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Abstract 

Applications of Flavor Symmetry to the 

Phenomenology of Elementary Particles 

by 

Thomas Allan Kaeding II 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Lawrence J. Hall, Co-Chair 

Doctor Ian Hinchliffe, Co-Chair 

This work is a collection of applications of flavor symmetries to the understand­

ing of the interactions of elementary particles. 

In Chapter 2 we will investigate the implications of approximate flavor symme­

tries on the couplings in the minimal supersymmetric standard model. We will find 

that the natural values of the couplings that violate baryon or lepton number under 

these symmetries are below the limits set by experimental searches. There is one 

exception to this pattern: the case of proton decay. In order to suppress the decay 

of the proton, we will consider discrete symmetries, and in partic:ular generalized 

R-parities. 

Chapter 3 deals with the calculation of coupling coefficients in the group of 

SU(3). These coefficients are needed for the remainder of this work. Such calcu­

lations form an industry of their own and their results are useful in other areas of 
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physics. Therefore, a discussion of the calculation is warranted. 

One application of the coefficients of Chapter 3 is a study of meson decay in 

flavor SU(3). We study the decays of the D mesons to two-body hadronic states in 

broken SU(3) in Chapter 4. We parameterize the modes completely. By applying a 

few simplifying assumptions, we can reduce the number of parameters such that they 

can be fit by the available data. This fit is performed, the expected large symmetry 

breaking is found, and predictions are made when possible for unmeasured modes. 

The couplings of the D mesons to the pseudoscalar and vector mesons found 

in Chapter 4 are applied to the problem of meson mixing in Chapter 5. Here we 

estimate the long-distance contributions to the mixing of the D mesons and find 

that the large SU(3) breaking gives the possibility of large mixing between D0 and 

-r;o. 
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Introduction 

Symmetry, in our humble opinion, is one of the most beautiful aspects of any science. 

More so when applied to the understanding of fundamental particles and forces. 

This work is a collection of topics in flavor symmetry in the physics of elementary 

particles. 

In Chapter 2 we will investigate the implications of approximate flavor symme­

tries on the couplings in the minimal supersymmetric standard model. We will find 

that the natural values of the couplings that violate baryon or lepton number under 

these symmetries are below the limits set by experimental searches. There is one 

exception to this pattern: the case of proton decay. In order to suppress the decay 

of the proton, we will consider discrete symmetries, and in particular generalized 

R-parities. 

Chapter 3 deals with the calculation of coupling coefficients in the group of 

SU(3). These coefficients are needed for the remainder of this work. Such calcu­

lations form an industry of their own and their results are useful in other areas of 

physics. Therefore, a discussion of the calculation is warranted. 

One application of the coefficients of Chapter 3 is a study of meson decay in 

flavor SU(3). We study the decays of the D mesons to two-body hadronic states in 

broken SU(3) in Chapter 4. We parameterize the modes completely. By applying a 

few simplifying assumptions, we can reduce the number of parameters such that they 

can be fit by the available data. This fit is performed, the expected large symmetry 

breaking is found, and predictions are made when possible for unmeasured modes. 

1 



The couplings of the D mesons to the pseudoscalar and vector mesons found 

in Chapter 4 are applied to the problem of meson mixing in Chapter 5. Here we 

estimate the long-distance contributions to the mixing of the D mesons and find 

that the large SU(3) breaking gives the possibility of large mixing between D0 and 

no. 
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1 Fundamentals of Particle Physics 

This thesis builds upon ideas that have been in particle physics for many years. This 

chapter is intended as an introduction to them. The Standard Model (SM) has been 

very successful in describing the interactions of elementary particles, even in the 

light of the precision data of recent years [3]. Beyond the standard model, attempts 

have been made to unify the forces into one single force of nature. Such theories 

fall under the title of Grand Unification (GUT) [4]. However, it has recently been 

discovered that a viable GUT requires that nature also be supersymmetric at high 

energies [5]. Hence we have the need for Supersymmetry (SUSY), the symmetry 

relating particles of different spin. In this introductory chapter we will present 

briefly the standard model of particle physics and the ideas of grand unification and 

su persymmetry. 

1.1 The Standard Model 

Here we will cover the main points of the standard model of particle physics. Topics 

included are the gauge interactions, the Higgs mechanism, the discrete symmetries 

found in the model, fermion mixing, and color confinement. A good introductory 

volume.with the top-down approach to the standard model is [6]. Readers interested 

in a more detailed exposition are directed to [7] [8]. 
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1.1.1 Particle Multiplets and Gauge Interactions 

The standard model is based upon the gauge interactions described by the group 

GsM = SU(3)color X SU(2)Ieft X U(l)y, (1.1) 

which breaks via the Higgs mechanism (9] at low energies to the group 

GsM -t SU(3)color X U(l)EM· (1.2) 

The fermions are assigned to singlets and fundamental representations of the ir­

reducible subgroups of GsM· There are known (so far) to be three "generations" 

of fermions, differing only in mass, but identical in their interactions. The bosons 

responsible for mediating the fundamental forces are assigned to the adjoint rep­

resentations. Until we discuss fermion mixing, we will limit our discussion to one 

generation of elementary particles. 

The particles of the first generation (the electron and its neutrino, and the up 

and down quarks) are assigned to SU(2) multiplets in the following way: 

l= (: L 
uR, (1.3) 

q"=(::t 
where Rand L subscripts differentiate right- and left-handed states and the index a 

is a color SU(3) index (running over "red," "yellow," and "blue"). In order to build 

gauge-invariant interactions for these fermions, we need to introduce the covariant 

derivative 

-nJ.L !:IJ.L .g1 BJ.L .g2 WJ.L .g3 , GJ.L 
V = U - z-cl - Z-C27" · - Z-C3 A • 2 2 tt 2 aa (1.4) 
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' ... 

Here the 9i are the three coupling constants. The charge c1 is the usual hypercharge; 

its values are listed in Table 1.1. The charge c2 is 1 for the weak doublets l, q, and h 

(introduced below), and is 0 otherwise. The charge c3 is 1 for colored particles ( uR, 

dR, q), and 0 otherwise. The index i runs over the three components of the adjoint 

representation of SU(2), and a over the eight components of the adjoint of SU(3). 

The Ti and Aa are the Pauli and Gell-Mann matrices acting on the fundamental 

representations of these groups. The Ti and Aa carry two suppressed indices, one of 

which is contracted with the index on the fermion on which the covariant derivative 

acts; the other is contracted with the index on fin Equation 1.5 below. The new 

fields are the gauge fields BJJ., Wf, and G~, corresponding respectively to the U(1), 

SU(2), and SU(3) of Equation 1.1. 

We are now ready to write the gauge-invariant Lagrangian for the fermion 

fields. It is 

Lfennions = ij[Jl.VJl.j, (1.5) 

where f runs over the multiplets in Equation 1.3. We have adopted the convention 

that repeated indices are summed over. This applies also to the suppressed weak 

and color indices in Equation 1.5. When the covariant derivative of Equation 1.4 is 

inserted into the Lagrangian, the usual kinetic energy and gauge interaction terms 

are found. 

What remains is to write a gauge-invariant Lagrangian which includes the 

kinetic energy and self-interactions of the gauge fields BJJ., Wf, and G~. For this 

purpose we will define f~r some gauge field xr a tensor 

(1.6) 

where XJJ. without an index is the contraction on Xt with the matrices of the adjoint 

representation of the appropriate group, and [, ]i represents the ith component of 

the commutator. For the f?JJ., the commutator vanishes, and so BJJ.v has the same 

form as the electromagnetic field-strength tensor. The Lagrangian for the gauge 

5 



Table 1.1: Charge c1 appearing in the covariant derivative. The fields are 

those on which the covariant derivative acts. 

field cl 

eR -2 

l -1 

UR i 
3 

dR 2 
-3 

q !. 
3 

h 1 

fields can now be written in a gauge-invariant form as 

.c 1
B Bf.£" 

1w Wf.£" 
1

G Gf.£" gauge = - 4 f.£V - 4 if.tv' i - 4 af.tv a • (1. 7) 

When the tensors of Equation 1.6 are inserted into this Lagrangian, what result are 

the kinetic energies and cubic and quartic self-interactions of the W~-£ and G~-£ fields. 

1.1.2 The Higgs Mechanism and Particle Masses 

There are two problems with the standard model described so far. First, the gauge 

symmetry of GsM will not allow fermion-mass terms of the form 

(1.8). 

or boson-mass terms of the form 

(1.9) 

since these combinations are not singlets under the SU(2) group. Second, the 

physics of low energies does not display the symmetry of the group in Equation 1.1. 
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Instead, this group must be broken to the group in Equation 1.2. Both of these 

problems are solved by the Higgs mechanism. 

We introduce a new SU(2) doublet h 

h = ( ::) (1.10) 

and its Lagrangian 

(1.11) 

Let us consider the potential for the field h: 

(1.12) 

Provided that p,2 is negative, this potential has a continuum of minima, at modulus 

.{-;2 
V-y;:-· 

By suitable gauge rotations, we can choose the minimum to be 

ho = _
1 

( 
0

) V2v 

(1.13) 

(1.14) 

Making this choice breaks the standard model group. In addition, the vacuum 

expectation value ( vev) v of the Higgs field will give masses to the quarks and 

leptons, as seen below. . 

The physical Higgs particle is now one of the degrees of freedom (h') in the 

expansion about the chosen minimum. In one choice of gauge, we can write 

h-+-1 ( 0 ) . .J2 v+h . 
(1.15) 

The mass of the Higgs is given by the vev as 

(1.16) 
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Now we are ready to discuss the generation of particle mass. First we will 

consider the bosons. Because the color SU(3) group remains unbroken, the gluons 

G~ remain massless. However, among the four other gauge bosons, only one linear 

combination can remain massless. We introduce the weak mixing angle Bw and 

define the fields AJL and ZJJ. by 

Wf 
(1.17) 

Inserting these relations and the Higgs vev into the covariant derivatives in .Ch, we 

find that the Lagrangian contains mass terms for the bosons: 

where the masses of the bosons are 

Mw 

Mz 

'!:!1ll. 
2 ' 

,....-----

~)gi + g~, 

The AJL is the usual electromagnetic field. 

(1.18) 

(1.19) 

Next we consider the masses of the fermions .. First we must define a conjugate 

of the Higgs field: 

(1.20) 

It has hypercharge opposite to that of h. This allows us to add the following gauge­

invariant terms to the Lagrangian: 

(1.21) 

By making the substitution of Equation 1.15, we find that the Lagrangian contains 

(1.22) 

8 
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Notice that because there is no right-handed neutrino in the standard model, the 

neutrino obtains no mass term. The masses of the fermions are 

(1.23) 

1.1.3 Fermion Mixing 

There are known to exist three generations of particles, and there is no reason why 

the mass and weak eigenstates should be the same. In fact, the propagating fields 

are mixtures of the weak-interaction eigenstates. We will write this by considering 

the charged current of the weak interactions: 

d' 

J~arged = ( 1i C t ) L 111- s' 

b' 

d 

= ( U c t ) L 111-V S 

b 

L (1.24) 

L 

Here V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The values of its ele­

ments are determined experimentally and by the requirement of unitarity to lie in 

these ranges [10]: 

0.9747 to 0.9759 0.218 to 0.224 0.002 to 0.005 

V= 0.218 to 0.224 0.9738 to 0.9752 0.032 to 0.048 (1.25) 

0.004 to 0.015 0.030 to 0.048 0.9988 to 0.9995 

The upper 2 x 2 submatrix of the CKM matrix is nearly unitary by itself. This 

motivates us to use a simplification when dealing with only the first two generations 

of quarks (d and s). In this case we introduce the Cabibbo angle Be and use 

9 

sin Be ) ' 

cos Be 
(1.26) 



where sin Be ~ 0.22. In Chapter 4 we will use this simplification. 

1.1.4 Discrete Symmetries 

In addition to the CPT invariance of the field theory, the standard model has some 

additional accidental discrete symmetries. Because m 11; = 0 in the standard model, 

we see that individual lepton number (Li) is conserved. Because the quarks mix 
., 

via the CKM matrix, we cannot say so much about them. However, in the absence 

of instanton effects we can say that total baryon number (B) is conserved. This is 

important for the stability of the proton. 

1.1.5 Color Confinement 

The coupling constants of the gauge groups of the standard model run as the energy 

scale of the interactions changes. It turns out that the coupling of the color SU(3) 

group runs to a value that is larger than one at low energies. Because of this, quarks 

exist only in tightly bound hadronic states. The characteristic scale of this binding 

is the scale 47r Aqcn ~ 2 Ge V at which the coupling becomes nonperturbative. 

Nevertheless, it is larger than the mass of the strange quark (~ 250 MeV), so that 

we can use the approximate SU(3) flavor symmetry of the u, d, and s quarks in our 

treatment of the D mesons in Chapter 4. 

1.2 Grand Unification 

Physicists are always interested in reducing the number of parameters that describe 

physics while simplifying our understanding of nature. The next simplification 

beyond the standard model is grand unification. The idea of grand unification is to 

combine the forces of the standard model into one force. This is accomplished by 

embedding GsM in some larger (semisimple) group. The fermions of the standard 

model are then combined into representations of the unified group. At high energies, 

10 



the interactions are given by the larger gauge symmetry. This larger group must 

then break down at low energies to the standard model group: 

GauT ----7 GsM. (1.27) 

The breaking scale is typically called Mx. 

The simplest GUT scheme is SU(5) [11]. In it, the standard model group is 

embedded in SU(5) whose adjoint representation contains twenty-four gauge bosons. 

These are the usual eight gluons, three ,weak bosons, and the BJJ., plus twelve new 

bosons XJJ. that couple to quarks and leptons. The fermions of one generation are 

collected into a five-dimensional and a ten-dimensional representation: 

(1.28) 

(1.29) 

Some of the additional nonstandard couplings are 

(1.30) 

At low energies they are manifest as 

2 

.Cint 3 :;2 (d,~u)(u!JJ.e). 
X 

(1.31) 

They can mediate such processes as proton decay, which is forbidden in the standard 

model. We can estimate the rate as 

4 

r rv 9s 5 
P- -4-mP. 

Mx 
(1.32) 

11 



The experimental limits on the lifetime of the proton [12] suggest that the scale at 

which GUTs based on GGuT ::> SU(5) ::> GsM are broken is 

(1.33) 

1.3 Supersymmetry 

Although the coupling constants of the standard model were previously thought 

to converge at high energies, with today's precise measurements it appears that 

they require supersymmetry to do so [5]. A supersymmetric threshold between the 

energy scales of the SM and of the GUT is needed to alter the trajectories of the 

couplings in the right direction. In this section we will briefly describe the aspects 

of SUSY that we need in Chapter 2. 

SUSY is a symmetry between fermions and bosons. For details we refer the 

reader to (13] (14]. In SUSY, fields of different spin are combined into supermulti­

plets. The type of multiplet that we will employ in Chapter 2 is the chiral multiplet. 

It contains a fermion f of spin 1/2, a boson j of spin 0, and an auxiliary (nonprop­

agating) field A 1 of spin 0: 

(1.34) 

where{) is a two-component fermionic coordinate. 

The interactions in SUSY are contained in what is called the superpotential W. 

It can contain any term that respects the gauge symmetries and supersymmetry. 

From it we can derive the interactions of the component fermions and bosons by 

integrating it over the fermionic components {) and by solving the equations of 

motion for the auxiliary fields. The result is that the interactions are 

lawl2 

ow I 
Lint 3 L oP - + l:Jdj oPoF- - - + h.c. 

i ~ F;=f; i,j ~ J F;=f;,Fj=!j 

(1.35) 

Let us consider the results for terms in W with two, three, and four factors. From 

12 



a term in the superpotential of the form 

the interactions of the fermions and bosons are 

Lint 3 J-t!Ih + h.c. 

+PIAI2 + Pl1212, 

and from a term in the superpotential of the form 

the interactions of the fermions and bosons are 

Lint 3 >..Jsf41s + >..J4fs13 + >..fsh14 + h.c. 

+>..113141 2 + >..!141sl 2 + >..!1s131 2
• 

(1.36) 

(1.37) 

(1.38) 

(1.39) 

We will use these in our discussion of nonstandard couplings in the minimal super­

symmetric standard model in the next chapter. 
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2 Approximate and Discrete Symme­
tries in the MSSM 

The supersymmetric extension of the standard model of particle physics which con­

tains the fewest additional fields is called the minimal supersymmetric standard 

model (MSSM) [15]. The additional fields required are the supersymmetric part­

ners of the known matter fields and of the gauge and Higgs fields, and an additional 

Higgs doublet with its partners. In the supersymmetrized model, there are allowed 

some baryon- and lepton-violating couplings that were not present in the SM. In 

this chapter we will examine these couplings. We will consider approximate flavor 

symmetries that can give small natural values to these couplings. These couplings 

will be found to be smaller than allowed by experiment, except in the case of those 

that promote proton decay. For this case we will consider discrete symmetries in 

order to disallow the process. This discussion is based on [1]. 

2.1 Couplings in the MSSM 

Here we will review the couplings allowed by the gauge symmetry of the standard 

model. Since we are only interested in those which violate baryon or lepton number, . 

we will omit the gauge couplings from our discussion. We adopt the usual notation 

for the superfields in the MSSM ([16], for example). The left-handed doublets are 

Li, Qi, H, and H. They contain the left-handed lepton doublets li, quark doublets 

qi of the SM. Here and below Latin indices run over particle generation. In the 

MSSM there are two doublets of Higgs scalars, h and h, contained in the superfields 
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H and H. The left-handed antiparticles (eR)c, (dR)c, and (uR)c are contained in 

the chiral superfields Ei, Di, and Ui. 

In order to give fermions mass, these Yukawa interaction terms are required in 

the superpotential: 

(2.1) 

The gauge indices are suppressed. The Yukawa interactions are obtained from the 

terms of the superpotential in the usual way (see Section 1.3). The masses of the 

fermions are generated by the terms in Equation 2.1 when the neutral Higgs scalars 

obtain their vacuum expectation values (vevs). TheW mass constrains these vevs 

( ( v) and (v)) to satisfy 

(2.2) 

This value is determined by minimizing the effective potential for h and h. Including 

soft symmetry-breaking terms, which are parameterized by the masses m1 and m 2 , 

this potential is 

(2.3) 

This, however, is not enough, due to an additional U(1) (Peccei-Quinn) symmetry 

in the potential [17]. Under this symmetry, h and Ti undergo independent phase 

rotations. When this symmetry is broken by·(v) =f. 0 =f. (v) an unwanted axion is 

produced [17]. We can rectify this problem by including the term 

(2.4) 

in the superpotential. It is then likely that the effective potential will also have the . 

supersymmetry-breaking term 

(2.5) 

Here m3 is another supersymmetry-breaking mass. The existence of the term in 

Equation 2.4 will be required in the following. These supersymmetry-breaking pa­

rameters and any others will be denoted by MsusY· Experimental constraints from 

searches for superpartners [18] require that Msusv~lOO GeV. 

15 



Although the above couplings are contained in the Standard Model, the super­

symmetric theory can contain additional couplings which are also allowed by the 

gauge structure. A natural theory should contain all allowed couplings. Therefore 

we will include the following renormalizable terms-in the superpotential: 

Wclim-4 (2.6) 

By a suitable redefinition of the L and H superfields the first of these terms can be 

eliminated. In the following we assume that this redefinition has been performed 

and that the term in question is no longer present. Note that the antisymmetric 

contraction of the suppressed SU(2) indices forces the generational indices i and j 

in the first term and j and k in the fourth to be unequal. All of these terms give 

interactions that violate either lepton or baryon number or both. 

In addition to the terms in Equation 2.6 we can include higher-dimension non­

renormalizable operators. They come about from new physics at some scale A. 

Those operators of dimension five which violate lepton or baryon number and which 

are allowed by the gauge symmetry appear in the superpotential as 

(2.7) 

In the next section we will discuss the experimental constraints on the values 

of the new couplings in Equations 2.6 and 2. 7. Later shall we consider the natural 

values of the couplings, based on the application of approximate symmetries to .the 

-- Higgs sector of the theory~ 

2.2 Experimental Limits 

Here we will briefly discuss the experimental constraints from the searches for B­

and L-violating processes on the constants ).(n) and K:(n) j A. The processes that 
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we consider are proton decay, neutron-antineutron oscillation, exotic lepton decays, 

and neutrino oscillations. 

2.2.1 Proton Decay 

If both of ). (2) and ). (3) are non-zero then lepton and baryon number are not con­

served and the proton can decay. A possible decay diagram is shown in Figure 2.1. 

Using the experimental limit on the proton lifetime [12], we obtain a limit on the 

couplings: 

V).(2)).(3) ~ ( ie~Y) x 10-12. (2.8) 

For Msusy "' 1 TeV, we find 

(2.9) 

In addition, the first term in Equation 2. 7 can contribute to proton decay. In 

this case a loop involving superpartners such as a Wino is required. An example of 

a contributing Feynman diagram is given in Figure 2.2. From its contribution to 

proton decay, we obtain a limit on ~(1 ): 

(1) (1) M 
~1121 "' ~1122 ~ ( 161r2) S

2
USY "' l0-26GeV-1. (2.10) 

A A · A1GuT 

Proton decay via a diagram involving ~( 2 ) that only involves right-handed superfields 

cannot proceed via Wino exchange unless helicity is flipped in the graph (e.g., Figure 

2.3). Each helicity flip adds a factor of mquark/ MsusY, and hence no meaningful 

restraint on ~(2 ) is obtained. By this we mean that if ~(2 ) were to be as large 
~ 

as possible, consistent with perturbative estimates of the decay process, then the 

estimate of the proton lifetime would be much longer than the experimental limit. 

Alternatively, a higgsino can be used to complete the graph. Then the suppression 

contains two factors of mquark/v, where v is either (v) or (v). It is conceivable that 

the constraint of Equation 2.2 on the vevs may allow such factors to be large, but 

for the minimal Higgs content, the ratio of (v) and ( v) is constrained to be between 

1 and mt/mb [3], and hence no meaningful constraint on ~(2 ) can be obtained. 
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Figure 2.1: Contribution to proton decay involving ). (2) and ). (3). 
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Figure 2.2: Contribution to proton decay involving K:(l). 
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Figure 2.3: Contribution to proton decay involving ,;(2
). 
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2.2.2 Neutron-Antineutron Oscillation 

If lepton number is conserved and baryon number is not, then the relevant experi­

mental constraint arises from the absence of neutron-antineutron oscillations. The 

leading contribution to such oscillations is from a diagram involving two >. (3) vertices 

(Figure 2.4). A limit can be obtained from from the oscillation time of the neutron 

into an antineutron as obtained by the Frejus Collaboration results [19]. They find 

the oscillation time in the environment of a nucleus to be 

TNucl >' 6.5 X 1031 yr. (2.11) 

Using nuclear corrections (20], the nuclear stability measurements give a free oscil­

lation time of 

Tn•-•n · > 1.2 X 108 s. (2.12) 

The diagram of leading order in ).(3) contributing to neutron-antineutron oscil­

lation is of the type in Figure 2.4a, where the blob represents the insertion of some 

strangeness- or bottomness-changing interaction. Supposing that the qq'g coupling 

be not diagonal in flavor, (21] and (22] proposed such an interaction mediated by 

a gluino with a mass insertion (see Figure 2.4b). Here e represents an intergenera-
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Figure 2.4a: 

UR 

n dR 

d 

Contribution to neutron oscillation involving ). (3). The blob rep­

resents a strangeness- or bottomness-changing interaction (see 

Figures 2.4b and 2.4c below). 

UR 

... , 
... , ... , 

... , 

=jR, bR 
... ... ,'sR, lm dR ... ... , , n 

tional coupling. However,~ must be small because a box diagram containing Figure 

2.4b must be smaller than the usual box diagram in W-/{0 mixing. Therefore it 

is apropriate to consider an insertion of a supersymmetric box subdiagram as in 

Figure 2.4c [23]. A rough estimate of this process leads to a limit on the couplings 

d3) 
/\112 

M 5/2 

( ;e~Y) x 10-4. (2.13) 

No meaningful constraint is obtained for neutron oscillation by x;(3) due to the 

additional powers of mpj A that are present in this case. 
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Figure 2.4b: Possible insertion for the blob of Figure 2.4a [21] [22]. Here 

9s is the strong coupling and ~ ~s a factor for intergenerational 

m1xmg. 

d d 

Figure 2.4c: Possible insertion for the blob of Figure 2.4a [23]. Here g is 

the weak coupling and crosses denote mass insertions needed for 

helicity change. U is any up-like quark. 
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Figure 2.5: Contribution to muon decay involving _\(1). 

e 

e 

2.2.3 Exotic Lepton Decays 

If lepton number is violated while baryon number is not, constraints arise from 

the absence of such processes as J.L --+ e-e-e+. This process is allowed if _\(1) is 

present. A tree diagram involving (tau) sneutrino exchange (Figure 2.5), together 

with the experimental limit on the branching ratio BR(J.L --+ 3e) ~1.0 x 10-12 from 

SINDRUM [24], gives this limit on the coupling constants: 

_\(1) ~ ( ie~Y) x 10-3. (2.14) 

A similar limit can be obtained using J.L --+ e1 and the limit from the Crystal Box 

[25]. 

Unfortunately, the decay J.L --+ e1 via two vertices involving x:<6) and vev inser­

tions (Figure 2.6, for example) gives no meaningful constraint on x:<6). 

The term involving x:<4 ) violates lepton number while respecting baryon number. 

It can mediate exotic decays of the tau such as processes such as T --+ 1r
0 J.LVXo, where 

Xo is the lightest supersymmetric partner, (see, for example, Figure 2.7). Using an 
( 

upper bound on exotic decays of the T of about one percent, we obtain no meaningful 

constraint on x;(4 ) 
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Figure 2.6: Contribution to muon decay involving ~~:(6). 
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Figure 2.7: Contribution to tau decay involving ~~:(4). 
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2.2.4 Neutrino Oscillation 

Once the Higgs doublets have acquired vevs, the term in the superpotential in x:(s) 

takes the form 

(2.15) 

where kii is a correction to the lepton masses and need not be diagonal in the 

generations. This term x:(s) can therefore induce p ---+ e1, as well as neutrino 

oscillations. Here experiment [26] constrains the mass difference .6.m,_, and the 

mixing angle () between the electron and muon neutrino species. The boundary of 

the excluded region is not a simple function, so we will look at the limit of maximal 

mixing (i.e., sin2 2() ~ 1). In this limit we find that 

( 
(5))2 

flm,_, rv Kl2 (250 GeV)3
. (2.16) 

This relation puts no useful limit on x:<5). 

2.3 Approximate Flavor Symmetries and Nat ural Values 

for Couplings 

Fermion masses are (mostly) much smaller than the scale at which the electroweak 

symmetry breaks and generates their mass. This is indicative of approximate sym­

metries which involve the separate rotations of the phases of the matter fields [27]. 

Since the Yukawa coupling constants h(n) in Equation 2.1 are proportional to the 

quark or lepton masses (divided by the vevs), we expect that the constants ).~~ in 

Equation 2.6 be 

(2.17) 

where vis taken to be 123 GeV, corresponding to (v) ~ (v) in Equation 2.2. This 

we call the natural value of the coupling constant ..\~j~. Similar-ly; the natural value 

of K~n) · is 
t1 , ... ;tm 

(2.18) 
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We may now consider the natural values of the couplings which are constrained 

by experiment in Section 2.2. Clearly, our· prescription for assigning natural values 

to the coupling constants gives the largest couplings for the vertices involving third­

generation (s)particles. For example, proton decay is most likely to occur to the 

final state I< p, or I< vw The natural values for the leading contributions to proton 

decay are then 

(I) 
11:1122 

10-5 
' 

(2.19) 

(2.20) 

For neutron oscillation also we must consider ;.g~, whose natural value is given 

above, and >.~~~' whose natural value is 

(2.21) 

For p, decay to 3e we have the natural value 

(2.22) 

As we can see, the natural values for the couplings are well below the current 

experimental limits, with the exception of those involved in proton decay. The 

· combination of >. (2) >. (3 ) in proton decay has a natural value much larger than the 

experimental limit. If the scale of new physics A that appears in the dimension-five 

couplings is near the GUT scale, then ~~:< 1 ) may also have a natural value that is not 

allowed by experiment. Hence if either but not both lepton and baryon number is 

violated by terms having natural strength, the resulting rates will be too small to 

have been seen in current experiments. 

If both of >.(2) and ).(3), or ~~:< 1 ), are present with their natural values then fast 

proton decay would occur. We now turn to the possible discrete symmetries that 

would forbid these terms [28]. 
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2.4 Discrete Symmetries and Proton Decay 

Motivated by the need to suppress proton decay, we consider discrete ZN symme­

tries, possibly resulting from the breaking of some continuous U(l) sy!Timetry. An 

analysis of discrete symmetries was given in [28]. A similar analysis regarding pro­

ton decay is in [29]. The possible symmetries will be characterized by the charges 

of the chiral superfields under those symmetries, and by the terms in Equations 2.6 

and 2. 7 that are allowed. 

We write the charges on the superfields as a vector: 

(2.23) 

where the transformation of a superfield <I> with ZN charge 0'<1> under the discrete 

symmetry is 

(2.24) 

Due to weak hypercharge invariance of all of the terms in the superpotential, we 

can assign the charge of one field (choose Q) to be zero. because we require the 

presence of the Yukawa couplings in Equation 2.1, we have the following conditions 

on the ZN charges of the Higgs: 

(mod N), 

(mod N), 

(mod N). 

(2.25) 

The first two of Equations 2.25 lead to a condition on the charges of the matter 

superfields: 

(2.26) ' 

These conditions reduce the number of independent charges to three. Thus we can 

choose a convenient basis in which the charge of any field is given in terms of three 
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integers (m, nand p). 

aR (0, -1, 1, 0, 1, -1, 1), 

a A (0, 0, -1, -1, 0, 1, 0), (2.27) 

and 
... 

(0, 0, 0, -1, 1, 0, 0). aL 

The total charges may be written as 

(2.28) 

Notice that the last of the vectors in Equation 2.27 is equivalent to antilepton 

.number. 

We now examine the symmetries that will allow which of the dimension-four 

and -five couplings of Equations 2.6 and 2.7. That the 1-violating couplings LLE 
' 

and QDL (A(I) and A(2)) be allowed is the condition 

m - 2n - p ~ 0 (mod N). (2.29) 

That the B-violating coupling U DD (X(3)) be allowed is the condition 

m - 2n = 0 (mod N). (2.30) 

That the term QQQL (K(I)) be allowed is the condition 

n- p = 0 (mod N). (2.31) 

Requiring that the Higgs mass term of Equation 2.4 be allowed implies that 

aH + cry:J = 0 (mod N), 

or n = 0 (mod N). 
(2.32) 

Since we expect that the discrete symmetries will be remnants of a gauged U(1) 

symmetry, we may also impose anomaly-cancellation conditions on the charges of 

the superfields [30]. The transformation in Equation 2.24 tells us that the U(1) 

charges are 

(2.33) 
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where the f3i are integers. The anomalies of the U(l) symmetry will cancel if 

constraints on the charges of the various fermions in the· theory are satisfied. For 

example, the Z;j anomaly-cancellation condition is 

N3 
2;:qf = rN + s8. 

~ 

(2.34) 

Where the sum on the left side of this equation runs over all of the quark, lepton 

and Higgsino fields of charge qi. The right-hand side of this equation arises from 

fermions that have mass of order of the scale at which the U(l) -+ ZN breaking 

takes place. Such fermions can either have Dirac or Majorana masses. In order 

to have a Majorana mass a particle must have a ZN charge of 0 or N/2. The 

integer s is the number of these Major ana fermions with charge N /2. Two chiral 

fermions of charge aj and aj can couple to generate one Dirac particle provided that 

aj + aj = ZjN, where Zj is an integer. In this case 

(2.35) 
Dirac pairs 

The triangle anomaly-cancellation conditions of involving both ZN and U(l)y are 

(ZN-U(l)-U(l) and ZJ-U(l)) 

- I::heavy pairs ( aj + aj' )yJ 

- I::heavy pairs (a; - aJ, )yj 
(2.36) 

where Yi are the U(l)y charges. Note that the Majorana fermions (if any) must have 

Yi = 0, and the pairs of Dirac fermions have Yi = -Yi'· The ZN-SU(M)-SU(M) 

anomaly-cancellation condition is 

(2.37) 
heavies 

where Ti are the Casimir operators of SU(M). (normalized such that the value 

on the fundamental representation is 1/2), and the right-hand side is for heavy 

fermions. Note that only Majorana particles in real representations of SU(M) can 

contribute. The Dirac fermions cancel in pairs. The ZN-gravity-gravity anomaly­

cancellation condition is 

(2.38) 
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where r' and s' have the same origins as r and s in Equation 2.34. In terms of 

the exponents m, n, and pin Equation 2.28 we write these conditions for the ZN­

gravity-gravity, ZN-SU(2)-SU(2), and ZN-SU(3)-SU(3) anomalies as 

(m- 5n- p)NG + 2nNH tN + s~, 
-(p+ n)NG + nNH - t'N, (2.39) 

-nNG t"N. 

Here NG denotes the number of generations of quarks and leptons, and NH the 

number of sets of Hand H. The integers t, t', and t" depend on the f3i in Equation 

2.33 and on Lheavies and r' in Equations 2.37 and 2.38: 

t Li f3i + r', 
t' (2.40) 

t" 

Note that if N is odd, then we must takes to be even, and the last term in the first 

of Equations 2.39 may be absorbed into tN. Note also that as a result of Equation 

2.32, the Higgs superfields do not contribute to any of the anomalies provided that 

f3H and J3H are zero, which we now assume. 

If we wish to have a discrete symmetry which is anomaly-free for each gener­

ation, we can set NG to 1 in Equation 2.39. Only one Z2 symmetry, R 2 (m = 1, 

n = p = 0), survives. The anomaly cancellation for this symmetry requires the 

addition of one heavy Majorana particle with ZN charge 1 per generation. Its re­

strictions on the superpotential is the same as that of conventional R-parity, i.e., 

it forbids all of the B- and L-violating terms in Equation 2.6. However, it still 

allows the dangerous term in Equation 2. 7 involving K(I). If we extend this case to 

arbitrary NG, then we find an anomaly-free R2 symmetry, with the addition of NG 

heavy Majorana fermions. 

In the case of Z3 , the anomaly conditions of ZN x SU(2) x SU(2) and ZN x 
SU(3) x SU(3) are trivially satisfied for the the phenomenologically relevant case 

NG = 3 and NH = 1 for n = 0 and m and p unconstrained by appropriate choices 
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-of the f3i· So we can consider the inequivalent set R3, L3, R3L3, and R3Ll. When 

we require that the other anomaly conditions be satisfied only R3 L3 survives. Ad­

ditional heavy fields are required to achieve anomaly cancellation. Several choices 

are possible. For example, choosing the f3i so that the charges of (Q, U, D, L, E, 

H, H) are (0, -1, 1, -1, 2, -1, 1), We need the following set of heavy fields: an 

SU(3)-singlet SU(2)-doublet Dirac pair with (ZN, U(1)y) charges (1, 1) and (2, -1), 

an SU(3) x SU(2)-singlet Dirac pair with (ZN, U(1)y) charges (-1, 2) and (-2, -2), 

and an SU(3) x SU(2)-singlet Dirac pair with (ZN, U(1)y) charges (0, 0) and (-3, 

0).1 

This symmetry satisfies our requirements regarding proton decay. That is, it 

allows the coupling QDL, but not. U DD. Furthermore, the term in ~~;( 1 ) is also 

disallowed. That L-violating terms may still be allowed is not troublesome in light 

of the naturalness assumptions on their coupling constants, as seen in Section 2.3. 

Note that for N higher than 3, the conditions of Equations 2.39 require addi­

tional generations of particles. We will therefore not consider them. 

2.5 Generalized R-Parities 

Discrete symmetries in which the fermionic measure d(J2 also carries a ZN charge 

can also be imposed on supersymmetric theories: 

(2.41) 

Under these generalized R-parities the superpotential must transform with the op­

posite charge: 

W 2,-icr W 
F -I- eN w F· (2.42) 

Such discrete symmetries cannot arise as subgroups of gauge symmetries and 

1This symmetry is equivalent to the "baryon parity" of [28). Note, however, that we disagree 

with the claim of [28) that the symmetry is anomaly-free with the minimal particle content of the 

standard modeL 
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hence we can have no requirement of anomaly cancellation. We would expect there­

fore that there would be many more possible symmetries (28]. Here we will discuss 

the case of z2. 
In order that the mass terms for the quarks and leptons (Equation 2.1) be 

allowed in the superpotential, the following must be satisfied: 

aQ +au+aH 

aL + aE + aH 

1 

1 

(mod 2), 

(mod 2), 

(mod 2). 

In order to retain the Higgs mass term in Equation 2.4, we require 

aH + aH = 1 (mod 2), 

As before, we can select a basis 

... 
(0, 1, 1, 0, 1, 0, 0), aR 

&A (0, 0, 1, 1, 0, 0, 1 ), 

and &L (0, 0, 0, 1, 1, 1, 1 ). 

so that the total charges can. be written as 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

Using Equation 2.44, we see that the H H term requires n = 1 The L-violating 

conditions that allow LLE and QDL are 

m- 2n- p = 1 (mod 2). (2.47) 

And the B-violating condition that allows U DD becomes 

m - 2n = 1 (mod 2). (2.48) 

For the QQQ L term to be allowed we need 

n + p ::;= 1 (mod 2). (2.49) 
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Since these equations can be solved by p = 0, n = 1, m = 1, we are able to find a 

Z2 symmetry that is phenomenologically unacceptable, in contrast to the case of 

Section 2.4. Conventional R-parity is equivalent to the case n = 1, m = p = 0, 

which forbids all of the dimension-four B- and L-violating terms. 

2.6 C(_\nclusi(_\ns 

We have examined possible terms that are allowed by gauge invariance in the su­

persymmetric standard model and that violate lepton and baryon number. The 

experimental constraints on these terms have been discussed. Using an assump­

tion on the size of these couplings that is inspired by the size of the couplings that 

give quark and lepton masses, we have established natural values for the strength 

of these couplings. Only those terms that can lead to proton decay have natural 

values that are larger than the experimental constraints. 

There is only one possible anomaly-free Z2 discrete symmetry that can exist 

without the addition of new particles having masses of order of the electroweak scale. 

This symmetry requires the existence of heavy Majorana fermions and forbids all 

of the renormalizable B-and 1-violating terms. However, it allows the term QQQL 

which produces proton decay at an unacceptable rate and does not constrain the 

number of generations. It is equivalent to conventional R-parity [15). 

There is only one possible anomaly-free Z3 discrete symmetry that can exist 

without the addition of new particles having masses of order the electroweak scale. 

This symmetry requires that there be three generations of quarks and leptons and 

that there exist heavy fermions. It forbids all of the renormalizable B-violating 

terms, as well as the term QQQ L. Lepton number is violated in this case. Decays 

such as 11 -t e1 are expected to occur at rates below the current limits if the 

couplings have the values that we expect. 

32 



3 SU(3) Coupling Coefficients 

\ 

The Clebsch-Gordan coefficients2 of SU(3) are useful in calculations involving bary­

ons and mesons, as well as in calculations involving arbitrary numbers of quarks. 

Tables of these coefficients and their isoscalar factors have been compiled in the 

past (31] (32] (33] [34] [35], and programs have been distributed that calculate these 

coefficients [36] [37] [38]. However, our calculations require additional tables. For 

example, in the decay of a charmed quark (c) to one of the light ( u, d, s) quarks, the 

transition involves operators in the representation 15, whose tables are not found 

in the literature. In this chapter we will describe the calculation and present the 

coupling coefficients that are needed for our study of the charm-changing interac­

tions in Chapter 4. A computer program was used to handle the complex task at 

hand. It is described herein. 

Consider the product of two irreducible representations, 

(3.1) 

We will denote the Clebsch-Gordan coefficients in this expansion by (Rk1khi3kl 

ryii3 r'y'i'i~). The usual definition of the coefficients is given by the equation 

Here Rk(Y, I, I3 ) denotes the state in representation Rk with hypercharge, total 

isospin, and third component of isospin of Y, I, and I3 , where Rk is in the span of 

r and r'. The sum is over all such states in all such representations. 

2The Clebsch-Gordan coefficients are also called vector coupling coefficients or Wigner coeffi­

cients in the literature; the isoscalar factors are also called Racah coefficients. 
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This chapter takes a utilitarian approach to the calculation. We will introduce 

only the concepts that are needed to arrive at our results. Readers interested in a 

deeper theoretical background are directed to [31] [39] [40] [41]. 

The chapter is organized as follows. In Section 3.1 we introduce the necessary 

definitions and operations. Section 3.2 contains a discussion of the construction of· 

the irreducible representations. The method of the calculation itself is described in 

Section 3.3. A very useful way of contracting the tables is the extraction of isoscalar 

factors based on the Clebsch-Gordan coefficients of the smaller group SU(2). This 

is discussed in Section 3.4. There we also present some symmetry relations that 

allow us to omit some tables. The actual computer program is outlined in Section 

3.5. Finally, the tables of isoscalar factors are presented in the last section. 

3.1 Basic Concepts 

In this section we present the basic definitions and operations that are needed 

in order to construct the representations of SU(3) and to determine the Clebsch­

Gordan coefficients in their products. 

Representations are written as tensors. These tensors carry an arbitrary num­

ber of indices that run over the values u = 1, d = 2, s = 3. We have chosen to name 

these values by the quark names, since it is the SU(3) symmetry among the light 

quarks that interests us. It is conventional to write the indices as upper indices 

when they correspond to u, d, and s, and as lower indices when they represent their 

conjugates u, d, and :S. Nevertheless, one can use the totally antisymmetric tensor 

f.iik to raise all lower indices: 

A ijabc ... = f.ijk A abc... . 
xyz... kxyz ... (3.3) 

Repeated indices are summed. We choose to write tensors with only upper indices. 

In ord~r to simplify the notation, tensors will often be represented by the values of 

their indices. See the example in Equation 3.5. 
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Isospin SU(2) is a subgroup of SU(3) which commutes with the hypercharge 

U(1) (this is the strong hypercharge, not the weak hypercharge introduced in Chap­

ter 1). Therefore states in representations can be taken as those tensors with definite 

hypercharge and isospin. They are labelled by their quantum numbers as R(Y, I, 13 ). 

The hypercharge of a state is just the sum of the hypercharges corresponding to the 

indices that it carries, where the hypercharges of u, d, s are ~' ~' -~, respectively. 

The same is true for the third component of isospin where u, d, s carry ~' -~, 0. As 

an example familiar to particle physicists, consider the highest-weight state of the 

octet. This state corresponds to the J{+ in the pseudoscalar octet, or to the proton 

in the baryon octet. As a tensor, it is written 

8(h.w.) = 8(1, ~'~)=A~ . us. (3.4) 

We raise the lower index to obtain a properly normalized state 

8(1 l !.) =Au= 1 (Auud- Audu) = 1 (uud- udu) 
'2' 2 s 72 ' 72 . (3.5) 

(Actually, there is a two-dimensional space of octets carrying three indices. Their 

highest-weight states are spanned by ,h(uud- udu) and )s(uud + udu- 2duu). 

We have chosen one of them.) 

A state written as a tensor with n upper indices can also be viewed as an n­

dimensional vectoL It then seems natural to define both inner and outer products 

of states. The inner (scalar) product of two states with the same number of indices 

is defined by 

Ai ... j . Bk ... z = Ai ... j Bi ... j, (3.6) 

where repeated indices are summed. The outer (tensor) product can be defined for 

two states with not necessarily the same number oJ indices. It is 

Ai ... j x Bk ... z = 0 i ... jk ... z, (3.7) 

where the components of C are products of components of A and B: 

(3.8) 
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To clarify this last definition, let us consider the highest-weight state of the 8 and 

the highest-weight state of the 3, which is 

3(h.w.) = 3(~, 0, 0) = ~(ud- du). 

Their outer product is 

( 1 1) - 2 1 8 1,2,2 x 8(3,0,0) = 2(uud-udu) x (ud-du) 

= H uudud - uuddu - uduud + ududu) 

-(s 1 1) 
= 15 3'2'2. 

(3.9) 

(3.10) 

There remains one more concept that must be discussed before we begin to 

construct the representations. It is the idea of the operators of SU(3). There are 

eight operators in the group. Two of them correspond to the hypercharge and 

third component of isospin. The other six correspond to the raising and lowering 

operators (the "ladder" operators) in the three possible SU(2) subgroups. They 

are customarily called the T-, U-, and V-spin subgroups, and their ladder operators 

are denoted y±, u±, and v±. Implementing the ladder operators in a practical 

way is 'our concern for the moment. Their operation on a state represented by a 

tensor of indices is manifest in the raising or lowering of the values of each index 

separately and adding the results into a new tensor. Tensors are renormalized after 

the operations. We define the direction of raising to be-

r+: d ~ u, 

u+: s ~ d, 

v+: s ~ u. 

(3.11) 

As an example, let us apply r- to the octet's highest-weight state given in Equation 

3.5: 

r- _fi(uud- udu) = ~(dud+ udd- ddu- udd) 

= ~(dud- ddu). 
(3.12) 

In this case, since these two states form an isospin doublet, the normalization factor 

N is simply equal to 1. 
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3.2 Irreducible Representations 

Armed with the above ideas, we are now ready to discuss the construction of the ir­

reducible representations of SU(3). One way to define an irreducible representation 

is as a set of states that is complete and closed under the operators of the group. 

By complete we mean that from one state in the representation, any other state in 

it can be reached by (successive) ladder operations. By closed we mean that states 

outside the representation cannot be reached by (successive) ladder operations. It 

follows that we can construct all the states of a representation from one state by 

using the ladder operators. That one state is typically chosen to be the highest­

weight state, defined as the state of highest isospin. For this work, however, we 

consider the highest-weight state to be that which satisfies the conditions 

r+ jh.w.) = 0, 

u+ jh.w.) = 0, (3.13) 

v+ jh.w.) = 0, 

where the ( +) directions are given in Equation 3.11. 

Therefore a representation of SU(3) can be seen as a collection of SU(2) mul­

tiplets (henceforth called isomultiplets), each at a specific hypercharge. For each 

isomultiplet we have chosen to adopt the Condon-Shortley phase conventions [42]. 

This means that the eigenvalues of the isospin-r~ising and -lowering operators (the 

T-spin operators) are real and positive. It remains to specify the relative phases 

between the isomultiplets of a given representation and the overall phases of repre­

sentations in the Clebsch-Gordan series. Overall phases of representations will be 

discussed in Section 3.3. For the relative phases between isomultiplets in a given 

representation, we have adopted the de Swart phase convention [31]. It corresponds 

to requiring that the eigenvalues of the V-spin operators be real and positive. This 

is simply an extension of the Condon-Shortley convention to the V-spin operators. 

It is not possible to simultaneously require that the eigenvalues of all operators be 

positive. Because these conventions may differ from the phase conventions of other 
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authors, we caution the reader not to mix the usage of our tables with theirs. 

Representations can be labelled by the usual pair of integers (p, q). These inte­

gers are the number of ladder operations between the corners of the representation's 

weight diagram. The names of representations are given by [43]. 

In some cases, there will exist more than one state in a representation at a 

given y and i 3 . These states are distinguished by different total isospins. Finding 

the two or more states at a given site in weight space (the space with coordinates 

y and i 3 ) is done by applying different sequences of the ladder operators on the 

highest-weight state. The results are in general not states with definite total isospin 

i. We handle this problem as follows: At a given hypercharge, the highest-isospin 

state is not degenerate. From it we construct its complete isomultiplet. The re­

maining isomultiplets are then forced to be orthogonal to this isomultiplet. We 

repeat the process on the remaining states and find the isomultiplet of next-highest 

total isospin. This continues until all states at the given hypercharge have been 

decomposed into states of definite i and i 3 . 

3.3 Tensor Decomposition 

In this section we will describe the method by which the product of two irreducible 

representations is decomposed and the Clebsch-Gordan coefficients are found. Con­

sider two representations r and r'~ We begin with the set 51 of tensors in the 

product: 

(3.14) 

where the outer product of two tensors is defined in Section 3.1. However, we know 

that 5 1 is not irreducible in itself, but instead spans some number of irreduCible 

representations. The task theri is to construct another set of tensors, 52, which 

contains states of definite hypercharge and isospin in irreducible representations 

only, and which is spanned by 51: 

52- {vERI R C span(51)}. 
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The Clebsch-Gordan coefficients are then simply the inner product of tensors in S1 

with tensors in S2: 

(3.16) 

The crux of the entire calculation is the decomposition of S1 into irreducible 

representations. The method is the SU(3) analogy to the method by which we 

decomposed states at the same hypercharge into SU(2) multiplets in the previous 

section. We begin with the highest-weight tensor in S1 • There can be only one 

state with highest weight in S1 • From it we construct the "largest" representation 

in S2 , .as described in Section 3.2. By "largest" we simply mean having a highest­

weight state with weight (quantum numbers y and i 3 ) higher than those of the other 

representations. A state with quantum numbers (y, i, i3 ) has a higher weight than 

(y', i', i;) if either y > y' or both y = y' and (3 > i;. Strangely, under this definition, 

the 21 is "larger" than the 24. Consider now the set of tensors remaining after the 

largest representation is constructed. Of them, we take the subset with the highest 

weight and project out the parts that are orthogonal to the states of the largest 

representation. Unfortunately, this set may or may not contain only one linearly 

independent tensor. This fact is called the "outer degeneracy problem." In such a 

case we must appeal to other considerations. We have adopted the convention of [37] 

in order to resolve outer degeneracies. The highest outer degeneracy in this work is 

two, and is only present when one of the factors is an octet. The prescription of [37] 

corresponds to constructing the representations in the product so that the highest­

isospin state of only one of them to couples to the isospin-1 multiplet in the factor 

octet. Once the highest-weight state(s) of the second-largest representation(s) is 

(are) found, the representation(s) is (are) constructed again as in Section 3.2. 

It remains to specify the overall phases of representations in the decomposition 

of the product of two irreducible representations. We choose to follow the phase 

convention of de Swart [31]. For each representation R in the product, co~sider 

the state with highest third component of isospin and call its quantum numbers Yh, 
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Jh, and Jh3· Next consider the state in the first factor representation (r) that has 

highest isospin and couples to R(Yh, h~ h 3 ); call its quantum numbers Yh, ih, and 

ih3 . Now consider the state in the second factor representation (r') with highest 

isospin that couples the above two states; its quantum numbers are labelled yb_, ih, 
and ih3 • The phase convention requires that the Clebsch-Gordan coefficient between 

these three states be positive (and real): 

(3.17) 

With these phase conventions, the Clebsch-Gordan coefficients and isoscalar factors 

are real. 

We continue this process until the span of S1 has been completely decomposed 

into irreducible representations, and the sizes of S1 and S2 are equal. Then are 

we ready to calculate the Clebsch-Gordan coefficients. A more transparent way of 

defining the coefficients is 

(RY I 13 jryii3r'y'i'i~) = R(Y,I, 13 ) · [r(y, i, i3 ) x r'(y', i', i~)]. (3.18) 

The resulting table of coefficients is a necessarily unitary matrix, and can be divided 

into unitary submatrices for each (Y, 13 ) pair. Moreover, our calculational method 

inherently gives a real matrix. The general case is a unitary, complex matrix. We 

check that every row and column has unit norm, and make spotchecks that rows 

and columns are orthogonal to one another. 

3.4 Isoscalar Factors 

Because there are two quantum numbers in SU(3) weights, compared to one for 

SU(2), the tables of SU(3) Clebsch-Gordan coefficients take far more paper to 

display than do those of SU(2). Fortunately, there exists a way to compress the 

information contained in such a table. Because the representations of SU(3) can 

be viewed as collections of SU(2) representations at different hypercharges, we 
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can "factor out" the SU(2) Clebsch-Gordan coefficients from those of SU(3). The 

remaining factors are called the isoscalar factors. They are what appear in the 

tables at the end of this chapter. 

The isoscalar factors depend of the identity of the representations, and on the 

hypercharges and isospins of the isomultiplets that are coupled. We will denote them 

by F(R, Y, I; r, y, i, r1
, y1

, i 1
). The SU(3) Clebsch-Gordan coefficients are found as 

products of isoscalar factors and SU(2) Clebsch-Gordan coefficients: 

(R Y I I I . . I I ·I ·I) F(R Y. I . I I ·I) (I I ,. . ·I ·I ) 3 r y z Z3 r y z z3 = , , ; r, y, z, r, y, z x 3 z z3 z z3 • (3.19) 

The SU(2) tables can be reconstructed from Tables 13 , 23 , 33 , and 43 of [42]. For 

isospin less than or equal to two, they can conveniently be found in the Review of 

Particle Properties [10]. Note the easily overlooked relation 

(3.20) 

Note that for each pair of Y and I the table necessarily contains a unitary submatrix. 

There are two symmetry relations among the isoscalar factors that will allow 

us to omit many tables from our exposition. Those tables can be reconstructed 

from those that are present, with the help of the phase factors involved in these 

symmetry relations. Both relations come from [31], but we rewrite them in our 

notation.3 The first involves the order of the factor representations. If the order is 

reversed, then a phase e may enter: 

F(R, Y, I; r1
, y1

, i 1
, r, y, i) = ( -1/-i-i' e(R; r, r1)F(R, Y, I; r, y, i, r1

, y1
, i1

). (3.21) 

The factor ( -1)!-i-i' comes from Equation 3.20. The phase e(R; r, r 1
) does not 

depend on the quantum numbers ofthe states, but only on the identity of the rep­

resentations r, r 1
, and R, and on the phase conventions described in the previous 

section. The second symmetry relation involves the conjugation of the representa­

tions: 

F(R Y I .- . I I ·I) - ( 1)[-i-i'((R· I)F(R Y. I· . I I •I) , , ,r,y,z,r,y,z - - ,r,r ,-, ,r,-y,z,r,-y,z . (3.22) 

3 0ur ~is the ~1 of [31]; (is 6 of [31]. 
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Here ((R; r, r') also does not depend on the quantum numbers of the states involved, 

but only on the identities of the representations and on our phase conventions. For 

these relations, bars on self-adjoint representations are irrelevant. It is easy to show 

from Equations 3.21 and 3.22 that 

e(R; r, r') = e(R; r, r'). (3.23) 

Then it can be shown (using Equation 3.23) that 

((R; r', r) = ((R; r, r'). (3.24) 

The e and ( needed to construct the omitted tables are presented in Tables 3.2 

and 3.3. We should note that it is not necessary to construct the tables related . 

by Equations 3.21 and 3.22 in order to find the phase factors. They are found by 

considering the highest-isospin states of the representations in the product. Suppose 

that such a state and the highest-isospin states coupling to it are described as in 

Section 3.3. Then from Equation 3.20 we find simply that 

(3.25) 

Suppose that in the reversed product r' @ r the highest-isospin state in r' that 

couples to Jh in R has quantum numbers y~ev and i~ev, and the highest isospin in 

r that couples to these two has Y'hev and ihev. Then 

t(R· ') _ ( l)Ih -irev -irrev · [F(R "1:7 J . rev ·rev 1 . frev •frev)] ., , r,: - - h. h x s1gn , .rh, h, r, Yh , zh , r, Yh , zh , (3.26) 

where sign(x) = xflxl. 

3.5 Computer Implementation 

The calculations of Clebsch-Gordan coefficients were performed on computer. The 

routines are described in this chapter. Many of them have also been described 

in [44]. The computers used were the VAX 4090 and VAX 6610, running VMS 
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The programming language used was Pascal, and the program was compiled with 

DEC Pascal version 5.1. Because we take the approach of explicitly constructing 

the representations and use integers for exact precision, the main limitations of 

the routines are due to memory allocation and integer overflows. In some problem 

cases, we are able to complete a table by constructing it in pieces, or by inferring 

the coefficients of a missing representation by imposing unitarity on the table. For 

example, the singlet in the product 10 ® 10 cannot be constructed in the algorithm 

described in the previous section, sinc,e finding the tensor that is orthogonal to all 

larger representations in the product overflows the integers used. The coeffici~nts 

involving the singlet are uniquely determined, up to an overall phase, by unitarity 

of the submatrix at y = 0, i 3 = 0, and so can be inferred. The phase is determined 

by our conventions. 

Unlike earlier published programs to generate SU(3) Clebsch-Gordan coeffi­

cients [36] [37] [38], we do not use floating-point variables, but instead calculate 

the coefficients exactly with integer variables. A rational variable type (called 

"fraction") is defined for this purpose. Also to this end, states of representa­

tions are stored as arrays of integers (called "vectors"). It is possible to represent 

states of SU(3) representations as tensors with rational coefficients due to the finite 

nature of the group. That is, the fact that the quantum numbers of SU(3) are 

discrete enables all calculations to be done with rational numbers. The table of 

Clebsch-Gordan coefficients is then stored in an array of fractions, each of which is 

the signed square of the corresponding coefficient. 

The remainder of this section is the description of the most important variables 

and routines in the program .. They are divided into those that deal with tensors, 

those that deal with representations, those that deal with the process of tabulating 

the coefficients, and those .that decompose the set S1 (see Section 3.3) into S2 (these 

are the routines doRxS). 
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3.5.1 Tensors 

The vectorn variable type is an array of 3n + 1 integers, where the +1 is for space 

allocated for the norm squared. The norm serves as a common denominator for the 

fractions that are the components of a tensor. A different type is defined for each 

n, up to a limit of nine. What are the implications of this storage method? Two · 

main difficulties arise. The first is that we need a different routine for each possible 

number of indices of a tensor. These routines are distinguished in the following 

descriptions by the suffix "-n." This makes it difficult to develop a general routine to 

tabulate the Clebsch-Gordan coefficients of representations using arbitrary numbers 

of indices. The second is the limitation of computer memory. We cannot compile 

the table of coefficients for the product of two arbitrary representations, but must 

cease when the representations are too large. 

There are routines designed to return certain information about state ten­

sors. The function null n returns true if a tensor is the zero tensor. The routines 

hyperchargen, totisospinn, and isospinnreturn the quantum numbers y, i, and 

i 3 of a state. Testing whether a state is of highest weight is done by checkhighestn, 

which uses T_n (described below). These routines are used throughout the program. 

Various manipulations of state tensors are needed. The inner and outer prod­

ucts of tensors are found with innern and outermxn. Multiplication and divi­

sion is used in finding orthogonal projections of states and for normalizing states; 

for this scalardi vi den and scalarmul t n are called. The normalizing routine is 

normalizen, while findperpn projects one state onto the subspace orthogonal to 

another state. Finally, the ladder operations are performed by the routines T _n. 

The direction of the operation is passed as an argument, so that one routine can 

perform all six ladder operations. 
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3.5.2 Representations 

The representations are stored in a variable type called rep_n. It is merely a col­

lection of vector variables, one for each state in the representation. The routines 

which fill these variables are called calcR_n, for each representation R and dimen­

sion of tensors n. These routines begin with the highest-weight state and from it 

call the ladder operation routines in order to find the remaining states. In the cases 

of multiple degeneracy in (y, i 3 ), findperpn is used in order to resolve the states 

into those of definite total isospin i. This is discussed in Section 3.2. 

3.5.3 The Table of Coefficients 

The table variable is simply an array of fraction. Each entry is the signed square 

of its corresponding Clebscl;l-Gordan coefficient. Entries are placed in table by 

tabulatemxn, which calls the routines that take the appropriate inner and outer 

products in order to implement Equation 3.18. The table is then checked for nor- ' 

mality in both directions by normalhorizontal and normal vertical. Finally, the . 
table is written in U\TEX format by latextable. This makes life easier for us 

humans. 

3.5.4 The Tensor Decomposition 

The routines that handle the decomposition of the set S1 into the set S2 are called 

doRxS, where RandS denote the names of the factor representations. The method 

employed is that described in Section 3.3. These routines call calcR_n to generate 

representations, and findperpn to find the highest-weight states of smaller rep­

resentations. For each representation in the product, a call to tabulatemxn fills 

the corresponding columns in the table. After the table of coefficients is complete, 

normalhorizontal and normal vertical are called to verify normality, latextable 

is used to place the coefficients into the output file, and isoscalar (described be-
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low) is called to extract and record the isoscalar factors. 

3.5.5 Isoscalar Factor Extraction 

A routine called iscoscalar is used to extract the isoscalar factors from the table of 

Clebsch-Gordan coefficients. It does this by compiling the necessary tables of SU(2) 

Clebsch-Gordan coefficients and dividing them into the SU(3) Clebsches. Although 

we need only use one Clebsch from each isomultiplet, as a check we consider each 

member of the isomultiplet and verify that each gives the same isoscalar factor. The 

isoscalar factors are at last written in J~TEX format to a file for our use. 

3.6 The Tables of Isoscalar Factors 

Here are presented the tables of isoscalar factors for SU(3). Recovering the Clebsch­

Gordan coefficients is accomplished with Equation 3.19. The list of tables appears 

in Table 3.1. 

The tables follow. Table 3.1 is a list of the products of representations whose 

isoscalar factors are given in this work. Tables 3.2 and 3.3 give the phase factors 

which are described in the previous section and which can be used to generate other 

tables from the ones presented. The tables of isoscalar factors appear last. Tables 

for 8 0 8, 10 0 8, 10 0 10, 10 0 10, and 27 0 8 also appear in [31] and (32]. 

Only the tables needed for the remainder of this work are presented here. The 

interested reader can find additional tables of isoscalar factors in (45]. In the tables, 

a square root is assumed to appear over each entry (signs are outside the square 

roots). Thus, 

r 0 r' 

R 

y 

I 

y z y' i' ±C 
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means that the isoscalar factor 

F(R, Y, I; r, y, i, r', y', i') = ±VC. (3.28) 
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Table 3.1: List of tables of isoscalar factors that follow. 

Table 3.4 3 @ 3 - 6$3 

Table 3.5 3 @ 3 - 8$1 

Table 3.6 6 @ 3 = 10 EB 8 

Table 3.7 6 @ 3 - 15 EB 3 

Table 3.8 8 @ 3 - 15 EB 6 EB 3 

Table 3.9 8 @ 8 = 27 EB 10 EB 10 EB 81 EB 82 EB 1 

Table 3.10 10 @ 8 - 35 EB 27 EB 10 EB 8 

Table 3.11 10 @ 10 = 64 EB 27 EB 8 EB 1 

Table 3.12 15 @ 3 - 27 EB 10 EB 8 

Table 3.13 27 @ 8 - 64 EB 35 EB 35 EB 271 EB 272 EB 10 EB 10 EB 8 

Table 3.14 27 @ 27 (to singlet only) 
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Table 3.2: Phase factors e. Here ( +) denotes + 1 and (-) denotes -1. 

e R 

r r' 1 3 3 6 6 81 82 10 10 15 271 272 35 35 64 

3 3 + 
3 3 - + 
6 3 + 
6 3 + 
8 3 + 
8 8 + + + 
10 8 + + 
10 10 - + + 
15 3 + 
27 8 + + + + - - + 

Table 3.3: Phase factors (. Here ( +) denotes + 1 and (-) denotes -1. 

( R 

r r' 1 3 3 6 6 81 82 10 10 15 271 272 35 35 64 

3 3 + + 
3 3 - + 
6 3 + + 
6 3 + 
8 3 + + 
8 8 + + + + + 
10 8 + + 
~to 10 + + 
15 3 + + 
27 8 + + + + + 
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Table 3.4: 

Table 3.5: 

Table 3.6: 

Isoscalar factors for 3 ~ 3. Notation for this and following tables 

is explained in the text. In these tables a square root is assumed 

over each entry. 

3 6 3 6 6 

3®3 2 2 1 1 4 
3 3 -3 -3 -3 
0 1 1 1 0 2 2 

1 1 1 1 -ljl 3 2 3 2 
1 !. _a 0 !. !. 
3 2 3 2 2 
2 0 !. !. _!. 1 

-3 3 2 2 2 
2 0 2 0 1 -3 -3 

lsoscalar factors for 3 ® 3. 

8 1 8 8 8 

3~3 1 0 0 0 -1 
!. 0 0 1 !. 
2 2 

2 0 1 !. 1 3 3 2 
2 0 2 0 1 2 
3 -3 3 3 r-
1 !. !. !. 2 1 1 -3 2 3 2 3 -3 
1 !. 2 0 1 -3 2 -3 

lsoscalar factors for 6 ~ 3. 

8 10 8 8 10 8 10 10 

6~3 1 1 0 0 0 -1 -1 -2 
1 3 0 1 1 !. !. 0 2 2 2 2 

2 1 !. 1 -11 1 3 3 2 
1 1 .!. 1 -1 1 ~ -3 2 3 2 '----

-3 3 
~ 1 _.?. 0 2 1 
3 3 3 3 
1 .!. 2 0 1 ~ -3 2 -3 3 3 
4 0 .!. 1 2 1 -3 3 2 -3 3 
4 0 2 0 1 -3 -3 
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Table 3.7: Isoscalar factors for 6 0 3. 

15 3 15 15 3 15 15 15 

603 1 1 1 !. 2 2 2 5 
3 3 3 3 -3 -3 -3 -3 
1 !. !. 3 0 0 1 1 

2 2 2 2 
~ 1 ~ 0 1 3 3 
1 !. 2 0 _!. ~ -3 2 3 4 4 -
2 1 1 1 3 !. 1 3 -3 2 4 4 
4 0 2 0 1 ! -3 3 -2 2 -
1 1 1 1 1 !. 1 -3 2 -3 2 2 2 
4 0 1 !. 1 -3 -3 2 

Table 3.8: Isoscalar factors for 8 0 3. 

6 15 .3 6 15 15 3 15 6 15 15 

803 1 4 1 !. 1 !. 2 2 2 2 5 
3 3 3 3 3 3 -3 -3 -3 -3 -3 
0 1 !. !. 1 ~ 0 0 1 1 !. 

2 2 2 2 2 

1 !. !. !. -II 1 
2 3 2 

1 !. 2 0 ~ !. ~ 
2 -3 8 4 8 

0 0 !. !. 1 3 ~ 
3 2 -16 -8 16 f--

0 1 !. 1 ~ 3 _...!_ 1 
3 2 16 -8 16 

0 0 2 0 !. ~ -3 4 4 

-1 !. 1 !. ~ _!. 1 !. 
2 3 2 4 4 -2 2 

0 1 2 0 . !. 1 
-3 2 2 

-1 !. 2 0 1 
2 -3 

/ 

51 



Table 3.9: Isoscalar factors for 8 0 8. 

10 27 81 82 10 27 10 27 

8®8 2 2 1 1 1 1 1 1 

0 1 !. !. 1 !. ~ ~ 
2 2 2 2 2 2 

1 1 1 !. -II 1 2 2 

1 !. 0 0 1 !. !. ~ 
2 -20 4 4 20 

0 0 1 1 1 1 1 9 
2 -20 -4 -4 20 

1 !. 0 1 9 !. _!. .l. 1 !. 
2 20 4 4 20 -2 2 

0 1 1 !. 9 !. _!. 1 !. !. 
2 -20 4 4 -20 2 2 

1 81 82 27 81 82 10 10 27 27 
8@8 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 2 

0 0 0 0 1 1 .0 27 
-8 -5 40 

1 !. -1 1 1 1 !. .l_ 3 1 1 !. !. 
2 2 4 10 2 20 10 6 -6 6 5 

-1 1 1 1 1 1 1 3 3 1 1 1 1 
2 2 -4 -10 2 -20 -10 -6 6 -6 5 

~ 

0 1 0 1 ~ -~ 0 _.l. 0 2 !. 1 0 1 8 5 40 3 6 -6 
_!. _!. ~ 

1---

0 0 0 1 !. 0 5 4 4 10 

0 1 0 0 !. 0 !. !. ~ 
5 4 4 10 

81 82 10 27 10 27 10 27 

8®8 -1 -1 -1 -1 -1 -1 -2 -2 
1 1 1 !. 3 ~ 0 1 2 2 2 2 2 2 

0 0 -1 !. 1 !. _!. 9 
2 -20 4 4 20 

-1 1 0 0 1 1 !. 9 
2 -20 -4 4 20 

0 1 -1 !. ~ !. !. .l. 1 !. 
2 20 4 4 20 2 2 

-1 !. 0 1 9 1 1 1 1 1 
2 -20 4 4 -20 -2 2 

-1 !. -1 1 II 1 2 2 
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Table 3.10: Isoscalar factors for 10 0 8. 

27 35 8 27 10 27 35 35 

10 0 8 2 2 1 1 1 1 1 1 

1 2 !. !. 3 ~ ~ §. 
2 2 2 2 2 2 

1 ~ 1 !. -11 1 2 2 

0 1 1 !. !. 4 1 1 §. 
2 5 -5 -4 -8 8 -

1 ~- 0 1 4 1 5 5 1 1 -s- -s- 8 -16 16 -
~0 !. J!... 5 1 2 0 8 16 16 

8 27 8 10 27 35 27 35 

10 0 8 0 0 0 0 0 0 0 0 

0 0 1 1 1 1 2 2 

-1 !. 1 !. ~ 3 2 1 _!. !. 
2 2 5 5 15 -3 5 3 

0 1 0 1 3 2 _2. !. 9 ..!... 1 ~ -5 -s- 15 3 -20 12 -4 4 

1 ~ -1 !. ..§__ !. 1 ..!... ~ !. 
2 2 15 3 20 12 4 4 

0 1 0 0 1 0 3 1 -s- 10 2 

8 10 27 35 27 35 10 35 27 35 35 

10 0 8 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -3 
!. !. 1 !. ~ ~ 0 0 1 1 1 
2 2 2 2 2 2 2 

-1 1 0 0 1 1 9 J!... 
2 -5 -8 80 16 

-2 0 1 !. 2 1 9 !. 
2 5 -4 -40 8 

0 1 -1 !. !. 1 ..!... !. !. !. 
2 5 2 20 4 2 2 

-1 1 0 1 _!. !. 49 ..!... 1 !. 
2 5 8 -80 16 -2 2 

-2 0 0 0 1 1 
-2 2 

-1 1 -1 !. !. !. !. ~ 
2 2 2 2 4 4 

-2 0 0 1 3 1 
4 4 

-2 0 -1 !. 1 2 
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Table 3.11: Isoscalar factors for 10 ® 10. 

64 27 64 64 8 27 64 27 64 64 

10 ® 10 3 2 2 2 1 1 1 1 1 1 
~ 1 1 2 ! ! ! ~ ~ .§. 
2 2 2 2 2 2 2 

2 0 1 ~ 1 2 

2 0 0 1 ~ 1 
7 7 ,___ 

1 ! 1 3 4 3 1 2 2 7 -7 

2 0 -1 ! ! 18 2 
2 5 35 7 

1 ! 0 1 ~ _!_ 4 2 .§. 
2 5 35 -;; 7 7 

1--
0 1 1 3 ~ 16 ! .§. . 2 1 2 5 -35 7 7 -7 

1 8 27 64 8 27 64 27 64 64 

10 ® 10 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 2 2 3 

2 0 -2 0 _!_ 2 27 ..!. 
10 5 70 35 

1 1 -1 1 1 1 3 18 1 16 10 
2 2 5 5 -35 -35 15 35 21 

0 1 0 1 .2. 0 -~ 12 4 ~ 10 ! ~ 
10 14 35 15 35 -21 7 7 

1--

-1 ~ 1 ~ ~ -~ .&.. 1 2 2 _!_ ~ 1 1 2 2 5 5 35 -35 3 -;; 21 7 -;; 

8 27 64 27 64 64 27 64 64 64 

10 ® 10 -1 -1 -1 -1 -1 -1 -2 -2 -2 -3 
! ! l ~ ~ .§. 1 1 2 ~ 
2 2 2 2 2 2 2 

1 ! -2 0 ! 18 2 
2 5 35 7 

0 1 -1 ! ~ _!_ _1 2 .§. 
2 5 35 7 7 7 -

-1 3 0 1 2 16 1 5 2 1 2 5 -35 7 7 -;:; 

0 1 -2 0 ~ 4 
7 7 r---

-1 3 -1 ! 1 3 1 2 2 7 -;; 
-1 ~ -2 0 1 2 
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Table 3.12: Isoscalar factors for 15 0 3. 

27 8 27 10 27 8 27 8 10 27 27 8 10 27 27 10 27 

15 0 3 2 1 1 1 1 0 0 0 0 0 0 -1 -1 -1 -1 -2 -2 

1 ! ! ~ ~ 0 0 1 1 1 2 ! ! ! ~ 0 1 2 2 2 2 2 2 2 2 
1 1 2 0 1 3 3 
! 1 ~ 0 _! 1 
3 2 3 5 5 

'---4 1 1 1 1 ! 1 1 
3 -3 2 5 5 -2 2 
! ~ ~ 0 ! ! 
3 2 3 2 2 
2 0 ~ 0 2 ~ -3 3 -5 5 
! ! 1 ! ~ ~ ..!.. 4 ..§_ 
3 2 -3 2 5 5 45 -9 15 
2 1 2 0 4 1 2 -3 3 -15 3 5 r--
! ~ 1 ! 32 ~ ..!.. 1 3 2 -3 2 45 9 15 
2 0 1 ! ..!.. 1 ~ -3 -3 2 15 -3 5 
5 ! ~ 0 8 ! .1.. -3 2 3 -15 6 10 r----2 1 1 ! ~ ! ..!.. 1 -3 -3 2 5 2 10 
5 1 1 1 1j 1 -3 2 -3 2 
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Table 3.13: lsoscalar factors for 27 ® 8. 

35 64 10 35 271 272 35 64 35 64 

27 ® 8 3 3 2 2 2 2 2 2 2 2 
l ~ 0 0 1 1 1 1 2 2 2 2 

2 1 1 l -II 1 2 

1 l 1 l l 5 5 1 5 40 
2 2 6 -6 -24 -56 -36 63 

2 1 0 1 5 1 l 15 1 1 2 1 
-6 -6 4 28 -6 21 -3 3 

1 ~ 1 l l 5 4 2 1 .a 
2 2 6 14 -9 -63 3 3 

2 1 0 0 ~ 5 l 2 
8 -56 4 7 

8 10 271 272 35 64 10 271 272 35 35 64 35 64 

27 ® 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
l l l l l l ~ ~ ~ ~ ~ ~ §. §. 

' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1 l 0 0 2 1 3 169 ..§._ 10 
2 15 -24 32 -1120 48 21 

0 0 1 l .l.. l _l 3 5 20 
2 45 9 4 -140 -18 63 

2 1 -1 1 4 5 5 3 1 4 5 1 15 5 1 5 
2 9 36 16 112 72 63 -18 8 -56 -36 9 63 

1 l 0 1 2 49 .l 361 -125 10 1 0 l -25 _..§._ ~ 
2 -135 -216 32 1120 432 189 27 7 54 54 189 

0 1 1 1 4 l 1 27 5 5 1 5 27 .12_ 5 25 
2 -45 9 4 -140 -18 -63 -72 -32 -224 144 -36 63 

1 3 0 1 ..§... 10 0 2 1 2 25 15 .12_ 49 5 _1_ 1 .a 
2 27 -27 -;; -27 -189 -216 32 224 432 -27 189 -3 3 

0 2 1 1 25 5 75 1 5 1 2 !. 
2 72 32 -224 -144 -36 -63 3 3 

1 3 0 0 5 ·.l _§_ 5 l ..§._ 
2 24 32 224 48 3 21 

8 271 272 64 8 10 10 271 272 35 35 64 
27 ® 8. 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 0 1 0 8 i -5 -35 7 

1 l -1 l _i_ l .l _i_ _.!_ 16 .l.. !. 9 20 ..§._ 100 
2 2 15 2 70 21 405 -81 81 6 -70 -81 81 567 

-1 l 1 1 4 l 3 4 _.!_ 1 16 1 9 ..§._ 20 100 
2 2 -15 2 -70 -21 405 -81 81 -6 -70 81 -81 567 

·0 1 0 1 4 0 24 1 0 1 1 1 0 5 5 0 15 -35 -21 -6 -6 4 24 -24 

0 1 0 0 _.i_ l 1 0 1 5 ..§._ 25 
45 9 9 -70 36 36 63 

0 0, 0 1 1 _i_ 4 0 ..§... 20 20 100 
-405 81 81 35 -81 -81 567 

1 3 -1 l 16 ..§._ 20 ..§._ ~ .12_ 1 ..aQ_ 
2 2 81 81 81 24 56 324 81 567 

-1 3 1 l 16 20 ..§._ ..§._ 9 1 25 20 
2 2 -81 81 81 24 -56 -81 -324 -567 

0 2 0 '1 40 25 _.12_ 0 _..§._ 5 5 2 
81 162 162 28 -648 -648 -567 
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271 272 35 35 64 64 

27 0 8 0 0 0 0 0 0 
2 2 2 2 2 3 

0 1 0 1 0 2. 5 5 10 
28 -24 -24 21 

1 3 -1 .!. .!. 15 1 !. ..!. 
2 2 8 -56 -12 3 21 

-1 ~ 1 .!. 1 15 .!. 1 ..!. 
2 2 -8 .-56 3 -12 21 

0 2 0 0 0 ..§_ 1 !. 1 
14 4 4 7 1-----

0 2 0 1 ~ 0 .!. 1 0 1 4 8 -8 

8 10 271 272 35 64 10 271 272 35 35 64 35 64 

27 0 8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
.!. !. .!. .!. .!. !. ~ ~ ~ 3 ~ ~ §. 5 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 

-1 !. 0 0 2 .1_ 3 169 ..§_ 10 
2 -15 24 -32 '-1120 48 21 

0 0 -1 .!. .1_ 1 .!. 3 5 20 
2 45 -g- 4 -140 -18 63 

-2 1 1 1 4 5 5 3 1 4 5 1 15 1 5 5 
2 -g- 36 16 -112 -72 -63 18 -8 -56 9 -36 63 

0 1 -1 .!. ..!. !. .!. .E._ ..§_ 5 .1_ ..§_ 27 _..§_ _1§._ 25 
2 45 9 4 140 18 63 72 32 -224 36 144 63 

-1 !. 0 1 2_ 49 2. 361 125 10 1 0 .!. 5 -25 2.Q_ 
2 135 -216 32 -1120 432 -189 -27 7 -54 54 189 

-1 3 0 1 8 10 0 2 1 2 25 15 25 ..§_ 49 1 1 ~ 
2 27 ' 27 -7 -27 -189 -216 32 -224 27 -432 -189 -3 3 

0 2 -1 1 25 ..§_ .1§._ ..§_ _1_ .1_ 2 !. 
2 72 32 224 36 144 63 3 3 

-1 3 0 0 5 3 5 1 ..§_ 5 
2 -24 -32 224 3 48 21 

10 35 271 272 35 64 35 64 35 64 

27 0 8 -2 -2 -2 -2 -2 -2 -2 -2 -3 -3 

0 0 1 1 1 1 2 2 !. ~ 
2 2 

-1 .!. -1 !. !. §. ..§_ 1 5 40 
2 2 6 6 24 -56 -36 63 

-2 1 0 1 §. 1 .!. 15 !. 1 2 !. 
6 -6 4 -28 6 -21 -3 3 

-1 ~ -1 .!. .!. 5 4 2 !. ~ 
2 2 6 14 9 63 3 3 

-2 1 0 0 3 5 .!. ~ -8 -56 4 7 

-2 1 -1 1 1.1 1 2 
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Table 3.14: Isoscalar factors for 27 Q9 27 to the singlet only. 

1 

27 ® 27 0 

0 

0 0 0 0 l 
27 

1 l -1 l 2 
2 2 -27 

-1 1 1 l 2 
2 2 27 

0 1 0 1 1 
-9 

2 1 -2 1 l 
9 

-2 1 2 1 l 
9 

1 3 -1 3 4 
2 2 27 

-1 ~ 1 ~ 4 
2 2 -27 

0 2 0 2 .£ 
27 
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4 D-Meson Decays in Broken Flavor 
SU(3) 

Many data are available on the hadronic two-body decays of charmed mesons. The­

oretical models that attempt to systematize the decay patterns have been available 

for many years. These models usually make dynamical assumptions in order to 

reduce the number of amplitudes that contribute to a particular decay. For exam­

ple, the large Nc approximation (46] (47], or the. heavy-quark effective theory (48]. 

It is not clear .a priori how well such approximations should work and hence how 

seriously to take a conflict between a prediction and a measured value. Another 

approach is to assume that the matrix elements factorize (49]. This model is quite 

successful in describing observed modes, but again, it is difficult to know whether 

a discrepancy is due to an incorrect measurement of the failure of the assumption. 

A more general approach based on a diagrammatic classification (50], with different 

assumptions, also exists. In many cases attempts are made to obtain predictions of 

unmeasured modes from these models. 

SU(3) is badly broken in these decays, so models based on exact symmetry 

(51] are not useful. An analysis of the SU(3) breaking was begun in (52]. However, 

an attempt at a complete parameterization has been conspicuously missing, due to 

the large number of reduced matrix elements involved. We set out to remedy this 

omission. This chapter gives a full parameterization of the decays of the D mesons 

into final states of two pseudoscalars (PP), two vectors (VV) and a pseudoscalar plus 

a vector (PV), including SU(3)-breaking. The elements of this parameterization­

the particle representations, the weak hamiltonian, the breaking operator, and the 
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reduced matrix elements-are discussed in the following sections. We make only very 

few assumptions to limit the number of parameters. We fit the parameters to the 

available data of two-body decays and predict many unmeasured modes. Because 

a few of the parameters are not cor1strained, we indicate which branching fractions 

are needed to predict the rest of certain classes of modes. We comment on the case 

of Ds -r r/p+, where the model is barelyconsistent with data. Much ofthis analysis,_ 

can be found in [53]. 

4.1 Particle States in Flavor SU(3) 

In a model based on flavor SU(3), the particles are denoted by their SU(3) rep­

resentation. The fundamental representation is the triplet (3) of quarks u, d, and 

s. The three D mesons { D 0 , n+, Dt} form an anti triplet (3) representation. The 

pseudoscalars { 1r+, 1r
0 , 1r-, J<+, 1<0 , I<-, -go, ry8 } form an octet ( 8) representation, 

as do the vectors {p+, p0
, p-, /{*+, J-(*0

, K*-, 1?*0
, w8 }. The 77I and WI are each 

singlets. 

D 

p 

v 
77I 

3, 

8, 

8, 

1, 

1. 

The physical 77, 77', ¢>, and w are linear combinations of singlets and octets: 

77 cos Op ry8 - sinOp 7]1, 

77' sin Op 1]8 + cos ()p 7]1, 

w cos Ov w 8 - sin Ov wi, 

¢> sin Ov w8 + cos ev WI' 

( 4.1) 

(4.2) 

with mixing angles Op = -17.3° [54] and av = 39° [10]. Throughout this chapter, 

I<* will always denote /{*(892) and 77' will denote ry'(958). 
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4.2 The Weak Hamiltonian 

The decays of the D mesons are mediated by the weak hamiltonian. Ignoring QCD 

corrections, thehamiltonian in terms of the quark fields is 

~ cos2 Be u1JL(l - ')'s)d SIJL(l -"Ys)c 

+ ~ cosBesinBe u1JL(!- ')'s)s SIJL(l- 75 )c 

- ~ cosOe sin Be u1JL(l - ')'s)d !i')'JL(l - ~5 )c 
- ~ sin2 Be u1JL(l - ')'s)s (i')'JL(l- /s)c. 

(4.3) 

Note that the operators q create quarks and so transform as a triplet, while q 

transforms as the antitriplet. 

4.2.1 Hweak in Terms of SU(3) Representations 

Using the Clebsch-Gordan coefficients for the expansion of the product 3 x 3 x 3, 

we can classify the operators according to irreducible representations of SU(3) as 

follows: 

(ud)(sc) 

(us )(de) 

(ud)(dc) 

(us )(sc) 

(4.4) 

where (qq') denotes q')'JL(l - ls)q'. The numbers in parentheses are hypercharge, 

total isospin, and third component of isospin of the particular members of the 

SU(3) representations. The weak hamiltonian can now be written in terms of the 

representations 3, 3', 6, and 15 as 

Hweak Gpsin2 Be a6(~,0,0)- ~15(~,1,0)) 

+ Gp cos2 Be a6(-~, 1, 1) + !15(-~, l, l)) 
+ Gp cos Be sin Be 

[~6(~, ~' ~) -.)615(~, ~' ~) + )315(~, ~' ~)]. 
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The combination of 15(~, ~' ~) and 15(!, ~' ~) is the center member of a U-spin 

vector, as discussed in [51]. Note that the 3 does not appear in Hweak(Mw) [55]. 

Because the QCD corrections are multiplicative and do not mix the SU(3) repre­

sentations, the 3 will also not appear in Hweak(mc)· 

4.2.2 QCD Evolution 

Since the decays of the D mesons occur at the scale of the c-quark mass, we must 

allow the QCD evolution of the various operators from the W-mass scale, where 

Equation 4.3 is valid, to the c-mass scale. The operators represented by the 15 are 

symmetric under quark interchange, and those represented by the 6 are antisym­

metric. The QCD renormalization of operators with these symmetry properties has 

been calculated [56]. 

We find that 

15 ~ 15 X 

6 ~ 6 X 

where 
6 

33-2NJ' 

-12 
33-2NJ' 

X [
ars(mb)] at 
ars(mc) ' 

[
ar.(mb)] a4 
ar 8 (mc) ' 

(4.6) 

(4.7) 

in the regime where there are N1 flavor degrees of freedom. Taking into account 

the change in the number of active flavors as the b-quark threshold is crossed, and 

using a 5 (Mz) = 0.116 [10], we obtain 

15 ~ 0.818 15, 

6 ~ 1.49 6. 

With Equation 4.5 as the boundary condition, we have 

Hweak(mc) = ~ sin2 Be [-0.818 15(~, 1, 0) + 1.49 6(~, 0, 0)) 

+ ~ cos2 Be [0.818 15(-~, 1, 1) + 1.49 6(-~, 1, 1)) 

+ ~cos Be sin Be [0.818 x ]3 15G, !, ! ) 
- 0.818 X If 15(~, ~' ~) + 1.49 X v'2 6(~, ~' ~)]. 
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Note that the QCD corrections do not introduce any new phases into the process. 

Unfortunately, until the values of the reduced matrix elements (discussed below) 

are known, the coefficients in Equation 4.9 are of little use. 

4.3 Parameterization 

4.3.1 SU(3) Breaking 

For a complete parameterization of any process in flavor SU(3), we must include 
'._, 

explicit breaking. Since we know that the source of flavor SU(3) breaking among 

the pions and kaons is the difference between the quark masses, we do this with an 

operator M which transforms as an 8. 

We can express M as 

(4.10) 

where Ai are the usual Gell-Mann matrices. The term in a represents breaking of 

the isospin SU(2) subgroup. This breaking, proportional to the difference between 

up and down quark masses, is expected to be very small and we neglect it in the 

following. When allowed to vary, the data prefers a small value for a. The constant 

f3 can be absorbed into the reduced matrix elements. Hence M can be reduced to 

M = >.8 . (4.11) 

4.3.2 Reduced Matrix Elements 

Now consider the most general parameterization of the decays in the context of the 

flavor SU(3) symmetry. For each possible contraction of the representations into an 

SU(3) singlet there must be one parameter, i.e., one reduced matrix element. The 

representations involved are those in Section 4.1: D (3), H (6 + 15 ), and two of 

P and V (each 1 or 8). In addition, we must include all possible ways of involving 

the symmetry-breaking parameter M. We assume that the breaking is linear in M. 
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Each reduced matrix element is, in principle, complex. We have chosen to contract 

D with H, then contract the products (PP, PV, VV) (and then possibly with M), 

and finally contract the two parts into the singlet. Our labels for the reduced matrix 

elements reflect this. For example, the matrix element denoted (DH15 ) 8 ((PP)IM)8 

is obtained by contracting D and the 15 component of H into an octet, contracting' 

PP into a singlet which combines with M to become another octet, and contracting 

the two resulting octets into the singlet. 

Unfortunately, the above parameterization involves far more parameters than 

there exist data. Therefore we make two important assumptions. First, we assume 

that we can separate the spin and flavor dynamics of the processes, i.e., that the 

relative strengths of the reduced matrix elements are the same in the PP, PV, and 

VV cases. This implies that only forty-eight reduced SU(3) matrix elements are 

needed. They are labeled with S and 0 for the singlet and octet representations, 

rather than with PP, PV, or VV. In order to distinguish the spin states we introduce 

two parameters, called "PV" and "VV." Second, we assume that the phase of 

each reduced matrix element is given solely by the representation of the product 

particles (before M is included). Bose symmetry for PP and VV and an appropriate 

phase rotation of the particle fields reduces the list of phases to ( 7]17]1 h, ( 7]1 w1 h, 
(w1w1)t, (P771)s, (Pw1)s, (V771)s, (Vw1)s, (PP)I, (PP)z1, (PV)I, (PV)s', (PV)Io, 

(PV) 10 , (PV)z7 , (VV)I, and (VV)27 . One should note that we cannot determine the 

relative phases between PP, PV, and VV. The complete list of parameters appt:ars 

in Tables 4.2 and 4.3. 

The amplitude for each decay mode can be expressed as a sum over the reduced 

matrix elements with the appropriate Clebsch-Gordan coefficients: 

A(Di ~Xi) = 2:: CiikRkSi. 
k 

(4.12) 

Here Rk are the reduced SU(3) matrix elements and Si are the parameters that we 

call PP = 1, PV, and VV. The SU(3) Clebsch-Gordan factors Ci were calculated 

by computer. Many of the routines used are described in Chapter 3. 
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Table 4.1: List of reduced matrix elements. 

(DHe;)s(SSM)s (DHls)s(SSM)s 

(DHs)s(SO)s (DHls)s(SO)s 

(DHs)s(SOM)s (DHs)s(SOM)s' 

(DH6)w(SOM)10 (DHls)s(SOM)s 

(DHls)s(SOM)s' (DH1sho(SOM)10 

(DH1s)21(SOM)21 

(DHs)s(OO)s (DHs)s(OO)s' 

(DH6)10(00)IO (DHls)s(OO)s 

(DHls)s(OO)s' (DH1s)10(00)10 

(DH1s)27(00)21 (DHs)s((OO)IM)s 

(DHs)s((OO)sM)s (DHs)s((OO)sM)s' 

(DHs)10((00)sM)IO (DHs)s((OO)s,M)s 

(DHs)s((OO)s,M)s' (DHs)10 (( OO)s,M)Io 

(DHs)s((OO)IOM)s (DH6)10 (( OO)IOM)IO 

(DHs)s((00)10M)s (DHs)s((00)27M)s 

(DH6)10((00)21M)10 (DHls)s((OO)IM)s 

(DHls)s((OO)sM)s (DHls)s(( OO)sM)s' 

(DH1s)10( ( OO)sM)10 (DHls)27((00)sM)27 

(DHls)s((OO)s,M)s (DHls)s(( OO)s,M)s' 

(DH1s)10(( OO)s,M)10 (DH1s)27((00)s,M)27 

(DHls)s((OO)IOM)s (DH1s)27((00)10M)27 

(DHis)s((00)101kf)s (DH1s)10( ( 00)10M) 10 

(DH1s)21((00) 10M)27 (DHis)s((00)27M)s 

(DH1s)10( ( 00)21M) 10 (DH1s)27((00)21M)27 

(DHis)27((00)27M)27' 
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4.3.3 Linear Combinations of Reduced Matrix Elements 

There are 45 measured values for the two-body decay modes and an additional 13 

modes where upper limits exist.4 It would appear that there are still more param­

eters than data, and therefore the model lacks predictability. However, there are 

only forty linearly independent combinations ofthe SU(3) reduced matrix elements 

that contribute to the possible decay modes of the D mesons. With the assumption 

of the last section concerning the phases of the reduced matrix elements, the linear 

combinations fall into these classes: 

involving (SS)I: L(I) 

involving (SO)s: L(2)' . . . ' L(s) 

involving (OO)I: L(9) 

involving (OO)s: L(IO)' . 
' 

L(16) 

involving (OO)s': L(17),. 
' 

L(23) 

involving ( 00)10: L(24), . 
' 

L(2s) 

involving ( 00)10: L(29), • 
' 

L(33) 

involving ( OO)z7: L(34), . 
' 

L(4o) 

We write them each as a sum over the reduced matrix elements, viz., 

( 4.13) 

and normalize them for convenience by setting 

( 4.14) 

Now Equation 4.12 is replaced by 

A(D · ~X·) = """"'C~'- L(n) S· J t ~ t)n t· (4.15) 
n 

4The data are from the Particle Data Group [10], together with [57] for the mode D+ -t J(*0 7r+. 
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The L(n) replace the reduced matrix elements in our parameterization of the 

amplitudes. The forty linearly independent combinations contain matrix elements 

including those that involve the breaking operator M. It is not possible to divide 

the linear combinations into a set that contains only matrix elements without M 

and a set containing only matrix elements with M. Of the forty combinations, three 

are not constrained by the available data. We call them L(l), L(2), and L(3 ). They 

are discussed below. 

The replacement of the set of reduced matrix elements by the set of linear 

combinations that contribute to the possible decay modes reduces the number of 

parameters by eight. The total number is now fifty three. These parameters are 

fit to the data; the individual reduced matrix elements are no longer considered. 

The values of the linear combinations for the best fit are in Table 4.2. The signs 

have been absorbed into the C[jn. The remaining parameters are in Table 4.3. All 

phases are given in radians. The uncertainties on the fit values of the parameter 

correspond to one unit of x2
• 

The unconstrained combination L(l) contributes to the modes no -? TJTJ, TJTJ 1
, 

1]17] 1
, TJ¢>, TJW, 1]1</>, 7]1w, </></>, </>w, and ww. Because these modes are unobserved, the 

phases of ( "lt w1 h, and ( w1 wt)1 are also unconstrained. The remaining unconstrained 

linear combinations are L(2) and L(3 ). They contribute to the above modes, and 

also to modes of the types no -? 7]K0 and ns -? TJJ{+. By "type" we mean a 

class of modes that contain mesons of the same flavors and charges. Thus the type 

ns -? 'T]K+ contains the modes ns -? TJJ{+, 1]1 J(+, 'T]K*+, 1]1 /{*+, ¢>K+, w]{+, <jJJ{*+, 

wf{*+, and no others. With the exception of the limit on the branching ratio for 

ns -? <jyK+, there are no data for these modes. We still have some freedom in the 

definition of L(2 ) and L(3 ) that allows modes of the type no -? TJK0 to depend on 

only one of them (choose L(2l). This will allow us to estimate one of their branching 

fractions and thereby make some predictions of the other modes of this type. 

/ 
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4.4 Data and Fitting Thereof 

The data used to determine the parameters are listed in Tables 4.4-4.7. These are 

the modes for which there exist either experimental values or experimental limits. 

In the VV modes, S and D waves are possible. Data exist from E691 [58] for the 

modes no ---+ K*0 p0 and n+ ---+ K 0 p+. These are consistent with the S- and 

D-waves both having significant amplitudes and are inconsistent with either being 

zero. The ratios of S- and D-wave amplitudes from these two modes are taken as 

additional data, and the overall ratio of S- to D-wave amplitudes for the VV modes 

is allowed to vary in the fit. Its value is determined by the two modes mentioned 

above, and depends very little on the other data. 

For each mode we remove the phase space and Cabibbo factors and reduce 

the branching ratio to a decay amplitude in arbitrary units. Because the vector 

particles have substantial widths, the phase space for modes involving a vector is 

integrated over the relativistic Breit-Wigner for that resonance. The effect of this 

is important for those modes where the sum of the particle masses is within a few 

widths. of the n mass. The modes no ---+ i/J/{*0
' <PK*0

' and n+ ---+ <PK*+ would 

be forbidden if the widths were set to zero. Each amplitude is now expressed as a 

sum of Clebsch-Gordan coefficients times the parameters that represent the reduced 

matrix elements, and finally as a-:sum over the linearly independent combinations 

of reduced matrix elements. 

The parameters were fit to the data amplitudes with MINUIT, release 93.11, 

suitably modified to accomodate a larger number of parameters. The total x2 was 

found to be 30.9 for seven degrees of freedom, indicating that the overall fit was poor. 

However, more than half of the x2 arose from only one mode. The mode in question 

is ns -+ r/ p+. The experimental value for the branching ratio ns ---+ 7]1 p cannot 

be accommodated in our scheme. It is measured (59) to be larger than that for 

ns -+ ryp, an a priori surprising result. We note that the angular distribution of the 

decay pions is barely consistent with that expected. The expected distribution for 
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a spin-1 particle is a I :r-;_1 j2 = cos2 
() above a fiat background, where () is the "helicity 

angle." It is the angle between the momentum of the final 1r+ to the momentum 

of the reconstructed p+. A spin-2 resonance will add a IY:?I2 component to the 

distribution. When we refit the data reported in [59), we find that better agreement 

is obtained if 30% of the events above the background is due to a spin~2 object. See 

Figure 4.1. A confirmation of this experimental value would be very significant, as 

all other models [49] also predict a ratio of BR(Ds--+ rJ'p)fBR(Ds --+ 1JP) of less 

than one. 

We decided to reject the experimental value for the branching fraction of Ds --+ 

7]
1 p+. The result is a better fit, from which the branching ratios are reported in the 

tables. The total :X2 is now 11.6 for six degrees of freedom. 
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Figure 4.1: 

Number 

of events 

Number of events versus helicity angle in the analysis of the 

decay Ds --+ r/p+ [59]. The dashed curve is a fit to spin-1 plus 

flat background (the background is removed). The solid curve 

includes a spin-2 component. See Section 4.4 of the text. 
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Table 4.2: Linear combinations and their fit values. 

Linear Amplitudes Fit value 

combination involved 

L(l) (SS)1 -

L(2) - Linear Amplitudes Fit value 

L(3) - combination involved 

L(4) 2.97 ± 0.66 L(24} 4.7 ± 5.9 

L(s) (SO)s 6 ± 26 L(2s) 59 ± 44 

L(s) 8 ± 17 L(26) (00)10 107 ± 63 

L(7) 16 ± 18 L(27) 39 ± 21 

L(s) 6 ± 13 L(2s) 43 ± 37 

L(9) (OOh 2.4 ± 2.7 L(29) 21.1 ± 7.1 

L(lO) 5.20 ± 0.12 L(3o) 71 ± 67 

L(ll) 1.7 ± 7.3 L(31) (00)10 97 ±51 

L(12) 12.4 ± 2.3 L(32) 135 ± 74 

L(13) (OO)s 34 ± 12 L(33) 115 ± 61 

L(14) 9.5 ± 5.5 L(34) 0.4 ± 2.5 

L(Is) 45 ± 21 L(3s) 26.2 ± 7.3 

L(Is) 52 ± 21 L(36) 2.5 ± 2.9 

L(17) 10.8 ± 4.1 L(37) (00)27 21.8 ± 4.6 

L(Is) 55 ± 37 L(3s) 9.2 ± 6.2 

L(19) 44 ± 38 L(39) 8.0 ± 8.6 

L(2o) (OO)s' 45 ± 44 L(4o) 19 ±11 

L(21) 34 ± 25 

L(22) 42 ± 46 

L(23) 11 ± 47 
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Table 4.3: The remaining parameters and their fit values. 

Parameter Fit value 

PV 0.91 ± 0.32 

vv 1.40 ± 0.16 

D-/S-wave 2.79 ± 0.41 

phase of 7]I7]I -

phase of P7]I 1.64 ± 0.45 

phase of PPI 0.7 ± 1.2 

phase of PP21 1.49 ± 0.16 

. phase of wi WI -

( phase of Vwi 1.28 ± 0.52 

phase of VVI -3.0 ± 3.2 

phase of VV 27 0.53 ± 0.77 

phase of 7]IWI -

phase of Pwi 0.01 ± 0.35 

phase of V 7]I -2.6 ± 2.5 

phase of PVI 0.28 ± 1.5 

phase of PV 8' -1.47 ± 0.38 

phase of PV IO -2.49 ± 0.30 

phase of PV IO 2.61 ± 0.23 

phase of PV 27 -2.86 ± 0.52 
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Table 4.4: Modes with positive experimental values. Branching ratios from 

data and from the fit are given. 

Mode Data BR Fit BR 

no -7 f{- ?r+ 0.0401 ± 0.0014 0.0400 ± 0.0014 

no -7 f{- /{+ 0.00454 ± 0.00029 0.00453 ± 0.00030 

no -7 F ?ro 0.0205 ± 0.0026 0.0208 ± 0.0022 

no -7 K f{O 0.0011 ± 0.0004 0.00103 ± 0.00043 

no -7 ?r- ?r+ 0.00159 ± 0.00012 0.00159 ± 0.00012 

no -7 ?r- /{+ 0.00031 ± 0.00014 0.00031 +0.00018 
-0.00014 

no -7 ?ro ?ro 0.00088 ± 0.00023 0.00087 ± 0.00025 
-=0 

no -7 TJ f{ 0.0068 ± 0.0011 0.0069 ± 0.0011 
-=0 

no -7 TJ' f{ 0.0166 ± 0.0029 0.0168 ± 0.0028 

no -7 /{*- p+ 0.059 ± 0.024 0.063 ± 0.016 

no -7 ]{*o Po 0.016 ± 0.004 0.0164 ± 0.0038 

no -7 7{*0 f{*o 0.0029 ± 0.0015 0.0029 +0.0019 
-0.0014 

no -7 w 7{*0 0.011 ± 0.005 0.0099 ± 0.0044 

no -7 ¢>Po 0.0019 ± 0.0005 0.00192 ± 0.00045 

no -7 f{- p+ .. 0.104 ± 0.013 0.102 ± 0.013 

no -7 f{- /{*+ 0.0034 ± 0.0008 0.00323 ± 0.00080 

no -7 K Po 0.0110 ± 0.0018 0.0110 ± 0.0017 

no -7 f{*- ?r+ 0.049 ± 0.006 0.0495 ± 0.0058 

no -7 f{*- ]{+ 0.0018 ± 0.0010 0.00209 ± 0.00087 

no -7 7{*0 ?ro 0.030 ± 0.004 0.0301 ± 0.0039 

no -7 ¢> F 0.0083 ± 0.0012 0.0081 ± 0.0012 

no -7 w F 0.020 ± 0.004 0.0195 ± 0.0043 

no -7 TJ K*o 0.019 ± 0.005 0.0204 ± 0.0049 
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Mode Data BR Fit BR 
-=<> n+ --+ K 1r+ 0.0274 ± 0.0029 0.0262 ± 0.0028 

n+--+ -go K+ 0.0078 ± 0.0017 0.0086 ± 0.0016 

n+ --+ 7ro 71"+ 0.0025 ± 0.0007 0.00257 ± 0.00067 

n+ --+"' 71"+ 0.0075 ± 0.0025 0.0068 ± 0.0021 

n+--+ K*o p+ 0.021 ± 0.014 0.0398 ± 0.0092 

n+ --+ K*° K*+ 0.026 ± 0.011 0.0090 +0.0054 
-0.0041 

-=<> n+--+ K p+ 0.066 ± 0.025 0.071 ± 0.018 

n+ --+ 1r+ K*0 0.00046 ± 0.00015 0.00046 ± 0.00014 

n+ --+ K*o 71"+ 0.022 ± 0.004 0.0217 ± 0.0041 

n+--+ K° K+ 0.0051 ± 0.0010 0.00463 ± 0.00097 

n+ --+ ¢ 71"+ 0.0067 ± 0.0008 0.00674 ± 0.00078 

n+--+ ¢ K+ 0.00039 ~ 0.00020 0.00039 +0.00027 
-0.00020 

Ds--+ K K+ 0.035 ± 0.007 0.0319 ± 0.0059 

Ds --+ 'TJ 7r+ 0.019 ± 0.004 0.0204 ± 0.0039 

Ds --+ TJ' 71"+ 0.047 ± 0.014 0.054 ± 0.012 

D s --+ K° K*+ 0.056 ± 0.021 0.055 ± 0.018 

Ds--+ ¢ p+ 0.065 ± 0.017 0.056 ± 0.014 

Ds--+ K ]{*+ 0.042 ± 0.010 0.043 ± 0.011 

Ds--+ K° K+ 0.033 ± 0.005 0.0328 ± 0.0053 

Ds --+ ¢ 7r+ 0.035 ± 0.004 0.0349 ± 0.0040 

Ds --+ 'TJ p+ 0.100 . ± 0.022 0.100 ± 0.019 
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4.5 Predictions 

4.5.1 Predictions from the Fit Parameters 

From the fit values of the parameters the branching ratios of decay modes were 

calculated. In Table 4.4 are presented the modes for which there exist experimental 

values. Our ca1culated branching ratios are consistent with the data, with the ex­

ception of n+ ~ K*0 
J{*+ and Ds ~ r/ p+. For the former the fit prefers a branching 

ratio that is three standard deviations below the reported experimental value. The 

latter was removed before the fit (see Section 4.4) because its experimental value 

was questioned. For this mode we predict a branching ratio of (1.5 ~Li)%,_ well 

below the reported experimental value [59]. Tables 4.5-4. 7 contain modes for which 

there is no experimental information or for which there is an experimental limit. We 

have attempted to predict the branching ratio of each mode from the fit. However, 

in some cases the uncertainties are so large that we are able only to provide (90% 

confidence level) 1limits on the branching ratios. Notice that in all cases in which 

there are experimental limits, our predicted branching ratio or predicted limit is in 

the allowed region. We are unable to say anything about the mode Ds ~ p01r+, 

because the uncertainty on its prediction is greater than the experimental limit. 

There are two modes, Ds ~ 1r+1r0 and Ds ~ p+l, which are forbidden in a 

model without isospin breaking. The modes that are kinematically forbidden are 

D0 ~ r/r/, r/¢, and ¢¢. The modes involving the linear combinations L(1), L(2
), 

and L(3) are discussed below. Any other PP, PV, or VV mode not appearing in the 
• tables is higher order in the weak coupling GF. 

4.5.2 Unconstrained Linear Combinations 

There remain three linearly independent combinations of the reduced matrix el­

ements that are not constrained by the data. The combination L(I) contributes 

only to modes of the type D 0 ~ ryry. L(2) contributes to the types D 0 ~ ryry and 
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Table 4.5: D 0 modes with predicted branching ratios. Experimental limits 

are given when available. All limits are at 90% confidence. 

Mode Data BR Predicted BR Predicted limit 

no --+ ?ro /{0 0.00017 +0.00011 
-0.00008 

no--+</> K*o 0.00108 +0.00073 
-0.00054 

Do--+ Po f{*o 0.00038 +0.00031 
-0.00022 

Do --+ ?ro Po 0.00014 +0.00018 
-0.00011 

no--+ ?r- p+ 0.093 +0.133 
-0.075 

no--+ p- ?r+ < 0.094 +0.136 
-0.076 

no --+ 'TJ ?ro 0.0060 +0.0092 
-0.0050 

no --+ </> ?ro 0.024 +0.049 
-0.022 

Do--+ 'TJ Po 0.025 +0.041 < 0.092 -0.021 

no --+ !{*- /{*+ 0.0024 +0.0041 < 0.0092 -0.0021 

Do--+ Po f{o 0.0024 +0.0041 < 0.0091 -0.0021 

no--+ TJ' J{*o. < 0.0011 0.00018 +0.00032 < 0.00070 -0.00016 

no --+ p- /{*+ 0.00022 +0.00038 < 0.00085 -0.00020 

no--+ p- /{+ 0.0020 +0.0035 < 0.0078 -0.0018 

no --+ ?r- /{*+ 0.0019 +0.0037 < 0.0080 -0.0018 

Do --+ ?ro /{*o 0.0020 +0.0041 < 0.0087 -0.0019 

no --+ -go /{*0 < 0.0008 
< 

< 0.00052 
' 

no--+ w ?ro < 0.086 

Do--+ TJ' Po < 0.011 

no·-+ w Po < 0.084 

no--+ p- p+ < 0.015 

no--+ K*o J{o < 0.0015 < 0.00061 

Do --+ TJ' ?ro < 0.057 

Do --+Po Po < 0.0065 
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Table 4.6: n+ modes with predicted branching ratios. Experimental limits 

are given when available. All limits are at 90% confidence. 

Mode Data BR Predicted BR Predicted limit 

n+--+ Pop+ 0.0066 ± 0.0023 

n+ --+ TJ K+ . 0.0032 +0.0030 
-0.0020 

n+ --+ ~r+ Ko 0.017 +0.018 
-0.011 

n+ --+ ?ro ]{+ 0.0086 +0.0089 
-0.0057 

n+ --+ ?ro p+ 0.0034 +0.0036 
-0~0023 

n+ --+ ¢> K*+ 0.00031 +0.00035 
-0.00022 

n+ --+ p+ K*o 0.025 +0.031 
-0.018 

n+ --+Po J{*+ 0.0095 +0.0118 
-0.0071 

n+--+ p+ I<o 0.0087 +0.0119 
-0.0068 

n+--+ w I<*+ 0.0022 +0.0031 
-0.0018 

n+--+ w ~r+ < 0.007 0.0024 +0.0036 
-0.0020 

n+ --+ ?ro ]{*+ O.OW3 +0.0162 
-0.0087 

n+--+ w p+ 0.0026 +0.0049 < 0.011 -0.0023 

n+--+ Jt1 J(*+ 0.0012 +0.0026 < 0.0054 -0.0011 

n+ --+ TJ p+ < 0.012 0.0012 +0.0022 < 0.0048 -0.0011 

n+ --+ TJ' K+ 0.0016 +0.0041 < 0.0082 -0.0015 
/ 

n+--+ Po J{+ 0.0018 +0.0042 < 0.0086 -0.0017 

n+ --+ TJ' ~r+ < 0.009 0.00094 +0.00237 < 0.0048 -0.00092 

n+ --+ rJ p+ < 0.015 < 0.0074 

n+ --+ w K+ < 0.0012 

n+ --+ TJ' p+ < 0.015 < 0.00071 

n+ --+Po ~r+ < 0.0014 < 0.00091 

n+ --+ TJ' K*+ < 0.000082 

n+ --+ TJ I<*+ < 0.0022 
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Table 4.7: Ds modes with predicted branching ratios. Experimental limits 

are given when available. All limits are at 90% confidence. The 

measured branching ratio of the mode Ds ---+ TJ 1 p+ is discussed 

in the text. 

Mode Data BR Predicted BR Predicted limit 

D s ---+ 1r0 J<+ 0.0059 +0.0048 
-0.0034 

Ds ---+ 7r+ J<*O 0.038 +0.047 
-0.028 

Ds ---+ 'f/ 1 p+ 0.120 ± 0.030 0.015 +0.019 
-0.011 

D s ---+ 7ro J<*+ 0.077 +0.096 
-0.058 

D s ---+ Po J<*+ 0.0126 +0.0164 
-0.0096 

D s ---+ p+ 1<0 0.031 +0.043 
-0.024 

Ds ---+ P0 J<+ 0.049 +0.071 
-0.040 

Ds ---+ W p+ 0.012 +0.030 < 0.061 -0.012 

D s ---+ 7r+ 1<0 < 0.007 < 0.0015 

D s ---+ K 0 J<*+ < 0.00039 

Ds ---+ K 0 J<+ < 0.00046 

D s ---+ K*0 J<*+ < 0.00057 
·' 

Ds ---+ p+ J<*O < 0.0080 

Ds ---+ /{*0 J<+ < 0.00025 

Ds ---+ W 7r+ < 0.017 < 0.0090 

D s ---+ 1r0 p+ < 0.064 

D s ---+ Po 7r+ < 0.0028 not significant 

Ds ---+ 7r+ 7ro =0 

Ds ---+ p+ Po =0 
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no----+ TJK0
• L(3 ) contributes to these modes, and to modes of the type ns----+ TJK+. 

The first unconstrained linear combination L(l) contributes only to amplitudes 

involving (SSh. These amplitudes, it is worth noting, are due entirely to SU(3) 

breaking. However, when we include the phases, we must make four estimates in 

order to obtain two predictions of modes of the type no ----+ TJTJ. This would be an 

unproductive endeavor, and so we forego it. 

In order to predict the modes of the types no ----+ TJK0 and ns ----+ TJK+, we 

need two new inputs. In order to show the variability of the resulting predictions, 

we try three different sets of inputs. Scheme A is motivated by the recent CLEO 

measurement of the doubly-suppressed mode no ----+ 1r- ]{+ [60], in which this mode 

is found to have a branching ratio of about three times that of the corresponding 

unsuppressed mode, no ----+ 1r+ J{-. For this scheme, the two inputs are 

B(n° ----+ TJK0
) = 3 tan4 Oc B(n° ----+ TJftl), 

B(ns----+ TJK+) = 3tan2 Oc B(ns----+ TJ7r+). 
(4.16) 

The linear combinations L(2) and L(3) are then constrained and the remammg 

branching ratios in the column for scheme A in Table 4.8 are found. The pre­

dictions for scheme B are based on the following estimates: 

B(n° ----+ TJK0
) = 3 tan4 Oc B(D0 

----+ TJftl), 

B(ns----+ <PI<+) = 3 tan2 Oc B(ns ----+ <P1r+) .. 

A third scheme (C) is considered also. It is based on these estimates: 

B(n°----+ <PK0
) = 3 tan4 Oc B(D0 ----+ <Pftl), 

B(Ds----+ <PI<+) = ~ tan2 Oc B(Ds----+ <P1r+). 

( 4.17) 

( 4.18) 

The resulting predictions are again in Table 4.8. The spread in these values provides 

an indication of the expected ranges for these quantities. 

One sh~mld note that arbitrary choices of the above modes may fail to give 

an acceptable fit, given the constraints from measured modes. For example, an 
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apparently reasonable choice would have been 

B(D0 --+ 7JK0
) = tan4 Oc B(D0 --+ TJftl), 

B(Ds --+ TJK+) = tan2 Oc B(Ds --+ TJ1r+). 
(4.19) 

A consistent fit cannot be obtained to implement this. The parameters L(2) and 

L(3 ) could not be given values to accommodate B(D0 --+ TJK0 ) < 0.0052%. 

4.5.3 Modes Involving Axial Vectors 

There are a few modes involving axial vectors that have been observed or for which 

there are experimental limits. However, those that involve K(1270) and K(1400) 

are mixtures with the 1 +- octet, which we can call B since it includes the b1(1235). 

Therefore, in order to include these modes in our framework, we require two new 

parameters, "PA" and "PB." In addition, we must also accommodate the mixing 

between / 1(1) and f 1(s) to become /I(1285) and / 1 (1510), as well as the new phases 

that are introduced. There are too few experimental observations of the PA and 

PB modes to make this endeavor fruitful. For that reason, they are not included 

here. 

4.6 Comments on Models 

It is clear from the data alone that significant SU(3) breaking is necessary in any 

successful model of D decays. For example, B(D0 --+ f{+ K-) = B(D0 --+ 1r+1r-) in 

exact SU(3), yet they are in reality quite different. Models based on exact SU(3) 

[51], [55], (61] (or even on nonet symmetry (62]) are thus not admitted by the data. 

Models of D decays based on heavy-quark effective theory (e.g., [48]) have 

as yet not developed to the point at which individual nonleptonic decays can be 

calculated. The question of whether HQET is applicable to the c quark is still 

unsettled. The HQET is based on an expansion in the parameter 

Aqco ~ 0.2 
me 
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Table 4.8: Modes based on estimates. The only available experimental 

limit is shown. Values marked with * are inputs. 

Mq<ie Data BR Fit BR Fit BR Fit BR 

(scheme A) (scheme B) (scheme C) 

no --+ 1J J{o 0.000054* 0.000054* 0.00035 

Do --+ 1J' J{o 0.00046 0.00046 0.00085 

DO --+ </> J{*O 0.000019 0.000019 0.000016 

DO --+ W J{*O 0.00027 0.00027 0.0012 

no --+ </> J{o 0.00054 0.00054 0.000066* 

no --+ w 1{0 0.000096 0.000096 0.0014 

DO --+ 1J J{*O 0.00048 0.00048 0.00094 

DO --+ TJ' J{*O 0.0000083 0.0000083 0.0000024 

Ds --+ 1J J{+ 0.0027* 0.00041 0.0031 

D s --+ TJ' I<+ 0.017 0.052 0.015 

D s --+ </> J{*+ 0.011 0.024 0.0095 

Ds --+ W /{*+ 0.0057 0.028 0.0046 

Ds --+ </> J{+ < 0.0025 0.00051 0.0033* 0.00037* 

Ds--+ W J{+ 0.0064 0.019 0.0055 

D s --+ 1J J{*+ 0.00083 0.00015 0.00094 

D s --+ TJ' I<*+ 0.00090 0.0028 0.00077 
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and assumes that it is small. Certainly this would be a good assumption in the case 

of the b quark, but perhaps not so here. Until we are able to calculate branching 

fractions in HQET, we must reserve judgement on its applicability to the D mesons. 

Diagrammatical approaches to the problem of D decays present us with a com­

plementary method to the one adopted in this work. The lowest-order diagrams 

are in Figures 4.2-4. 7. Diagrammatical methods assign to each diagram a parame­

ter and attempt to fit them to the data. The parameters in the SU(3) framework 

represent sums of diagrams in the diagrammatical approach. A very general dia-
o 

grammatical calculation of branching fractions appears in [50]. Two shortcomings 

of their work lie in final-state interactions and in the inclusion of SU(3) breaking. 

The phases of the final-state interactions are added to the model, and are external 

to its central theme, and therefore appear as an ad-hoc mechanism to force a fit. 

SU(3) breaking is added to the calculation as an additive correction to the diagrams 

in which it is believed to be important. However, there is also hidden breaking in 

the addition of phases in the final-state interactions. The result is a model in which 

the size and source of SU(3) breaking is not easily discerned. It is difficult to draw 

any conclusions from the application of such a model. 

The factorization method is a special case of the diagrammatical approach. 

In it, amplitudes are assumed to factorize into color-singlet pieces; the octet fac­

tors are neglected. Also, certain diagrams are considered unimportant (i.e., the 

annihilation diagrams are thought to produce two quarks at high momentum, and 

therefore contribute instead to multi particle final states). However, [49] find that 

these diagrams must be again included in order to accommodate the data, and that 

final-state transitions and intermediate resonances must also be added. The result 

is an eclectic model with little elegance. We are unable, because of the ad-hoc 

features, to comment on the reliability and predictability of this model. 

A description of nonleptonic D decays in a large-Nc (number of colors) expan­

sion [47] is an elegant one with few parameters. In it, the source of SU(3)-breaking 

is introduced my including nearby resonances. It is also a subset of the diagrammat-
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Figure 4.2: External spectator diagram in the decays of D mesons. 

u 

d,s 

c d,s 

D 

matical approach and neglects some diagrams based on their suppression by 1/Nc. 

One may argue that these diagrams are larger than thought and cite the fit of [50] as 

evidence of this. Nevertheless, [4 7] obtain excellent agreement with the data, with 

the exception of some modes involving 'f/ and ry'. In this model, SU(3) breaking is 

introduced only through the inclusion of resonances in one class of diagram. They 

obtain, in agreement with our work, large breaking. 

4. 7 Conclusions 

There now exist enough data to constrain all but three combinations of the reduced 

matrix elements of the broken SU(3) model of the decays of D mesons with the two 

assumptions discussed in Section 4.2. We have used these data to do so. Using the 

experimental information on 57 modes we are able to predict branching ratios or 

upper limits for an additional 53 modes. Only two measured modes are not easily 

accommodated in the fit. The measurement of a six additional modes involving ry, 

'f/
1

, ¢, w would enable another twenty modes to be predicted. 
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Figure 4.3: 
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Figure 4.4: 
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Internal spectator diagram in the decays of D mesons. 
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External annihilation diagram in the decays of D mesons. Gluon 

fields are not shown. 
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Figure 4.5: 
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Figure 4.6: 
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Internal annihilation diagram in the decays of D mesons. Gluon 

fields are not shown. 
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External exchange diagram in the decays of D mesons. Gluon 

fields are not shown. 
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Figure 4.7: 
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Internal exchange diagram in the decays of D mesons. Gluon 

fields are not shown. 
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5 D-Meson Mixing in Broken Flavor 
SU(3) 

When two nearly degenerate states are related to one another by some interaction, 

then there is the possibility that they may mix. This is well known in the case of 

the the kaon system [63]. Here we will discuss the mixing of the neutral n mesons. 

There is an interaction, second order in the weak coupling Gp, that introduces an 

off-diagonal entry in the mass matrix of the no and --rf mesons. If we assume that 

CP is conserved, then we can· write 

( o-=<>) ( M /:).m ) ( no ) 
Lmass = n . n /:).m M --r/ . (5.1) 

After the mass matrix is diagonalized, we find that the mass eigenstates are mixtures 

of the flavor eigenstates: 

)2(no + --rf), 
)2(no- --rf). 

These are the CP odd and even eigenstates. Their masses are 

M + /:).m, 

(5.2) 

(5.3) 

This /:).m conveniently parameterizes the mixing. Its estimates will be examined 

herein. 

The chapter is organized as follows. First we will examine some past estimates 

of the short-and long-distance contributions. Then we will quote the results of an 

estimate based on the heavy-quark effective field theory. These estimates differ, 
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and we will attempt to resolve the question by constructing an estimate of our own, 

based on the work of Chapter 4. 

5.1 Short- and Long-Distance Contributions 

Depending on the scale of the momenta involved, either the short- or long-distance 

contributions are more important. In this section it is estimated that the long­

distance contributions dominate. 

The short-distance contributions to the mixing of the D mesons are from the 

box diagrams in Figure 5.1. Various authors [64], [65], [66], [67] have estimated the 

size of these diagrams. Here we will review the estimate of Donoghue et al. [66]. 

The effective Lagrangian is 

GF a 2() · 2() ('rt rrt') £ =- 17) • 2 () cos c sm ex v + 2v , 
v28?rsm w 

where xis 

and the operators 0 and 0' are 

()' 

u1J.L(l- 'Ys)c U!J.L(l - 'Ys)c, 

u(l + 'Ys)c u(l + 'Ys)c. 

(5.4) 

(5.5) 

(5.6) 

The second of these operators arises from the large momentum of the external c 

quarks that must be carried by the fermion propagators inside the boxes. The 

matrix elements of these operators can be estimated as 

(lf!OID0
) 

(lfjO'jD0 ) 

16mbFbB 
3 2mD D, 

_Io (?E:ll)2 mbFb B' 
3 me 2mD D· 

(5.7) 

These equations define the hadronic factors B~). The Fn is the pseudoscalar-decay 

constant: 

(5.8) 
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Figure 5.1: Box diagrams in D-meson mixing. 

w 
c u 

d,s,b d,s, b 

c 
d,s,b 

~w 
u 

d,s,b 

where Att is the axial current. The contribution of the box diagrams to the mass 

difference is 

A box G F a: 2 e 0 

2 e p2 (B 2B' ) ~mD · =- m .. 2 cos c sm cxmn D D- D . 
v2 47rSlll Bw 

(5.9) 

If we assume that the hadronic factors B ~ B' ~ 1, and take Fn ~ 300 MeV [10) 

and ms ~ 250 MeV, then the contribution of the box diagrams to .6.mn is 

(5.10) 

Notice that the SU(3) breaking is manifest in the factor x in the box calculation 

as ( m; - mJ) 2 . The near cancellation in this factor is known as the Glashow­

Iliopoulos-Maiani (GIM) mechanism. In the exact SU(3) limit this factor would be 

zero, and hence the box contribution to .6.mn would vanish. 

The long-distance contributions to the mixing of D mesons comes from the 

transition via intermediate hadronic states. Figure 5.2 shows the diagram for two­

body intermediate state of mesons 1111 and M 2 • An estimate of such a contribution 
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can also be found in [66]. By considering the cutoff-dependent part of the diagram, 

one finds for the· states involving ]{± and 1r± that 

6.m~±,1r± = 
2
17r ln ~ [f(D0 -t ]{+I<-)+ f(D0 -t 1r+1r-) 

-2.jf(D0 -t J{+1r-)f(D0 -t K-?r+)] . 
(5.11) 

The scale f.L is the cutoff above which the dispersive calculation is no longer valid. It 

is taken to be "' 1 Ge V. By inserting the current values for the branching fractions 

[10], we obtain 

6.m~±,7r± = (-0. 75 to 0.29) X w- 15GeV, (5.12) 

where the range of values is due to the uncertainty in the experimental value of 

In this approach, the logarithm of Equation 5.11 treats the masses of all inter­

mediate particles as small compared to mv. This is not such a bad approximation, 

and a more careful treatment gives only a few percent corrections to individual 

modes. The use of the branching fractions in Equa~ion 5.11 assumes that the cou­

plings of the D mesons to 1r± and ]{± are all relatively real. This we will correct in 

the last section of this chapter. Notice also that in the exact SU(3) limit, 

f(D0 -t ]{+I<-) = f(D0 -t 1r+1r-) 

= tan2 Ocf(D0 
-t I<-?r+.) = cot2 Ocf(D0 

-t K+1r-), 
(5.13) 

and hence the contribution to 6.mv from Equation 5.11 vanishes. If, however, the 

only form of SU(3) breaking were due to the differences in the quark masses, then 

the size of the contribution from Equation 5.11 would be only 

(5.14) 

It is the fact that SU(3) breaking in the D system is so large that gives such a large 

contribution to 6.mv in Equation 5.12. 
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Figure 5.2: Two-body long-distance contribution to D-meson mixing. 

5.2 Estimate in HQEFT 

An estimate of the mass difference in the heavy-quark effective field theory (H QEFT) 

was performed by Georgi et al.[68] [69]. They match operators in the HQEFT to 

the weak hamiltonian at the scale of the W mass, and run them down to the c-quark 

scale. Then, after some na1ve estimates of hadronic matrix elements, they arrive at 

estimates for the contributions of 4-, 6-, and 8-quark operators: 

~ 4-quark ,......, 1 x10-17 GeV mv ,......, ,, 
~ 6-quark ,......, 2 x10-17 GeV (5.15) mv ,......, 

' 
~ 8-quark ,......, 0.5 x10-17 GeV. mv ,......, 

These estimates are all on the order of the size expected from the box diagrams, 

and are all much smaller than the simple two-body estimate of the long-distance 

contributions by Donoghue. We believe that this is due to the inadequate SU(3) 

breaking in the treatment of the HQEFT. Here, only the quark-mass differences 

were used to break the flavor symmetry, and hence an estimate was obtained that 

is comparable to that in Equation 5.10. In order to resolve this problem, we have 

set out to make our own estimate of ~mti0 . 
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Table 5.1: Estimates of .6.m~0 . All values are in 10-15 GeV. 

pp vv PV total 

no estimates 7.3 ± 3.9 19.1 ± 11.3 -60.3 ± 63.3 -33.9 ± 64.4 

scheme A 10.1 ± 4.4 25.5 ± 11.9 -56.5 ± 63.9 -20.9 ± 65.1 

scheme C 4.6 ± 4.5 14.7 ± 12.1 -65.5 ± 63.9 -46.2 ± 65.2 

]{± and 1r± 3. 7 ± 1.3 

5.3 Mixing Estimate in Broken SU(3) 

We begin with the approach of Donoghue, with two improvements. First, the widths 

in Equation 5.11 are replaced by the complex vertices of Figure 5.2. Second, we 

include all pseudoscalar-pseudoscalar (PP), pseudoscalar-vector (PV), and vector­

vector (VV) intermediate states that are considered in Chapter 4. Equation 5.11 is 

then replaced by 

.6.mL-D = I_ ln m'b x N L A(D0 -+ I)A*(D0 -+I). 
D 271" /12 I 

(5.16) 

The sum is over all PP, PV, VV intermediate states and N is a normalization factor 

determined by 

(5.17) 

The complex amplitudes are extracted from the fit of Section 4.4. The sum of 

Equation 5.16 is calculated for three cases. The first does not include the modes 

D 0 -+ 1J(') ]{(*)0 , ¢>]{(*)0 , wf{<*l0 . These are the modes for which we have an uncon­

strained parameter in the fit. The other two cases use the results of schemes A and 

C of Section 4.5.2 to estimate these modes. The estimates of .6.m~0 are presented 

in Table 5.1. 
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5.4 Conclusions 

We can see that the treatment of D-meson mixing by Donoghue et al. underesti­

mates the uncertainties involved in the process. On the other hand, the treatment in 

HQEFT of Georgi et al. underestimates the flavor SU(3) breaking that is involved. 

Therefore we have constructed our own estimate of the long-distance contributions 

to D 0-V mixing. We find that, in the absence of unlikely cancellations, the long­

distance contributions are much larger than the short-distance contributions and 

are dominated by the PV intermediate states. However, the resulting uncertainties 

are large. The standard-physics contributions to D-meson mixing then can be as 

large as 

.6.m}s"D = 6 x 10-14GeV. (5.18) 

Therefore this process is less likely to be useful as a probe of new physics than 

previously thought (70]. 

/ 
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