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ABSTRACT

Multimodal single-cell omics technologies enable
multiple molecular programs to be simultaneously
profiled at a global scale in individual cells, creating
opportunities to study biological systems at a res-
olution that was previously inaccessible. However,
the analysis of multimodal single-cell omics data is
challenging due to the lack of methods that can inte-
grate across multiple data modalities generated from
such technologies. Here, we present Matilda, a multi-
task learning method for integrative analysis of multi-
modal single-cell omics data. By leveraging the inter-
relationship among tasks, Matilda learns to perform
data simulation, dimension reduction, cell type clas-
sification, and feature selection in a single unified
framework. We compare Matilda with other state-of-
the-art methods on datasets generated from some
of the most popular multimodal single-cell omics
technologies. Our results demonstrate the utility of
Matilda for addressing multiple key tasks on inte-
grative multimodal single-cell omics data analysis.
Matilda is implemented in Pytorch and is freely avail-
able from https://github.com/PYangLab/Matilda.

INTRODUCTION

Recent development of multimodal single-cell omics tech-
nologies enables multiple modalities of cellular regulatory
circuitry to be simultaneously profiled in individual cells
(1). Data generated from these technologies create new op-
portunities for integrative analysis of cellular programs that
are inaccessible from analysing each data modality alone
and hence promise to provide a more holistic characteriza-
tion of cellular systems at single-cell resolution (2). A large
number of computational methods have been developed for
single-cell RNA-sequencing (scRNA-seq) data to perform
tasks such as data simulation (3), dimension reduction (4)

and classification of cell types (5,6), and feature selection
(7,8). While methods designed for scRNA-seq data analy-
sis can be applied to analyse RNA modality in multimodal
single-cell omics data, most of them cannot take advantage
of other available data modalities and therefore could not
fully utilize the information embedded in such data. The
lack of computational methods that can integrate across
data modalities is a key issue in multimodal single-cell omics
data analysis and greatly hinder biological discovery from
such data (9,10).

Here we present Matilda, a neural network-based multi-
task learning method for integrative analysis of multimodal
single-cell omics data (Figure 1A). Although previously
methods developed for scRNA-seq data analysis typically
address different tasks (e.g. data simulation, cell type clas-
sification) independently, a key observation in Matilda is
that many common tasks in multimodal single-cell omics
data analysis are closely related to each other. The modular-
ity nature of neural networks employed in Matilda makes
it well-suited for integrating multiple data modalities and
performing multiple tasks in a single unified framework.
For example, the data simulated by the variational au-
toencoder (VAE) (11), a key component of Matilda, can
be augmented to the original data to improve cell type
classification. By leveraging such relationships, Matilda si-
multaneously performs data simulation, dimension reduc-
tion, cell type classification, and feature selection across
data modalities (Figure 1A), therefore, achieving multiple
key tasks in integrative analysis of multimodal single-cell
omics data.

Matilda performs data simulation, cell type classifica-
tion, and feature selection for single-cell multimodal omics
data in a single multi-task learning framework. To eval-
uate the performance of Matilda on multiple tasks in
multimodal single-cell omics data analysis, we applied
Matilda to a collection of datasets generated from pop-
ular multimodal single-cell omics technologies including
those profiling three modalities using TEA-seq (gene ex-
pression [RNA], cell surface proteins [ADT], and chromatin
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Figure 1. Matilda framework and multimodal single-cell data simulation. (A) Schematic summary of the main components in Matilda framework, including
multimodal single-cell data simulation, data augmentation, multimodal integrated visualization, cell type classification, and gradient descent-based feature
selection. (B) UMAP visualization of cell-type-specific simulations of RNA, ADT, and ATAC modalities in the TEA-seq dataset (GSE158013) using
Matilda. The Upper and lower panels show real (red), and Matilda simulated (blue) naı̈ve B cells and CD14 monocytes, respectively.

accessibility [ATAC]) (12), and those profiling two modali-
ties using CITE-seq (RNA and ADT) (13–15) and SHARE-
seq (RNA and ATAC) (16). While there are currently few
methods specifically designed for data simulation, cell type
classification, and feature selection using multiple modal-
ities in these datasets, various methods (e.g. Sparsim (17)
for data simulation, scClassify (5) for cell type classifi-
cation, MAST (8) for feature selection) have been devel-
oped for single-cell RNA-sequencing (scRNA-seq) data
and therefore can be applied using the RNA modality in
these datasets. Using a range of evaluation criteria, we show
that Matilda outperforms other state-of-the-art method-
ologies designed for various tasks using single or multi-
ple data modalities. Our results demonstrate the utility of
Matilda as the first comprehensive method for address-
ing multiple key tasks in multimodal single-cell omics data
analysis.

MATERIALS AND METHODS

Datasets and preprocessing

TEA-seq dataset. TEA-seq enables simultaneous single-
cell profiling of transcripts, epitopes, and chromatin acces-
sibility (12). The processed matrices of TEA-seq data from
measuring PBMC were downloaded from the NCBI Gene
Expression Omnibus (GEO) under the accession number
GSE158013, with raw RNA expression, ADT expression,
and peak accessibility (ATAC) measured for the same cells
in four data batches. We summarized the matrix of ATAC
from peak level to gene activity scores using the ‘CreateGe-
neActivityMatrix’ function in Seurat package (14). Genes
with fewer than 1% quantifications across cells in each of
the three modalities were removed, respectively. This re-
sulted in a dataset with 6310 (9855 RNA, 46 ADT, 17141
ATAC); 6545 (9852 RNA, 46 ADT, 17081 ATAC); 6534



PAGE 3 OF 14 Nucleic Acids Research, 2023, Vol. 51, No. 8 e45

(9911 RNA, 46 ADT, 16552 ATAC); and 6748 (9859 RNA,
46 ADT, 16620 ATAC) numbers of cells in each of the four
data batches. The cell type information was obtained from
the original study and for each of the four data batches the
number of cell types are 11, 11, 10 and 10.

CITE-seq dataset by Stephenson et al. This CITE-seq
dataset measures PBMC from healthy individuals and from
COVID-19 patients (15). Only the data from healthy indi-
viduals were used in this study. The raw matrices of RNA
and ADT and the annotation of cells to their respective
cell types from the original study were downloaded from
the EMBL-EBI ArrayExpress database under the acces-
sion number E-MTAB-10026, with 30313 healthy cells from
Cambridge medical centre (batch 1) and 64262 healthy cells
from NCL medical centre (batch 2). RNA and ADT in this
dataset were filtered by removing those that expressed in less
than 1% of the cells and cell types were filtered by removing
those that have less than 10 cells. After filtering, there are
30313 cells from 17 cell types (10668 RNA, 192 ADT) in
batch 1 and 64257 cells from 16 cell types (10618 RNA, 192
ADT) in batch 2 of the dataset for downstream analysis.

CITE-seq dataset by Hao et al. The raw RNA and ADT
matrices from this CITE-seq dataset generated by Hao et al.
(14) from PBMC 2 were downloaded from NCBI GEO un-
der the accession number GSE164378. The dataset contains
two batches and the cells in both batches were annotated to
31 cell types. As the above, RNA and ADT in this dataset
were filtered by removing those that expressed in <1% of
the cells and cell types were filtered by removing those that
have less than 10 cells. This resulted in 67090 cells (11 451
RNA, 228 ADT) in batch 1 and 94674 cells (12 347 RNA,
228 ADT) in batch 2 of the dataset.

CITE-seq dataset by Ramaswamy et al. The raw RNA and
ADT matrices of PBMC from three healthy donors in this
CITE-seq dataset generated by Ramaswamy et al. (13) were
downloaded from NCBI GEO under the accession number
GSE166489. Each patient sample corresponds to one data
batch. After filtering RNA and ADT expressed in less than
1% of the cells and discarding cell types that have fewer than
10 cells, we obtained 8641 cells and 26 cell types in batch
1 (11062 RNA, 189 ADT), 9523 cells and 26 cell types in
batch 2 (10 801 RNA, 189 ADT), and 10 410 cells and 28
cell types (11 039 RNA, 189 ADT) in batch 3 of this dataset.

SHARE-seq dataset. The SHARE-seq data that measures
RNA and ATAC from matched cells in mouse skin samples
were downloaded from NCBI GEO under the accession
number GSE140203 (16). The dataset contains raw count
of RNA and ATAC of cells annotated to 22 cell types. Sim-
ilar to the above, we first removed peaks with no expres-
sion across cells, and then summarized the ATAC data from
peak level into gene activity scores using the ‘CreateGene-
ActivityMatrix’ function in Seurat. We filtered out RNA
and ATAC quantified in fewer than 1% of the cells and cell
types that have less than 10 cells, resulting in a dataset with
32231 cells (8926 RNA, 14 034 ATAC) for the subsequent
analyses.

Matilda design

Multi-task learning architecture. The multi-task neural
networks in Matilda consist of multimodality-specific en-
coders and decoders in a variational autoencoder (VAE)
component for data simulation and a fully-connected classi-
fication network for cell type classification. The encoders in
the VAE component are shareable for both data simulation
and classification tasks, and consist of one learnable point-
wise parameter layer and one fully-connected layer to the
input layer. Because ADT modality has significantly fewer
features than RNA and ATAC modalities, we set empiri-
cally, based on model selection, the numbers of neurons for
encoders of RNA, ADT, and ATAC modalities to be 185,
30, and 185, respectively. To learn a latent space that inte-
grates the information from across modalities, we concate-
nated the output from the encoder trained from each data
modality to perform joint learning using a fully-connected
layer with 100 neurons, followed by a VAE reparameteri-
zation process (11). Next, the fully-connected layer of the
latent space is split into two branches with one branch fed
into the decoders and the other branch fed into the fully-
connected classification network. For the decoder branch, it
consists of multiple decoders each corresponds to an input
data modality. Each decoder consists of one fully-connected
layer to the output layer that has the same number of neu-
rons as the features in the corresponding data modality. For
each fully-connected layer in the VAE component, batch
normalization (18), shortcut (19) were utilized in the model.
ReLU activation was used in all fully-connected layers ex-
cept in the reparameterization process. Dropout (r = 0.2)
was utilized only for fully-connected layers in encoders. For
the classification branch, it consists of the latent space as
input to a fully-connected layer with a dimension equal to
the number of cell types in the training data. The fully-
connected layer outputs a probability vector for cell type
prediction through a SoftMax function.

Loss function. Let X be the single-cell multimodal omic
data from N modalities, the VAE component of Matilda
contains two procedures: (i) the encoders encode each
modality in the data X individually, and concatenate
them for joint learning. This process projected the high-
dimensional X into a low-dimensional latent space. We de-
note the posterior distribution of this process as qθ (z|X),
where θ is the learnable parameter of the neural network
in this procedure; (ii) the decoders reconstruct the low-
dimensional latent space to the high-dimensional original
data space. We denote the posterior distribution of this pro-
cess as pϕ(X|z), where ϕ is the learnable parameter of the
neural network in this procedure. The loss function of the
data simulation component can be represented as the nega-
tive log-likelihood with a regularizer:

Lsim (θ, ϕ) = − Ez∼qθ (z|X)
[
logpϕ (X|z)

]
+K L(qθ (z|X) ||p (z)) (1)

The first term is the reconstruction loss using the expec-
tation of negative log-likelihood. This term encourages the
decoder to learn to reconstruct the original data X using the
low-dimensional representation z. The second term is the
Kullback-Leibler (K L) divergence between the encoder’s
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distribution qθ (z|X) and p(z), where p(z) is specified as a
standard Normal distribution as p(z) ∼ N(0, 1). This di-
vergence measures the information loss when using qθ (z|X)
to represent p(z). The encoder network parameters are in
turn optimized using stochastic gradient descent via back-
propagation, which is made possible by the reparameteriza-
tion trick (11).

For the loss function of the classification component,
we use cross-entropy loss with label smoothing (20). Label
smoothing is a regularizer technique, which replaces one-
hot real label vector yreal with a mixture of yreal and the
uniform distribution:

yls = (1 − α) × yreal + α/K (2)

where K is the number of label classes, and α is a hyperpa-
rameter that determines the amount of smoothing. Then,
the classification loss can be represented as:

Lcla = −�i = K
i = 1 yi

lslogyi
output (3)

where yi
output is the predicted label for the i th cell.

To learn Matilda, we combined the simulation loss and
classification loss to give the following overall loss function:

Lsum = Lsim + λ × Lcla (4)

where λ is a weighting coefficient that determines the impor-
tance of the classification term against the data simulation
term from Matilda.

Data augmentation and balancing strategy. During the
model training process, Matilda performs data augmenta-
tion and balancing using simulated data from the VAE com-
ponent. Specifically, Matilda first ranks the cell types in the
training dataset by the number of cells in each type. The
cell type corresponding to the median number is used as
the reference and those that have smaller numbers of cells
are augmented to have the same number of cells as the me-
dian using VAE simulated single-cell multimodal data for
each cell type. Cell types that have larger numbers of cells
than the median number are randomly down-sampled to
match the median number of cells as well. This strategy
helps Matilda to mitigate imbalanced cell type distribution
in the data (21) and better learn the molecular features of
under-represented and rare cell types.

Joint feature selection from multiple modalities. Leverag-
ing its neural network architecture, Matilda implements two
approaches, i.e. integrated gradient (IG) (22) descent and
saliency (23) based procedures, to detect the most informa-
tive features simultaneously from each of all data modal-
ities. Specifically, for the IG method, to assess the impor-
tance of each feature, the trained model was used for back-
propagation of the partial derivatives from the output units
of the classification network to the input units of the en-
coders, where each input unit represents an individual fea-
ture from a given modality in the input data X. The impor-
tance score of each input feature of each cell is determined
by approximating the integral gradients of the model’s out-
put to its input:

Sj =
1
∫

τ=0
Xj × ∂ F (τ × X)

∂ Xj
dτ (5)

where F F represents the classification branch of the multi-
task neural networks, and ∂ F(τ×X)

∂ Xj
is the gradient of F(X)

along with the j th feature. We aggregated these deriva-
tives across cells within each cell type. These aggregated
gradients indicate the importance of each feature from
each data modality in predicting each cell type. The top-
ranked features from each cell type can be selected based on
their aggregated derivatives for subsequent analyses. For the
saliency method, a cell-type-specific importance score of a
feature j is computed using the derivative:

Sj = ∂ F (X)
∂ X

∣∣∣∣
Xj

(6)

The magnitude of the derivative Sj indicates the effect of
feature j on the classification score.

Matilda model training. Matilda adopts a two-step train-
ing strategy. In the first step, i.e. before augmentation and
balancing, we train a network from scratch. In the sec-
ond step, i.e. after augmentation and balancing, we in-
herit the weights from the first step as the initial value
and fine-tune the networks using augmented and balanced
data. Several key hyper-parameters may impact the perfor-
mance of Matilda. These include the number of layers in
the neural networks, the number of neurons in each layer,
the parameter λ that balances the VAE data reconstruc-
tion and cell type classification in the multi-tasking learn-
ing, and other parameters such as learning rate, number
of epochs, batch size, and dropout rate. To optimize these
hyper-parameters, we used the training datasets of CITE-
seq, SHARE-seq, and TEA-seq to evaluate the model per-
formance with different parameter combinations based on
measurements including (a) the distance between the umap
of simulated data and real data and (b) the classification
accuracy before and after data augmentation. These al-
lowed us to determine the following Matilda settings that
were used in subsequent experiments. Specifically, for both
steps in the training process, batch size was set to 64 cells
in learning from all datasets. The epoch was set to 30 for
all datasets except the CITE-seq dataset generated by Hao
et al. (GSE164378) which contains the largest number of
cells. Since large datasets do not need many training epochs
for the neural networks to converge, we set this to 10 for this
CITE-seq dataset (GSE164378) for improving training effi-
ciency. The parameter λ for balancing loss function in multi-
tasking learning was empirically set to 0.1 for all datasets
and the parameter α in label smoothing was set to 0.1 ac-
cording to (24). In the first stage, we empirically determined
the learning rate of 0.02 in the training process. In the sec-
ond stage, we fine-tuned the networks with an initial learn-
ing rate of 0.02 for the first half of epochs and 0.002 for the
second half of epochs. In Matilda, all input data modalities
were normalized by the ‘NormalizeData’ function in Seu-
rat (14) and then scaled using a z-score transformation to a
similar range.

Settings for other classification methods

CHETAH. Raw count matrices of RNA modality from
each dataset were used as input for CHETAH (v1.8.0) (6)
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and the function ‘CHETAHclassifier’ was used to perform
cell type classification, following the author’s tutorial (https:
//github.com/jdekanter/CHETAH).

scmapCell. Raw count matrices of RNA modality from
each dataset were first normalized using ‘NormalizeData’
function in Seurat and then used as input for scmap
(v1.14.0) (25) as suggested (https://github.com/hemberg-
lab/scmap). By default, the top 500 most informative genes
were used and the function ‘scmapCell2Cluster’ annotates
cells in the query dataset to their respective cell types based
on the reference data.

scClassify. Raw count matrices of RNA modality from
each dataset were first normalized using the ‘Normal-
izeData’ function in Seurat and then used as input for
scClassify (v1.4.0) (5). The default parameters, e.g. tree
= ‘HOPACH’, algorithm = ‘WKNN’, selectFeatures =
‘limma’, similarity = ‘pearson’, were used as suggested in
the pipeline (https://github.com/SydneyBioX/scClassify).

singleCellNet. Raw count matrices of RNA modality from
each dataset were first normalized using the ‘Normal-
izeData’ function in Seurat and then used as input for
singleCellNet (v0.1.0) (26). ‘scn train’ function with the
default parameters of nTopGenes = 10, nRand = 70,
nTrees = 1000, nTopGenePairs = 25, dLevel = ‘newAnn’,
colName samp = ‘cell’ was used for training the model. The
trained models were subsequently used for predicting the
cell types for cells in the query data using ‘scn predict’ and
‘assess comm’ with default parameters (https://github.com/
pcahan1/singleCellNet).

CelliD. The raw count matrices of RNA modality from
each dataset were used as input for CelliD (v1.0.0)
(27). Following the author’s pipeline (https://github.com/
RausellLab/CelliD), we use the function ‘RunMCA’ to per-
form Multiple Correspondence Analysis (MCA) dimen-
sion reduction for both reference and query data. Then ex-
tract gene signatures in each cell type using the function
‘GetGroupGeneSet’ with default parameters dims = 1:50,
n.features = 200, group.by = ‘cell.type’. The cell-to-cell
matching and label transferring across data were generated
using the function ‘RunCellHGT’.

scID. Raw count matrices of RNA modality from each
dataset were first normalized using the ‘NormalizeData’
function in Seurat and then used as input for the R
package scID (v2.2) (28). Following the author’s tutorial
(https://github.com/BatadaLab/scID), we used the function
‘scid multiclass’ with default parameters for identifying cell
types in the query datasets.

UMINT. UMINT package version (c084930) (29) was
used in this study. Following the author’s tutorial (https://
github.com/deeplearner87/UMINT), raw count matrices of
RNA and/or ATAC modalities from each dataset were first
normalized using the ‘NormalizeData’ function in Seurat,
followed by ‘FindVatiableFeatures’, ‘ScaleData’ and ‘Run-
PCA’. Raw count matrices of ADT modality were normal-
ized using the ‘NormalizeData’ function with the param-
eter normalization.method = ‘CLR’, margin = 2, followed

by ‘ScaleData’ and ‘RunPCA’. The multimodal embeddings
from UMINT were obtained and used for cell type classifi-
cation.

Settings for other simulation methods

SPARSim. Following the author’s pipeline (https://gitlab.
com/sysbiobig/sparsim), raw count matrices of RNA
modality from each dataset were used as input for
SPARSim (v0.9.5) (17). Data were first normalized us-
ing the ‘scran normalization’ function in SPARSim pack-
age and data parameters were estimated by ‘SPAR-
Sim estimate parameter from data’ function. The function
‘SPARSim simulation’ was then used for generating simu-
lated data.

cscGAN. Following the author’s pipeline (https://github.
com/imsb-uke/scGAN), raw count matrices of RNA
modality from each dataset were first normalized using
the ‘process files’ function in cscGAN (Github version
988ad95) (30). Default parameters and training iteration of
6000 was used for model training and the ‘run exp’ func-
tion was used for generating simulated data from the trained
model.

ACTIVA. Following the author’s pipeline (https://github.
com/SindiLab/ACTIVA), raw count matrices of RNA
modality from each dataset were used as input for ACTIVA
(31). Data was first pre-processed using the ‘Scanpy IO’
function in ACTIVA package (v0.0.3). Then, the model was
trained using the ‘ACTIVA’ function with the default pa-
rameters. The function ‘generate subpopulation’ was then
used for generating simulated data.

Settings for other dimension reduction methods

Seurat. Seurat package (v4.1.0) (14) was used for dimen-
sion reduction of all CITE-seq datasets. The raw count ma-
trices of RNA and ADT were used as input, which were
then normalized by the ‘NormalizeData’ function in Seu-
rat. By default, the top 2000 most variable genes were se-
lected from RNA modality by ‘FindVariableFeatures’ func-
tion and data are subsequently scaled by ‘ScaleData’ func-
tion. Data from ADT modality were processed similarly
as those of RNA modality, except using parameters of
normalization.method = ‘CLR’ and margin = 2 in the
in ‘NormalizeData’ function, as suggested in the author’s
pipeline (https://satijalab.org/seurat/). PCA was performed
using the ‘runPCA’ function and the function ‘FindMulti-
ModalNeighbors’ integrates RNA and ADT modalities us-
ing the PCA results. The joint visualization of RNA and
ADT were generated using ‘wnn.umap’ function.

totalVI. The totalVI procedure implemented in the
scvi-tools package (v0.15.0) (4) was used for dimen-
sion reduction of all CITE-seq datasets. Following the
author’s tutorial (https://github.com/scverse/scvi-tools),
the raw count matrices of RNA and ADT were first
normalized using the ‘normalize total’ and ‘log1p’
functions and then the top 4000 most variable genes
were selected using the ‘highly variable genes’ function.

https://github.com/jdekanter/CHETAH
https://github.com/hemberg-lab/scmap
https://github.com/SydneyBioX/scClassify
https://github.com/pcahan1/singleCellNet
https://github.com/RausellLab/CelliD
https://github.com/BatadaLab/scID
https://github.com/deeplearner87/UMINT
https://gitlab.com/sysbiobig/sparsim
https://github.com/imsb-uke/scGAN
https://github.com/SindiLab/ACTIVA
https://satijalab.org/seurat/
https://github.com/scverse/scvi-tools
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The data were subsequently used as input for model
training using ‘scvi.model.TOTALVI.setup anndata’,
‘scvi.model.TOTALVI’, and ‘train’ functions in scvi-tools.
The latent space of RNA and ADT modalities was
generated using the ‘get latent representation’ function.

Conos. Conos package (v1.4.5) (32) was used for di-
mension reduction of the SHARE-seq dataset. Following
the author’s pipeline (https://github.com/kharchenkolab/
conos), the raw count matrices of RNA and ATAC were
normalized by the ‘basicP2proc’ function in pagoda2
package (v1.0.8), where recommended parameters of
n.odgenes = 3e3, nPcs = 30, min.cells.per.gene = -1,
make.geneknn = FALSE, and n.cores = 1 were used.
Next, the joint graph was built using buildGraph with
k = 15, k.self = 5, k.self.weigh = 0.01, ncomps = 30,
n.odgenes = 5e3, and space = ‘PCA’ in Conos. The joint
visualization of RNA and ATAC were generated using
‘largeVis’ in function ‘embedGraph’ with default parame-
ter alpha = 1/2.

MultiVI. The MultiVI procedure implemented in
the scvi-tools (v0.15.0) (33) was used for dimension
reduction of the SHARE-seq dataset. Following the
author’s pipeline (https://github.com/scverse/scvi-tools),
the raw count matrices of RNA and gene activity score
matrices from ATAC and the paired matrix of RNA
and ATAC were used as input. These data were first
concatenated using the ‘organize multiome anndatas’
function in scvi-tools and then used for model train-
ing using ‘scvi.model.MULTIVI.setup anndata’,
‘scvi.model.MULTIVI’ and ‘train’ functions in scvi-
tools. The latent space of RNA and ATAC modalities was
generated using the ‘get latent representation’ function.

Multigrate. The Multigrate method (34) was used for
the dimension reduction of all datasets. Following the
author’s pipeline (https://github.com/theislab/multigrate),
the raw count matrices of RNA, ADT or ATAC were
used as input. RNA and ATAC data were first nor-
malized using the ‘normalize total’ and ‘log1p’ func-
tions, and then the top 4000 most variable genes were
selected using the ‘highly variable genes’ function. For
ADT data, we perform CLR transformation using ‘clr’
function. Next, we combine the multimodality data us-
ing ‘organize multiome anndatas’ function and train the
Multigrate models using ‘MultiVAE.setup anndata’, ‘Mul-
tiVAE’, and ‘train’ functions in the Multigrate pack-
age (v0.0.2). The latent space was generated using the
‘get latent representation’ function.

Settings for other feature selection methods

We performed feature selection from the RNA modality
of each dataset using a collection of methods: (i) simple
one-sided t-test and Wilcoxon rank sum test, (ii) popular
methods based on differential expression analysis including
Limma (v3.48.3) (7) and MAST (v.1.2.1) (8), (iii) methods
based on maximizing classification performance including
logistic regression (LR) and receiver operating curve (ROC)
implemented in the ‘FindMarkers’ function in Seurat 2 and

(iv) deep learning based feature selection methods, includ-
ing PROPOSE and scCapsNet with the following settings:

PROPOSE. The PROPOSE procedure (35) was used for
feature selection of RNA modality from all datasets. Fol-
lowing the author’s pipeline (https://github.com/iancovert/
propose), the raw count matrices were first binarized to
{0,1} according to the sign of the values and then used
for model training using the ‘PROPOSE’ function in pro-
pose package (Github version 41fd568) with the number of
marker genes as 100 and other parameters as default.

scCapsNet. The scCapsNet (Github version b21ca07)
procedure was used for feature selection of RNA modality
from all datasets. The raw count matrices were normalized
using the ‘log2’ function in the numpy package. Following
the author’s pipeline (https://github.com/wanglf19/scCaps),
the models were trained using the default network and pa-
rameters.

Performance evaluation

Cell type classification evaluation. We evaluated the accu-
racy of a cell type classification model by calculating their
average accuracy as the sum of the accuracy in all cell types
divided by the number of cell types in a dataset. The aver-
age accuracy of all cell types accounts for the performance
of a classification model in both the major and minor cell
types. We used two pipelines, referred to as ‘intra-dataset’
and ‘inter-dataset’ classification, for cell type classification
model evaluation. While intra-dataset classification splits
training and test data from one batch of a dataset, inter-
dataset classification splits training and test data from dif-
ferent batches in a dataset. For intra-dataset classification,
we performed five-fold cross-validation repeated five times
with different seeding on each batch of each dataset. For
inter-dataset classification, we select the common features
and cell types from different batches in the same dataset
with different data batches and train on one batch and test
on another batch.

Simulation evaluation. We used the correlation heatmaps
to visualize the correlation structure of select features in
each data modality of each dataset. Specifically, we first
applied the functions ‘modelGeneVar’ and ‘getTopHVGs’
from the scran R package (v1.20.1) (36) to select the top
100 high variable genes (HVGs) based on their variability
calculated from each data modality in each dataset (except
the ADT modality of the TEA-seq dataset) and then calcu-
lated pairwise Pearson’s correlation coefficients from these
HVGs across all cells in each dataset. Since the ADT modal-
ity of the TEA-seq dataset only contains 46 ADTs, we used
all of them in the correlation analysis and heatmap visu-
alization. For comparison to other simulation methods in
RNA modality, we used the same visualization methods as
above for each simulation method and also quantified the
performance of each simulation method by calculating the
overall Pearson’s correlation of real and simulated data and
represented these as boxplots.

Dimension reduction evaluation. We used the performance
of a simple k-means clustering algorithm to assess cell

https://github.com/kharchenkolab/conos
https://github.com/scverse/scvi-tools
https://github.com/theislab/multigrate
https://github.com/iancovert/propose
https://github.com/wanglf19/scCaps
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type clustering on dimension reduced dataset generated
from each modality integration and dimension reduction
method. Similar to cell type classification, we used intra-
dataset and inter-dataset for assessing cell type clustering.
In particular, we used the latent space of the test dataset
obtained either from five-fold cross-validation or a data
batch for cell type clustering and compared the concor-
dance between the clustering output and the cell type labels
from their original studies. The five-fold cross-validation
procedure in the intra-dataset clustering was repeated five
times with different seeding. We assessed the clustering
concordance using four evaluation metrics, including Ad-
justed Rand Index (ARI), Normalized Mutual Information
(NMI), Fowlkes-Mallows index (FM), and Jaccard index
(Jaccard). Briefly, let N be the number of cells in the dataset,
U = {U1, U2, . . . , UR} be the cell type annotation from the
original study, and V = {V1, V2, . . . , Vc} be the partition
generated by clustering, the pairs between U and V can be
classified into one of the four types: (i) N11: the number of
pairs that are in the same partition in both U and V; (ii)
N00 : the number of pairs that are in different partitions in
U and V; (iii) N01: the number of pairs that are in the same
partition in U but in different partitions in V; (iv) N10: the
number of pairs that are in different partitions in U but in
the same partition in V. Given the above notation, we de-
fined the ARI, NMI, FM, Jaccard metrics as follows:

ARI (U, V) = 2(N00 N11 − N01 N10)
(N00 + N01)(N01 + N11) + (N00 + N10)(N10 + N11)

(7)

Jaccard (U, V) = N11

N11 + N10 + N01
(8)

F M (U, V) =
√(

N11

N11 + N01

) (
N11

N11 + N10

)
(9)

NMI (U, V) = I (U; V)
H (U) + H (V)

(10)

where I(U; V) is the mutual information between U and V,
defined as

I (U; V) = �R
i=1 �C

j = 1

∣∣Ui ∩ Uj
∣∣

N
log2

N
∣∣Ui ∩ Vj

∣∣
|Ui |

∣∣Vj
∣∣ (11)

and H(·) is the entropy of partitions, in which H(U) and
H(V) are calculated

H (V) = −�C
j = 1

∣∣Vj
∣∣

N
log

∣∣Vj
∣∣

N
(12)

H (U) = −�R
i = 1

|Ui |
N

log
|Ui |
N

(13)

Feature selection evaluation. We used the classification of
each cell type to evaluate the performance of features se-
lected for that cell type. Specifically, we used a ‘one-vs-
all’ procedure in that we classified each cell type against
all remaining cell types using the top 100 features selected
for that cell type from different feature selection meth-
ods. Note that only Matilda selected features from all data

modalities whereas the other feature selection methods
were designed for analysing gene expression data and thus
used only to select features from RNA modality of each
dataset. The classification accuracy for each cell type was
calculated using the ‘intra-dataset’ procedure in that fea-
ture selection was conducted on training datasets and their
utility/effectiveness in cell type classification were verified
on test datasets generated from five-fold cross-validation re-
peated five times.

Running time evaluation. We evaluated running time on a
server with AMD(R) Ryzen processor CPU (16 cores and
64 Gb total memory) and one RTX3090 graphics process-
ing unit. We used the CITE-seq datasets generated by Hao
et al. (GSE164378) and Ramaswamy et al. (GSE166489) to
benchmark the running time, given the large numbers of
cells in these two datasets. To evaluate the impact of the
number of cells from the training datasets, we kept the num-
ber of cells to 2k in the test dataset and varied the number of
cells in the training datasets from 1k, 2k, 3k, 5k, 10k, 20k, to
30k. Similarly, to evaluate the impact of the number of cells
from test dataset, we kept the number of cells in the training
dataset to 2k and varied the those in the test datasets from
1k, 2k, 3k, 5k, 10k, 20k, to 30k as above. The elapsed run
time was evaluated by the R function ‘system.time()’ and
Python function ‘time.time()’ for methods implemented us-
ing R and Python, respectively.

RESULTS

Multimodal single-cell data simulation

We applied Matilda to five recent multimodal single-cell
omics datasets including a TEA-seq dataset that profiles
RNA, ADT and ATAC modalities in human PBMC sam-
ples; three CITE-seq datasets that profile RNA and ADT
modalities in human PBMC samples; and a SHARE-seq
dataset that profiles RNA and ATAC modalities in mouse
skin samples (Supplementary Figure S1). To test if Matilda
is able to simulate multimodal omics data in a cell-type-
specific manner, we first visualized cells using each modal-
ity on UMAPs (Figure 1B and Supplementary Figure S2)
and highlighted cells from representative cell types using
real and Matilda simulated data. We found that Matilda
not only precisely simulates each data modality in a cell-
type-specific manner but also denoizes the outliers in the
real data, (e.g. ADT modality of B cells and CD14 cells in
CITE-seq data; Supplementary Figure S2a).

To further assess the performance of Matilda on data
simulation, we compared the correlation structure of highly
variable genes (HVGs) by each data modality using real
data and those simulated by Matilda (Figure 2A–C and
Supplementary Figure S3). We found that data simulated
by Matilda closely resemble the correlation structure of real
data across all modalities. While no other methods are cur-
rently available for simulating multimodal single-cell omics
data besides Matilda, various methods have been devel-
oped for simulating from scRNA-seq data (3). We, there-
fore, compared the simulation results of Matilda on RNA
modality with those generated from scGAN (30), a simula-
tion method based on deep generative adversarial networks,
ACTIVA (31), a deep learning method based on adversarial
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Figure 2. (A–C) Heatmap visualization of the correlation structure of RNA modality of real and simulated TEA-seq dataset (GSE158013), CITE-seq (E-
MTAB-10026) and SHARE-seq dataset (GSE140203) using Matilda, scGAN, ACTIVA and Sparsim. The top-100 highly variable genes (HVGs) selected
from the RNA modality of the real data were used for the heatmap. (D–F) Pearson’s correlation of simulated data from each simulation method with real
data using RNA modality for TEA-seq dataset (GSE158013), CITE-seq (E-MTAB-10026) and SHARE-seq dataset (GSE140203). Centre line, median;
box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers.

VAE, and Sparsim (17), one of the best performing simu-
lation methods based on mixture modelling (3). We found
that in most cases data simulated from Matilda for the RNA
modality better preserve the correlation structure in the real
data compared to alternative methods as quantified in Fig-
ure 2D–F. These results demonstrate the ability of Matilda
on simulating multiple data modalities in a cell-type-specific
manner in multimodal single-cell omics datasets.

Multimodal data integration and dimension reduction

During model training, Matilda learns to combine and re-
duce the feature dimensions of multimodal single-cell omics
data to a latent space using its VAE component in the frame-
work (Figure 1A). The trained VAE of Matilda thus can be
used for multimodal feature integration and dimension re-
duction of both the training and new data. Several alterna-
tive methods are available for such tasks. These include Seu-
rat (14) and totalVI (4), which are designed for integrating
RNA and ADT modalities in CITE-seq data; Conos (32)
and multiVI (33), which are designed for integrating RNA
and ATAC modalities such as these in SHARE-seq data;
and Multigrate (34), which is not limited to specific paired
assays and can be applied to both bi- and tri-modality data.

Comparing to these methods, we found that the dimension
reduced data from Matilda shows significantly better cell
type separation under UMAP projection (Figure 3A, B).

To further quantify these visual observations, we clus-
tered the dimension reduced data generated from each
method using a simple k-means clustering algorithm and
analysed the concordance of the clustering output with the
cell type labels provided from their original studies using
a panel of concordance metrics including ARI, NMI, FM,
and Jaccard index (see Materials and Methods). We found
that in most cases Matilda generated dimension reduced
datasets led to higher clustering concordance with respect
to the original cell type labels across all datasets irrespec-
tive of the metrics (Figure 3C–E and Supplementary Figure
S4). These results demonstrate the superior performance of
Matilda for integrating and reducing feature dimensions in
multimodal single-cell omics data and its utility for subse-
quent applications such as data visualization and clustering
of cell types.

Cell type classification using multiple data modalities

To evaluate Matilda on cell type classification using multi-
modal single-cell omics data, we performed both five-fold
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Figure 3. Assessment of Matilda for multimodal integrated dimension reduction and visualization. (A, B) Visualization and (C–E) quantification of joint
multimodal dimension reduction results. (A) Visualizations of CITE-seq data (E-MTAB-10026) using Matilda, Seurat, totalVI, and Multigrate. (B) Vi-
sualizations of SHARE-seq data (GSE140203) using Matilda, Conos, MultiVI, and Multigrate. Cells are colour-coded by their types on the UMAPs.
Quantifications were based on k-means clustering concordance using dimension reduced data from each method and the cell-type annotation from the
original publication by ARI, NMI, FM, and Jaccard index. Either (D) 5-fold cross-validation repeated five times with different random seedings or (D)
data from different batches from CITE-seq data (E-MTAB-10026) were used for capturing the variability in quantifications. (E) Quantification of k-means
clustering concordance using dimension reduced data from Matilda, Conos, Multigrate, and MultiVI with cell-type annotations from the original study
by ARI, NMI, FM, and Jaccard index on SHARE-seq data (GSE140203). Centre line, median; box limits, upper and lower quartiles; whiskers, 1.5×
interquartile range; points, outliers.

cross-validation (repeated 5 times) and training and test us-
ing different batches within each dataset (Supplementary
Figure S1b). While several methods have been developed re-
cently for transferring cell type labels across different data
modalities for multimodal single-cell omics data (37–39),
there are currently few methods specifically designed for cell
type classification by using all data modalities from such
data. To this end, we resorted to comparing methods that
are developed for cell type classification from scRNA-seq
data by using RNA modality only (40) and UMINT (31),
a method designed for integrating multiple data modalities
to low-dimensional embeddings which can be used for cell
type classification. We found that Matilda classifies cells sig-
nificantly more accurately across all datasets under both the
cross-validation settings (Figure 4A) and those from train-
ing and test using different batches within each dataset (Fig-
ure 4B) than other state-of-the-art cell type classification
methods that use only RNA modality or those from using

integrated embeddings generated by UMINT. The break-
down of the classification results from training and test us-
ing each pair of data batches reveals that Matilda led to
higher cell type classification accuracy across all pairs in
all four datasets that contain multiple data batches (Figure
4C).

To test if the performance of Matilda is impacted by the
reduced size of the training data, we performed a stratified
sampling of each cell type from CITE-seq and TEA-seq
datasets generated by Ramaswamy et al. (13) and Swan-
son et al. (12), respectively, 80%, 50% and 20% of cells
and trained each classification model using these subsam-
pled datasets. We found that the performance of Matilda is
largely maintained even when the model was trained on a
small proportion of cells from the original datasets (Sup-
plementary Figure S5). It is worth noting that the improved
cell type classification accuracy of Matilda is not a sac-
rifice in speed on model training or classification of test
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Figure 4. (A, B) Cell type classification of each multimodal single-cell omics data. Either (A) 5-fold cross-validation repeated five times with different
random seedings or (B) data from different batches were used for benchmarking the performance of each method. Error bar, SD. (C) Ranking summary
of cell type classification accuracy across data batches for each method.

data (Supplementary Figure S6). Since Matilda uses multi-
task learning and the simulated data from the VAE com-
ponent for data augmentation, we also evaluated the im-
pact of these procedures on cell type classification accuracy.
We found that, across all five datasets, multi-task learning
indeed improved cell type classification than learning each
task independently (Supplementary Figure S7a), and data
augmentation resulted in better performance than those
without (Supplementary Figure S7b). Together, these re-
sults demonstrate the utility of multi-task learning and data

augmentation from simulation for improving cell type clas-
sification and highlight Matilda’s increased cell type classi-
fication accuracy using multimodalities compared to alter-
native methods that use only RNA modality.

Feature selection from multiple data modalities

Finally, the neural network trained for cell type classifica-
tion in Matilda can be used for multimodal feature selection
using methods such as integrated gradient (IG) descent (22)
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Figure 5. (A, B) For TEA-seq data (GSE158013), UMAPs highlight representative markers selected from each of the three modalities for CD14 monocytes
and Naı̈ve B cells. (C, D) violin plots of levels of selected markers for CD14 monocytes and Naı̈ve B cells in their respective modalities across all cell types.
(E) Classification of each cell type in TEA-seq data (GSE158013) using features selected by different methods. Cell types are arranged from low to high
based on the number of cells in each cell type. Feature selection methods are also ranked based on the performance of their selected features in classifying
each cell type (upper panel). Error bar, SE.

and saliency procedures (23), and thus can lead to the selec-
tion of cell-type-specific features across all available modal-
ities in the datasets. Figure 5A, B visualize top-ranked fea-
tures selected by Matilda using IG for CD14 monocytes
and Naı̈ve B cells, respectively, in each data modality in the
TEA-seq dataset. The RNA and ADT expression levels and
the ATAC activity of selected genes across all cell types in
the dataset are shown in Figure 5C, D. As expected, these

analyses reveal that features selected by Matilda for each
data modality show expression specificity towards their re-
spective cell types, demonstrating their potential usage for
characterizing cell identity and their underlying molecular
programs.

To evaluate the top features selected by Matilda across
multiple data modalities and those selected from RNA
modality using popular methods such as t-test and limma
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(7), and those specifically designed for scRNA-seq (e.g.
MAST (8), ROC), and recently proposed deep learning fea-
ture selection methods, including PROPOSE (35) and sc-
CapsNet (41), we compared their utility in classifying each
cell type in each dataset. We found that cell-type-specific
features selected by Matilda from multiple data modalities
on average resulted in more accurate discrimination of their
respective cell types as shown by the scatter plot and the
overall rankings of methods in each dataset (Figure 5E and
Supplementary Figure S8). Within the two feature selection
methods implemented in Matilda, IG appears to perform
slightly better than saliency and is hence the recommended
approach in Matilda for feature selection from multimodal
single-cell omics data. Together, these results demonstrate
Matilda as a useful approach for feature selection from mul-
tiple data modalities for cell type characterization and other
downstream analyses.

DISCUSSION

The key motivation for using multi-task learning in Matilda
is that many common tasks in single-cell multimodal omics
data analysis are interrelated. Learning these tasks in par-
allel may therefore improve the performance of the model
on each individual task. Furthermore, the rationale for us-
ing neural network models in Matilda is due to their mod-
ularity which fits well with the multiple data modalities and
tasks. This allows the integration of data modalities and
information sharing of tasks which together enable com-
plementary information to be extracted and hence lead to
more accurate characterizations of cellular programs. With
the advance in single-cell multimodal omics technologies,
we expect more data modalities to become available in the
near future. The modularity and flexibility of Matilda allow
integration when additional modality becomes available in
such data.

One common criticism of neural network-based learning
models is that a large number of examples need to be pro-
vided during the training process. We demonstrated in our
experiments that Matilda’s performance in cell type classi-
fication is largely maintained even with a relatively small
number of cells in the training datasets. This may be due to
the data simulation and augmentation component imple-
mented in Matilda which increases the number of cells in
the training datasets, especially for the rare cell types. How-
ever, dealing with cell types with an extremely small num-
ber of cells is still a challenge and may require alternative
approaches.

While the current implementation of Matilda deals with
datasets profiling discrete cell types, studies that look at
transitional processes such as development and organogen-
esis create datasets with transient cell types. To analyse such
datasets will require reformatting the loss function in the
Matilda framework such as changing the classification com-
ponent to a regression component. The potential mismatch
of cell types in the training and query datasets may also have
a significant impact on the performance of Matilda. A solu-
tion may be to utilize the prediction probability of the neu-
ral network for deciding whether a cell in a query dataset
should be classified or not. These form the key directions
for our future work.

Various methods have been developed for label transfer
across modalities using different single-cell omics data (e.g.
scRNA-seq, scATA-seq) (37–39,42,43). Such label transfer
methods are distinguished from methods such as Matilda
and UMINT that integrate multiple data modalities in the
same cells (referred to as ‘vertical integration’) (44) since the
embeddings of cells generated from label transfer methods
are from individual data modalities. While the embeddings
generated from label transfer methods can provide useful
alignment of data modalities, they could not be directly used
for multimodality cell type classification as performed by
Matilda and UMINT.

In sum, Matilda is so far the first method for simultane-
ous simulation and supervised classification of cells using
multiple modalities in single-cell multimodal omics data. It
is also the first method for joint feature selection from mul-
tiple data modalities. Matilda addresses multiple key tasks
in single-cell multimodal omics data analysis in a single uni-
fied framework.

DATA AVAILABILITY

All the datasets used in this study are publicly available.
The ‘TEA-seq dataset’ was downloaded from NCBI GEO
under the accession number GSE158013. The ‘CITE-seq
dataset by Stephenson et al’ was downloaded from the
EMBL-EBI Array Express database under the accession
number E-MTAB-10026. The ‘CITE-seq dataset by Hao
et al’ was downloaded from NCBI GEO under the acces-
sion number GSE164378. The ‘CITE-seq dataset by Ra-
maswamy et al’ was downloaded from NCBI GEO under
the accession number GSE166489. The ‘SHARE-seq’ was
downloaded from NCBI GEO under the accession num-
ber GSE140203. Matilda was implemented using PyTorch
(version 1.9.1) with code available at https://github.com/
PYangLab/Matilda.
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