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ABSTRACT OF THE DISSERTATION

Magnetotransport in Two-Dimensional Materials

by

Yanmeng Shi

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2016

Dr. Chun Ning Lau, Chairperson

The study of two-dimensional (2D) materials began with the seminal work of

experimental isolation and fabrication of monolayer graphene field-effect transistors by the

Manchester group in 2004, and has remained one of the frontiers of condensed matter

physics ever since. Mono- and few-layer graphene, which host chiral charge carriers with

competing symmetries (valley, spin and orbital), have proved to be fascinating platforms

for investigating the quantum Hall (QH) physics. Research efforts were soon extended to

other 2D materials such as transition metal dicalcogenides (TMD). One such material is

phosphorene (mono- or few-layer black phosphorous), which has attracted much attention

due to its large direct band gap and high mobility. This thesis describes our comprehensive

transport studies of bi- and tetra-layer graphene, as well as few-layer phosphorene (FLP).

By fabricating devices that are either suspended or encapsulated within hexagonal

boron nitride (hBN) layers, we are able to reduce disorders and achieve high quality devices.

In suspended bilayer graphene (BLG) devices, we observe both integer and fractional QH

states. The interplay between symmetries and electric and magnetic fields gives rise to two
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distinct phases of the QH state at filling factor ν = 1, with different pseudospin and real

spin polarizations, and different energy gaps. Moreover, the ν = 2/3 fractional QH state

and a feature at ν = 1/2 are only resolved at finite electric field and large magnetic field.

These findings provide insight into the competing symmetries in BLG.

We also present our transport studies of hBN-encapsulated tetralayer graphene

devices, of which the band structure can be decomposed into two BLG-like bands. Unlike

mono-, bi- and tri-layer graphene, which display sharp resistance peaks at the charge neu-

trality point (CNP), we observe a local resistance minimum at the CNP, flanked by three

resistance peaks at higher charge densities. Such non-monotonic dependence on density is

attributed to the trigonal warping that induces Lifshitz transitions as a function of charge

density and electric field. In the QH regime, we observe rich Landau level (LL) crossing

patterns between the two BLG-like bands. A perpendicular electric field breaks the inver-

sion symmetry of tetralayer graphene, lifting the valley degeneracy of the LLs. By fitting

the calculated LL spectra to the crossing features in our experimental data, we are able to

obtain the values of hopping parameters and determine the symmetries of the LLs. These

works provide us with the insight of the band structure of tetralayer graphene, the effects

of remote hopping terms, as well as the importance of the interplay between competing

symmetries and applied electric and magnetic fields.

Finally, in hBN-encapsulated FLP devices, we report the observations of weak

localization (WL), from which the dephasing lengths could be extracted to be ∼ 30−100 nm,

and exhibit power-law dependences on temperature and charge density. We conclude that
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the dominant source of phase-relaxation is the electron-electron interactions, shedding light

onto the understanding of the scattering mechanisms in FLP devices at low temperatures.

The studies of 2D materials constitute one of the most active frontiers of condensed

matter research. Our results provide insight into the quantum transport properties of the

2D electron gas (2DEG) systems in Bernal-stacked bi- and tetra-layer graphene and FLP

devices. The techniques of fabricating high quality devices enable us to explore other 2D

materials as well. Novel physical phenomena such as the QH effect in few-layer graphene

with other stacking orders, e.g. rhombohedral-stacking order, need further experimental

studies. The integer and fractional QH effect in FLP devices await further explorations as

well.
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Chapter 1

The Rise of Graphene and

Beyond-graphene Two-dimensional

Materials

1.1 A brief history of graphene

Carbon, the 15th most abundant element in the earth’s crust, exists in many

allotrope forms: diamond, graphite, fullerene (C60), carbon natotube and so on [2]. The

newest member, graphene, which consists of a single layer of carbon atoms arranged in a

honeycomb lattice structure, is a single atomic layer of graphite. It has been presumed to

be unstable against thermal fluctuations, thus does not exist in a free state [3]. Graphene

could serve as a two-dimensional (2D) building block for other carbon allotropes [1]: it can

be wrapped to form a zero-dimensional (0D) C60, rolled up to form a one-dimensional (1D)
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Figure 1.1: Schematic of graphene building C60, carbon nanotube and 3D graphite. Image
adapted from Ref. [1]

nanotude, or stacked up to form a three-dimensional (3D) graphite (Fig. 1.1). The band

structure of single-layer graphene was first calculated using the tight binding theory in 1947

by P.R. Wallace as a toy model to study the properties of graphite [4]. Later, the model

of graphene has been used for the theoretical study of the electronic properties of carbon

nanotubes and was hugely successful [5].

After the discovery of carbon nanotubes in 1991 [6], the research community has

attempted to isolate graphene experimentally. In 2004, the seminal work from the group

of A. Geim and K. Novoselov at the University of Manchester titled “Electric Field Effect

in Atomically Thin Carbon Films” was published in Science, reporting graphene-based

field-effect transistors [3]. This work was the first to report the isolation of single-layer

graphene on insulating substrates and its transport properties. Surprisingly, this amazing
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experiment feat was achieved by using a piece of scotch tape to exfoliate bulk graphite

onto Si/SiO2 substrates and an optical microscope to identify the number of layers through

optical contrast. These techniques are simple and cheap, compared to the advanced growth

of conventional 2D electron gas (2DEG) systems based on GaAs/AlGaAs semiconductor

heterostructures.

In 2005, two groups from the University of Manchester and Columbia University

independently reported the observations of the unconventional (so called “half-integer”)

quantum Hall effect (QHE) in graphene, which revealed its linear energy dispersion, and

demonstrated its true 2D nature [7, 8]. Since then, the field of graphene research has

undergone explosive growth. For instance, researchers have demonstrated that graphene

affords superior electronic properties compared to the conventional 2DEG systems, due to

its linear energy dispersion, ambipolar transport behavior and high mobility up to 1× 106

cm2/Vs that enables the observations of unconventional integer [7, 8] and fractional QHE

[9–11]. Moreover, graphene’s compelling material properties, e.g. high optical transparency

[12], high mechanical strength [13] and high thermal conductivity [14] etc., render it an

ideal platform for the optical, scanned probe, mechanical and thermal measurements and

applications.

1.2 Introduction to black phosphorous

After the isolation of graphene, tremendous efforts were focused on its potential

to replace silicon in electronic applications. However, due to its gapless energy dispersion,

graphene is not directly suitable for digital electronics. Researchers soon started to explore

3



Figure 1.2: (a) Crystal structure of black phosphorous. (b) Band structure of black phospho-
rous mapped by angle-resolved photoemeission spectroscopy. Image adapted from Ref. [15]
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other 2D materials such as transition metal dicalcogenides (TMD), e.g. MoS2, WS2, etc.

[16].

One of the latest additions to the family of 2D materials is phosphorene, which

is single- or few-atomic-layer black phosphorus (BP) [15]. BP is the most stable allotrope

of elemental phosphorus, consisting of layers held together by weak van der Waals forces.

Within each layer, the phosphorus atoms are arranged in a puckered structure (Fig. 1.2a).

It has recently piqued the interest of the scientific community due to its high mobility [17],

direct band gap that is tunable by thickness or strain [17–23], and large in-plane anisotropy

[23,24]. Unlike graphene, single-layer phosphorene is a semiconductor with a direct bandgap

∼ 2 eV; with each added layer, the gap is reduced, eventually reaching ∼ 0.3 eV [21] in the

bulk limit (Fig. 1.2b). The direct band gap and high mobility make BP a highly attractive

candidate for electronic, thermal and optoelectronic applications, as well as a model system

for interesting physics such as the QHE [25] and emergence of topological orders under a

large electric field [26,27].

Using the same scotch tape method, phosphorene can be exfoliated by peeling

thin flakes form bulk crystal and transferred onto substrates. The first generation of few-

layer phosphorene (FLP) devices were fabricated on Si/SiO2 substrates, with reported hole

mobility ∼ 300 − 1000 cm2/Vs [15]. Recent experiments have pushed the charge carrier

mobility up to ∼ 45, 000 cm2/Vs at low temperatures by using hexagonal boron nitride

(hBN) as substrates, enabling the observations of Shubnikov-de Haas oscillation [25,28,29],

and more recently the QHE [25].
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1.3 Thesis outline

Over the past 5 years, I have worked on the electronic transport studies of 2D ma-

terials including graphene and FLP. The thesis is organized as follows. Chapter 2 describes

the tight binding model and its applications to calculate the band structures of mono-, bi-

and tetra-layer graphene. The quantum corrections to the classical transport, including

weak localization, Shubnikov-de Haas oscillation and the QHE, will also be briefly intro-

duced. Chapter 3 discusses the methods of device fabrication, including the techniques to

fabricate dual-gated suspended graphene devices, and graphene and FLP devices that are

encapsulated between hBN sheets. Chapter 4 presents our work on dual-gated suspended

bilayer graphene (BLG) devices. In high quality suspended BLG devices, we observe two

distinct phases of the QH state at filling factor ν = 1: a layer polarized state that has

a larger energy gap, and a layer coherent state with a smaller energy gap. The ν = 2/3

fractional QH state as well as a feature at ν = 1/2 are only resolved at finite electric field

and large magnetic field. The work on hBN-encapsulated tetralayer graphene devices will

be discussed in chapter 5, where we report the observations of trigonal warping in tetralayer

graphene, and rich Landau level (LL) crossings between two BLG-like bands with different

effective masses. We also obtain the hopping parameters by computing the LL spectra

and comparing with the experimental data. In chapter 6, I will present our wok on hBN-

encapsulated FLP devices. From weak localization, we extract the dephasing lengths, which

exhibit power-law dependence on temperature and charge density. Finally, in chapter 7, I

will summarize the thesis with a brief conclusion and outlook for future work.
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Chapter 2

The Tight Binding Calculations of

Graphene and Quantum Transport

In this chapter, I will describe the theoretical background of my projects. This

chapter starts with a brief introduction of the tight binding model, followed by its applica-

tions to mono-, bi-, and tetra-layer graphene. Subsequently, I will discuss the concept of

weak localization, which is a quantum correction to the classical conductivity due to the

wave nature of quantum particles, and the quantum Hall effect (QHE).

2.1 The tight binding model

The tight binding (TB) method [30,31] is a widely-used technique to calculate the

electronic band structures of crystals. Its underlying assumption is that electrons in crystals

are tightly bound to the atoms, hence the name tight binding. Under this assumption, an

electron is only affected by the potential of its original atom, and the potential due to all
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other atoms in the crystal is very small and can be considered as a perturbation. Therefore,

the wave function of electrons can be expressed as a superposition of the electronic wave

functions of each isolated atom located on the lattice sites. Interactions between electrons

are neglected. Despite its simplicity, TB method is very powerful for understanding single

particle phenomena in condensed matter material, and has been proven to be a good starting

point even for a strong correlated system.

Let’s consider a crystal with total N unit cells. In each unit cell, there are M

atomic orbitals φm, where m = 1, 2, . . .M . For isolated atoms, these are s, p, d, f etc.

orbitals. The Bloch wave at given k and r can be expanded based on these atomic orbitals

Φm(k, r) =
1√
N

N∑
i=1

eik·Rmiφm(r−Rmi) (2.1)

where N is the total number of unit cells in the crystal, i denotes the ith unit cell. Rmi is

the positional vector of mth orbital in the ith unit cell.

A more general electronic wave function can be expressed as a linear superposition

of the Bloch wave functions

Ψj(k, r) =
M∑
m=1

ajmΦm(k, r) (2.2)

where ajm is the expansion coefficient. There are a total of M different energy bands. The

energy of the jth band Ej can be calculated by

Ej(k) =
< Ψj |H|Ψj >

< Ψj |Ψj >
(2.3)

where H is the Hamiltonian. By substituting equation 2.2, it gives

Ej(k) =

∑M
p,q a

∗
jpa
∗
jq < Φp|H|Φq >∑M

p,q a
∗
jpa
∗
jq < Φp|Φq >

(2.4)
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This equation leads to the generalized eigenvalue equation

Haj = EjSaj (2.5)

where H and S are transfer integral matrix and overlap integral matrix, respectively. The

elements of these two matrices are defined by

Hpq =< Φp|H|Φq >, Spq =< Φp|Φq > (2.6)

The band energies Ej can be determined by solving the secular equation

det(H − EjS) = 0 (2.7)

where det denotes the determinant of the matrix. The number of solutions is M, which is

the total number of atomic orbitals in each unit cell.

2.2 Electronic properties of graphene

2.2.1 Monolayer graphene

Each monolayer graphene (MLG) consists of carbon atoms in a honeycomb lattice

[3]. Each carbon atom has six electrons: two core electrons, and four valance electrons that

occupy 2s, 2px, 2py, 2pz orbitals. Interestingly, the 2s, 2px, 2py orbitals are sp2 hybridized

to form robust σ bonds with the nearest neighbors in the graphene plane. The remaining 2pz

orbital oriented perpendicular to the MLG plane forms π bonds with the adjacent carbon

atoms, and determines the electronic properties of MLG in the low energy regime.

The honeycomb lattice consists of two identical sublattices [4], labeled as sublattice

A and sublattice B, as indicated by the blue and red circles, respectively, in Fig. 2.1a. The
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Figure 2.1: Crystal structure and BZ of MLG. (a) The honeycomb lattice of monolayer
graphene in real space. Sublattices A and B are indicated by blue and red circles, respec-
tively. (b) Reciprocal lattice of MLG. Γ, K and M are high symmetry points.

primitive lattice vectors are defined as

~a1 = (

√
3a

2
,
a

2
), ~a2 = (

√
3a

2
,−a

2
) (2.8)

where a is the lattice constant. The distance between two nearest carbon atoms in graphene

is ac−c=1.42 Å [31], and a = ac−c ×
√

3 = 2.46 Å. A unit cell is indicated by the dashed

rhombus in Fig. 2.1a, and consists of two atoms, atom A and atom B. As shown in Fig.

2.1b, the reciprocal lattice vectors are calculated to be

~b1 =
2π

a
(

1√
3
, 1), ~b2 =

2π

a
(

1√
3
,−1) (2.9)

The Brillouin zone (BZ) of MLG is shown in Fig. 2.1b. The corners of the BZ are

known as K and K ′, often referred to as the Dirac points. In pristine graphene, the Fermi

energy is at the Dirac points.

The band structure of MLG can be calculated via the TB method, as introduced

in section 2.1 [4]. In the case of MLG, we consider two atomic orbitals per unit cell, which
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are 2pz’s from atom A and atom B. The atomic orbitals are labeled as φA and φB. By

substituting into the equation 2.6, we obtain the diagonal elements of H

HAA = ε =
1

N

N∑
i=1

< φA(r −RAi)|H|φA(r −RAi) > (2.10)

and HAA = HBB since these two sublattices are identical.

The off-diagonal elements of the transfer integral matrix H represent the hopping

energies between orbitals in A and B lattice sites, and if only the nearest neighbors are

considered, they can be written as

HAB = H∗BA =
1

N

N∑
i=1

3∑
l=1

eik·δl < φA(r−RAi)|H|φB(r−RAi − δl > (2.11)

where δl are positional vectors of the nearest B(A) atoms relative to A(B) atoms as shown

in Fig. 2.1a. They are defined as

δ1 = (
a

2
√

3
,
a

2
), δ2 = (

a

2
√

3
,−a

2
), δ3 = (− a√

3
, 0) (2.12)

HAB can be simplified as HAB = −γ0f(k) where the hopping parameter is defined as γ0 =

< φA|H|φB > and for graphene it is ∼ 3 eV. The nearest hopping function f(k) is defined

as f(k) =
∑3

l=1 e
ik·δl . Similarly, we can obtain the elements of the overlap integral matrix

S: SAA = SBB = 1, SAB = S∗BA = s0f(k), where s0 = < φA|φB > describes the probability

of non-zero overlap between the nearest lattice sites and is ∼ 0.129 for MLG.

Therefore, the matrices H and S can be written as

H =

 ε −γ0f(k)

−γ0f
∗(k) ε

 , S =

 1 s0f(k)

s0f
∗(k) 1

 (2.13)

where ε = 0 for intrinsic MLG. By solving the secular equation 2.7, the eigenvalues are

E± =
±γ0|f(k)|

1∓ s0|f(k)|
(2.14)
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where E+ and E− correspond to the conduction band and valance band, respectively.

At the Dirac points, function f(k) is zero. These two K points, also referred to as

valleys, are the crossing points between the conduction and valance bands. At these points,

the energy eigenvalues are degenerate. In the low energy regime, SAB can be ignored,

therefore the effective Hamiltonian H can be written as

Hξ = vF

 0 ξpx − ipy

ξpx + ipy 0

 (2.15)

where the index ξ = ±1 denotes the valleys, yielding the eigenvalues

E± ≈ ±vF |q| (2.16)

where q = K − k. vF is the Fermi velocity vF =
√

3aγ0
2h̄ ≈ 1 × 106m/s. Therefore, close to

the Dirac points, the energy has a linear dispersion with momentum, and electrons travel

at an effective speed of light vF .

If we look at the equation 2.15 more closely, it is analogous to the Dirac equation

with using Pauli spin matrices in sublattices A and B. Therefore, it is useful to introduce

the concept of pseudospin [31]. If all charges are located on sublattice A, then it could

be viewed as a pseudospin “up” state; while if all charges located on sublattice B, then it

could be viewed as a pseudospin “down” state. In general, however, the charge state is a

superposition of “up” and “down” states, similar to real spin. In this case, pseudospin is

another quantum number for graphene.
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Figure 2.2: Crystal structure of BLG. (a) Top view of the honeycomb lattice of bilayer
graphene in real space. Sublattice A1 from bottom layer is labeled as black circles, the
dimer sites B1 from the bottom layer and A2 from the top layer as brown circles, sublattice
B2 from top layer as red circles. (b) A unit cell of BLG. Dashed lines indicate the hopping
between interlayer atoms. γ0 is the hopping energy between the sublattice atoms in the
same layer. γ1 is the interlayer hopping within the dimer bonds.

2.2.2 Bernal-stacked bilayer graphene

Bilayer graphene (BLG) consists of two MLG sheets. In Bernal-stacked BLG, the

atoms are arranged so that one sublattice atom from the top layer is located right in the

center of the hexagon of the bottom layer, while the other sublattice atom from the top

layer is located exactly on the atom from the bottom layer [31]. As shown in Fig. 2.2a,

atoms A1 (black) and B1 are from the bottom layer. Atoms A2 and B2 (red) are from the

top layer. Atom A2 stacks right on top of atom B1, forming dimerbonds. Each unit cell in

BLG consists of these four atoms. The dashed rhombus in Fig. 2.2a indicates a unit cell of

BLG, which is shown in the cross-sectional view in Fig. 2.2b

By repeating the same procedure for MLG, and only considering the hopping terms

between the nearest intralayer and interlayer atoms, we can obtain the transfer integral
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matrix

H =



εA1 −γ0f(k) 0 0

−γ0f
∗(k) εB1 γ1 0

0 γ1 εA2 −γ0f(k)

0 0 −γ0f
∗(k) εB2


(2.17)

where γ0 = < φA1 |H|φB1 > = < φA2 |H|φB2 > is the hopping energy between intralayer

sublattice atoms, γ1 =< φB1 |H|φA2 > the hopping energy between the nearest interlayer

atoms B1 and A2. In the low energy regime, we can approximate the overlap integral matrix

to be an identity matrix since the overlap probability is small, and approximate εA1 = εB1

= εA2 = εB2 = 0. By solving the secular equation, we can obtain the eigenvalues of the

bands

Eα± = ±γ1

2
(

√
1 +

4γ2
0 |f(k)|2
γ2

1

+ α) (2.18)

where the + and − signs refer to the conduction and valance bands, respectively, the α = ±1

denotes the higher and lower energy bands. At the K points, f(k) is zero. For the lower

energy band, when α = -1, E± = 0. For the higher band, α =1, E± = ±γ1, and is separated

from the lower bands by γ1 due to the hopping term within the dimer bonds, i.e. between

B1 and A2. In principle, one can also consider remoter hopping terms, such as γ4 between

the dimer and non-dimer atoms, and γ3 between the non-dimer atoms, as shown in Fig.

2.2b. However, the effects of these terms are small and are often ignored. Fig. 2.3 shows

the low energy bands of BLG. The conduction and valance bands touch at the K points.

Different from MLG, BLG has a parabolic energy dispersion near the K points.
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Figure 2.3: Low energy bands of BLG by tight binding calculation with the parameters:
γ0 = 3.033ev, γ1 = 0.381ev at ky=0. K± are the Dirac points. Image adapted from Ref. [31].

For both MLG and BLG, the conduction and valance bands touch at the K points

due to the inversion symmetry, leading to gapless band structures. In BLG, the higher

energy bands originate from the dimer sites, and the lower energy bands, which are relevant

for the transport experiments, arise from the atoms A1 and B2. In this case, the valley

symmetry is roughly equivalent to the layer symmetry for BLG in the low energy regime.

Therefore, applying an out-of-plane electric field E⊥ breaks the layer symmetry, and hence

the valley symmetry, thus opens an energy gap at the K points.

The opening of the band gap can be confirmed by the TB calculation. Under a

perpendicular electric field, the atoms from the top layer and the bottom layer have an
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energy difference 4. Therefore, the effective Hamiltonian can be written as

H =



4
2 −γ0f(k) 0 0

−γ0f
∗(k) 4

2 γ1 0

0 γ1 −42 −γ0f(k)

0 0 −γ0f
∗(k) −42


(2.19)

where εA1 = εB1 = 4
2 and εA2 = εB2 = −42 . The eigenvalues of the secular equation are

Eα± = ±(
42

4
+ γ2

0 |f(k)|2 +
γ1

2

{
1 + α

√
1 +

4γ2
0 |f(k)|2
γ2

1

+
4γ2

042|f(k)|2
γ4

1

}
)
1
2 (2.20)

At the K points, the function f(k) = 0. Therefore, in the low energy regime, the band

opens an energy gap of the magnitude 4 in the vicinity of the K points. As shown in Fig.

2.4, this gap has a shape of “Mexican hat”. Experimentally, we can tune the electric field

by gating, therefore, this gap is gate tunable.

2.2.3 Bernal-stacked tetralayer graphene

Multi-layer graphene with layer number N > 10 is thought to be graphite. How-

ever, the electronic properties of graphene with layers N > 3 are still of significant interest.

In this section, I will discuss the lattice structure and band structure of Bernal- or ABAB-

stacked tetralayer graphene.

Among the possible stacking orders, ABAB- and ABCA-stacking orders of tetralayer

graphene are observed experimentally [33, 34]. The tight binding model for multi-layer

graphene is much more complicated than that of MLG and BLG, since we need to consider

more hopping parameters to include the next-nearest interlayer couplings [35]. Bernal-

stacked tetralayer graphene can be considered as two stacked bilayer graphene. The unit
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Figure 2.4: Low energy bands of BLG in the presence of an electric field at the K points.
For clarity, a large potential difference 4 = γ1 is used. Image adapted from Ref. [32]

cell of tetralayer graphene, as shown in Fig. 2.5, includes eight atoms, two sublattice atoms

from each layer, and possesses the inversion symmetry (x, y, z) ↔ (−x,−y,−z) with the

inversion center denoted by the red dot. In addition to the hopping parameters considered

in BLG, we also need to take into account the next-nearest interlayer hopping parameters

γ2 and γ5 as shown in Fig. 2.5 by dashed lines. γ2 is the hopping energy between atoms

A1 and A3, atoms B2 and B4. γ5 is the hopping energy between atoms B1 and B3, atoms

A2 and A4.

To study the band structure of tetralayer graphene, we start with the effective

Hamiltonian described in Ref. [35]. The Bloch wave functions of A and B sublattices are

labeled as |Aj > and |Bj >, where j indicates the layer number. Therefore, a suitable basis

is |A1 >, |B1 >; |A2 >, |B2 >; |A3 >, |B3 >; |A4 >, |B4 >. With these basis wave functions,

17



Figure 2.5: Schematic of the unit cell of Bernal-stacked tetralayer graphene. Horizontal
solid black lines indicate the nearest coupling γ0 within sublattices A and B in each layer.
Vertical solid lines indicate the nearest layer coupling γ1 within the dimer sites. Dashed
lines indicate the interlayer couplings. γ2(red dashed line) is the hopping parameter between
the stacked non-dimer sites. γ5 is the hopping parameter between the stacked dimer sites.
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the effective Hamiltonian could be written as

H =

HB W

W ′ HB

 (2.21)

where HB is the effective Hamiltonian of BLG

HB =



0 vFπ −v4π
+ v3π

vFπ
+ 4′ γ1 −v4π

+

−v4π γ1 4′ vFπ

v3π
+ −v4π vFπ

+ 0


(2.22)

where vF =
√

3aγ0
2h̄ is the Fermi verlocity, v3 =

√
3aγ3
2h̄ , v4 =

√
3aγ4
2h̄ . 4′ is the energy difference

between the dimer and non-dimer sites. π = ξpx + ipy, where the index ξ = ±1 represents

two valley Kξ points. W and W ′ in equation 2.21 are the interactions between the two BLG

blocks, and can be written as

W =



γ2
2 0 0 0

0 γ5
2 0 0

−v4π γ1
γ5
2 0

v3π
+ −v4π 0 γ2

2


,W ′ =



γ2
2 0 −v4π

+ v3π

0 γ5
2 γ1 −v4π

+

0 0 γ5
2 0

0 0 0 γ2
2


(2.23)

By diagonalizing the effective Hamiltonian, we can obtain the band structure of

tetralayer graphene. Due to the inversion symmetry that tetralayer graphene possesses,

the valley degeneracy is never broken at zero electric field. Fig. 2.6 shows the numerically

calculated low energy bands near the K points at zero electric field. The band structure

includes two BLG-like parabolic bands with light effective mass (b) and heavy effective mass

(B).
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Figure 2.6: Low energy bands of tetralayer graphene at the K points calculated with full
parameters included in the absence of electric field. b(m=1) and B(m=3) indicate the
energy bands with light and heavy effective masses, respectively. The dotted lines are the
results without considering γ2 and γ5. Image adapted from Ref. [35]
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Figure 2.7: Schematics of weak localization. (a) Transport of an electron from point A to
point B in the diffusive regime. (b) Enhanced backscattering that leads to weak localization

2.3 Weak localization

Weak localization (WL) is a quantum phenomenon due to the wave nature of

quantum particles [36, 37]. In a weakly disordered electronic system, electrons traveling

from point A to point B, collide elastically into the impurities that are randomly distributed

in the system, as shown in Fig. 2.7a. Due to the multiple scatterings, an electron can travel

from point A to point B in many paths (Fig. 2.7a). In classical picture, the total probability

that the electron travels from A to B is simply the summation of the probability in each

path Ptotal =
∑

i Pi, where Pi is the probability in path i. However, quantum mechanically,

we need to sum the probability amplitudes rather than the probabilities

Ptotal = |
∑

Ai|2 =
∑
|Ai|2 +

∑
i 6=j
|AiA∗j | (2.24)

where Ai is the probability amplitude in path i. The first term corresponds to the classical

picture, while the second term describes the interferences between different paths, arising

from the wave nature of electrons. The latter term averages to zero at high temperature or

when coherence length is short.
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Figure 2.8: Experimental signatures of WL in 2D films. (a) Resistance of a thin disordered
AuPd film as a function of temperature. (b) Magnetoresistance of a thin Mg film as a
function magnetic field at different temperatures. Image adapted from Ref. [38]

However, one special situation warrants attention, i.e. when the electron returns

back to its original starting point. In this case, there is always a corresponding time-

reversed path, i.e. the time-reversed path traces the trajectory of the original path, but in

the opposite direction (Fig. 2.7b). Among these time-reserved paths, electrons accumulate

opposite phases. Therefore, the probability amplitudes A1 and A2 have the same magnitude

|A| and coherent. This coherence leads to the constructive interference, so Ptotal = |A1|2 +

|A2|2 + |A1A
∗
2|+ |A2A

∗
1| = 4|A|2. Thus, the probability for the electron to return its original

starting point doubles than that in classical picture. This phenomenon is referred to as

enhanced backstattering [38]. Since the resistivity of the electronic system is relevant to

the transmission probability, enhanced backscattering leads to an additional term to the

classical resistivity.
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Figure 2.9: Quantum Hall effect in a conventional 2DEG. (a) Rectangular Hall bar to
measure magnetoresistance. The direction of magnetic field is in z-direction, perpendicular
to the plane of the conductor. (b) Measured longitudinal and transverse voltages of a
modulation-doped GaAs thin film at T =1.2 K, with current source I = 25.5 µA. Image
adapted from [39]

Two experimental signatures of weak localization are the dependence of resistivity

on temperature and magnetic field [38]. At a high temperature, the quantum coherence is

destroyed, and the resistivity of the system will decrease to that of classical value, as shown

in Fig. 2.8a, where resistivity decreases with increasing temperature below a characteristic

temperature. Another way to study weak localization is to apply a perpendicular magnetic

field that breaks the time-reversal symmetry. For a closed path, the magnetic field B

introduces an extra phase term φ = 2πΦ
Φ0

, where Φ is the magnetic flux enclosed within the

loop and Φ0 = h
e is the flux quantum. With the extra phases, enhanced backscattering is

reduced and eventually the classical value is recovered, as shown in Fig. 2.8b.
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2.4 Quantum Hall effect

For a 2DEG system in the classical Hall effect regime [30], as shown in Fig. 2.9a,

the source current Ix is injected from source to drain electrodes. From the Drude model,

electron deflection due to the Lorentz force causes a potential difference to build up in the

transverse direction. The current density ~J is related to the electric field ~E byJx
Jy

 =

σxx σxy

σyx σyy


Ex
Ey

 (2.25)

where σxx = σyy, σxy = −σyx, and can be calculated from the measured longitudinal

resistivity ρxx and the transverse resistivity ρxy by

σxx =
ρxx

ρ2
xx + ρ2

xy

, σxy =
ρxy

ρ2
xx + ρ2

xy

(2.26)

In a cleaner sample at lower temperatures, the 2DEG can go to the quantum

Hall (QH) regime [40], where the energies of cyclotron orbits are quantized to discrete

levels, called Landau levels (LLs) [41]. In low magnetic fields, ρxx displays the so-called

Shubnikov-de Haas oscillation as the Fermi level fills successive LLs [30]. In high B fields,

transverse conductivity σxy starts to be quantized (Fig. 2.9b). Each transverse conductivity

plateau has an integer quantum conducatnce νe2/h, where ν is the filling factor, meaning

the total number of filled LLs. At each plateau, the corresponding longitudinal resistivity

is vanishing. The precise quantization of σxy gives rise to the name quantum Hall effect. In

the QHE regime, the confining potential, resulting from the finite size of the samples, gives

rise to the chiral 1D channels that are topologically protected from back scattering, thus

allowing dissipationless transport [30].
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Figure 2.10: Half-integer QHE in MLG. Measured longitudinal resistivity ρxx and calculated
transverse conductivity σxy. Measurement is taken at B = 14 T and T = 4 K. Image
adapted from [7]
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In a conventional 2DEG, energies of LLs are EN = h̄ωc(N+ 1
2) and equally spaced,

and σxy = ν e
2

h . In contrast, MLG’s LL spectrum is

EN = sgn(N)
√

2h̄|N |eB, N = 0,±1,±2, . . . (2.27)

where N is the LL index. The LL at EN = 0 is distinctive and a result of the Dirac nature

of the energy band. The measured longitudinal resistivity and transverse conductivity σxy

are shown in Fig. 2.10. The quantized conductivity plateaus appear at

σxy = 4
e2

h
(N +

1

2
) (2.28)

where ν = 4(N + 1
2) is the filling factor. The prefactor 4 comes from the four-fold de-

generacy including valley and real spin degeneracy of each LL. This 1
2 shift is due to the

Berry’s phase, as a result of the precession of the pseudospin during the cyclotron mo-

tions of Dirac fermions. Therefore, the filling factors of the integer QH states in MLG

are . . . ,−6,−2, 2, 6 . . . [7, 8]. At a higher magnetic field, the four-fold degeneracy could be

lifted, leading to the symmetry-broken QH states.

For BLG, the energies of the LLs are

EN = sgn(N)h̄ωc
√
N(N − 1), N = 0,±1,±2, . . . (2.29)

where the cyclotron frequency ωc = eB/m∗, and m∗ = γ1/2v
2
F ≈ 0.03me is the effective

mass of electrons in BLG [31]. Each LL is also four-fold degenerate, except that at EN = 0,

where the zero-LL is eight-fold degenerate, due to the additional N = 0 and N = 1 orbital

degeneracy. Fig. 2.11 shows the experimental QHE in BLG. The sequences of the filling

factors are . . . ,−8,−4, 4, 8, . . . [42]. As discussed above, the valley symmetry in BLG is
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Figure 2.11: QHE in BLG. Measured longitudinal resistivity ρxx and calculated transverse
conductivity σxy as a function of carrier density in BLG. Image adapted from [42]
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Figure 2.12: (a) Calculated LL spectrum of tetralayer graphene at zero electric field. (b)
Density of states as a function of B field and charge density calculated from (a). Numbers
represent the quantized Hall conductivity in units of e2/h. Image adapted from Ref. [35]

equivalent to the layer symmetry in the low energy regime and it can be broken by a

perpendicular electric field as well as electronic interactions. A high magnetic field can be

used to break the real spin and orbital symmetries. These symmetry-broken states will be

discussed in chapter 4.

The LL spectrum of tetralayer graphene in a uniform and perpendicular magnetic

field can be calculated by using LLs’ wavefunctions as a basis [35]. π and π+ coincide with

the raising and lowering operators in the basis of LLs’ wavefunctions [35]. As shown in Fig.

2.12a, the LL bands can be construed as a combination of two BLG-like LL bands with

light (b) and heavy (B) effective masses. The orbital degeneracy of the lowest LL of each

BLG-like band is lifted by the magnetic field. Therefore, the 16-fold degenerate zero-LL is

split into four energy bands, each with real spin degeneracy as well as valley degeneracy.

Fig. 2.12b shows the calculated two-dimensional plot of density of states as a function of
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magnetic field and charge density. The numbers in Fig. 2.12(a-b) represent the quantized

Hall conductivity in units of e2/h. Each LL is four-fold degenerate, due to the spin and

valley degeneracy.
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Chapter 3

Device Fabrication

As an experimentalist, I always strive to fabricate high quality devices. Fabrication

of devices is a vital component in experimental research, because the intrinsic physics can

only be revealed in devices with low impurities and disorders. The first generation of

two-dimensional (2D) devices consist of flakes on Si/SiO2 substrates coupled with metal

contacts [3, 7, 8]. However, due to the roughness of SiO2 surface and large number of

dangling bonds, the flakes are inhomogeneously doped, leading to the formation of electron-

hole puddles [43], thus limiting the quality and mobility of devices. The research community

has since made great strides to reduce the substrate induced impurities and improve devices’

quality.

During my five-year tenure as a PhD student, I have witnessed and partaken in

the development of these efforts. To reduce the effects of the substrates, the first idea is

to remove them [10, 11]. By removing SiO2, the mobility of suspended graphene devices

improves by orders of magnitude, which will be discussed in section 3.1. Alternatively to
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reduce substrate induced electron-hole puddles, one may try to use different substrates.

Hexagonal boron nitride (hBN) is a layered material with a honeycomb lattice structure,

and B and N atoms occupying two sublattices. It has been proven to be an ideal substrate for

two dimensional materials due to its atomically flat surface and lack of dangling bonds [44].

Using hBN, we are able to fabricate sandwich heterostructures. Dry transfer technique is

applied to fabricate black phosphorous (BP) devices encapsulated by hBN sheets [28], and

will be discussed in section 3.2. Here, hBN not only provides a flat substrate, but also

protection from degradation due to the air and moisture. The other technique referred

to as the pickup technique was developed in Ref. [45], and was used to fabricate hBN-

encapsulated sandwich heterostructures; here the active components (graphene or other 2D

materials) never come in contact with any resist or solution, thus greatly improving the

quality of devices.

3.1 Suspended graphene devices with contactless top gates

The advantages of suspended devices over those that are supported on Si/SiO2

substrates are three-fold . Firstly, the absence of substrates eliminates the inhomogeneous

potential created due to the trapped charges or corrugations, which are the mobility bot-

tlenecks of SiO2 supported devices [43, 46]. Secondly, current annealing, which is used

to remove impurities on graphene flakes [47], is far more effective on free-standing samples

than substrate-supported devices due to the absence of heat sink to substrates [10,11,43,46].

Thirdly, because of the absence of screening, electronic interaction effects are larger in sus-

pended devices than Si/SiO2 supported devices [48]. The interaction parameter is given
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Figure 3.1: A BLG flake (blue circle) on Si/SiO2 with metalized alignment marks (red
circles).

as

α ∝ n−(p−1)/2

εr
(3.1)

where n is the charge density, p the power of energy dispersion, which depends on the layer

number and stacking order of graphene. For example, p = 1 in single layer graphene, and 2

for bilayer graphene (BLG). εr is the dielectric constant of surrounding environment. The

dielectric constant of SiO2 is ∼ 3.9, larger than that of vacuum. Therefore, the interaction

effects in free-standing graphene devices are larger than that of SiO2 supported ones.

3.1.1 Fabrication of contactless top gates

To fabricate free-standing graphene devices, we first exfoliate graphene flakes from

bulk Kish graphite with a piece of scotch tape, then locate the graphene flakes with an

optical microscope [3]. The number of layers can be determined by the optical contrast,

and confirmed by Raman spectroscopy [49]. The intensity ratio of G and 2D peaks of bilayer
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graphene is ∼ 1.5 [34]. For the suspended graphene project, we choose to use graphene flakes

that are long and narrow as the width is limited by the length of the bridge-like top gates.

Moreover, current annealing is more effective on long two-terminal devices than on multi-

terminal Hall bar devices [43, 46]. After locating the graphene flakes on the chip, we spin

coat one layer of methyl methacryllate (MMA) and a layer of poly methyl methacryllate

(PMMA), both at the rate of 4000 rpm for 40 seconds; each layer is baked on a hotplate

at 180 ◦C for 10 minutes. Then, we perform electron-beam lithography (EBL) to expose

alignment patterns on the bilayer resist, followed by the metalization. An optical image

of graphene with metalized alignment marks is shown in Fig. 3.1. The crosses in the red

circles are the metalized alignment marks. The blue circle indicates the BLG strip.

Fig. 3.2 illustrates the process of fabricating contactless top gates [50]. This

process includes several steps of spin coating of resists, EBL and angled e-beam evaporation.

After metalizing the alignment marks and lifting-off in hot acetone at 65 ◦C (Fig. 3.2a),

we spin coat a layer of lift-off resist (LOR) 3B, and bake the chip at 190 ◦C for 5 minutes.

Another resist layer PMMA is spun coated on top of LOR, followed by baking at 180 ◦C

for 10 minutes, as shown in Fig. 3.2b. We then perform EBL to define the patterns of the

electrodes of top gates on the bilayer resist. The developing process after EBL includes two

steps. Firstly, we dissolve the exposed PMMA in the developer MIBK for ∼ 65 seconds,

followed by submerging in high quality IPA, and drying by a nitrogen gun. After this step,

it is necessary to check under an optical microscope if the patterns are well developed.

If not, repeating the developing in MIBK may help to remove the residues of PMMA,

especially if the EBL dosage is slightly lower than needed. Secondly, we submerge the chip
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Figure 3.2: Schematics of the fabrication processes of contactless top gates. (a) A bi-
layer graphene flake(dark brown) is deposited on Si/SiO2 substrate. (b) Bilayer resist
LOR(yellow)/PMMA(red) is spun coated on top of graphene. (c) Open windows for elec-
trodes after EBL and developing in MIBK and MF319. (d)After removing PMMA in
acetone, leaving LOR on the substrate, another bilayer resist MMA(green)/PMMA(red) is
spun coated on the chip. (e) Open windows of both electrodes and suspended structure
after EBL and developing in MIBK. Metals are deposited in three angles (in directions of
arrows) (f) Metal Cr/Au(gold) is evaporated in directions indicated by the arrows in (e)
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in MF319 to dissolve the LOR in the exposed PMMA windows for ∼ 1.5 seconds. The exact

duration depends on the thickness of LOR. The resultant structure is shown in Fig. 3.2c.

Subsequently, the chip is put in warm acetone (65 ◦C) to remove the entire layer of PMMA,

while leaving LOR on the substrate. The open windows in LOR are for the electrodes of

the top gate.

Subsequently, we spin coat a resist bilayer MMA/PMMA on top of LOR layer,

and bake the chip at 180 ◦C for 10 minutes after each layer as shown in Fig. 3.2d. We

then perform another step of EBL, in which we define the patterns of both electrodes and

bridges of top gates. After EBL, we submerge the chip in MIBK for 65 seconds to dissolve

the exposed MMA/PMMA bilayer resist. The outcome is shown in Fig. 3.2e. It is worth

noting that MMA dissolves faster than PMMA at the same dosage, leaving an undercut

structure as shown in Fig. 3.2e. We then deposit the metal onto the chip at three angles

+45◦, -45◦ and 0◦. The arrows in Fig. 3.2e indicate the three angles. The evaporations at

±45◦ angles are necessary to strengthen the side walls that connect the bridge and electrode

leads [50]. The structure after the three-angle evaporation is shown in Fig. 3.2f. The chip

is then put in warm remover PG solvent (65◦C) to lift off the unwanted metal and dried

out in a critical point dryer (CPD) using high quality IPA.

Fig. 3.3 shows a typical scanning electron microscope (SEM) image of a completed

suspended top gate with false colors. The green air bridge is connected with the pink

electrode leads by the vertical side walls. The blue structures are anchors on top of graphene,

written during the same EBL steps of top gate fabriation, so as to anchor graphene flakes

onto the substrates. Otherwise, the graphene flake may be washed away or folded during
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Figure 3.3: SEM image of a suspended top gate. The air bridge (green) is connected to gate
electrodes (pink). The anchors (blue) are used to hold the graphene flake in place during
fabrication. Scale bar: 1 µm

fabrication. The typical width of an air bridge ranges from 0.5 µm to 1.5 µm. Its length

is determined by the width of graphene flake, and can be as long as 5 µm [50, 51], though

we usually keep the length as short as possible so that the top gates can sustain higher

voltages. The height of top gates, which is the distance from the bottom side of the air

bridge to the graphene flake, is determined by the thickness of LOR. In this recipe, the

height is ∼ 200 nm.

3.1.2 Fabrication of electrodes and suspension of devices

After completing the suspended top gates, the next step is to fabricate the contact

electrodes and complete the suspension of the devices [50]. Due to the extensive chemical

processings during the top gate fabrication, significant resist residues and impurities are left

on the graphene flakes [50–52]. To ensure good contact between graphene and the metal
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electrodes, we use O2 annealing in a furnace to remove the impurities, in which the quartz

tube is firstly cleaned by heating to 900 ◦C for 1 hour, so as to remove the organic residues

in the quartz tube, followed by the chip at 300 ◦C for 2.5 hours. The flow rates of O2 in

both steps are 0.4 sccm.

After annealing, we spin coat a bilayer resist MMA/PMMA and bake the chip at

180 ◦C for 10 minutes after each layer, followed by the standard EBL to define the source

and drain electrode patterns. The bottom resist MMA plays an important role in this step,

because as discussed in last section, MMA is more sensitive to electron beams than PMMA.

Therefore, after developing in MIBK, MMA will create an undercut under the PMMA layer

(Fig. 3.4a). This undercut is important in two ways. Firstly, the undercut allows easy

removal of Cr/Au during the lift-off procedure. Secondly, since often we need a global

top gate which is fabricated before electrodes, we need to reduce the distances between

the top gate and electrodes carefully while avoiding shortage. This undercut ensures that

the distance between source-drain electrodes is shorter than designed, so that the top gate

could extend directly above parts of electrodes to be a global gate as shown in Fig. 3.4b.

After developing the exposed MMA/PMMA, we deposit Cr/Au (10/80 nm) onto the chip,

followed by lifting-off in a warm (65 ◦C) acetone bath overnight. Then we dilute the acetone

with high quality IPA repeatedly. Finally, we put the completed substrate supported devices

into buffered oxide etch (BOE 6:1) for 70 seconds to partially etch SiO2 away, as shown

in Fig. 3.4c. After BOE etching, we immediately dilute BOE with DI water repeatedly,

and similarly, followed by the dilution of DI water in high quality IPA for several times to

prepare for critical point drying. Fig. 3.5 illustrates an example of completed suspended
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Figure 3.4: Schematics of electrodes fabrication process and suspension of devices. (a)Open
windows for electrodes after dissolving PMMA(red)/MMA(green) in MIBK. (b) Completed
devices with source and drain electrodes and a contactless top gate on substrate. (c) Com-
pleted suspended device with a contactless top gate after etching in BOE.

graphene devices with a suspended top gate. Using this technique, one can also fabricate

suspended devices with local top gates for p − n − p junctions, by varying the distances

between the top gate and source/drain electrodes.

3.2 Dry transfer technique

In this section, I will discuss the techniques used to fabricate BP devices [15, 28,

53, 54]. BP is very sensitive to the air and moisture [55]. BP flakes should have no direct

contact with liquid, and be protected from the air during fabrication. Initial efforts in

solving this problem are to use PMMA [56] or Al2O3 [57] as a protective layer. Here, we

use a dry transfer technique [53] to encapsulate few-layer phosphorene (FLP) between two

hBN flakes, so FLP flakes never have direct contact with any liquid or the air. To avoid the

degradation of BP, all exfoliation and transferring steps are finished in a glove box with an

inert Ar atmosphere.
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Figure 3.5: False-color SEM image of a device with a suspended top gate (light blue) above
a suspended bilayer graphene (red), clamped on by source-drain electrodes (yellow) on
partially etched substrates (purple). Scale bar: 1 µm

3.2.1 Assembly of hBN/FLP/hBN stack

hBN has proved to be a very flat substrate [44]. The roughness of the surface

of a hBN flake is ∼ 100 pm when it is thicker than 15 nm, which is a factor of 3 times

smaller than that of SiO2. In addition, the absence of dangling bonds on the surface makes

hBN a perfect substrate for 2D membranes. Similar to graphene, bulk hBN crystal is a

layered material and can be exfoliated by scotch tape [3]. We can use thin hBN flakes to

encapsulate BP flakes to create sandwich hBN/FLP/hBN heterostructures. In addition to

serving as a protective layer, hBN is also a gate dielectric material owing to its large band

gap ∼ 5.2 eV and a dielectric constant ∼ 3.9 [44].

To fabricate hBN/FLP/hBN sandwich heterostructures using the dry transfer

technique, we first prepare a polydimethylsiloxane (PDMS) stamp [15,28,53,54]. We either

use commercial or home-mixed PDMS; in the latter case PDMS with different thicknesses
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can be made. We place PDMS directly onto a piece of microscope glass slide, and the

adhesion between them is very strong. Then we separately exfoliate FLP and hBN flakes

onto PDMS stamps with scotch tape. The trick here is to peel off the tape quickly from

PDMS, since otherwise there will be very few flakes left on PDMS. After depositing the 2D

crystals onto PMDS, the PDMS surface is inspected under an optical microscope. Fig. 3.6

shows the optical images of BP and hBN flakes. In the left panel, the FLP flake, indicated

by the red dashed circle, is ∼ 15–20 nm, and appears faint due to the transparency. The

middle panel displays a hBN flake on PDMS, which will be the top layer in the completed

stack.

Similarly, we exfoliate hBN flakes on Si/SiO2 (300 nm) substrates, followed by

thermal annealing in a mixture gas of H2/Ar in the furnace for 2.5 hours at 400 ◦C, and

at the flow rates of 0.53 sccm (H2) and 4.0 sccm (Ar), so as to remove the tape residues on

the surfaces of hBN flakes. Atomically smooth hBN flakes that are ∼ 10–30 nm thick are

selected to use in this project. The right panel of Fig. 3.6 displays a hBN flake on Si/SiO2

substrate, that forms the bottom layer in the completed stack. hBN flakes with blue color

under microscope are ∼ 15–30 nm thick.

Fig. 3.7 illustrates the steps of dry transfer. After exfoliating FLP on a PDMS

stamp that in turn rests on a glass slide, we invert the stamp, as shown in Fig. 3.7a. Then

the receiving substrate is placed on a transfer stage that can travel in X, Y and Z directions.

Slowly, we lower the stamp to the receiving substrate, and align the FLP flake on the PDMS

stamp with the hBN flake on the receiving substrate when the two flakes start to come into

contact. We lower the stamp very slowly to reduce bubbles, until they are in complete
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contact, then we start to raise the stamp up. It seems that the van der Waals force between

FLP and hBN is a little weaker than that between FLP and PDMS, so the yield of a single

transfer step is not 100%. The yield can be improved by slowly peeling off the FLP flake

from hBN flake, and repeating the transfer step if needed, though multiple repetitions tend

to produce bubbles at the FLP/hBN interface. We note that, due to the roughness and

the strain applied to soft PDMS surfaces during exfoliation, the surfaces of 2D flakes on

PDMS sometimes have ripples. Interestingly, after transferring these flakes onto bottom

hBN flakes resting on Si/SiO2 substrates, these ripples disappear.

After transferring the FLP flake from PDMS onto the hBN flake on SiO2, we then

invert the PDMS stamp with the hBN flake, and repeat the above transfer procedure to

bring hBN and FLP into contact. We find that the success yield of transferring hBN onto

FLP is 100%. An example of completed hBN/FLP/hBN stacks is shown in Fig. 3.7c, where

the green area is the hBN flake on SiO2 substrate, and at the bottom of the stack, the brown

area the FLP flake, and the pink area the top hBN flake transferred from PDMS. The entire

transfer procedure is performed without any resist or solvent in a glove box with an inert Ar

atmosphere, so as to avoid FLP degrading from the air or moisture during assembling. The

encapsulating hBN layers protect the FLP flakes from degradation during the subsequent

fabrication of electrodes.
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Figure 3.6: Optical images of BP and hBN flakes. From left to right: BP flake(red circle)
on PMDS; hBN flake on PDMS; hBN flake on Si/SiO2 substrates. Scale bar: 10 µm

Figure 3.7: Schematics of dry transfer process. (a) FLP flake (brown) on PDMS (yellow)
is lowered and put into contact with hBN (light blue) on SiO2 substrate (dark blue). (b)
hBN (light blue) on PDMS is put into contact with FLP/hBN stack on SiO2 substrate.
(c) Optical image of a completed hBN/FLP/hBN heterostructure. A FLP flake(brown) is
encapsulated between top hBN (green) and bottom hBN (purple).
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Figure 3.8: (a) Two layers of PMMA (red) are spun coated on top of hBN(light
blue)/FLP(brown)/hBN stack on SiO2 substrates (blue). (b) Open windows after EBL
and developing in MIBK. (c) Exposed top hBN is etch away completely in an ICP etcher.
FLP is partially etched. (d) Completed devices with deposited metal electrodes (yellow).
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3.2.2 Fabrication of surface contacts

After assembling the hBN/FLP/hBN stacks, no annealing or other procedures are

performed to clean the stacks. We firstly spin coat two layers of PMMA on the substrates

at the rate of 4000 rpm for 45 seconds, and each layer is baked at 180 ◦C for 10 minutes.

Then we define and metalize the alignment marks. Subsequently, we use the same recipe

to spin coat and bake another two layers of PMMA. Fig. 3.8 illustrates the process of

fabricating BP surface contacts. We use two layers of PMMA instead of MMA/PMMA

bilayer because MMA creates an undercut structure after developing in MIBK, and it will

expose larger area of stack than designed, rendering the subsequent plasma etching less

controllable. We then define the electrodes by EBL, followed by developing in MIBK for

65 seconds to create windows for the electrodes, as shown in Fig. 3.8b. We put the stack

into inductively coupled plasma (ICP) etcher, and etch the stack in SF6 plasma. The

pressure is 20 mTorr, and the RF/ICP generator powers are 30/300 W, respectively. We

note that hBN can be etched away easily, while FLP is more robust against SF6 plasma.

To ensure that the top hBN is completely removed, we take the chip out of ICP every few

seconds, depending on the thickness of top hBN flake, to check the extent of etching under

an optical microscope. For a hBN flake with a thickness of 15 nm, the total etching time is

∼ 10 seconds. For comparison, we also check the portion of top hBN flake that rests directly

on Si/SiO2 substrate. If this part of top hBN is etched away, we can be reasonably certain

that the top hBN is removed completely and FLP flake surface is exposed. As shown in Fig.

3.8c, the partial FLP surface is exposed after etching the top hBN away. We immediately

put the chip in the e-beam evaporator, so that the FLP surface is exposed to the air in less
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than one minute. We evaporate Cr/Au (10/80 nm) metal onto the chip, followed by the

lift-off procedure in acetone at room temperature. The schematic of a completed device is

shown in Fig. 3.8d.

3.3 Resist-free transfer technique

The development of the resist-free pickup technique [45] has improved the quality

of devices by orders of magnitude. The graphene flakes encapsulated between two hBN

layers are very clean, since during the fabrication, graphene flakes do not contact any resist

or solution. The main challenge is the bubbles’ formation at the graphene/hBN interfaces.

We use this pickup technique in tetralayer graphene project, which will be discussed in

chapter 5.

3.3.1 Assembly of hBN/graphene/hBN stacks

To fabricate hBN/graphene/hBN heterstructures, we start with exfoliating graphene

on Si/SiO2 substrates as described in section 3.1. The exfoliating and pre-cleaning of hBN

flakes on Si/SiO2 follow the same procedures described in section 3.2.1.

In the meantime, we place a PDMS stamp on a microscope glass slide, and then

spin coat a layer of poly-propylene carbonate (PPC) onto PDMS. The glass slide is then

inverted and attached to a home-built micromanipulator as shown Fig.3.9a. Then the

prepared glass slid and the hBN flake on Si/SiO2 substrate are aligned and put into contact

with each other by the micromanipulator. The Si/SiO2 substrate is then heated up to 40
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Figure 3.9: (a) A prepared microscope slide(grey) with PDMS (yellow) and PPC (brown)
is used to pick up a hBN flake (green) on Si/SiO2 substrate. (b) The hBN flake is used
to pick up a graphene flake (deep red) on Si/SiO2. (c) The hBN/graphene stack is trans-
ferred onto a hBN flake resting on Si/SiO2 substrate. (d) An optical image of a completed
hBN/graphene/hBN stack after removing the PPC in chloroform
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◦C. After reaching the desired temperature, the glass slide is lifted slowly. At this point,

the hBN flake will be picked up from the Si/SiO2 substrate and attached to PPC.

Then the process is repeated to pick up a chosen graphene flake on substrate, as

shown in Fig 3.9b. As discussed earlier, the main challenge of this technique is to reduce

the bubbles formed at the interfaces between layers. To reduce the number of bubbles, the

process of bringing hBN into contact with graphene needs to proceed as slowly as possible.

During my fabrication, the contact front line of hBN and graphene moves at the the rate

of ∼ 1 µm/min.

After picking up the graphene flake, the stack on glass slide is shown in Fig. 3.9c

with the graphene/hBN stack on PPC. The last step is to transfer the stack onto the

chosen hBN flake by repeating the above procedure, which should proceed slowly to reduce

the bubbles’ formation. Finally, the substrate is heated up to 90 ◦C, when PPC melts and

detaches from PDMS, leaving the whole hBN/graphene/hBN stack on Si/SiO2 substrate.

The chip is then put into chloroform to remove PPC. The optical image of a typical stack

is shown in Fig. 3.9d. The hBN/graphene/hBN stack is then annealed at 400 ◦C for 2.5

hours in H2 (0.53 sccm) and Ar (4 sccm) mixture. We note that the annealing process could

reduce the number of bubbles and make the stack more flat.

3.3.2 One-dimensional edge contact

Once encapsulated, the challenge is to make contact to the graphene sheets. One-

dimensional contact has been demonstrated to be a very stable and effective approach to

achieve high quality graphene devices [15,28,45,53,54].
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Figure 3.10: (a) A completed hBN(light blue)/G(deep red)/hBN stack on SiO2 substrate.
(b) The cross-sectional view of the stack in (a) (c) Two layers of PMMA (pink) are spun
coated on the chip. (d) The open window of Hall bar pattern after EBL and developing in
MIBK. (e) The stack is etched in ICP etcher with SF6 plasma. (f) The completed Hall bar
after removing the PMMA mask.

To fabricate hBN-encapsulated graphene devices, we first follow the same proce-

dures described in section 3.2 to define metalized alignment marks. Fig 3.10 shows the

process to fabricate the Hall bar geometry. Firstly, we spin coat two layers of PMMA, as

shown in Fig. 3.10b. Using EBL and developing in MIBK afterwards, we define a Hall

bar mask on the stack, as shown in Fig. 3.10d. Then we use the ICP etcher to etch away

the exposed portion of the stack with SF6 plasma, leaving a Hall bar geometry on the chip

(Fig. 3.10(e-f)). The RF and ICP generator powers are 30 W and 300 W, respectively. The

etching time is ∼ 10 seconds under the pressure of 20 mTorr. Etching time needs to be

adjusted according to the thickness of the stack. Finally, we put the chip in warm acetone

(65 ◦C) to remove the PMMA layers.
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Figure 3.11: (a-c) Two layer so PMMA(pink) are spun coated on the chip. (b) The edges
of the Hall bar are exposed by EBL and developing in MIBK. (c) Metal electrodes (yellow)
are deposited onto the Hall bar edges. (d) Schematic of a Hall bar device with electrodes.

Figure 3.12: (a) A Al2O3 layer(green) is deposited on top of the hBN(light
blue)/graphene(deep red)/hBN stack via e-beam evaporator. (b) The top gate metals are
deposited on Al2O3
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Fig. 3.11 shows the process of making one-dimensional edge contacts to hBN/graphene/hBN

heterostructures. After fabricating the Hall bar geometry, we spin coat two layers of PMMA,

as shown in Fig. 3.11a. Then, as shown in Fig. 3.11b, we use EBL to expose the edges

of the Hall bar terminals. We note that a weak O2 plasma treatment before metalization

can improve the contact of devices. We put the chip in ICP, and treat the stack with O2

plasma with RF generator power to be 30 W and ICP generator power to be 0 for ∼ 10

seconds. We immediately deposit Cr/Au with thickness of 10/80 nm onto the stack with

e-beam evaporator. Finally, as shown in Fig. 3.12, we repeat similar procedures to deposit

an insulating layer of 50 nm Al2O3 on top of the stack with electrodes, followed by the

deposition of top gate metals Cr/Au (10/100 nm). The final device structure is shown in

Fig. 3.12.
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Chapter 4

Energy Gaps and Layer

Polarization of Integer and

Fractional Quantum Hall States in

Bilayer Graphene

Mono- and few-layer graphene are unique two dimensional electron gas (2DEG)

systems with compelling electronic properties, such as chiral charge carriers and high charge

mobility, and have proved to be fascinating platforms for the study of the quantum Hall

(QH) physics [7,42,58,59]. For Bernal- or AB-stacked bilayer graphene (BLG), the orbital,

spin and valley degrees of freedom give rise to the 8-fold degeneracy in the lowest Landau

level (LL) [32, 42, 60, 61], which can be broken by electronic interactions and/or single-

particle perturbations, leading to the QH states at intermediate integer filling factors. As
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discussed in chapter 2, at zero magnetic field B = 0, a perpendicular electric field E⊥ breaks

the inversion symmetry of BLG, inducing a gap in BLG’s band structure [51,52,60,62–73];

in the QH regime, the layer and valley indices are equivalent in the lowest LL, thus E⊥

provides an experimental “knob” for selectively breaking the layer/valley symmetry, and

inducing phase transitions among different ground states.

In this chapter, I will discuss transport measurements on high quality dual-gated

suspended BLG devices with controlled layer polarization. Similar to the two phases in

the well-studied QH state at filling factor ν = 2 [71, 74–83], via transport spectroscopy

tool [72, 83], we observe two distinct phases of the QH state at ν = 1: a layer polarized

state that has a larger energy gap and is stabilized by high electric field, and an interlayer

coherent state with a smaller gap that is stabilized by large magnetic field. At much higher

B field, we observe the ν = 2/3 fractional QH state, which is only resolved when E⊥

exceeds a critical value E⊥c. A feature at ν = 1/2 is also only observed at finite E⊥. These

results presented in this chapter highlight the importance of controlling layer polarization

in understanding the interplay among quadratic band touching, spin-valley symmetry, and

Coulomb interactions in the unusual QH system of BLG.

4.1 Device fabrication and characterization

We use the technique detailed in chapter 3 to fabricate dual-gated suspended BLG

devices. A scanning electron microscope (SEM) image of such a device is shown in Fig.

4.1a. Each device typically has length 1.3 µm and width 1 µm. Two-terminal differential
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Figure 4.1: (a) A false-color SEM image of a typical device. (b) Two-terminal conductance
as a function of n and E⊥ at B = 0 T.

conductance G of the two devices are measured using the standard lock-in technique at T

= 300 mK.

In dual-gated suspended devices, we are able to independently tune both charge

carrier density n and electric field E⊥ by applying top gate voltages (Vtg) and back gate

voltages (Vbg)

n = (CbgVbg + CtgVtg)/e− n0, E⊥ = (CbgVbg − CtgVtg)/2ε0 − E⊥0 (4.1)

where Ctg and Cbg are the capacitance per unit area of top gate and back gate, respec-

tively, n0 and E⊥0 the residue charge carrier density and induced displacement field due to

disorders, and ε0 the permittivity of vacuum.

Fig. 4.1b displays the two-terminal differential conductance G of our devices as

a function of n and E⊥ at magnetic field B = 0 T. From the gate voltages at which the

global charge neutrality point (CNP) appears, the impurity concentration is estimated to

be < 1.5× 1010 cm−2. At n = 0, G is 90 µS at E⊥ = 0 and decreases symmetrically with
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E⊥ of either polarity (Fig. 4.1 b), indicating the opening of a band gap due to the broken

inversion symmetry [72]. We note that the very symmetric behavior of G with respect to

E⊥ suggests the absence of any inadvertently induced electric field (such as that arising

from charge impurities).

We focus on transport of two BLG devices with field effect mobilities 12,000 and

23,000 cm2/Vs, and quantum mobilities 30,000 and 40,000 cm2/Vs, respectivly. Without

symmetry breaking, the Hall conductivity of BLG is expected to be quantized at ±4, ±8,

±12 . . . e2/h, where e is electron charge and h Planck’s constant. Fig. 4.2a displays the

LL fan diagram G(n,B) at E⊥ = 0 for B = 0 to 4 T. LLs up to N = 5 with properly

quantized plateaus are observed (Fig. 4.2b) at B < 2 T, attesting to the high quality of

the device. However, no symmetry-broken QH states at -4 < ν < 4 are observed below 6

T. Interestingly, the ν = 6 state is resolved at E⊥ = 0 prior to those of lower LLs, contrary

to one’s naive expectation. Its resolution may arise from disorder or suggest modified

symmetry-breaking processes at higher LLs and warrants further studies.

4.2 Two distinct phases of the ν = 1 state

We first focus on the ν = 1 state. Fig. 4.3a plots G(ν,E⊥) at B = 29 T for device

1. Even at this high field, the ν = 1 state is not resolved at E⊥ = 0 even at B = 29 T, but

becomes fully resolved at larger E⊥ (Fig. 4.3b). G(E⊥) displays a sharp transition — from

2.5 e2/h near E⊥ = 0, it drops abruptly to ∼ 1 e2/h when |E⊥| >∼ 10 mV/nm (Fig. 4.3c).

In fact, at E⊥ = 36 mV/nm, this state (and other symmetry-broken states) is resolved at
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Figure 4.2: (a) Landau Fan diagram of dG/dn(B,n) between B = 0 T and 4 T. Arrows
and numbers indicate filling factors. (b) G(n) line traces at B = 1.5 T, 2 T, 3 T and 4 T,
respectively.

Figure 4.3: (a-c). Data from device 1 at B = 29 T: G(E⊥, ν), G(ν) line traces at E⊥ = 0
(blue) and 36 mV/nm (red), and G(E⊥) line trace along ν = 1 (green). (d-f). Data from
device 2 at B = 28 T: G(E⊥, ν), G(ν) line traces at E⊥ = 0 (blue) and 20 mV/nm (red),
G(E⊥) line trace along ν = 1 (green).
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B as low as 3.8 T, consistent with prior reports [76], thus suggesting its layer polarization

in character [84–86].

Strikingly, for device 2 with higher mobility, at B = 28 T, the ν = 1 state is

resolved at both zero and finite E⊥ (Fig. 4.3d-f). Two regions with G ∼ 1 e2/h are visible,

connected by an abrupt transition as E⊥ is varied (Fig. 4.3e-f). Its resolution at E⊥ =

0 is unexpected, and points to the formation of a hitherto unobserved ν = 1 state that is

layer balanced. Our observations thus suggest the existence of two distinct phases at ν =

1: phase I is layer balanced, and appears at large B and near E⊥ = 0; phase II is layer

polarized, as it is resolved at relatively small B, provided that E⊥ exceeds certain critical

value. The quantization of phase II is better than that of phase I, as seen in Fig. 4.3f.

We note that the ν = 1 states observed in previous works almost exclusively correspond to

phase II, whereas phase I has not been reported before.

To explore these two distinct phases, we measure the scaling of their LL gaps on B

by using the source-drain bias V as a spectroscopic tool [72,83], which has been applied to

measuring the gaps of the single particle ν = 4 state [72] and the two competing correlated

ν = 2 states in BLG [83]. Fig. 4.4a plots G(V,E⊥) for device 2. The bright white/brown

area near E⊥ = 0 corresponds to the layer-balanced phase I, which abruptly gives way to

the blue regions at larger |E⊥| that corresponds to the layer-polarized phase II. The line

traces G(V ) at E⊥ = 0 and -20 mV/nm are shown in Fig. 4.4b. Both display conductance

valleys, yet their widths differ considerably. The LL gaps are extracted by measuring the

full width at half maximum (FWHM) of the valley, which is fitted to a Gaussian function.

The resultant values are shown in Fig. 4.4c as functions of B. For the layer polarized phase
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Figure 4.4: (a) G(V,E⊥) of Device 2 at B = 20 T. (b) G(V ) line traces at E⊥ = 0 and
E⊥ = -20 mV/nm at 23 T. (c) Measured LL gap 4(B) at E⊥ = 0 (blue) and E⊥ = -20
mV/nm and -40 mV/nm (red) respectively. (d). Schematics of electronic configurations of
the different ν = 1 phases. T: top layer; B: Bottom layer. S (AS): their symmetric (anti-
symmetric) combination. The numbers 0 and 1 are the orbital indices. The solid (dotted)
lines represent occupied (empty) levels.
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II, the LL gap scales linearly with B as 4II(B) ∼ 1.6 meV/T, consistent with a previous

work [78]. Rather unexpectedly, it appears that 4II has little or no dependence on E⊥, as

data at E⊥ = -20 and -40 mV/nm yield almost identical results. In contrast, the LL gap of

phase I at E⊥ = 0 is at least one order of magnitude smaller, though it also scales linearly

with B as 4I(B) ∼ 0.1 meV/T.

Our experiments provide the first measurement of the LL gap for the ν = 1 state

with controlled E⊥. The layer balanced phase I is observed here for the first time, and is most

likely a coherent linear combination of the top and bottom layers, or equivalently, K and

K’ valleys, since it is stable at E⊥ = 0. Phase II is only resolved for E⊥ > E⊥c, which is ∼

15 mV/nm at B = 20 T, and is evidently layer polarized. Phase II is likely the one observed

in singly-gated devices [76,78] (with the possible exception of the low field data in ref. [75]).

Both phases at ν = 1 are interactions induced QH ferromagnetic states [78, 80, 81, 87], and

correspond to filling one of the two levels in an orbital doublet (LL index N = 0,1) that

has the same spin-valley index. They are energetically favored by gaining exchange energies

that approximately scale as e2/l2B ∼ B for screened Coulomb interactions. More exchange

energies are gained when a LL is layer polarized, as the intra-layer exchange is generally

larger than the inter-layer exchange. These two features qualitatively explain the observed

linear B dependence of 4I and 4II , their relative magnitudes 4I < 4II , and the better

quantization of phase II.

We now discuss the microscopic nature of the two phases at ν = 1. In the lowest

LL, while the orbital degeneracy must be broken, the relative order and magnitude of

polarizing the real spin and the layer/valley pseudospin characterize the corresponding
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phase. Phase I that appears at large B and vanishing E⊥ can be uniquely determined [86]

(Fig. 4.4d, upper panel); the real spin polarization is maximized whereas for each occupied

LL the pseudospin is layer/valley symmetric or antisymmetric. On the other hand, there

are two possible candidates for phase II [76, 84, 86]. In the first scenario depicted as Phase

II-a, the pseudospin may be maximized first because of the presence of large E⊥, followed

by the maximization of real spin in the last occupied N = 0 LL. Alternatively, in the

second scenario of Phase II-b, which similar to that proposed in ref. [76], the real spin may

be maximized first because of the presence of large B, followed by the maximization of

pseudospin in the last filled N = 0 LL. Both candidates of phase II are pseudospin and

spin polarized, albeit the former has a larger pseudospin polarization while the latter has

a larger real spin polarization. Further experiments will be necessary to determine which

candidate corresponds to the observed phase II and to explore the possible quantum phase

transition between the two candidates.

The observation of the two phases, one appearing at small E⊥ and large B and

one resolved at small B and stabilized by large E⊥, is reminiscent of the two competing

phases of the ν = 2 state [83], though with one important distinction: the gap of the layer

polarized ν = 2 state extrapolates a finite intercept at B = 0, whereas both phases of the ν

= 1 state appear to extrapolate vanishing gaps at B = 0. The former feature is consistent

with the fact that the layer polarized ν = 2 state survives to anomalously weak B and

adiabatically connects to the spontaneous QH state in BLG at B = 0 with the same Hall

conductivity [88] . In contrast, similar correspondence is absent for the ν = 1 state, which

requires a splitting between the N = 0 and N = 1 LLs and thus has no counterpart in
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the B = 0 limit. Therefore, both phases of the ν = 1 state are only resolved above their

corresponding critical magnetic fields.

4.3 Fractional ν = 2/3 state

Figure 4.5: (a) G(B, ν) of device 1 at E⊥ = 35 mV/nm. (b) G(B, ν) of device 2 with back
gate only. (c) Line traces G(n) at E⊥ = 35 mV/nm and B = 21 T, 24 T, 27 T, 31 T. (d)
Plotted G(ν) of the line traces in figure (c) The dot lines in figure (c) and (d) are the G data
of device 1 at E⊥ = 0 and B = 29 T. (e) G(V,E⊥) of device 2 at B = 21 T and ν = 2/3. (f)
Line trace of G(E⊥) at V = 0. (g) Line traces of G(V ) at E⊥ = 17 mV/nm (blue) and E⊥
= 25 mV/nm (brown). (h) LL gap of ν = 2/3 state versus B field. Symbols: data. Blue
dot line and brown solid lines are fits using linear B and

√
B dependences, respectively.

We now turn to the fractional QH state at ν = 2/3. Similar to the ν = 1 state, it is

strongly dependent on E⊥. At E⊥ = 0, it is unresolved even at the highest attainable field

B = 31 T. However, it is resolved in the presence of an interlayer potential that breaks the

inversion symmetry. Fig. 4.5a plots the differentiated conductance dG/dn(B, ν) of device

1 at E⊥ = 35 mV/nm. The QH plateaus appear as vertical white strips centered at various

given ν. Apart from the complete lifting of the 8-fold degeneracy of the lowest LL, features

between ν = 0 and 1 are also observed – in particular, thin vertical strips at ν = 1/2 and
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2/3 are evident. These features are more clearly visible in Fig. 4.5 c, which displays the line

traces G(n) curves at B = 21, 24, 27 and 31 T, where a small plateau at ν = 2/3 appears.

These curves collapse into a single curve when plotted as G(ν) (Fig. 4.5d). This is in sharp

contrast to the line trace at E⊥ = 0 (Fig. 4.5c-d, dotted line), in which only ν = 0 and

ν = 2 plateaus are resolved (for device 1). We note that the conductance is not perfectly

quantized, presumably due to the non-zero σxx signals (common for FQH states with small

charge gaps) that are included in the two-terminal measurements.

A similar data set exhibiting the ν = 2/3 QH state in device 2 is shown in Fig.

4.5b, which plots dG/dVbg(B, ν) for B = 24 to 31 T. Here only the back gate is engaged;

thus at finite densities, partial screening by electrons on the bottom layer leads to charge

imbalance and hence finite interlayer E⊥, which estimated to be ∼ 35 - 45 mV/nm for the

measurement. The observation of a clear FQH state at ν = 2/3 is consistent with data from

device 1, namely, the ν = 2/3 state is only resolved at finite E⊥, and in agreement with a

previous work [76].

To further explore the field dependence of the ν = 2/3 fractional QH state, we

measure G(V,E⊥) at B = 21 T and ν = 2/3 for device 1 (Fig. 4.5 e). At E⊥ = 0, G ∼

2 e2/h, indicating that neither ν = 1 nor ν = 2/3 states are resolved, as discussed above;

as E⊥ exceeds a critical value (E⊥c ∼ 17 mV/nm), G drops abruptly to ∼ 0.7 e2/h (Fig.

4.5f). Such a dramatic transition in G induced by E⊥ is rather similar to that of the ν =

1 state, though their critical E⊥ values differ. We note that a similar E⊥induced transition

has been observed [76]; what sets our work apart is that, due to the higher resolution of our

data, what appeared as a single transition point at E⊥ = 0 in ref. [76] is resolved to be a
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broadened plateau with well-defined E⊥c values, hence clarifying the necessity to support

the ν = 2/3 state.

At ν = 2/3, for E⊥ below (exceeds) E⊥c, the G(V ) curves display zero bias con-

ductance peaks (valleys), indicating that the fractional QH state is unresolved (resolved)

(Fig. 4.5 g). The LL gap 42/3 is extracted by measuring the FWHM of the resolved

conductance valley at different B and constant E⊥ = 35 mV/nm. The resultant values,

as plotted in Fig. 4.5h, are consistent with linear B dependence, with the best-fit equa-

tion, 4(B) = −2.03 + 0.16B[T ] meV. However, due to the limited range in B, a
√
B

dependence cannot be definitively ruled out, where the data points may also be fitted to

4(B) = −6.0 + 1.6
√

(B[T ]) meV; other functional dependence may also be possible.

In the standard picture, the FQH states arise from the quench of kinetic energy

by a strong magnetic field and the presence of electron-electron interactions. The negative

intercepts at B=0 reflects the former requirement. For long-range Coulomb interactions

the FQH gaps are expected to scale with e2/lB ∼
√
B. The possible linear B dependence

is related to the strong screening of Coulomb interactions that yields similar gaps scaling

with e2/l2B ∼ B of the integer symmetry-broken QH states in BLG. For instance, similar

linear B dependence are observed above for both phases of the ν = 2 state. Future experi-

ments in higher-mobility samples at larger fields will be necessary to confirm whether there

exist multiple phases at ν = 2/3 [76] and whether the composite fermions undergo similar

transitions in real spin and pseudospin polarizations to those electrons in the N = 0 LL of

the ν = 1 state.
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4.4 Compararation with previous results

Table 4.1: Experimentally measured LL gaps 41 and 42/3 from this and other works.

Reference Device 4ν=1 4ν=2/3

[75] Single gate on hBN 0.35 meV/T? 0.1 meV/T +

[79] Single gate, suspended 0.1 meV/T

[78] Dual gates on hBN, E⊥ uncontrolled 1.75 meV/T

This Work
Dual gates,
suspended

E⊥ = 0 0.1 meV/T (electron) unresolved
Finite E⊥ 1.64 meV/T 0.16 meV/T

? Estimated from Fig. 3B in Ref. [75], + Estimated from Fig. 3A (B=9T to 12T) in Ref. [75]

It is instructive to compare the measured gaps of the ν = 1 and ν = 2/3 QH states

with prior results [75,78], as summarized in Table 4.1. Prior measurements were performed

on singly-gated samples, in which any finite charge density induced by the gate produces

an electric field across the bilayer, due to partial screening by the layer that is closer to

the gate. Such inadvertent E⊥ scales linearly with charge density n; in the QH regime,

E⊥ (in units of mV/nm) is approximately ∼ 2.2Bν. Since a large B is usually required

to resolve the ν = 1 and 2/3 states, the inadvertently induced E⊥ in singly-gated devices

almost always exceeds the critical values E⊥c for states at both filling factors (∼ 10 – 20

mV/nm). In other words, singly-gated devices are almost always in phase II. As seen in

Table 4.1, our E⊥-controlled measurements of both the ν = 1 and the ν = 2/3 states at

finite E⊥ are in good agreement with the prior works on singly-gated devices.

An exception to the above scenario is ref. [75], which is able to resolve integer and

fractional QH states at relatively small B (4 T to 12 T) in singly-gated samples; here, at a

given filling factor, as B increase, n hence E⊥ also increases, and the integer and fractional

QH gaps likely undergo a transition between the layer coherent phase I (with a smaller gap)
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and layer polarized phase II (with a larger gap), thus giving rise to an apparent superlinear

dependence on B.

4.5 Possible ν = 1/2 state

Finally, we note that our data exhibit a tantalizing feature at ν = 1/2, which ap-

pears as a thin white band in Fig. 4.5b and a small kink in the line traces; similar to the ν =

2/3 state, it disappears at E⊥ = 0. Simply to compare their orbital nature, the ν = 1/2 state

in BLG is likely similar to the ν = 1/2 state in conventional GaAs/AlGaAs heterostruc-

tures, in sharp contrast to the observed ν = -1/2 state in BLG which might be described

by the non-Abelian Moore-Read state [77, 89]. However, in the case of GaAs/AlGaAs

heterostructures, the ν = 1/2 state is a Fermi liquid instead of a QH state. Since the

two-terminal geometry of our devices convolves longitudinal and transverse signals, we are

unable to conclusively determine whether a QH state is evident at ν = 1/2 or to relate the

observed dependence on E⊥ to a Fermi liquid. We note that a feature at ν = 1/2 state has

recently been observed in singly-gated devices using a transconductance fluctuation tech-

nique [90], though its nature was similarly undetermined. Further experimental studies will

be necessary to explore its dependence on E⊥ and to ascertain the nature of this intriguing

even-denominator state.

4.6 Conclusion

To summarize, in high mobility suspended BLG samples we observe two distinct

ν = 1 states and one ν = 2/3 state. At ν = 1, phase I is resolved at small E⊥ and large B,
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with a LL gap of 0.1 meV/T and possible interlayer coherence; phase II is resolved at weak

B and large E⊥ >∼ -10 mV/nm, with a much larger LL gap of 1.6 meV/T and at least

partial layer polarization. For the ν = 2/3 state, a similar dependence on E⊥ is observed,

though the state is only resolved for E⊥ >∼ 20 mV/nm, with a LL gap that rises from 1.2

to 2.8 meV as B increases from 20 to 30 T. Our data are consistent with prior results [75,78]

and can also account for the super-linear dependence of the LL gaps observed [75]
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Chapter 5

Trigonal Warping and Landau

Level Crossings in Boron Nitride

Encapsulated Bernal-stacked

Tetralayer Graphene

Few-layer graphene has proved to be a fascinating platform to study the quantum

Hall (QH) physics [7,8,42,58,59,61]. Among the possible stacking orders, Bernal- or ABA-

stacking is the most stable and most commonly found stacking in bulk graphite [34]. In

chapter 2, we introduced the theory underlying Bernal-stacked bilayer graphene (BLG), and

demonstrated that BLG has a massive parabolic energy dispersion. In chapter 4, we pre-

sented transport measurements in BLG with controlled layer polarization, and highlighted
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the importance of the interplay between layer polarization and symmetries (spin, valley and

orbital) to understand the unusual QH system of BLG.

How about thicker graphene? Trilayer graphene (TLG) also turns out to be ex-

ceedingly interesting. For instance, my colleagues Yongjin Lee et al have demonstrated the

presence of an interaction-induced gap in ABC-stacked TLG [91], and Petr Stepanov et al

have shown rich Landau level (LL) crossing patterns in ABA-stacked TLG [59]. Going one

step further, here we examine the properties of tetralayer graphene. As discussed in chapter

2, the band structure of Bernal-stacked tetralayer graphene can be decomposed into two

BLG-like bands with light and heavy effective masses, which are hybridized due to the next-

nearest-layer hopping terms [35]. Additionally, the hopping term γ3 gives rise to trigonal

warping, which is responsible for the unusual transport behaviors at zero magnetic field. In

the QH regime, the LLs of the two BLG-like bands give rise to rich crossing features and

quantum phases.

In this chapter, I will present our studies of the quantum transport of tetralayer

graphene. We observed similar results from four devices, and I will focus on the data set

from one device.

5.1 Device fabrication and characterization

Hexagonal boron nitride (hBN)-encapsulated tetralayer graphene sandwich het-

erostructures are fabricated using the pickup technique described in chapter 3. Thick (15-30

nm) hBN flakes and tetralayer graphene sheets are obtained by mechanical exfoliation from

bulk crystals. The number of layers of a graphene sheet is identified via the optical contrast
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Figure 5.1: (a) Schematic of devices and measurement setup. 50 nA ac source current,
provided by a SR830 lock-in amplifier, is injected from source to drain (grounded) electrodes.
Vxx measures the longitudinal voltage drop, and Vxy measures the transverse voltage drop.
Gate voltages Vtg and Vbg are applied by Keithley 2400 voltage source meters. (b) Schematic
of one-dimensional edge contacts.

under an optical microscope [3] and Raman spectroscopy; the latter is also used to deter-

mine the stacking order of the graphene sheets. Dry pickup transfer technique is applied to

assemble hBN/graphene/hBN sandwich heterostructures, followed by the standard e-beam

lithography to define the Hall bar geometry and e-beam evaporation to couple to Cr/Au

electrodes via one-dimensional edge contacts [45]. Finally, top gates consisting of 50 nm of

Al2O3 gate dielectric and Cr/Au (10/80 nm) are deposited. The degenerately doped silicon

substrates serve as back gates. The schematic of devices and measurement setup is shown

in Fig. 5.1a. Fig. 5.1b sketches the one-dimensional edge contact between the graphene

sheets and metal electrodes. To measure the devices, we inject a 50 nA ac source current at

17 Hz from the source electrode, while the drain is grounded. Two SR830 lock-in voltage

amplifiers are used to measure the longitudinal (Vxx) and transverse (Vxy) voltages. Two

Keithley 2400 voltage source meters are used to apply the top and back gate voltages. The
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Figure 5.2: (a) Measured Rxx(Vbg, Vtg) at zero magnetic field. Dashed lines with arrows
indicate the CNP (n = 0) and zero displacement field (D = 0). (b) Line trace Rxx(D) at
n = 0

devices are measured in a 3He cryostat with base temperature 260 mK and a 4He cryostat

with base temperature 1.5 K.

To characterize the device, we first measure the longitudinal resistance Rxx as a

function of top gate voltage (Vtg) and back gate voltage (Vtg) (Fig. 5.2a). The black dashed

arrows illustrate the lines of n = 0 andD = 0. Fig. 5.2b shows the evolution of the resistance

at the charge neutrality point (CNP) along the displacement field. At n=0, Rxx(D) is non-

monotonic: it firstly increases symmetrically with positive and negative displacement field,

indicating the opening of a band gap due to the broken inversion symmetry, and then Rxx

starts to decrease for larger D >∼ ±170 mV/nm. We also note that the very symmetric

behavior of Rxx with respect to D = 0 suggests the absence of inadvertently induced D0,

hence indicating low disorder induced charge carrier density n0.
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Figure 5.3: Measured Rxx(n,D) and line traces. (a) Measured Rxx(n,D) in kΩ. Two
diamond-shaped pockets are indicated by two black arrows. Solid blue and red lines indicate
the line traces plotted in (c). (b) Line trace Rxx(n) at D=0. Three peaks are labeled as X,
Y and Z. The CNP is the local resistance minimum between peaks X and Y . (c) Rxx(n)
line traces at D = 45 (red) and 230 mV/nm (blue), respectively.
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5.2 Unusual transport behaviors at B = 0

To have a better view of the data at zero B field, Fig. 5.2a can be replotted as

a function of charge carrier density n and displacement field D, as shown in Fig. 5.3a.

We observe several unexpected features. Firstly, unlike mono-, bi- and tri-layer graphene,

which display sharp resistance peaks at the CNP, Rxx(n) of tetralayer graphene displays

three peaks, which are labeled as X, Y and Z from left to right, as shown in Fig. 5.3b. Peak

X is the most pronounced peak, and Z is present as a small shoulder. Surprisingly, none of

these three peaks is located at the CNP. As shown in Fig. 5.3b, the CNP in fact corresponds

to a local resistance minimum located between peaks X and Y , as indicated by the black

arrow, as determined from the Landau fan in finite magnetic field (see section 5.3). This

identification of the CNP with a local resistance minimum is very different from that in

thinner graphene devices [7,59,61], where CNP corresponds to a resistance peak. Secondly,

near the origin (i.e. close to n = D = 0), there are two adjacent diamond-shaped pockets,

as indicated by the two black arrows in Fig. 5.3a. Thirdly, as indicated in Fig. 5.3a, peak

X is split into features X1 and X2, and peak Z into Z1 and Z2 at larger displacement field.

To make the evolutions more clear, we plot Rxx(n) line traces at D = 45 mV/nm (red),

where four peaks are present due to the splitting of peak Z, and at D = 230 mV/nm (blue),

where resistance is sharply peaked at the CNP due to the opening of a band gap, and two

new shoulders X1 and X2 emerge from the splitting of peak X, as shown in Fig. 5.3c.

To understande these features, we calculate the band structures of tetralayer

graphene using the tight binding method detailed in chapter 2. As shown in Fig. 5.4,

the band structure of tetralayer graphene can be decomposed into two BLG-like bands with
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Figure 5.4: Calculated band structures of tetralayer graphene around the K point along
ky=0 at D=0 (left panel) and D=40 mV/nm (right panel). Inset: surface plot of the band
structures at D=0. Trigonal warping at the K point is present. Dashed lines and letters
correspond to the Fermi levels of the labeled peaks in Fig. 5.3b.
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Figure 5.5: Fermi surfaces at different energies at D=0. (a) - (f) EF = -40 meV, εX (-10
meV), CNP (-3.9 meV), εY (5 meV), εZ (10.7 meV), 40 meV, respectively.

light and heavy effective masses. At finite D (Fig. 5.4 right panel), the two BLG-like bands

move apart. In particular, the bottom of the light-mass conduction band moves up, whereas

the top of the light-mass valance band moves down in energy, as indicated by the points

X and Z in Fig. 5.4. Alignment of the Fermi level with these band edges, which host

electrons with very low velocities, provides additional channels for scattering, thus leads to

the resistance peaks at the corresponding charge densities.

Moreover, we note that trigonal warping is present in the band structure of

tetralayer graphene. The Fermi surfaces at different Fermi energy levels are displayed in

Fig. 5.5 (a-f). We attribute the peak X and peak Z in Fig. 5.2b to the Fermi level aligning

with εX and εZ , respectively, which correspond to the Fermi surfaces shown in Fig. 5.5b

and Fig. 5.5e. At these two levels, the topologies of the Fermi surfaces change from singly

connected triangles to be elliptical pockets with a hole in the center; such a change in the
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Figure 5.6: (a) Calculated resistivity ρ(n,D) by the Boltzmann transport theory. The
inter-band scattering is ignored. (b) Line trace ρ(n) at D=0 from (a)

topology of Fermi surfaces is referred to as Lifshitz transitions [92], and may occur as a

function of density and strain. This explanation can be confirmed by the features X1, X2,

Z1 and Z2 (Fig. 5.3a) that originate from the splittings of the peaks X and Z at finite

D, which in turn arise from the lifting of the accidental degeneracies of εX and εZ by D,

respectively.

Peak Y can be attributed to the Fermi level aligning with the energy level εY ,

when the Lifshitz transition occurs again, as shown in Fig. 5.5d. By using the Boltzmann

transport theory, we are able to calculate the conductivity of tetralayer graphene, hence the

resistivity as a function of charge density and displacement field, as shown in Fig. 5.6a. In

the simulation, the features X1, X2, Z1 and Z2 are very well reproduced. However, only

one pronounced peak is produced at n = 0 at D = 0, as shown in Fig. 5.6b, suggesting

that additional effects are needed to account for these features.
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Figure 5.7: Calculated ρ(n,D) with the inter-band scattering included.

Fig. 5.7 displays the simulation with the inter-band scattering included, which

produces a local resistivity minimum, suggesting that the inter-band scattering may play

an important role in the transport of tetralayer graphene.

5.3 Landau level crossings in tetralayer graphene

For a 2DEG system in a magnetic field that is perpendicular to the plane, electrons’

cyclotron orbitals coalesce into LLs. Fig. 5.8 plots the measured longitudinal resistance

Rxx(n,B) at D=0. All integer QH states at filling factor -8 < ν < 8 as well as the single-

particle QH states at -40 < ν < 40 are resolved up to 12 T, indicating the high quality of

devices. The filling factors of single-particle QH states jump by 4 as a result of four-fold

(valley and spin) degeneracy of each LL. This Landau phase diagram can be construed as
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Figure 5.8: Measured Rxx(n,B) in kΩ at D=0. Numbers indicate the filling factors. Red
and black dotted lines are for eye guide of the Landau fan diagrams of light- and heavy-mass
BLG-like bands, respectively.

an overlap of two BLG-like bands, fanning out from two different origins, as shown by the

red (light mass) and black (heavy mass) dotted lines. This overlap is straightforward to

understand since the band structure of tetralayer graphene can be decomposed into two

BLG-like bands with different effective masses that are relatively shifted to each other in

energy, corresponding to the shift of the fan origins. The heavy-mass diagram fans out from

(n, B) = (0, 0), while the light-mass fans out from (n, B) = (0.78× 1012 cm−2, 0).

To quantitatively account for the Landau fan diagram, we calculate tetarlayer

graphene’s LL spectrum using the effective mass model, assuming spinless particles, as

shown in Fig. 5.9. The fitting parameters are chosen to match the experimental LL crossing

points, and are as follows: γ0 = 3 eV, γ1 = 0.39 eV, γ3 = 0.3 eV, γ4 = 0.04 eV, γ2 = -16

meV, γ5 = 60 meV, δAB = 40.8 meV, δ = 2 meV. The γ’s are Slonczewski-Weiss-McClure

parameters of graphite [35, 93], δAB the potential difference between dimer-site and non-
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Figure 5.9: Calculated LL spectrum using the effective mass model. LLs from two valleys
overlap on each other. The balck dotted line indicate the lowest LLs of two BLG-like bands

dimer-site atoms, and δ the potential difference between the two middle layers and the

outside layers. To keep the spatial inversion symmetry, exactly the same δ’s are applied

to the two middle layers. We introduce a cutoff in LL index N = 100, which is enough to

obtain the features at low energy regime. As expected, due to the inversion symmetry of

the lattice, the valley degeneracy of each LL is not broken. In Fig. 5.9, the LLs are labeled

as (b or B, N±), where b and B represent the BLG-like bands with light and heavy effective

masses, respectively. N± denotes the LL indices. The orbital degeneracies of zero-LLs of

two BLG-like bands are weakly split by remote hopping parameters, labeled as (b or B, 0

or -1), with the splitting proportional to B field, as indicated by the black dotted lines in

Fig. 5.9. This calculated LL spectrum can explain the experimental data (Fig. 5.8) very

well by comparing the LL crossing points’ positions. Therefore, the two BLG-like bands in

tetralayer graphene’s band structures give rise to the rich crossing features.
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Figure 5.10: (a) Measured Rxx(n,B) at D = 170 mV/nm. (b) Calculated LL spectrum at
4 = 45 meV. Red solid and blue dashed lines indicate the LLs from the K and K’ points,
respectively. Yellow and green dotted rings indicate two crossing features that match with
each other in experimental and calculated results. Numbers indicate the filling factors.

As discussed above, the band structure of tetralayer graphene can be tuned by

applying a perpendicular displacement field D that breaks the valley symmetry. In the

QH regime, the LL spectrum and the symmetries of the QH states can be tuned by D as

well. To study the effects of D in the QH regime, we measure Rxx(n,B) at large D. One

representative data set is shown in Fig. 5.10a taken at D = 170 mV/nm. Comparing to

the data at D = 0, one salient difference is the emergence of the crossing feature indicated

by the green dotted ring in Fig. 5.10a, which is absent at D = 0. The crossing feature

indicated by the yellow dotted ring in Fig. 5.10a is also present at D = 0 in Fig. 5.8, and

can be attributed to the crossings between the zero-LLs of the light-mass band, (b, 0), (b,

-1), and the first-LL of the heavy-mass band, (B, 1+). Moreover, the QH states at ν = 2,

6, and 10 are resolved at lower B field than that at D=0, indicating the presence of large

LL gaps.
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To understand these features, we calculate the LL spectrum with an interlayer

potential 4 involved. The potentials applied to each layer from the top to the bottom

are +4/2, +4/6, −4/6, −4/2 so that the potential differences between two adjacent

layers are 4/3. The calculated results are plotted in Fig. 5.10b, with the corresponding

features indicated by green and yellow dotted rings, respectively, and the filling factors by

numbers. As shown in Fig. 5.10b, red solid and blue dashed lines indicate the LLs from the

K and K’ valleys, respectively, which are split by D. The features indicated by the green

dotted ring and the yellow dotted ring can be attributed to the crossings of the first-LL of

the heavy-mass band with the zero-LLs of the light-mass band from the K’ and K valleys,

respectively. We also note that the experimental data at D = 170 mV/nm is best accounted

for by applying 4 = 45 meV, which corresponds to an effective displacement field ∼ 45

mV/nm, considering the thickness of tetralayer graphene; the difference between these two

values is attributed to screening that reduces the effective interlayer potential.

5.4 Conclusion

As shown by the above results, the electronic transport properties of Bernal-

stacked tetralayer graphene at zero and high magnetic fields are non-trivial. At B=0,

Rxx(n) displays three peaks at D = 0 due to the Lifshitz transitions, which can be tuned

by the displacement field. Moreover, we suggest that the inter-band scattering may play

an important role in the transport of tetralayer graphene. At high magnetic field, the

rich LL crossings between the two BLG-like bands are observed, and can be tuned by the

perpendicular displacement field as well. By comparing the experimental and calculated
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data, we are able to obtain the hopping parameters. Our results provide insight into the

understanding of the band structure of tetralayer graphene, and the interplay among the

competing symmetries and displacement and magnetic fields.
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Chapter 6

Weak Localization and

Electron-electron Interactions in

Few-layer Black Phosphorus

Devices

Graphene’s massless linear energy dispersion provides graphene a number of unique

material properties, such as high optical transparency [12], high mechanical strength [13]

and high thermal conductivity [14], which make graphene an ideal platform for optical,

scanned probe, mechanical and thermal measurements and applications. However, the

gapless band structure of graphene is a two-edged sword — it endows graphene with high

mobility but also makes it unsuitable for direct digital applications. Therefore, researchers

soon started to explore other 2-dimensional (2D) semiconductors. One of the latest additions
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to the family of 2D materials is phosphorene, which is single- or few- atomic layers of black

phosphorus (BP) [15]. Few-layer phosphorene (FLP) has been a highly attractive candidate

for electronics, thermal and optoelectronics applications, as well as a model system for

interesting physics such as anisotropic quantum Hall effect [25] due to its high mobility [17],

direct band gap that is tunable by thickness or strain [17–23], and large in-plane anisotropy

[23,24]. Unlike graphene, single layer phosphorene is a semiconductor with a direct bandgap

∼ 2 eV; with each added layer, the gap is reduced, eventually reaching ∼ 0.3 eV [21] for

bulk BP.

In this chapter, I will present magnetotransport studies on hexagonal boron nitride

(hBN)-encapsulated FLP devices. Section 6.1 describes the fabrication and characterization

of the devices. Section 6.2 presents the weak localization on FLP in low magnetic field,

from which we extract the electron dephasing lengths. In section 6.3 and 6.4, we study the

dependences of dephasing lengths on temperature and charge density, respectively.

6.1 Device fabrication and charaterization

To fabricate hBN-encapsulated FLP devices, we use the dry transfer technique

detailed in chapter 3 . The optical image of a typical device is shown in Figure 6.1a. The

devices are measured in a pumped He4 cryostat with a variable temperature insert. Here

we present transport data from two different devices that are ∼ 20 nm thick, with mobility

up to 1700 cm2/Vs.

FLP has a thickness-dependent band gap [23]. For FLP that are more than 5

layers, the gap is similar to that of bulk, ∼ 0.3 eV [23]. Fig. 6.1b displays the two-terminal
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Figure 6.1: (a) An optical image of a typical hBN-encapsulated FLP device with hall bar
geometry and a top gate. Scale bar: 10 µm. (b) Two-terminal conductivity as a function
of back gate voltage of device A at T = 0.3 K. (c) Four-terminal conductivity as function
of back gate voltage of device B at T = 1.5 K. (d) The conductivity of device B as function
of temperature taken at Vbg = -35 V. The dashed line is a fit to equation 6.1.
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conductivity σ of device A as a function of applied gate voltage (Vg) at T = 300 mK, and

Fig. 6.1c displays the four-terminal conductivity of device B at T = 1.5 K. σ ∼ 0 for both

devices, when the Fermi level is within the band gap. For Vg < -15V, σ increases linearly

(device A) or superlinearly (device B) with Vg, indicating hole mobility of ∼ 500 cm2/Vs

and 1700 cm2/Vs, respectively. Conductivity of electron-doped regime is significantly lower,

which is likely due to the formation of Schottky barriers at electrode-BP interfaces. Hence

we focus on transport properties in the p-doped regime.

In the highly p-doped regime, device conductivity significantly exceeds σq, where

σq = e2/h ∼ 39 µS is the conductance quantum, thus the device is in the metallic regime

(here h is Planck’s constant, e the electron charge). However, σ decreases slightly with T.

This is a signature of electron interactions in disordered 2D thin films. In fact, σ is expected

to exhibit a logarithmic dependence on T,

σ = σ0 + C
2e2

πh
ln(

T

T0
) (6.1)

where σ0 is the “intrinsic” metallic conductivity, T0 a characteristic temperature estimated

to be h̄/kBτ0, kB the Boltzmann’s constant, τ0 the electron scattering time, and C a dimen-

sionless constant that is of order unity depending on the scattering mechanism [94]. This

logarithmic dependence is borne out by experimental data from device B, shown as circles

in Fig. 6.1d. At charge density n ∼ −1.75 × 1016 m−2, σ0 ∼ 0.4 mS, and using effective

mass m? ∼ 0.26me [28] , τ0 is estimated from Drude model to be ∼0.21 ps, yielding T0 ∼

36 K. The dashed line is a fit to equation 6.1 with C ∼ 1.6 as the fitting parameter, in

agreement with theory.
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Figure 6.2: Weak localization data from device A. (a). Normalized conductivity 4σ in
units of e2/πh vs. carrier density and magnetic field. Note that below -0.38 × 10 12 cm−2

the device no longer displays the suppression of weak localization. This is attributed to the
device entering the insulating state. (b) Solid lines: line traces 4σ(B) at -1.8, -1, and -0.7
× 10 12 cm−2, respectively (top to bottom). Dotted lines: fits to the data using equation
6.2.

6.2 Weak localization in perpendicular B field

To further explore the inelastic scattering mechanism, we employ weak localization

(WL) measurements by applying a perpendicular magnetic field B. As detailed in chapter 2,

WL is the quantum correction to the classical conductivity of a diffusive system [36,37]. In

a 2D system, due to multiple inelastic scatterings, electrons in a closed trajectory interfere

constructively with the time-reversed path, resulting in enhanced backscattering and hence

lower conductivity. Application of a small B destroys the interference, thus conductivity

increases. WL has been widely applied to 2D systems for measuring the inelastic scattering

time, characterized by the dephasing time τψ. When the elastic scattering time is much

shorter than the inelastic scattering time, the change in magnetoconductance induced by B
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is given by [37,95]

4σ = σ(B)− σ(B = 0) = − e
2

πh
[ln(

Bψ
B

)−Ψ(
1

2
+
Bψ
B

)] (6.2)

where σ is the device conductivity, h Planck’s constant, e the electron charge, Ψ the

digamma function, Bψ = h̄
4eL2

ψ
the magnetic field required to destroy phase coherence.

Lψ =
√
Dτψ, and D is the diffusion coefficient.

Figure 6.2a displays the normalized conductivity 4σ in units of e2/(πh) (color) as

a function of n (vertical axis) and B (horizontal axis). As B is swept from -0.8 T to +0.8 T,

4σ displays positive magnetoconductivity with a minimum at B = 0 T, consistent with the

time reversal symmetry breaking of phase coherent back scattering. The magnitude of 4σ

is relatively large (> 1) when the device is highly doped, and small (< 0.1) when the Fermi

level is close to the band edge. Representative line traces 4σ(n) are shown as solid lines in

Fig. 6.2b, and the dashed lines are fits using equation 6.2. Satisfactory agreement between

the data and equation 6.2 are obtained. From the fitting parameter Bψ, we obtain Lψ ∼ 75

nm at n = −1.8× 1012 cm−2. Using D = h̄
4m∗

σ
σq
∼ 4.3× 10−4 m2/s, the inelastic scattering

time is estimated to be τψ ∼13 ps, which is two orders of magnitude longer than the elastic

scattering time τ0. This is consistent with the applicability condition of equation 6.2, and

establishes that charge transport in these FLP devices is diffusive but phase coherent over

tens of nanometers. Similar calculations yield that, at n = −1.0 and −0.7 × 1012cm−2,

Lψ ∼ 60 nm and 40 nm and τψ ∼ 8.4 ps and 3.7 ps, respectively.
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Figure 6.3: Temperature dependence of dephasing length of device B at different hole
densities. Dashed lines are fits to power-law dependence T−0.4
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6.3 Dependence of dephasing lengths on temperature

To explore the scattering mechanism, we examine the temperature dependence of

Lψ in device B. In general, the dephasing time τψ ∼ T−α, where the exponent α depends

on the scattering mechanisms. In particular, α ∼ 3 for electron-phonon scattering. On

the other hand, if electron-electron interaction is the dominant mechanism, two separate

processes may occur depending on the impurity density of the system [37, 96]—the first

involves direct scattering between electrons and large momentum transfer, with a rate that

scales with (kBT )2, so α = 2; the second process involves small momentum transfer, and

considers not individual collision events but instead the interaction of an electron with the

fluctuating electromagnetic environment produced by the movement of other electrons. The

latter process is similar to that in the Nyquist noise, with a rate that scales linearly with

kBT in 2D, hence α = 1 [37].

Figure 6.3 displays Lψ(T ) at four different hole densities. As expected, Lψ increases

as T decreases from 15 K to 2 K, then saturates for T < 2K. We fit the data points above

2 K to a power law dependence Lψ ∼ T−β. The measured values of β = α/2 are found to

be ∼ 0.4 ± 0.02 for all densities, which is close to the value of β = 0.5 or α = 1 expected

from the theory of electronic interactions with small momentum transfer. Quantitatively,

the Altshuler-Aronov-Khmelnitsky theory predicts h̄
τψ

= kBT
σ/σq

ln(σ/σq) [37]. Combined with

the expression for D, the dephasing length is given by

Lψ =
h̄σ

σq
[ln(σ/σq)4m

∗kBT ]−1/2 (6.3)

From equation 6.1, σ exhibits a weak logarithmic dependence on T , thus Lψ should

scale with T−1/2ln(T ), and the ln(T ) term accounts for the observed deviation of β from the
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Figure 6.4: (a) The dependence of dephasing length Lψ on carrier density from Device A
at 0.3 K(blue), and Device B at 1.5 K (red) and 4 K (green) respectively. (b) Lψ/σ(n) for
the devices, where σ is taken from B = 0 measurements.

expected value of 0.5. Thus the Lψ(T ) data establish that the main dephasing mechanism at

low temperatures arises from electron-electron interactions with small momentum transfer,

though the saturation of Lψ at T < 2 K may suggest a different mechanism at ultra-low

temperatures.

6.4 Dependence of dephasing lengths on carrier density

Lastly, we explore the dependence of Lψ on charge density. Fig. 6.4a plots Lψ(n)

for device A at T = 0.3 K, and that for device B at T = 1.5 K and 4 K. Clearly, Lψ is

strongly dependent on carrier density, varying by almost 1 order of magnitude from 30 nm

to 110 nm when n increases from 0.5 to 2 × 1012 cm−2. In fact, Lψ appears to have a

power-law dependence on n, Lψ ∼ np, where p appears to be less than 1 for device A at T

= 300 mK, and ∼ 1.5 and 2 for device B at T = 1.5 K and 4 K, respectively.
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Such Lψ(n) dependence can be readily understood from equation 6.3 , which shows

that Lψ(n) should be slightly superlinear in σ, and the latter is in turn linear or superlinear

in n. This is explicitly verified by plotting Lψ/σ for device A at T = 0.3 K and device

B at T = 1.5K and 4 K, respectively (Fig.6.4b). All 3 curves are relatively independent

of n at relatively high hole density. The slight rises in the curves at lower carrier density

are attributed to the larger Schottky barriers and increasing contact resistance towards the

band edge. This deviation is largest in the two-terminal data of Device A, and much smaller

but still present in the invasive four-terminal data of Device B. Taken together, these results

again confirm that inelastic scattering processes at low temperature in FLP are dominated

by electron-electron interactions

6.5 Conclusion

In short, we have observed the weak localization in hBN-encapsulated FLP devices.

The dephasing length is measured to be∼ 30 to 100 nm, and exhibits power-law dependences

on temperature and charge density. Our results demonstrate that the main dephasing

mechanism in these few-layer BP devices is the electron-electron interactions. A recent

work [97] on FLP devices on Si/SiO2 substrates reported similar results as ours. The

similarities between the results from devices on different substrates suggest that, at low

temperatures, scattering in these systems with mobility 500-2000 cm2/Vs is dominated by

disorder-mediated electron-electron interactions, and not limited by substrates. Further

studies are warranted to reveal scattering mechanisms in higher mobility samples.
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Chapter 7

Conclusion and Outlook

In this thesis, I have presented our comprehensive electronic transport studies of

high quality bi- and tetra-layer graphene devices as well as few-layer phosphorene (FLP) de-

vices. Few-layer graphene with competing symmetries (valley, spin and orbital) still remains

a fascinating platform to study the quantum Hall effect (QHE), allowing the observations

of intricate quantum phases with transitions that can be tuned by a combination of electric

and magnetic fields.

Its unique electronic properties make few-layer graphene an ideal platform to study

the novel physical phenomena that are difficult to realize in conventional or semiconduc-

tor two-dimensional electron gas (2DEG) systems. One such phenomenon is the interplay

between superconductivity (SC) and the QHE with the promise of realizing exotic topo-

logical states such as Majorana fermions [98–100]. For a 2DEG system in the quantum

Hall (QH) regime, supercurrent can only flow along the edge states of the 2DEG. Due to

the chiral nature, however, edge states with opposite momenta are located on the opposite
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edges of the 2DEG system, and coupled by the unconventional Andreev bound states [98]

at the QH/superconductors (SCs) interfaces. In classical physics picture, unconventional

Andreev bound states can be viewed as alternative skipping orbits of electrons and holes.

At a perfectly transparent QH/SCs interface, the bound states become a neutral mixture

of electrons and holes, similar to the Majorana mode [98]. In conventional 2DEG systems,

making transparent QH/SCs interfaces is challenging because the 2DEG is buried under-

neath the thick GaAs layers. Graphene is an ideal candidate for studying the interplay

between SC and the QH states for the following reasons. Firstly, due to its gapless band

structure, graphene can make good contacts to most metals including SCs, leading to high

transparency at graphene/SCs interfaces. Secondly, hexagonal boron nitride (hBN) enables

us to realize graphene devices with high mobility, hence to realize the QH states at lower

magnetic field than the upper critical field of SCs. The fascinating physical properties of

few-layer graphene have made graphene an ideal platform to explore novel quantum phases

and topological states.

An unexpected application of graphene is making ohmic contacts to 2D semicon-

ductors. For example, one of the bottlenecks in electronic and optoelectronic studies of

transition metal dicalcogenides (TMD), such as MoS2, WSe2, is the formation of Schottky

barriers at metal-TMD interfaces. A recent work shows that this problem can be partially

solved by using graphene as contacts to TMD with tunable work function, allowing the ob-

servation of quantum oscillations in few-layer MoS2 devices [101]. Thus graphene provides

a route for tunable contacts to 2D semiconductors.
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In addition to the QHE in few-layer graphene, we also reported weak localization

in hBN-encapsulated FLP devices, and demonstrated that the dominant source of phase

dephasing in FLP is the electron-electron interactions at low temperatures. However, since

black phosphorus has a large lattice anisotropy [23, 102, 103], the dependence of scattering

mechanisms on the crystallographic orientations still remains unclear. A recent work [104]

reported that in FLP, the dephasing lengths’ dependence on temperature is similar to that

observed in quasi-one-dimensional systems such as carbon nanotubes. Therefore, the effects

of large anisotropy on the scattering and dephasing mechanisms await further explorations.

Moreover, it is also of significant interest to study the anisotropic QHE in FLP devices. The

experiments so far were mostly focused on the FLP flakes ∼ 10−30 nm thick. The quantum

transport, including weak localization, Shubnikov-de Haas oscillation and the QHE, in very

thin FLP flakes (down to monolayer) still needs further studies.

As discussed in the thesis, the magnetotransport study of two-dimensional (2D)

materials has grown explosively in the past few years, and remains one of the most active

frontiers in condensed matter research. The family of 2D materials has been growing almost

continuously for the past seven years, and each new 2D material brings forth new physical

properties that may be tuned by thickness, strain, electric and magnetic fields, etc. These

exciting 2D materials provide the possibility of realizing novel phenomena such as 2D su-

perconductivity and spin superfluid. Moreover, it would be interesting to combine different

2D materials to study novel physical phenomena, for example, the unconventional Andreev

reflection between 2D superconductors and graphene.
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Watanabe, Dmitry Abanin, Zlatko Papić, Paul Cadden-Zimansky, James Hone, Philip
Kim, and Cory R. Dean. Tunable fractional quantum hall phases in bilayer graphene.
Science, 345(6192):61–64, 2014.

[77] Dong-Keun Ki, Vladimir I. Falko, Dmitry A. Abanin, and Alberto F. Morpurgo.
Observation of even denominator fractional quantum hall effect in suspended bilayer
graphene. Nano Letters, 14(4):2135–2139, 2014.

[78] Kayoung Lee, Babak Fallahazad, Jiamin Xue, David C. Dillen, Kyounghwan Kim,
Takashi Taniguchi, Kenji Watanabe, and Emanuel Tutuc. Chemical potential and
quantum hall ferromagnetism in bilayer graphene. Science, 345(6192):58–61, 2014.

[79] J. Martin, B. E. Feldman, R. T. Weitz, M. T. Allen, and A. Yacoby. Local compress-
ibility measurements of correlated states in suspended bilayer graphene. Phys. Rev.
Lett., 105:256806, Dec 2010.

[80] Y. Zhao, P. Cadden-Zimansky, Z. Jiang, and P. Kim. Symmetry breaking in the
zero-energy landau level in bilayer graphene. Phys. Rev. Lett., 104:066801, Feb 2010.

[81] H. J. van Elferen, A. Veligura, E. V. Kurganova, U. Zeitler, J. C. Maan, N. Tombros,
I. J. Vera-Marun, and B. J. van Wees. Field-induced quantum hall ferromagnetism
in suspended bilayer graphene. Phys. Rev. B, 85:115408, Mar 2012.

[82] Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim. Quantum hall states near the charge-
neutral dirac point in graphene. Phys. Rev. Lett., 99:106802, Sep 2007.

[83] Jairo Velasco Jr, Yongjin Lee, Kevin Zhang, Fan andMyhro, David Tran, Michael
Deo, Dmitry Smirnov, Allan MacDonald, and Chun Ning Lau. Competing ordered
states with filling factor two in bilayer graphene. Nature Communications, 4(4550),
2014.

[84] E. V. Gorbar, V. P. Gusynin, Junji Jia, and V. A. Miransky. Broken-symmetry states
and phase diagram of the lowest landau level in bilayer graphene. Phys. Rev. B,
84:235449, Dec 2011.

[85] E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy. Coexistence
and competition of nematic and gapped states in bilayer graphene. Phys. Rev. B,
86:125439, Sep 2012.

100
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