used heterologous
expression of NADH oxidases that also convert oxygen to water for cofactor engineering27–30

though we intended for this to be the first study to do so from the perspective of balancing
carbon capture and growth from a fluxomic perspective.

In this work, we attempted to rescue the growth of an ADH1 null mutant via low-copy
plasmid expression of the NADH oxidase (LnoxE) from L. lactis under the control of 5
mutated TEF1 promoters26,31,32. Initial shake flask experiments led to expansion of our
combinatorial assembly to include the NADH oxidases from bacterial S. pneumoniae and
fungal A. capsulatus28. Growth characterization experiments in 96-well and 24-well plate
reader experiments led to higher replicate batch experiments. Our hope was to rescue growth
and explain the resulting phenotype at a finer level of detail using 2-scale 13C metabolic flux
analysis.

3.2 Materials & Methods

3.2.1 Strain & plasmid construction

Strains were constructed using a combination of a loxP/Cre-recombinase method, as de-
scribed in the Sip1 chapter, and yeast cloning in a CEN.PK113-7D ura3∆, provided by Bilge
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Ozaydin of JBEI. A list of strains generated in this study is presented in Table 3.1. The
ADH1 knockout cassette was PCR amplified using forward primer M-F and reverse primer
M-R. Integration of the knockout cassette was verified using forward and reverse primers
M-Ver-F and M-Ver-R, respectively. The sequences for these primers can be found in Table
3.3. Strain CMSY2, an ADH1 null mutant, resulted from looping out the loxP-kanMX-loxP
cassette from CMSY1 using Cre-recombinase and subsequent curing of the plasmid. Strains
CPU and CMSY2 were transformed with pRS416 to produce the prototrophic base strain U
and the adh1∆ strain M, used as references in this study.

Table 3.1: List of strains, their parents, genotypes, and references

Strain name Parent strain Description Reference

CPU CEN.PK113-7D CEN.PK113-7D ura3∆ From Bilge Ozaydin (JBEI)
CMSY1 CPU CPU ADH1::loxP-kanMX-loxP This work
CMSY2 CMSY1 CPU adh1∆ This work
U CPU CPU [pRS416] This work
M CMSY2 CPU adh1∆ [pRS416] This work
L6 CMSY2 CPU adh1∆ [pRS416-Tef1p6-LnoxE-Tef1t] This work
L10 CMSY2 CPU adh1∆ [pRS416-Tef1p10-LnoxE-Tef1t] This work
L11 CMSY2 CPU adh1∆ [pRS416-Tef1p11-LnoxE-Tef1t] This work
L3 CMSY2 CPU adh1∆ [pRS416-Tef1p3-LnoxE-Tef1t] This work
L7 CMSY2 CPU adh1∆ [pRS416-Tef1p7-LnoxE-Tef1t] This work
S6 CMSY2 CPU adh1∆ [pRS416-Tef1p6-SnoxE-Tef1t] This work
S10 CMSY2 CPU adh1∆ [pRS416-Tef1p10-SnoxE-Tef1t] This work
S11 CMSY2 CPU adh1∆ [pRS416-Tef1p11-SnoxE-Tef1t] This work
S3 CMSY2 CPU adh1∆ [pRS416-Tef1p3-SnoxE-Tef1t] This work
S7 CMSY2 CPU adh1∆ [pRS416-Tef1p7-SnoxE-Tef1t] This work
A6 CMSY2 CPU adh1∆ [pRS416-Tef1p6-AnoxE-Tef1t] This work
A10 CMSY2 CPU adh1∆ [pRS416-Tef1p10-AnoxE-Tef1t] This work
A11 CMSY2 CPU adh1∆ [pRS416-Tef1p11-AnoxE-Tef1t] This work
A3 CMSY2 CPU adh1∆ [pRS416-Tef1p3-AnoxE-Tef1t] This work
A7 CMSY2 CPU adh1∆ [pRS416-Tef1p7-AnoxE-Tef1t] This work

15 plasmids were combinatorially assembled in the CMSY2 background via yeast cloning
from all promoter-gene combinations of 5 mutated TEF1 promoters and 3 NADH oxidases
and the TEF1 terminator in a pRS416 plasmid backbone containing a URA marker. This
combinatorial assembly is depicted in Figure 3.1. Plasmid names take the form pRS416-
Tef1pX-YnoxE-Teft1, where X is the promoter variant number (same as that in the Nevoight
paper it originated from32) and Y refers to the species the NADH oxidase originated from.
The promoter variant numbers or X are, in order of increasing expected expression according
to the results of the Nevoight paper, 6, 10, 11, 3, and 7. The NADH oxidase species abbre-
viations or Y are L, S, and A for L. lactis, S. pneumoniae, and A. capsulatus, respectively.
The strain names for those containing these 15 plasmid variants are designated YX, where
X and Y still have the same meaning. For example, strain S3 refers to the prototrophic
ADH1 strain containing the plasmid with the S. pneumoniae NADH oxidase under TEF1
promoter variant 3, pRS416-Tef1p3-SnoxE-Tef1t.
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Figure 3.1: Depiction of combinatorial assembly of five mutated TEF1 promoters, three
NADH oxidases, and one TEF1 terminator in a pRS416 Ura-plasmid backbone

Each plasmid was constructed by transforming CMSY2, using a heat shock method15,
with BamHI-digested pRS416, and overlapping PCR amplicons containing the corresponding
TEF1 promoter, the corresponding NADH oxidase, and Tef1t. All of the TEF1 promoter
amplification’s upstream sections were homologous with the upstream side of the cut-site.
The upstream and downstream sections of the NADH oxidase piece overlapped with the
3-prime end of the promoter and the 5-prime end of the terminator, respectively. The termi-
nator’s 3-prime end overlapped with the downstream side of the cut-site. The forward and
reverse primers and templates for each of the 5 potential Tef1p and 3 NADH oxidase ampli-
cons is displayed in Table 3.2. The corresponding sequences of those primers are provided in
Table 3.3. Successful transformations were selected on Sc-Ura plates and sequence verified.
All stable strain intermediates were stored in 20% glycerol stocks at -80oC. The plasmids
containing the TEF1 sequences were provided by Sarah Rodriguez of JBEI and the plasmid
containing the L. lactis gene and S288c gDNA were provided by Mario Ouellet of JBEI. The
plasmids containing the remaining NADH oxidase genes were ordered from IDT (Integrated
DNA Technologies, Coralville, IA).

3.2.2 Media

The same media compositions as those described in the Sip1 chapter were used throughout
this study.

3.2.3 Plate reader and shake flask experiments

Maximum specific growth rates were compared in 96- and 24-well plate growth experiments.
Cells were streaked from -80oC glycerol stocks onto Min plates, inoculated into 1 mL Sc-
Ura deep-96-well plates in 5-6 biological replicates, incubated at 30oC at 200 rpm until
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Table 3.2: PCR amplicons used to construct pRS416-Tef1pX-YnoxE-Teft1 plasmids and
their PCR templates and forward/reverse primers

Plasmid piece Template Template reference F-primer R-primer

Tef1p6 pTef-M6 Sarah Rodriguez P-6 P-R
Tef1p10 pTef-M10 Sarah Rodriguez P-10 P-R
Tef1p11 pTef-M11 Sarah Rodriguez P-11 P-R
Tef1p3 pTef-M3 Sarah Rodriguez P-3 P-R
Tef1p7 pTef-M7 Sarah Rodriguez P-7 P-R
LnoxE pLL Mario Ouellet L-F L-R
SnoxE pSP This work S-F S-R
AnoxE pAC This work A-F A-R
Tef1t S288c gDNA Mario Ouellet T-F T-R

Table 3.3: Sequences of primers used in this study

Primer id Sequence

M-F TGCACAATATTTCAAGCTATACCAAGCATACAATCAACTATCTCATATACAagct
gaagcttcgtacgc

M-R TTTTTTTATAACTTATTTAATAATAAAAATCATAAATCATAAGAAATTCGCcata
ggccactagtggatctg

M-Ver-F GTTCTCGTTCCCTTTCTTCCTTG
M-Ver-R ggagtacggataaaatgcttgatgg
P-6 tgatatcgaattcctgcagcccgggatagcttcaaaatgtctctactccttttttac
P-10 tgatatcgaattcctgcagcccgggatagcttcaaaatgtttctactcctttgttac
P-11 tgatatcgaattcctgcagcccgggatagcttcaaaatgtttctactcctttgttac
P-3 tgatatcgaattcctgcagcccgggatagcctcaaaatgtttctactccttc
P-7 tgatatcgaattcctgcagcccgggatagcttcaaaatgtctctactccttttttac
P-R GTTCGTACCGATAACTACGATTTTCATttttctagaaaacttagattagattgctatgctttc
L-F ATGAAAATCGTAGTTATCGGTACGAAC
L-R AACTAGAAAAGTCTTATCAATCTCCTTATTTGGCATTCAAAGCTGCAAC
S-F aatctaatctaagttttctagaaaaatgagtaaaatcgttgtagtcggtg
S-R AACTAGAAAAGTCTTATCAATCTCCttatttttcagccgtaagggcag
A-F aatctaatctaagttttctagaaaaatgtatccgacctcaggatgc
A-R AACTAGAAAAGTCTTATCAATCTCCtcatatcacctcatcccgttcc
T-F GGAGATTGATAAGACTTTTCTAGTTGC
T-R cggtggcggccgctctagaactagtACTTTAAAATTGACGATTCCAATACTTCAATTG

exponential phase, diluted 1/100 into a 96-well plate with 100 µL Min per well, and monitored
at 30oC at 600 nm every 15 min using a plate reader (BioTekSynergy 4, USA). Experiments
were repeated for a subset of the strains in four different 24-well plates with 750 µL per
well using 3-4 replicates per strain. Triplicate shake flask minimal medium experiments were
conducted for a smaller subset of strains the same way as described in the SIP1 chapter.
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3.2.4 Maximum specific growth rate determination

Specific growth rates were determined from slopes of manually determined linear regions of
the lnOD versus time curves.

3.3 Results

3.3.1 L. lactis batch culture growth

We first decided to construct the L. lactis NADH oxidase variants and characterize their
growth in 40 mL shake flasks relative to strains U and M. The maximum specific growth
rates for these 5 variants and the base and adh1∆ are displayed in Figure 3.2.

Figure 3.2: Averaged maximum specific growth rates for 40 mL shake flask experiments in
triplicate for strains U, M, and 5 Tef1pX-LnoxE strains. Error bars represent one standard
deviation from the mean

Deletion of ADH1 resulted in a 62% decrease in specific growth rate (U versus M) to 38%
of the base strain’s. Unfortunately, it was difficult to tell if there was a real improvement
upon expression of the NADH oxidases under the 5 different TEF1 promoters. It appeared
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there may have been an increase of 36% (M versus L10) upon expression of the Tef1p10-
LnoxE promoter/gene pair restoring growth to 51% of the base strain.

3.3.2 96-well growth

In an attempt to obtain a stronger effect and more definitive result, we decided to construct
an additional 10 Tef1pX-YnoxE combination plasmids using the same 5 mutated TEF1
promoters and bacterial S. pneumoniae and fungal A. capsulatus NADH oxidases. The
growth of strains U, M, and all 15 NADH oxidase strain variants were compared in a 96-well
plate in the same medium as the initial batch cultures. The maximum specific growth rates
resulting from this effort, at 5-6 replicates per strain, are displayed in Figure 3.3. Deletion

Figure 3.3: Averaged maximum specific growth rates for 96-well plate experiment for strains
U, M, and the 15 different Tef1pX-YnoxE strains. Error bars represent one standard devia-
tion from the mean

of ADH1 resulted in a drop in maximum specific growth rate of 61% to ∼37% of the base
strain’s value. Most of the constructs performed the same with each other and the adh1∆
mutant within error. The only real exceptions were from the original L. lactis group. The
strain containing promoter/gene pair Tef1p6-LnoxE performed the best with about a 30%
increase in maximum specific growth rate to 50% of the base strain’s value.

3.3.3 24-well growth

We also characterized the growth of all 17 strains of this study in 750 µL 24-well experiments.
The results of these experiments, with 3-4 replicates per strain, are displayed in Figure 3.4.
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Deletion of ADH1 resulted in a drop in growth rate of 61% to ∼39% of the base strain’s

Figure 3.4: Averaged maximum specific growth rates for 24-well plate experiment for strains
U, M, and the 15 different Tef1pX-YnoxE strains. Error bars represent one standard devia-
tion from the mean

value. The values for the 15 Tef1p-noxE variants were indistinguishable from each other and
the adh1∆ mutant’s.

3.3.4 Flask growth

Due to the difficulty in resolving the 24-well plate experiment data and the similarity of the
batch and 96-well experiments for the L. lactis strains, we decided to repeat the 40 mL shake
flask experiments in quadruplicate for strain U and using 10 replicates for strains M and L6,
to better distinguish their growth rates from each other and to use the data for 2S-13C MFA
if we decided to continue. The resulting specific growth rates are displayed in Figure 3.5.
Deletion of ADH1 resulted in a drop in maximum specific growth rate of about 53% to 45%
of the base strain’s value. There appeared to be no difference between the ADH1 knockout
mutant and that expressing the Tef1p6-LnoxE plasmid.

3.4 Discussion

We could not definitively show that expression of an NADH oxidase under a mutated TEF1
promoter could rescue growth of an ADH1 knockout mutant. It’s possible that there was
some rescue for two L. lactis variants when grown in a 96-well plate. Unfortunately, the
additional S. pneumoniae and A. capsulatus constructs appeared to be indistinguishable from
the adh1∆ mutant in any of the experiments they were involved in. The higher replicate
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Figure 3.5: Averaged maximum specific growth rates for 2nd round of batch experiments
with 4 replicates for strain U and 10 replicates for strains M and L6. Error bars represent
one standard deviation from the mean

flask experiments with the best-performing promoter/gene pair had better resolution yet
indicated no improvement in specific growth rate. This apparent difference between the 96-
well plate and high-replicate flask experiments might have something to do with aeration,
since the NADH oxidase converts oxygen to water while oxidizing NADH.

This study highlights the importance of experimental replication and how results can vary
at different scales. While the initial three-replicate 40 mL shake flask experiment and that in
the 96-well plate appeared to indicate a possible growth rescue, the 10 replicate shake flask
experiment for the presumed best promoter/gene pair definitively showed no improvement
in conditions most relevant to obtaining flux profiles. We decided against pursuing flux
experiments due to these results.

It’s possible that a stronger expression of an NADH oxidase could still rescue growth.
The pRS416 plasmid backbone is a low-copy plasmid and none of the NADH oxidases were
codon-optimized. Perhaps expression of a codon-optimized version on low-copy and/or high-
copy plasmid or integrated into a highly expressed region of the chromosome could allow for
a growth rescue to occur.
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Chapter 4

SDP-relaxation of 13C metabolic flux
analysis with rank sparcity

4.1 Introduction

During the course of our fluxomics work we decided to explore some convex approximations
of the mathematical structure of 13C metabolic flux analysis to see if we could achieve the
same solution as the original nonconvex form, determine lower objective function bounds,
and, possibly, speed up our code. In this work, the computational side of 13C MFA was refor-
mulated as a rank-relaxed semidefinite program (SDP). Python code was written to obtain
all relevant parameters from a user-provided list of metabolic reactions and corresponding
carbon transitions, designated input metabolites and those for which 13C labeling probabili-
ties have been measured, and values for all input and output fluxes. These parameters were
then used by the code to solve a six-reaction toy model from the literature using a convex op-
timization solver, CVX, in Matlab3,33 (Antoniewicz 2007, Grant 2011). The global optimum
was verified by gridding over the one remaining degree of freedom obtained using the algo-
rithm proposed in the Antoniewicz paper and the solution was used, along with constraint
violation and numerical decision matrix rank to ascertain the effectiveness of the method.
Rank-sparsity was encouraged using two different terms added to the objective function:
1) a scaled trace of the decision matrix and 2) a trace inner product between the decision
matrix and an iteratively updated matrix formulated from the eigenvalue decomposition of
the previous decision matrix solution. All methods were compared with the solution from
the paper and with each other.

4.2 Materials & Methods

4.2.1 Equivalent quadratic reformulation

EMUs or elementary metabolite units are subsets of carbon atoms for which 13C labeling
probabilities are being kept track of. For instance EMU D23 corresponds to the second and
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third carbon of metabolite D. Each EMU has an associated mass distribution vector (MDV),
in which the first element describes the percentage of the given EMU that is labeled in zero
carbons, the second element describes the percentage that is labeled in any one carbon,
etc. The founding EMU paper focused on fitting simulated EMU MDV values with their
experimentally determined counterparts by exploiting the structure of EMU steady-state
mass balance and stoichiometric equations so that a subset of reaction rates determined the
values of all other variables3. Hence, these reaction rates were the decision variables while the
EMU MDVs served as intermediates. The generalized problem, as discussed in the 2-scale
13C MFA section in the Introduction, is a least-squares minimization subject to third-order
polynomial mass isotopomer balance and other constraints. Introduction of slack variables
results in second-order constraints as shown in Equation 4.1.

min
x

∥∥Cx− y∥∥2
2

:Sx = 0

Aex = 1,∀e ∈ Ei ∪ EC , I ∈ IN

x ≥ 0

Dx ≤ 1[
x
1

]T
Qem

[
x
1

]
= 0,∀m ∈ {1...ne} ,∀e ∈ Ei ∪ EC , I ∈ IN

(4.1)

The decision vector, x, consists of intracellular reaction rates and MDVs of all EMUs en-
countered by the EMU decomposition method (described in the introduction) and those
generated when two EMUs combine3. The entries of these so-called combined EMU MDVs
are the slack variables mentioned above and are defined by the elements of the Cauchy prod-
ucts of the EMUs that combine to generate them. A Euclidean norm serves as the objective
function and is minimized as a measure of how close the experimentally determined labeling
distribution values, y, are to the corresponding simulated values in the decision vector se-
lected by matrix C. The bottom constraint represents the quadratic EMU balances and slack
variable definitions. The subscript of the quadratic matrix denotes the mth MDV entry of
EMU, e, for all metabolite carbon groups in the set of balanced EMUs, Ei, for all non-input
metabolites in the set IN and for all combined EMUs in the set EC . The mass indices,
m, range from 0 to the number of carbons, ne, present in EMU, e. The affine inequality
above this set of quadratic constraints describes the fact that all labeling probability values
are less than one. Hence, D, is a selection matrix that picks out all labeling values. The
inequality above that asserts that all labeling and flux values are non-negative. The affine
equality above that represents the fact that the labeling probability distributions for each
regular and combined EMU sums to one. The first equation represents flux conservation at
each non-input metabolite. That is, the sum of the fluxes that generate a given metabolite is
equal to the sum of the fluxes that consume it. If sij is equal to the stoichiometric coefficient,
which is positive if metabolite i is created by the flux in the jth position of the decision vector
and negative if consumed by it and whose absolute value is equal to the number of molecules
involved in a single reaction, the stoichiometric matrix, S, is given by the rules laid out in
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Equation 4.2.

Sij =

{
0, reaction j isn’t connect to metabolite i
sij, reaction j is connected to metabolite i

(4.2)

4.2.2 Equivalent non-convex trace reformulation

An equivalent problem can be written by exchanging the quadratic constraints with trace
equalities involving a rank-one decision matrix that is the outer product of the decision
variable, as shown in Equation 4.3.

min
x,X

∥∥Cx− y∥∥2
2

:Sx = 0

Aex = 1,∀e ∈ Ei ∪ EC , I ∈ IN

x ≥ 0

Dx ≤ 1[
X x
xT 1

]
� 0

Tr

(
Qem

[
X x
xT 1

])
= 0,∀m ∈Me,∀e ∈ Ei ∪ EC , i ∈ IN

rank(X) = 1

(4.3)

4.2.3 Convex positive semidefinite reformulation

Since the trace constraint matrices are positive semidefinite (PSD), the objective and all but
the rank constraint are convex. Dropping the non-convex rank requirement results in the
convex SDP given in Equation 4.4.

min
x,X

∥∥Cx− y∥∥2
2

:Sx = 0

Aex = 1,∀e ∈ Ei ∪ EC , I ∈ IN

x ≥ 0

Dx ≤ 1[
X x
xT 1

]
� 0

Tr

(
Qem

[
X x
xT 1

])
= 0,∀m ∈Me,∀e ∈ Ei ∪ EC , i ∈ IN

(4.4)

It was noticed during the course of this work that there were negative entries in the decision
matrix when the relaxed SDP was solved. This should not be the case since the decision
matrix should be the outer product of the non-negative decision vector. The addition of an
element-wise non-negative sign constraint on the decision matrix results in a problem of the
form given in Equation 4.5 that was used for the SDP results.



54

min
x,X

∥∥Cx− y∥∥2
2

:Sx = 0

Aex = 1,∀e ∈ Ei ∪ EC , I ∈ IN

x ≥ 0

X ≥ 0

Dx ≤ 1[
X x
xT 1

]
� 0

Tr

(
Qem

[
X x
xT 1

])
= 0,∀m ∈Me,∀e ∈ Ei ∪ EC , i ∈ IN

(4.5)

4.2.4 Rank sparsity encouragement via weighted trace term

The first method used to encourage rank sparsity in the decision matrix was to add its trace
weighted by a constant, λ, to the objective function resulting in the problem in Equation
4.6. The trace of a matrix is equal to the sum of its eigenvalues. Since these eigenvalues are
positive (since X is PSD) the solver is encouraged to decrease this term by encouraging as
many of the eigenvalues to be zero as possible. Since this term is linear, with regard to the
decision matrix, it is a convex way to encourage rank sparsity.

min
x,X

∥∥Cx− y∥∥2
2

+ λTr (X) :Sx = 0

Aex = 1,∀e ∈ Ei ∪ EC , I ∈ IN

x ≥ 0

X ≥ 0

Dx ≤ 1[
X x
xT 1

]
� 0

Tr

(
Qem

[
X x
xT 1

])
= 0,∀m ∈Me,∀e ∈ Ei ∪ EC , i ∈ IN

(4.6)

4.2.5 Rank sparsity encouragement via eigenvalue inflation

The second method used to encourage rank sparsity was to artificially decrease the trace
term added to the objective function by multiplying the decision matrix by a matrix that
directly divides its eigenvalues by those of the previous solution plus a small constant. This
causes the solver to underestimate the rank of X thereby encouraging rank sparsity. The
iterative scheme is given in Equation 4.7. The weighted trace term is replaced with the
matrix inner product between the decision matrix and the current iterate of the inflation
matrix, Yi. Note that, for compactness, V is the set of constraints present in Equation 4.6.
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Starting with the identity matrix, the problem is solved and the diagonal matrix from the
eigenvalue decomposition of the decision matrix is used to construct the next Yi+1 matrix
iterate by inverting the matrix created from adding the identity matrix scaled by a small
constant, ε, to the eigenvalue decomposition diagonal matrix and multiplying this by the
orthogonal matrix and its transpose on the left and right, respectively. This process is
repeated until the problem’s decision matrix solution converges.

Y0 = I

Xi = arg min
(x,X)∈V

∥∥Cx− y∥∥2
2

+ Tr(YiX)

UiΛU
T
i = eig(Xi)

Yi+1 ←− Ui (Λi + εI)−1 UT
i

(4.7)

4.2.6 Python/Matlab code

Python code was written to derive all parameters in Equation 4.4 from a user-input similar
to that in Table 4.1 below and solve the resulting convex problem using the Matlab version
of a convex optimization solver named CVX33.

4.2.7 Toy model and its EMU decomposition

The six-reaction toy model from the introduction, obtained from the founding EMU paper,
is presented in Table 4.1 for convenience. It consists of four irreversible reactions and one
reversible pair. Carbon transitions are provided to generate the EMU reaction network dis-

Table 4.1: Set of reactions and corresponding carbon transitions for a six-reaction toy model

Reaction number Reaction stoichiometry Atom transitions

1 A → B abc → abc
2 and 3 B ↔ D abc ↔ abc
4 B → C + E abc → bc + a
5 B + C → D + E + E abc + de → bcd + a + e
6 D → F abc → abc

played in Figure 4.1.

4.2.8 Toy Model Input

The toy model carbon transitions, three-carbon input metabolite labeling of 100% in the
second carbon, and flux values of 100 and 80 for reactions 1 and 6 were used as inputs to
the code.
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Figure 4.1: EMU decomposition of a six-reaction toy model3. Metabolite (nodes) subscripts
denote carbon atoms for which 13C labeling probabilities are being kept track of.

4.3 Results

4.3.1 Toy model global minimum

The stoichiometric matrix corresponding to the six-reaction toy model is presented in Equa-
tion 4.8.

−1 1 −1 −1
1 −1 0 1
0 0 1 −1




ν2
ν2−rev
ν4
ν5

 = 0 (4.8)

The reduced row echelon form of the stoichiometric equation revealed that all other fluxes
are uniquely determined by the value of ν2−rev. Note ν2−rev is the same as ν3 above yet this
name is used here since it is automatically generated by the Python code to cut down on
user input/error. The EMU balances, arranged as discussed in the Antoniewicz paper3, are
displayed in Equation 4.9.
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−ν4I2 ν4I2 0 0 0

0 − (ν1 + ν3) I2 ν3I2 0 0
0 ν2 − (ν2 + ν5) I2 ν5I2 0
0 0 0 − (ν1 + ν3) I2 ν3I2
0 0 0 ν2I2 − (ν2 + ν5) I2



C1

B2

D2

B3

D3

 =


0 0

−ν1I2 0
0 0
0 −ν1I2
0 0


[
A2

A3

]

[
− (ν2 + ν5) I3 ν2I3

ν3I3 − (ν1 + ν3) I3

] [
D23

B23

]
=

[
−ν5I3 0

0 −ν1I3

] [
(B3 × C1)

A23

]
ν6I4 −ν6I4 0

0 − (ν2 + ν5) I4 ν2I4
0 ν3I4 − (ν1 + ν3) I4

F123

D123

B123

 =

 0 0
−ν5I4 0

0 −ν1I4

[(B23 × C1)
A123

]
(4.9)

The capital letters represent EMU MDVs. For instance, B23 is the probability distribution for the carbon group
consisting of the 2nd and 3rd carbons of B. The ‘x’ on the right-hand-side of the two- and three-carbon EMU balances
represents the Cauchy product between the labeling distributions of the two vectors. Note how everything on the
right-hand-side of the system at the top is known allowing for the solution of all one-carbon EMU vectors. Also, notice
how once the one-carbon balances are solved, everything on the right-hand-side of the two-carbon EMU balances is
known. The system can be solved in a cascaded manner to find the labeling of all unknown quantities if a flux profile
is specified. Hence, the labeling generation code plots the objective function value as a function of v2−rev, since it
determines all reaction rates and labeling values. This graph is displayed in Figure 4.2. The global optimum is found
at a v2−rev value of 50.0 with an objective function value of 5.361e-5. This is the same flux value that was specified
in the founding EMU paper3. The labeling distribution from this solution is used to evaluate the solutions obtained
below.

4.3.2 Solution of the SDP relaxation

Solving the relaxed SDP of Equation 4.5 results in the comparison given in Figure 4.3. The corresponding fluxes and
those from the paper are displayed in Table 4.2.

Table 4.2: Reaction rates from the founding EMU paper and that obtained via solution with
CVX

Reaction flux Paper value [rxn/hr/gdw] CVX solution [rxn/hr/gdw]

v2 110.000 60.448
v2−rev 50.000 0.448
v4 20.000 20.000
v5 20.000 20.000

The objective function was 5.025e-5, lower than the true global optimum of 5.361e-5 as expected. The net fluxes
are the same as the solution from the Antoniewicz paper, though the individual reversible reactions differ. The
comparison above indicates that the CVX solution and that from the paper differ greatly. The constraints were all
rearranged so that they equal zero and evaluated using the decision vector to judge their violation. Error versus the
constraint index is plotted in Figure 4.4. Constraints 0 through 2 are the stoichiometric constraints. Those with
indices 3 until 12 represent how the labeling distributions of each EMU should add up to one. 13 to 40 are the EMU
balances and 40 to 50 are the slack variable definitions. Violations arise mostly from the EMU balances. A plot of the
first nine singular values of the decision matrix is displayed in Figure 4.5 and indicates that it is not rank one. This
should not be the case since the decision matrix should be the outer product of the decision vector. Unfortunately,
this corresponds to the rank one requirement that was relaxed making us unable to communicate a vital piece of
information to the solver.
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Figure 4.2: Toy model objective function gridded over v2−rev, the single degree-of-freedom
for the system

4.3.3 Rank sparsity encouragement via weighted trace term

The weighted trace problem was solved over a range of λ values and the resulting l2-norm objective and the ratio
of the second and first singular values, a measure of the rank, were plotted as functions of λ and are displayed in
Figure 4.6. The optimal λ-value was determined to be 0.070145, where the two curves crossed. The solution found
using this framework in CVX is displayed in Figure 4.7 and corresponds to an objective function of 1.439e-4, which
is above that for the paper solution.

The labeling values have become much closer to those from the paper solution. The fluxes corresponding to the
solution are presented in Table 4.3. The net fluxes are the same as in the paper and the value of v2 and v2−rev have
integer values.

Table 4.3: Reaction rates from the founding EMU paper and that obtained via solution with
CVX with trace objective

Reaction flux Paper value [rxn/hr/gdw] CVX w/ trace [rxn/hr/gdw]

v2 110.000 60.000
v2−rev 50.000 0.000
v4 20.000 20.000
v5 20.000 20.000

The constraint violation plot for this λ-value is shown in Figure 4.8. The scale of the error is much lower in this
instance since the previous errors were as high as 70 and these reach no higher than a magnitude of 0.2. Also, most of
the constraint violation appears to be concentrated in the slack variable definitions, the least important constraints.
The first nine singular values of this decision matrix are displayed in Figure 4.9 and indicate that the matrix is nearly
rank one at a σ-ratio of 1.438e-4.



59

Figure 4.3: Paper solution versus that obtained using CVX

4.3.4 Rank sparsity encouragement via eigenvalue inflation

The rank sparsity encouragement algorithm in Equation 4.7 was implemented in Matlab and run for 3 iterations.
The paper solution versus that obtained using the iterative scheme above is displayed in Figure 4.10. The solution
is a little less close than that obtained using the scaled decision matrix trace in the previous section. The objective
function for this method was also a couple orders of magnitude higher at 0.0716 and, therefore, farther from the global
optimum. However, the constraint violations are roughly two orders in magnitude lower as shown in Figure 4.11.
Also, the rank σ-ratio is two orders of magnitude lower as well, indicating that the decision matrix is closer to being
rank one. Despite this method resulting in a solution further from the global optimum it satisfies the constraints
better, is more automatable, and is less time-consuming since an optimal constant doesn’t need to be chosen.

4.4 Discussion

This is the first reported instance of a quadratic reformulation of 13C-metabolic flux analysis. It’s also the first
to report a SDP relaxation and to attempt to encourage rank sparsity using either a weighted trace term or an
iterative eigenvalue inflation scheme. As expected, the SDP relaxation resulted in a lower objective than the actual
solution. The parameter optimization method resulted in an optimal solution and argument closer to that found
in the paper. However, the iterative matrix method proved more automatable, faster, and possessed better mass
balance constraint satisfaction. It should be noted that the space of solutions of the six-reaction toy model is limited
and further work needs to be completed before it can become clear whether these kinds of convex relaxations can
improve performance. Extensions of this work would include using larger networks, comparing both the solutions and
objectives to the convex versions of these larger networks, and exploring the use of these solutions as initial points for
randomized methods. Other extensions include exploring further approximations such as Reformulation-Linearization
Technique (RLT) and/or successive linear restriction of the EMU balance equation quadratic matrices.
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Figure 4.4: Constraint violation error plotted as function of constraint index

Figure 4.5: Plot of the first 9 singular values
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Figure 4.6: Objective function (blue) and ratio of 1st and 2nd singular values (green) plotted
as a function of λ
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Figure 4.7: Paper solution versus weighted trace solution
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Figure 4.8: Constraint violation plot after the addition of the weighted decision matrix trace
term to the objective function with an optimal λ of 0.070145

Figure 4.9: Plot of first nine singular values after the addition of the weighted decision matrix
trace term to the objective function with an optimal λ of 0.070145
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Figure 4.10: Paper solution versus that obtained via the eigenvalue inflation scheme above
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Figure 4.11: Constraint violation plot for the eigenvalue inflation scheme
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