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ABSTRACT 

 

Characterizing Uncertainties in Life Cycle Assessment 

 

by 

 

Yuwei Qin 

 

Life cycle assessment (LCA) aims to support corporate and public policy decisions by 

quantifying the environmental performance of a product. Understanding uncertainties in 

LCA results is therefore important for making informed decisions. Monte Carlo simulation 

(MCS), which uses random samples of the parameters from a pre-determined probability 

distribution, has been widely utilized to characterize uncertainties in LCA. However, as the 

size of an LCA database grows, running a full MCS is becoming increasingly challenging. 

Furthermore, the uncertainty literature in LCA has focused on life cycle inventory (LCI), 

while the uncertainties from the remaining steps—including characterization, normalization, 

and weighting—have not been addressed, despite their perceived relevance in overall 

uncertainty characterization in LCA. 

The objectives of my dissertation are: (1) to develop a new method to improve the 

computational efficiency of large-scale MCS in LCA, (2) to empirically test the 

reproducibility of comparative decisions obtained using the method, and (3) to develop and 

test an analytical method to decompose the overall uncertainty in LCA into its constituents. 

The new method for uncertainty characterization in LCA involves pre-calculating and 
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storing the distribution profiles of the most widely used LCA database, ecoinvent. Using 

parallel computing, I have generated the distribution functions for 22 million life cycle 

inventory (LCI) items of the database. I then tested 20,000 randomly selected comparative 

LCI cases, and showed that pre-calculated uncertainty values can be used as a proxy for 

understanding the uncertainty and variability in a comparative LCA study without 

compromising the ability to reproduce the comparative results.  

One key barrier to conducting uncertainty analysis in LCA occurs in life cycle impact 

assessment (LCIA), an important step of LCA calculation followed LCI phase, because 

characterization models for LCIA do not typically provide uncertainty information for the 

input parameters and lack detailed information about the relationships between those inputs. 

A Pedigree matrix for characterization factors in LCIA was developed to fill in the gap in 

the uncertainty characterization in LCA. Expert opinions on the use of the Pedigree method 

in estimating uncertainty in LCIA and the Pedigree scores for both LCI and LCIA were 

collected through an online survey.  

Finally, I demonstrated a new method to decompose the overall uncertainties of an LCA 

result over the contributing factors including those from LCI, characterization, 

normalization, and weighting, which are the steps involved in LCA calculation. To do so, I 

incorporated the logarithmic mean Divisia index (LMDI) decomposition method into MCS 

to parse out the overall uncertainty into its constituents.  

This research helps improve the efficiency and analytical power of uncertainty analysis 

in LCA. The findings can be applied to other problems outside of LCA that utilize MCS.  
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Chapter 1. Introduction 

Life cycle assessment (LCA) is a method to analyze the environmental impacts of 

products throughout products’ life cycles (ISO 2006). Traditionally, LCA studies only 

include deterministic values in results. However, sound decision-making can benefit from an 

understanding of the magnitude of the uncertainty of LCA results. For example, when 

making comparisons among products, ignoring uncertainty may lead to a misleading 

decision if the distributions of the two LCA results significantly overlap, although their 

deterministic values favor one versus another (Heijungs and Kleijn 2001; Geisler et al. 2005; 

Sugiyama et al. 2005; Finnveden et al. 2009). Therefore, many LCA studies have 

implemented uncertainty analysis for sound decision-support (Hertwich and Hammitt 2001; 

Huijbregts et al. 2003; Basson and Petrie 2007; Cellura et al. 2011; Clavreul et al. 2012; 

Noshadravan et al. 2013). 

Though the importance of analyzing uncertainty in LCA is broadly accepted, 

uncertainty assessments are not yet standard practice in LCA. This dissertation aims to 

discuss the current challenges of performing uncertainty analysis and contribute to the 

literature of improving the feasibility of conducting uncertainty analysis in LCA. A fast, 

feasible, efficient uncertainty assessment approach for LCA practitioners was developed to 

save computation time and cost, and the comparison between the proposed approach and the 

traditional approach was provided in the thesis. Uncertainty estimation for characterization 

factors was also generated to incorporate the uncertainty from the impact assessment phase. 
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1.1. Recent development of uncertainty analysis in life cycle assessment 

The concept of uncertainty in LCA was first discussed in a workshop of Society of 

Environmental Toxicology and Chemistry (SETAC) in 1992 in the context of data quality 

(Fava 1994). Recognizing the significance of incorporating uncertainty, the LCA 

community formed the SETAC LCA working group on data availability and data quality in 

the early 90s. Heijungs (1996) illustrated how uncertainty is propagated from input 

parameters of an LCA model to its outputs. Weidema and Wesnæs (1996) addressed the 

problem of data quality concerns by introducing the pedigree method, which has been 

widely incorporated into various Life Cycle Inventory (LCI) databases to-date. European 

Network for Strategic Life-Cycle Assessment Research and Development (LCANET) has 

suggested making uncertainty quantification a top research priority. During those early 

years, many efforts were devoted to the setting-up the scheme for data quality indicators. 

Based on such efforts, Huijbregts (1998) established a framework for parameter uncertainty 

analysis. Subsequently, a framework for quantifying data quality in LCI was also developed. 

More recently, the literature focused more on typologies of uncertainty and approaches 

to handling uncertainty (Björklund 2002; Huijbregts 2002; Baker and Lepech 2009). In 

general, two types of uncertainties have been distinguished: stochastic uncertainty (due to 

inherent randomness) and epistemic uncertainty (due to lack of knowledge) (Clavreul and 

Guyonnet 2013; Heijungs and Lenzen 2014). Among them, stochastic uncertainty has been 

the focus of many LCA studies, while the literature on epistemic uncertainty in LCA is 

scarce (Laner et al. 2014; Gavankar and Suh 2014). According to the survey of 24 LCA 

studies that incorporated uncertainty analysis, parameter uncertainty is the most addressed 
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one compared to model and scenario uncertainties, and sampling method is the most 

frequently used technique to quantify uncertainty (Lloyd and Ries 2008).  

Furthermore, measurement errors in input data, choices of system boundaries, 

underlying assumptions, model incompleteness, all contribute to the reliability and accuracy 

of LCA results (Clavreul et al. 2012, 2013). In particular, the LCI and life cycle impact 

assessment (LCIA) phases of LCA are the most data- and calculation-intensive phases, 

involving many model and data assumptions that could cause errors in LCA results 

(Huijbregts 1998; Heijungs and Huijbregts 2004; Mendoza Beltran et al. 2018). 

1.2. Methods of addressing uncertainties in life cycle assessment 

Two types of techniques for addressing uncertainties in life cycle assessment have 

emerged: the sampling method and the analytical approach (Ross et al. 2002; Heijungs and 

Frischknecht 2004; Clavreul and Guyonnet 2013; Jung et al. 2013). Heijungs and Huijbregts 

(2004) presented a review of four general uncertainty treatments for stochastic uncertainty 

and Ciroth and colleagues (2004) proposed a method for uncertainty calculation.  

Among the various statistical methods, Monte Carlo simulation (MCS) is the most 

commonly used approach, which relies on pre-defined probability distributions and runs the 

model repeatedly for a sufficiently large number of times to allow statistical analysis of the 

results (Huijbregts 1998; Sonnemann et al. 2003; Peters 2007; Hung and Ma 2009; 

Imbeault-Tétreault et al. 2013; Heijungs and Lenzen 2014; Prado-Lopez et al. 2014; Vinodh 

and Rathod 2014; von Pfingsten et al. 2017). Many studies included probability distribution 

in uncertainty analysis through MCS (Maurice et al. 2000; McCleese and LaPuma 2002; 

Sonnemann et al. 2003; Hung and Ma 2009; Cucurachi and Heijungs 2014). For example, 

Noshadravan et al and Gregory et al performed MCS to compare two pavement designs 
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using the distributions of expected LCA results (Noshadravan et al. 2013; Gregory et al. 

2016).  

MCS usually takes three steps: (1) extract distribution functions of the raw data, which 

are the data on unit process-level intermediate flows and elementary flows, (2) create 

random samples based on the probability distributions of the raw data, and (3) iterate the 

process and collect the sample results. With the help of advancement in computer hardware 

and software, MCS of large datasets became viable (Gentle 2013). Many professional LCA 

software like SimaPro and OpenLCA can now perform uncertainty analysis using Monte 

Carlo simulations for sampling foreground and background LCI data (SimaPro 2016; 

OpenLCA 2018). For example, the most widely used data source, ecoinvent database, 

includes distribution information for 90% of the unit process data (Weidema et al. 2013; Qin 

and Suh 2017). 

1.3. The challenge in performing uncertainty analysis in LCA 

Though a growing number of LCA scholars and practitioners now address the 

uncertainty issue in LCA (Cooper et al. 2012; Sills et al. 2012; Groen et al. 2014), 

quantitative uncertainty assessments are only rarely performed in practice. Two main 

challenges in performing uncertainty analysis in LCA that will be addressed in this 

dissertation are (1) the long computational time of Monte Carlo simulation for both 

background and foreground data and (2) the near complete lack of uncertainty information 

for characterization factors. The first challenge of computation time will be addressed in 

Chapter 2 and 3, and the second challenge associated with uncertainty for characterization 

factors will be addressed in Chapter 4. 
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1.3.1. Computation time of running Monte Carlo simulation 

Although Monte Carlo simulation can generate the range of possible results to support 

corporate and public policy decision, performing a full MCS is becoming a computational 

burden to lay LCA practitioners. In LCA, performing an MCS using fully dependent 

sampling typically involves repeated inversion of a technology matrix for each run. As the 

dimension of the technology matrices used in LCA databases grows, however, time spent on 

MCS would greatly increase. The time required for each matrix inversion in a modern 

computer is known to have an order of n2.73 time complexity, where n is the dimension of a 

irreducible, invertible square matrix (Stothers 2010; Williams 2012; Wu et al. 2014), which 

is generally used in LCAs (Suh and Heijungs 2007). This means that doubling the dimension 

of a technology matrix increases the computational time at least 4.8 times. Given that the 

number of processes in LCI databases continues to grow, running full MCSs will 

increasingly become a challenge.  

Several studies considered parameter uncertainty and applied MCS using a fully 

dependent sampling approach, and the running time for MCS varied based on the number of 

processes included in their studies and computing power of their computers. Imbeault-

Tetreault et al. (2013) performed MCS for an LCA case study with nearly 900 unit processes 

using fully dependent sampling and compared two scenarios around the use of Global 

Position System (GPS). The fully dependent sampling used by Imbeault-Tetreault et al. 

required several hours to complete the MCS. Henriksson et al. (2015b) conducted 1,000 

Monte Carlo simulations with fully dependent sampling for a comparative LCA of Asian 

aquaculture products. Ren et al.  also performed fully dependent sampling using OpenLCA, 
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which took the team 16 hours for 1,000 Monte Carlo simulation runs on a personal 

computer.  

1.3.2. Uncertainty in characterization factors 

The other challenge in performing uncertainty analysis in LCA is due to the lack of 

uncertainty information for characterization factors. Uncertainty assessments have largely 

failed to consider the contribution to the output uncertainty of other phases of LCA, and of 

the LCIA phase in particular (Lloyd and Ries 2007; Reap et al. 2008). Since only LCI data 

regularly contains uncertainty information, LCA studies that do include uncertainty analysis, 

typically only focus on the LCI phase (Heijungs 1996; Maurice et al. 2000; Sonnemann et 

al. 2003; Gavankar et al. 2014; Scherer and Pfister 2016; von Pfingsten et al. 2017). The 

most widely used LCI database, ecoinvent (Frischknecht and Rebitzer 2005), includes 

uncertainty values, for example, geometric standard deviation for lognormal distribution, for 

62.7% of its unit process data in ver. 3.4 (Wernet et al. 2016).  

However, characterization models for LCIA do not typically provide uncertainty 

information for the input parameters and lack detailed information about the relationships 

between those inputs. Such lack of information limits the possibility of researchers and 

practitioners to regularly assess characterization models when conducting an uncertainty 

analysis over the full scale of an LCA study (Hung and Ma 2009; Noshadravan et al. 2013; 

Henriksson et al. 2015; Gregory et al. 2016). As a result, the influence of characterization 

models on LCA results is largely unknown, and LCA results that only contain an analysis of 

parameter uncertainty may be misleading for decision-makers (Huijbregts 1998).  
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1.4. The gap in uncertainty analysis in life cycle assessment 

1.4.1. Distribution type for LCI results 

When using Monte Carlo simulation, the shape of the distribution in the aggregate LCI 

results becomes an important issue for efficient storage of such data. In the study of waste 

incinerators by Sonnemann et al. (2003) the distribution of aggregate LCI results from 

Monte Carlo simulations looks like a lognormal distribution. Several reports suggest that the 

lognormal distribution could be an appropriate distribution type in inventory data, risk 

assessment, and impact pathway analysis because lognormal distributions can avoid 

negative values for emissions and impacts (Hofstetter 1998; Frischknecht et al. 2004).  

Many LCA studies used lognormal distribution for LCI results (Rosenbaum et al. 2004; 

Hong et al. 2010; Ciroth et al. 2013; Imbeault- Tétreault et al. 2013; Heijungs and Lenzen 

2014); however, such an assumption has not been empirically tested in the LCA literature. 

In the literature, it was shown that the product of lognormally distributed data result in a 

lognormal distribution (Limpert et al. 2001). However, there is no theoretical underpinnings 

on the types of distribution for the product of two matrices of which the data are 

lognormally distributed, which is basically a set of linear combinations of products between 

lognormally distributed data (Hong et al. 2010). Furthermore, LCA data exhibit not only 

lognormal distributions but also other types of distributions such as normal and triangular 

distributions, for which the distribution of the products cannot be determined analytically. 

The objective of the Chapter 2 is to determine the distribution type of LCI result using 

empirical data and the overlapping coefficient technique. 
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1.4.2. The use of pre-calculated uncertainty values in comparative LCA studies 

As Chapter 2 proposed, using pre-stored distributions for LCI could significantly reduce 

computation time for LCA uncertainty analysis. However, it remains a question whether the 

additional errors due to the use of pre-calculated uncertainty values are small enough to 

maintain the conclusions of a comparative study, and, if not, what the odds of 

misinterpreting a comparative LCA results due to the use of pre-calculated uncertainty 

values are. In particular, the use of pre-calculated uncertainty values does ignore the 

presence of internal dependency within a technology matrix (Heijungs and Lenzen 2014). 

Henriksson and colleagues (2015) highlighted the importance of dependent sampling in 

understanding the distribution of comparative LCA results. There are two main issues to 

consider. First, when performing an MCS, a data point from the same process commonly 

used by the two products under comparison can be perturbed independently. In principle, 

however, they should be perturbed in the same direction and magnitude, which is referred to 

as ‘dependent sampling.’ Second, in a comparative LCA setting, the distribution of the 

difference between the results by the two product systems being compared helps distinguish 

the real difference of the two results.  

Therefore, the objective of Chapter 3 is to empirically test the hypothesis that the use of 

partially independent sampling using pre-calculated uncertainty values in a life cycle 

inventory alters the conclusion that would have been drawn if the uncertainty values are 

sampled dependently.  

1.4.3. The uncertainties of characterized LCA results  

Even though empirical evidence is limited, it has been claimed that the impact 

assessment phase of LCA is the phase that contributes the most to the uncertainty of a LCA 
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result (Owens 1996, 1997; Clavreul et al. 2012). Characterization factors are calculated from 

simplified models of complex interacting physical and chemical systems and do often 

require modelers to resort to a process of linearization of non-linear relationship to fit a 

characterization model to the linear computational structure of LCA (Cucurachi et al. 2016). 

Characterization models, thus, are likely to carry large model uncertainties (Huijbregts 

1998). 

For most LCA studies that have included quantitative uncertainty assessment, only 

uncertainties during the inventory phase were considered. Only a few studies have 

considered quantitative uncertainty from the characterization phase (Cellura et al. 2011; 

Hauschild et al. 2013). For example,  the uncertainties from the characterization factors for 

the global warming and acidification impact categories were assessed in the study of two 

types of roof gutters (Huijbregts 1998). Later, the same author and his colleagues further 

performed an uncertainty analysis including parameter, scenario, and model uncertainties 

involved in characterization factors for two insulation options for a Dutch dwelling 

(Huijbregts et al. 2003). The most other LCA studies lacked the consideration of the 

uncertainties from the characterization factors in their uncertainty analysis due to the 

unavailability of quantitative uncertainties in characterization factors. Therefore, there is a 

need to develop a method to estimate the uncertainty in the LCIA phase, which is mainly 

from the characterization model, in order to consider the uncertainty during both inventory 

and impact assessment in the absence of measurement data. 

 To fill in the gap in the uncertainty characterization in LCA, a Pedigree matrix for the 

characterization phase of LCIA was developed in Chapter 4. New indicator scores were 

defined based on the Numeral Unit Spread Assessment Pedigree (NUSAP) literature and 
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environmental risk assessment common practice (Funtowicz and Ravetz 1990; Jaworska and 

Bridges 2001; Van Der Sluijs et al. 2005; Ragas et al. 2009). We used expert elicitation 

method to collect expert judgements of the use of Pedigree method in estimating uncertainty 

in characterization factors and the Pedigree scores for both LCI and characterization factors 

based on the experience and knowledge of respondents.  

1.4.4. Decomposing LCA uncertainty using logarithmic mean Divisia index (LMDI) 

method 

Some LCA scholars claimed that the impact assessment phase of LCA has a larger 

influence on the uncertainty of a LCA result than the inventory phase but they didn’t provide 

any empirical analysis or evidence (Owens 1996, 1997; Clavreul et al. 2012). Because most 

of the uncertainty analysis in LCA failed to consider the uncertainties from the 

characterization factors, it is difficult to understanding the contribution of LCI and 

characterization factors to the uncertainty in LCA results  (Maurice et al. 2000; Björklund 

2002; Lloyd and Ries 2008). Even if we have the uncertainty for characterization factors, the 

current sensitivity analysis that is used to understand the importance of the parameters to the 

uncertainty cannot tell us the exact contribution of each parameter to the uncertainty. 

Chapter 5 provided a methodology for quantifying the contribution of each LCA phase to 

the overall LCA uncertainty using logarithmic mean Divisia index (LMDI) method. 

A case study on natural gas production was used to demonstrate LMDI method by 

focusing on two impact categories: global warming and USETox human health impacts. The 

proposed method uses the simulations from MCS to calculate the difference between the 

simulated and deterministic category indicator results as the changes in the characterized 

results for each run. Applying the LMDI decomposition method, we can calculate the 
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decomposition of the differences, which returns the contribution of each factor to the 

difference of the run. Then, the statistical properties of the contributions by each factor can 

be analyzed after a large number of MCS runs. 

This work is the first attempt to apply the technique of decomposition analysis using the 

MCS samples to decompose the uncertainty of LCA from LCI, characterization, 

normalization, and weighting phases. The procedure proposed in this study can also serve as 

a practical guide for future LCA practitioners to use LMDI approach to decompose the 

effect of each intermediate LCA step to the uncertainty of final LCA output. 

1.5. Organization of the dissertation 

The dissertation mainly focuses on the characterization of uncertainty in life cycle 

assessment. The objective is to develop a fast, feasible, efficient uncertainty assessment 

approach for LCA practitioners to save computation time and cost when running Monte 

Carlo simulations and provide uncertainty estimation for characterized life cycle assessment 

results. 

Chapter 1 provides an overview of the current development in uncertainty analysis in 

LCA including the methods of treating uncertainties in LCA and the gaps in the literatures, 

especially in the area of life cycle impact assessment. 

In Chapter 2, a method of storing distributions as uncertainty information for life cycle 

inventory was proposed for the purpose of saving computation time and cost for running 

uncertainty analysis. The study investigates the probability distribution that best describes 

LCI results, which is the first attempt to generate the distribution profiles for the entire 

aggregate LCIs of Ecoinvent database. This chapter has been published in International 

Journal of Life Cycle Assessment (Qin and Suh 2016). 
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Currently, three methods were proposed to sample inventory data; (1) the fully 

dependent sampling for both background and foreground data (Henriksson et al. 2015), (2) 

the use of pre-calculated uncertainty values proposed in Chapter 2, and (3) the use of pre-

stored dependent LCI samples (Lesage et al. 2018). The three methods can generate similar 

results for uncertainty analysis of non-comparative LCAs (Suh and Qin 2017). However, for 

comparative LCA studies, the second approach, the use of pre-calculated uncertainty values 

due to independent sampling may overestimate the uncertainty than the fully dependent 

sampling which raised in Heijungs et al’s paper (2017). In the study of 20,000 randomly 

selected comparative LCI cases, the results showed that pre-calculated uncertainty values 

can be used as a proxy for understanding the uncertainty and variability in a comparative 

LCA study especially when adequate computational resources are lacking. Then, the 

hypotheses raised in Heigjungs’s paper were tested in the Chapter 3. The study examines 

whether the use of partially dependent sampling using pre-calculated uncertainty values in a 

life cycle inventory alters the conclusion that would have been drawn if the uncertainty 

values are sampled dependently. 

Chapter 2 and 3 addressed the issue of uncertainty analysis occurred in the LCI phase, 

while Chapter 4 discussed the use of Pedigree approach to estimate uncertainty for 

characterization factors in LCIA phase which is an important step for LCA calculation after 

the LCI phase. A Pedigree matrix for characterization factors in LCIA was developed to fill 

in the gap in the uncertainty characterization in LCA. Expert opinions regarding the use of 

Pedigree method in estimating uncertainty in characterization factors and the Pedigree 

scores for both LCI and characterization factors were collected through an online survey.  
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After the uncertainty values are determined for LCI and LCIA phases, what is the 

influence of the uncertainty from each LCA step on the final LCA result? Chapter 5 

demonstrates the application of logarithmic mean Divisia index (LMDI) method to quantify 

the contribution of each LCA phase to the overall LCA uncertainty. 

Chapter 6 concludes the dissertation. 
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Chapter 2. What Distribution Do Life Cycle Inventory Follow?1 

2.1. Introduction 

Assessing uncertainty in Life Cycle Assessment (LCA) is important for understanding 

reliability and robustness of the results in the context of decision making (Finnveden et al. 

2009). When making comparisons among products, ignoring uncertainty may lead to a 

misleading decision if the distributions of the two LCA results significantly overlap, though 

their deterministic values favor one versus another (Heijungs and Kleijn 2001). Therefore, 

many LCA studies have included uncertainty analysis for making sound decisions (Hertwich 

and Hammitt 2001; Cellura et al. 2011). 

In addition to the development of frameworks and methodologies of uncertainty 

assessment, a number of empirical studies have implemented uncertainty analysis in LCA. 

Geisler et al. (Geisler et al. 2004) applied uncertainty assessment to a case study of plant-

protection products using generic uncertainty factors for inventories. Huijbregts and his 

colleagues (2003) performed uncertainty quantification considering parameter, scenario, and 

model uncertainties in a comparative study of building’s insulation options. Many studies 

included probability distributions in uncertainty analysis through Monte Carlo Simulation 

(Maurice et al. 2000; McCleese and LaPuma 2002; Sonnemann et al. 2003; Hung and Ma 

2009; Cucurachi and Heijungs 2014). 

When using Monte Carlo Simulation (MCS), the shape of distribution in the aggregate 

LCI results becomes an important issue for efficient storage of such data. In a study of waste 

                                                
1 This chapter was published in the International Journal of Life Cycle Assessment. Qin, Y., & Suh, 
S. (2017). What distribution function do life cycle inventories follow?. The International Journal of 
Life Cycle Assessment, 22(7), 1138-1145. 
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incinerators by Sonnemann et al. (2003) the distribution of aggregate LCI results from 

Monte Carlo simulations looks like a lognormal distribution. Several reports suggest the 

lognormal distribution could be an appropriate distribution type in inventory data, risk 

assessment, and impact pathway analysis because lognormal distribution can avoid negative 

values for emissions and impacts (Hofstetter 1998; Frischknecht et al. 2004). Many LCA 

studies following Sonnemann et al. (2003) assumed that LCI results are lognormally 

distributed (Rosenbaum et al. 2004; Hong et al. 2010; Ciroth et al. 2013; Imbeault-

Tétreault et al. 2013; Heijungs and Lenzen 2014). However, such an assumption has not 

been empirically tested in the LCA literature. In the literature, it was shown that the product 

of lognormally distributed data result in a lognormal distribution (Limpert et al. 2001). 

However, there is no theoretical underpinnings on the types of distribution for the product of 

two matrices of which the data are lognormally distributed, which is basically a set of linear 

combinations of products between lognormally distributed data (Hong et al. 2010). 

Furthermore, LCA data exhibit not only lognormal distribution but also other types of 

distribution such as normal and triangular distributions, of which distribution types of the 

products cannot be determined analytically.  

This study aims to determine the probability distribution that best describes LCI results. 

The paper is the first attempt to generate the distribution profiles for the entire aggregate 

LCIs of ecoinvent version 3.1. In this study, we performed MCS to simulate random 

samples of unit process data and to estimate the distribution profiles of LCI results. We 

tested the hypothesized distributions of LCIs using the overlapping coefficient method, and 

identified the most suitable distribution type to present LCIs. 
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In the next section, the ‘method and data’ used in this study is presented, followed by a 

‘results and discussion’ section. In the ‘conclusions’ section, the main findings are presented 

and a set of recommendations are discussed.   

2.2. Method and data 

2.2.1. Monte Carlo simulation 

In this study, MCS is used to create the distribution of each aggregate LCI result from 

the entire ecoinvent data v3.1. Figure 1 demonstrates the procedure for the statistical 

analysis used in this study.  

Figure 1. Monte Carlo procedure for uncertainty assessment of aggregate LCI 

 
 

Each and every input parameter for calculating LCI results is considered as a stochastic 

parameter. For one iteration, every unit process data in intermediate flow matrix A and 

elementary flow matrix B are reconstructed based on their distribution functions. Aggregate 

LCI results are calculated through the equation, 𝑀 = 𝐵𝐴%& (Heijungs and Suh 2002).   

This process can be summarized as in Eq.1: 
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𝑀'
∗ = (𝐵	 + 𝛿𝐵')	(𝐴	 + 𝛿𝐴')%&                                                          (1)                                                                                                      

𝛿𝐵': randomly sampled deviation matrix for the elementary flows 

𝐵: deterministic elementary flow matrix 

𝛿𝐴': randomly sampled deviation matrix for the intermediate flows 

𝐴: deterministic intermediate flow matrix 

𝑖: number of simulation, 𝑖	 = 	1, . . .		𝑛	(𝑛 = 1,000) 

The resulting M matrix has the dimension of 1,869 (elementary flows) × 11,332 

(processes), and we have generated 1,000 of them, 𝑀&
∗,𝑀5

∗, . . .		𝑀&666
∗ . To ensure 

efficiency, we further sampled 1,000 data points from each 𝑀'
∗. To do so, we have extracted 

1,000 randomly chosen elementary flow-process pairs, and used them to extract 1,000 data 

points for each run. The sampled 1,000 elementary flow-process pairs can be found in the SI 

Excel file. The number of data points that underwent the following statistical analyses were 

therefore 1,000 (elementary flow-process pairs) by 1,000 (runs) = 1,000,000. One whole 

iteration including simulation, calculation of entire LCI results, and storage of randomly 

chosen 1,000 points takes about 1 minute in Python 2.8 in Windows PC with 16 cores. The 

total time for completing 1,000 times of simulations is 1,000 times of it, which is about 

1,000 minutes ≈ 17 hours.  

2.2.2 Distribution functions 

A probability distribution function 𝑓 𝑥  is a function describing the probability 

distribution of a random variable 𝑋. The most frequently used statistical distribution for the 

unit process level inventory in ecoinvent is the lognormal distribution (Table 1). Normal and 

triangular distributions are also considered as the input parameter distributions, though they 

are less common than lognormal distribution. The other two distributions similar to 
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lognormal distribution are gamma and Weibull distributions, which will be used to test the 

distribution of aggregate LCI results in this study. Details about the five distributions are 

presented in the Appendix. 

 
Table 1. Summary of probability distribution in ecoinvent v3.1 unit process data 

 
  A matrix B matrix 
Number of columns 11,332 11,332 
Number of rows 11,332 1,869 
      
Lognormal distribution 94.7% 60.5% 
Normal distribution 0.5% 0.07% 
Triangular distribution 0.05% 0.002% 
Undefined 4.8% 39.4% 

 

2.2.3 Statistical analysis of fitting the distribution 

After the 1,000,000 samples as described in the previous section are obtained, statistical 

analysis is performed to discover the probability distribution of the aggregate LCIs of 

ecoinvent v3.1. A general method of finding the best fitting distribution involves the 

following three steps: (1) Plot the data in frequency histogram or density plot to narrow 

down the list of possible distribution types (Singh et al. 1997); (2) To ensure that the sample 

is not biased, run a normality test using Shapiro-Wilk normality test  following Razali and 

Wah (2011); (3) Generate LCIs based on the hypothesized distributions and test the fitness 

of each distribution with the original data using overlapping coefficient method.  

LCI results that follow a perfect lognormal distribution can be generated by applying 

the log-mean and log-standard-deviation of the LCI results. To estimate Weibull and gamma 

distributions, shape and scale, and shape and rate of the LCI distribution are calculated, 

respectively. The coefficient of overlapping (OVL) is a measure to evaluate the similarity of 
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two probability distributions, which can be used to calculate the percentage of overlapped 

area between the distribution of LCI sample results and the expected distribution. The 

greater the value of OVL, the more similar of the two distributions. In equation (2), ∆ is the 

OVL that represents the common area under both density curves. If the two density 

functions are f(x) and g(x), then 

       ∆ 𝑓, 𝑔 = 	 𝑚𝑖𝑛 𝑓 𝑥 , 𝑔(𝑥) 	𝑑𝑥                                                           (2)                                                                                                                       

The OVL of the distribution estimate and the sample aggregate LCI results are 

calculated in R program. Detailed explanation of overlapping coefficient method can be 

found in Ridout and Linkie (2009). 

2.2.4. Data sources 

We use the unit process inventory data obtained from the ecoinvent database v3.1 

(default allocation method) as our input data. The version 3.1 contains more than 11,000 unit 

processes and nearly 2,000 types of environmental exchanges (Weidema et al. 2013). 

Uncertainty information including uncertainty type and corresponding distribution 

parameters are given for each unit process data. The unit process data includes both 

intermediate flow matrix (A) and elementary flow matrix (B) and their distributions. For 

unit process data in lognormal distribution, all the geometric standard deviations of them are 

calculated based on their variance in pedigree uncertainty. 

We also corrected a few extremely high uncertainty values in the database, which are 

likely to be erroneous, into reasonable values in order to make the A matrix invertible. For 

example, one of the intermediate flow in the database follows a lognormal distribution with 

GSD = 4.1E+22, which is highly unlikely to be reflective of the reality. Furthermore, such 

high GSDs will lead to extreme values in the (𝐴 + 𝛿𝐴') matrix that will make it non-
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invertible. Therefore, we adjusted the GSDs of those intermediate flows into reasonably 

high value (GSD = 5), which is still about 4 times higher than average GSD, 1.3. For 

consistency, we also corrected uncertainty values in the B matrix. Because elementary flows 

have relatively higher GSD values than intermediate flows in the database, we assign GSD = 

10 to those GSDs greater than 10 in the B matrix (average GSD of the elements in B matrix 

is 1.8).  

2.3. Results and discussion 

As the first step of our analysis, we constructed frequency and probability density plots 

of simulation results of LCIs to see their distribution shapes. Figure 2 presents the 

histograms of LCI results of 9 random elementary flow-process pairs. The distribution 

results are similar to the previous LCI simulations in the literature (Sonnemann et al. 2003; 

Muller et al. 2014). The shape of the distributions in Figure 2 can be visually identified as 

lognormal, gamma, or Weibull distributions (Holland and Fitz-Simons 1982). To further 

determine the type of probability distributions for these results, normality statistical test and 

overlapping coefficient method are applied. 

 
Figure 2. Histograms of 9 random points in 1,000 iterations of LCI results 
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By definition, if the logarithm of the data is in normal distribution, then the data has a 

lognormal distribution. The QQ-plots of log-transformed LCI results in the Supplementary 

Information indicate the majority of LCI results are very close to lognormal distribution. 

The normality of the data can also be assessed through a variety of statistical tests. One of 

the most common tests is Shapiro-Wilk normality test, which is known to be the most 

powerful approach to normality test (Razali and Wah 2011). The results of Shapiro-Wilk 

normality test of simulated LCI are provided in Table 2.  

Table 2. Shapiro-Wilk Normality Test results of simulated LCIs (p-value) 
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The results of normality test for the 1,000 random elementary flow-process pairs are 

presented in Table 2. At 95% confidence level, p-value less than 0.05 means we reject the 

null hypothesis that the probability distribution of the data is normal. About 99.8% of the 

simulated LCI results showed p-values greater than 0.05, meaning that nearly all of the 

simulated LCI results are not normally distributed.  

After we log-transformed the LCI outputs, the share of the simulated LCIs that passed 

the test increased to 43% (Table 2), indicating that they more likely to be lognormally 

distributed than normally distributed. At 95% confidence level, average p-value of log-

transformed LCI results is 0.18, accepting the null hypothesis that LCI results are 

lognormally distributed. Still 57% of the 1,000 samples of LCI results did not passed the 

normality test after log-transformation. This can be explained by the well-known 

observation that the power of Shapiro-Wilk test diminishes as the size of log-normally 

distributed sample increases (Yazici and Yolacan 2007). Therefore, we performed the 

Shapiro-Wilk normality test for only 100 randomly chosen samples of simulated LCIs. The 

results show that 81% of the simulated LCIs passed the normality test in this case, 

confirming that simulated LCIs generally follow lognormal distribution.  

The next step of fitting the distribution is to test how well a lognormal distribution or 

other possible distributions actually fit LCI simulations. As mentioned before, according to 

the shape of the curves in histograms, some possible distributions of LCI results include 
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lognormal, gamma and Weibull distributions. The results are fitted by those distributions, 

and the coefficients of overlapping (OVL) are calculated to find the closeness of the results 

to those distributions. The three types of distributions are generated based on the 

corresponding distribution parameters of simulated LCI results as described in the ‘method 

and data’ section.  Detailed description about the probability density functions for the three 

distributions is included in the Supplementary information. Figure 3 represents 9 typical 

comparisons among the results and the estimates of lognormal, gamma and Weibull 

distributions of random elementary flow-process pairs. 

Figure 3. Density plots of LCI data, lognormal, gamma and Weibull distribution 

estimates 
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In the plots of the distribution comparisons (Fig. 3), lognormal distribution estimates 

have the larger shared area with simulated LCI data than gamma or Weibull distribution. 

Figure 4 illustrates the distributions of OVL results from the LCI results verses lognormal, 

gamma and Weibull distributions. For example, the solid line in Figure 4 shows the OVL 

probability density of expected lognormal distribution and LCI simulations. The average 

overlapping coefficient (OVL) for lognormal distribution and LCI result is 95%, while that 
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for gamma and Weibull distributions are 92% and 86%, respectively. The result shows that 

LCI samples are closest to a lognormal distribution compared to other distribution types 

based on the coefficients of overlapping approach.  

Figure 4. The coefficients of overlapping (OVL) of 1,000 samples of LCI results and 

lognormal, gamma, and Weibull distribution estimates. 

 

 
 

Graphically and numerically, therefore, we could conclude that LCI results of ecoinvent 

v3.1 are lognormally distributed. This observation allows us to characterize the distribution 

of aggregate LCI results more efficiently using GSD and median. In other words, individual 

users do not need to perform a MCS using unit process-level data, which can be highly time-

consuming given the dimensions of matrices involved.  

2.4. Conclusions 

In this study, the probability distribution type for aggregate LCIs of the ecoinvent v3.1 

database is identified by comparing the simulated LCIs to three possible distributions. The 

results show that lognormal distribution has the highest overlapping coefficient (average 
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95%) with simulated LCIs as compared to gamma (average 92%) or Weibull distribution 

(average 86%). Our normality test results also confirm that 43% of aggregate LCIs follow 

lognormal distribution. Therefore, aggregate LCIs can be presented efficiently as lognormal 

distribution (i.e. median and GSD). 

Though the current database has uncertainty values for unit process inventory, 

conducting uncertainty analysis starting from the unit process level is neither time-efficient 

nor necessary for most studies. Therefore, the determination of the distribution that best fits 

the aggregate LCIs is needed. It would help improve the efficiency of storing uncertainty 

data and performing uncertainty analysis in LCA by saving computation time and storage of 

LCI data.  

By way of an example, 1,000 times of LCI simulation using unit process-level 

distribution information for a product system that involves 30 inputs from ecoinvent v3.1 

would take 1,000 mins for a modern, average desktop computer (7 core computer, 16 GB 

ram, 3.4 GHz). By using pre-calculated distribution function for LCIs, this can be reduced to 

15 seconds, which is 1/4000th of the time needed for the unit process-level computation. 

Our study only considers the uncertainty information from unit process data from 

ecoinvent 3.1, which is mostly based on the pedigree matrix. Pedigree method is a pragmatic 

approach to uncertainty in the absence of better uncertainty information. However, the 

theoretical and empirical grounds of applying pedigree approach to quantify uncertainty 

itself are questionable (Ciroth et al. 2013). The validity of pedigree approach was not within 

the scope of our paper; the methodology presented in this paper can be applied to any 

uncertainty data regardless of how they are derived in the first place. Though the majority of 

the unit process data in A matrix include uncertainty values in the current database, there is 
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still part of them lacking uncertainty information. The problem is more severe when it 

comes to B matrix, where only about 60% of the data contains uncertainty values in 

ecoinvent v3.1. The aggregate LCI results that we have calculated, therefore, does not reflect 

all the uncertainties, because some of the uncertainty data, especially those in B matrix, were 

not considered. However, for the purpose of this study, adding additional uncertainty 

information for those that are missing in the original data is unlikely to change the 

conclusions of our study.  

Aggregate LCI uncertainty is only one step in the analysis of LCA uncertainty. Not only 

LCI uncertainty, but also the uncertainty from impact assessment should be assessed in 

order to achieve the overall uncertainty of the final LCA results. Additional research is 

needed to understand the uncertainties in LCA encompassing both LCI and LCIA. 

2.5. Appendix 

Provided in the supporting information are the QQ-plot of 9 random log-transformed 

LCI results and mathematical notations for 5 distribution types that are relevant to our study. 

2.5.1. Uncertainty values for 1,000 LCIs 

Lognormal distribution can be expressed by two parameters: median and geometric 

standard deviation (GSD), which are shown in the file. To protect the original ecoinvent 

v.3.1 data, median values of these results are not shown in absolute value but only in the 

percentage of the deterministic LCI results. For example, 120% in the spreadsheet means the 

median of simulated LCI results is 120% of the deterministic LCI value shown in the 

original ecoinvent v. 3.1 data. Also included are two tabs that show intermediate and 

elementary flow names used in the study. 
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2.5.2. QQ-plot of 9 random log-transformed LCI results 

The QQ-plots are used to test the normality of the log-transformed LCI results. The 

results in Figure S1 indicate the majority of LCI results are very close to lognormal 

distribution. 

 
Figure S1. QQ-plot of 9 log-transformed LCI results 

 

2.6.3. Description of distribution functions used in the study 

Description of five major distributions from ecoinvent data and for the distribution 

analysis is presented in the following. Among the five distributions, normal, lognormal, and 

triangular distributions are used in ecoinvent unit process data, and lognormal, Weibull and 
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gamma distributions are used in distribution fitting of the LCI results based on distribution 

shape.  

Normal distribution 

If the probability distribution of X is a bell-shaped curve and symmetric to its mean 

value, X has a normal distribution (Gaussian distribution). Normal distribution is the most 

common and important probability distribution and it is often used in science to represent 

random variables (Limpert et al. 2001). The distribution can be characterized by arithmetic 

mean µ and the standard deviation σ in the equation: 

𝑓	(𝑥) 	= 	
1
2𝜋𝜎5

𝑒%
(D%E)F
5GF  

Lognormal distribution 

If X is lognormally distributed, Y = ln(X) is normally distributed. The probability 

distribution function for lognormal distribution is: 

𝑓	 𝑥 = 	
1

𝑥𝜎 2𝜋
𝑒%

(HI D%E)F
5GF  

with µ is mean of the normal distribution and σ is standard deviation of the normal 

distribution. In ecoinvent data, values of representing lognormal distribution are median 

which is geometric mean and variance with pedigree uncertainty which used to calculate 

geometric standard deviation (Weidema et al. 2013).  

Triangular distribution 

The triangular distribution is a probability distribution in a triangular shape with lower 

bound a, upper bound b and mode c. The probability density function is defined by the 

following function: 
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𝑓	(𝑥) 	= 	

2(𝑥 − 𝑎)
(𝑏 − 𝑎)(𝑐 − 𝑎)

											𝑎 < 𝑥 < 𝑐

2(𝑏 − 𝑥)
(𝑏 − 𝑎)(𝑏 − 𝑐)

										𝑐 ≤ 𝑥 < 𝑏
 

Triangular distribution is used to estimate the distribution if only limited sample data is 

available because this distribution is based on the mode, minimum and maximum. More 

detailed explanation of normal, lognormal and triangular distributions and their presentation 

in ecoinvent database can be found in Heijungs and Frischknecht ’s paper (Heijungs and 

Frischknecht 2004). 

Weibull distribution 

The Weibull distribution is used to add flexibility of exponential distribution, and it has 

lighter tails than lognormal (Holland and Fitz-Simons 1982). The Weibull distribution can 

describe distribution with positive or negative skewness while lognormal and gamma can 

only describe positive skewed distribution. It has a distribution function where k	is the shape 

parameter and λ	is the scale parameter of the distribution: 

𝑓	(𝑥) 	= 	
𝑘
𝜆
(
𝑥
𝜆
)T%&𝑒%(D/V)W 

Gamma distribution 

The gamma distribution is often selected as distribution type for representing ecological 

and physical data (Dennis and Patil 1984). The gamma distribution provide population 

model, and chi-square and exponential distributions are special cases of the gamma 

distribution (Holland and Fitz-Simons 1982). The probability density function is in the 

following formula with shape	k and scale θ: 

𝑓	(𝑥) 	=
𝑥T%&𝑒%

D
Y

𝜃T𝛤(𝑘)
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Chapter 3. Does the Use of Pre-calculated Uncertainty Values Change 

the Conclusions of Comparative Life Cycle Assessments? – An Empirical 

Analysis2 

3.1. Introduction 

Life cycle assessment (LCA) is a tool to evaluate the environmental performance of a 

product (Guinée 2002; Normalización 2006). LCA results often support corporate and 

public policy decisions (Azapagic 1999; Burgess and Brennan 2001; de Bruijn et al. 2002; 

Cederberg and Stadig 2003; Kloepffer 2008; Finnveden et al. 2009). When using LCA 

results for decision-support, it is crucial to understand the uncertainty in them (Sugiyama et 

al. 2005; Geisler et al. 2005; Finnveden et al. 2009), because lack of understanding of the 

uncertainty behind them may materially mislead the decisions (Huijbregts et al. 2001; 

Heijungs and Huijbregts 2004; Ciroth et al. 2013). 

In general, uncertainty analysis in LCA is performed using sampling methods or 

analytical approaches, and the most commonly used approach is the Monte Carlo simulation 

(MCS) (Huijbregts 1998; Sonnemann et al. 2003; Peters 2007; Hung and Ma 2009; 

Imbeault-Tétreault et al. 2013; Heijungs and Lenzen 2014; Prado-Lopez et al. 2014; Vinodh 

and Rathod 2014; von Pfingsten et al. 2017). MCS uses random samples of input parameters 

following their stochastic characteristics, and runs the model repeatedly for a sufficiently 

large number of times to allow statistical analysis of the results (Helton and Davis 2002; 

Heijungs and Frischknecht 2005; Bojacá and Schrevens 2010; Castaings et al. 2012). For 

                                                
2This chapter was published in PLoS ONE. Qin, Y., Suh, S. (2018). Does the Use of Pre-

calculated Uncertainty Values Change the Conclusions of Comparative Life Cycle Assessments? – 
An Empirical Analysis. PLoS ONE, 13(12), e0209474. 
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example, Noshadravan et al and Gregory et al performed MCS to compare two pavement 

designs using the distributions of expected LCA results (Noshadravan et al. 2013; Gregory 

et al. 2016). These studies considered parameter uncertainty using a fully dependent 

sampling approach. Imbeault-Tetreault et al performed MCS for an LCA case study with 

nearly 900 unit processes using fully dependent sampling and compared two scenarios 

around the use of Global Position System (GPS) (Imbeault-Tétreault et al. 2013). The fully 

dependent sampling used by Imbeault-Tetreault et al required several hours to complete the 

MCS. Henriksson et al conducted 1,000 Monte Carlo simulations with fully dependent 

sampling for a comparative LCA of Asian aquaculture products (Henriksson et al. 2015). 

Ren et al also performed fully dependent sampling using OpenLCA, which took the team 16 

hours for 1,000 Monte Carlo simulation runs on a personal computer (Ren et al.). Existing 

MCS packages in professional LCA software tools including SimaPro and OpenLCA can 

sample parameters from foreground processes and from the underlying life cycle inventory 

(LCI) databases (SimaPro 2016; OpenLCA 2018). 

In LCA, performing an MCS using fully dependent sampling typically involves 

repeated inversion of a technology matrix for each run. As the dimension of the technology 

matrices used in LCA databases grows, however, MCS is rapidly becoming a computational 

burden to lay practitioners. The ecoinvent database, which is one of the most widely used 

LCA databases, used to have about 5,000 processes, while the most recent version of the 

database, ver. 3.4 contains over 14,000 processes (Frischknecht et al. 2005; Verbeeck and 

Hens 2010; Weidema et al. 2013; Wernet et al. 2016; Moreno Ruiz et al. 2017). A Monte 

Carlo simulation using ecoinvent ver. 3.1 takes about 1 day for 1,000 runs in a personal 

computer environment using a Python solution for inversion based on Gaussian elimination 
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algorithm with 16GB random access memory (RAM) and 1TB solid-state drive (SSD) (Qin 

and Suh 2017).  

The time required for each matrix inversion in a modern computer is known to have an 

order of n2.73 time complexity, where n is the dimension of a irreducible, invertible square 

matrix (Stothers 2010; Williams 2012; Wu et al. 2014), which is generally the case in LCAs 

(Suh and Heijungs 2007). This means that doubling the dimension of a technology matrix 

increases the computational time at least 4.8 times. Given that the number of processes in 

LCI databases continues to grow, running full MCSs will increasingly become a challenge.  

In 2016, the current authors published pre-calculated uncertainty values for the entire 

ecoinvent ver. 3.1 LCI database for the purpose of saving computation time of running a full 

MCS by individual users (Qin and Suh 2016). Using pre-calculated uncertainty values for 

LCIs, the users of LCI database do not need to invert the entire ecoinvent database, while 

there still is a need to invert the technology matrix for the foreground system, which is 

generally much smaller in dimension. In a commentary to our paper, Heijungs et al. 

(Heijungs et al. 2017) raised a concern that the use of pre-calculated uncertainty values in 

comparative studies ignores the dependence among background processes, leading to a large 

overestimation of uncertainty due to independent sampling. In our response (Suh and Qin 

2017), we empirically tested the argument by Heijungs et al, and found that (1) the 

difference in overall uncertainty characteristics in the results between fully dependent 

sampling and the use of pre-calculated uncertainty is small; and that (2) the use of pre-

calculated uncertainty tends to underestimate, rather than overestimate, the uncertainty 

measured using the distribution of Geometric Standard Deviations (GSDs).  
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However, it remains as a question whether the additional errors due to the use of pre-

calculated uncertainty values are small enough to maintain the conclusions of a comparative 

study, and, if not, what is the odds of misinterpreting a comparative LCA results due to the 

use of pre-calculated uncertainty values. In particular, the use of pre-calculated uncertainty 

values does ignore the presence of internal dependency within a technology matrix 

(Heijungs and Lenzen 2014), Henriksson and colleagues highlighted the importance of 

dependent sampling in understanding the distribution of comparative LCA results (2015). 

There are two main issues to consider. First, when performing an MCS, a data point of the 

same process commonly used by the two products under comparison can be perturbed 

independently. In principle, however, they should be perturbed in the same direction and 

magnitude, which is referred to as ‘dependent sampling.’ Second, in a comparative LCA 

setting, the distribution of the difference between the results by the two product systems 

being compared helps distinguish the real difference of the two results.  

We agree with Hendriksson and colleagues on the theoretical superiority of fully 

dependent sampling, while the computational requirements for performing fully dependent 

sampling remains as a concern. Therefore, the objective of this paper is to empirically test 

the hypothesis that the use of partially independent sampling using pre-calculated 

uncertainty values in a life cycle inventory alters the conclusion that would have been drawn 

if the uncertainty values are sampled dependently.  
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3.2. Materials and methods 

3.2.1. Two types of sampling methods 

This study compared two types of sampling methods used in calculating LCIs. The first 

approach, partially independent sampling (PIS), used pre-calculated uncertainty 

characteristics that are derived using fully dependent sampling (FDS) (Qin and Suh 2016). 

Although these pre-calculated uncertainty characteristics such as GSDs were derived using 

dependent sampling, when they are applied to an comparative LCA between products A and 

B, each set of parameters applied to A and B are sampled independently in such a way that 

the same parameter that is commonly used by both A and B can be sampled at two different 

points within the pre-calculated distribution (Qin and Suh 2016; Suh and Qin 2017).   

For example, suppose that two products produced from processes A and B are being 

compared. Both processes receive inputs from process C (see Figure 5(a)). When using PIS 

for an LCI item, e.g., CO2 emission for processes A and B, the randomly sampled value 

may be based on two different points of underlying CO2 emissions distribution of process C. 

In principle, however, the two processes should draw the same value from the distribution, if 

A and B are receiving the same input from the exactly same facility at the same time. 

Therefore, the second approach, FDS, draws the same value from process C for each run 

(see Figure 5 (b)).  

Figure 5. Illustrative example of a comparative LCA between A and B involving a 

common input, C3. (a) partially independent sampling of the parameters involving C (use of 

                                                
3 Following the terminologies used in our previous paper, we are comparing (1) PIS (inter-input 

dependence with inter-product system independence; IID+IPI), which is represented in case (b) of 
Figure 4 in [2], with (2) FDS (inter-input dependence with inter-product system dependence; 
IID+IPD), which is represented in case (c) of Figure 4 in [2]. Under PIS, all parameters within each 
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pre-calculated uncertainty values), (b) fully dependent sampling of the parameters involving 

C (full Monte Carlo simulation); modified from (Suh and Qin 2017).  

 
In reality, however, the parameters for process C may be derived by averaging multiple 

processes of different locations, and processes A and B may be using inputs from two 

different processes that are best represented by C in the database. In that case, the use of PIS 

depicted in Figure 5 (a) may represent the true underlying variability in the data and can thus 

be justified. Conceptually, however, FDS is the ideal method used in comparing two 

products’ LCAs if the computation time and cost of running full Monte Carlo simulation is 

not considered as a barrier to LCA practitioners.  

In this study, we compared the same elementary flow, i, in the two LCI results for A 

and B, which are denoted as 𝑎' and 𝑏', respectively. Under the FDS approach, the 

distribution of the difference between the two, or 𝑎' 	− 	𝑏', was generated using fully 

dependent sampling. Under the PIS approach, we used pre-calculated GSDs that were 

                                                
product system that produces A or B in Figure 5 are sampled dependently, while between the two 
product systems, a parameter commonly used by both A and B, may be sampled independently. 
Under FDS, all parameters of the two product systems are sampled dependently.   



 

 37 

generated from FDS approach of LCIs for processes A and B. The GSDs of elementary 

flows were generated by sampling all processes simultaneously in the entire ecoinvent 

database. The use of pre-calculated uncertainty values is considered neither fully 

independent—because the way of generating the pre-calculated values for the two products 

are fully dependently sampled, nor fully dependently sampled—because the direct inputs 

and emissions of the two products are not dependently sampled. Under the PIS approach, we 

used the pre-calculated uncertainty values, more precisely GSDs, for sampling 𝑎' and 𝑏', 

and examined the distribution of the difference between the two. 

3.2.2. Distribution similarity analysis 

After we ran the simulations for the comparative analysis by PIS and FDS, the 

distributions of LCIs from the two methods were obtained. In order to measure the similarity 

of the distributions of the two approaches, we used overlapping coefficient (OVL) analysis 

and determined the shared area between the two distributions of the difference between a] 

and b]. For the given density functions 𝑓(𝑥) and 𝑔(𝑥), the OVL is represented in the 

following equation: 

𝑂𝑉𝐿 𝑓, 𝑔 = 	 𝑚𝑖𝑛 𝑓 𝑥 , 𝑔(𝑥) 	𝑑𝑥                                           (3) 

One example of overlapping coefficient is presented in Figure 6. The blue histogram 

represents the distribution of 𝑎' 	− 	𝑏' generated from the PIS approach, and the pink 

histogram shows the distribution of 𝑎'	 − 	𝑏' generated from the FDS approach. The purple 

area is the shared area of the two distributions, and the overlapped area can be calculated as 

a ratio, an overlapping coefficient. A high ratio of overlapping coefficient means the two 

distributions are similar to each other. The calculation of OVL for the distributions was 

completed in R program (Ridout and Linkie 2009).  
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Figure 6. An example of overlapped histograms of one pair of elementary flows of LCIs 

(𝑎' 	− 	𝑏') using PIS and FDS. 

 

3.2.3. Decision context 

In addition to analyzing the similarity of the distributions from the two approaches, we 

examined the potential outcomes of comparing A and B based on the inventory item, i (𝑎' 

and 𝑏'). In practice, a single elementary flow is rarely, if at all, used as the basis of a 

comparative LCA. As we will discuss later, the use of characterized impact is likely to 

dampen the differences between the two sampling approaches, and therefore our use of 

elementary flow in this analysis should be considered as a more conservative approach; i.e., 

the frequency of reversing the conclusion due to the use of PIS instead of FDS would be 

lower if characterized results are used as the basis of a comparative LCA.  
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Figure 7 shows the three possible outcomes from comparative studies. The boxplots 

represent the distributions of the comparative LCI results of processes A and B for the 

elementary flow i (𝑎' and 𝑏').  

Figure 7. Comparative results of LCI results for two processes A and B in the same 

elementary flow. (a) A is better. (b) B is better. (c) Inconclusive conclusion. 

 
After 1,000 random samplings and calculations for each random pair of randomly 

selected LCIs under MCS, we analyzed the frequency that a] is smaller than b]. If the 

frequency exceeds the set threshold (70%, 80%, or 90% of the 1,000 runs), then we 

determined that A is better than B in terms of the elementary flow i (Figure 7 (a)). In other 

words, we determine that A is better than B in terms of elementary flow i if 𝑎' − 𝑏' is 

smaller than 0 for at least 700 runs out of 1,000 under the 70% threshold case. If the 

opposite is true, we determined that B is better than A (Figure 7 (b)) with regard to the 

elementary flow. For all other cases, we determined that the comparison is inconclusive 

under the set threshold (Figure 7 (c)).  

This concept is overlaid to the use of PIS and FDS as explained in the following 

sections.  

The cases that the conclusions are identical 



 

 40 

This is the case when the outcome of the comparative LCA using FDS and PIS is the 

same (Figure 8). In Figure 8 (a), for example, the results of 𝑎' 	− 	𝑏' of both FDS and PIS 

show A is better than B within the set threshold. In this case, there is no penalty for an LCA 

practitioner to use the computationally lighter approach, i.e., PIS, in a comparative LCA 

context. 

Figure 8. Identical conclusions of the comparison of A and B using FDS and PIS. (a) A 

is better. (b) B is better. (c) Moderated conclusion. 

 
 

The cases that conclusions are moderated 

This is the case when one of the two approaches (PIS or FDS) concludes that A or B is 

better, while the other approach concludes that the comparative outcome is inconclusive. 

Figure 9 shows the two cases where the conclusion is moderated by the use of PIS.  

Figure 9. Moderated conclusions of the comparison of A and B using FDS and PIS. (a) 

One method shows A is better, and the other indicates inconclusive conclusion. (a) One 

method shows B is better, and the other indicates inconclusive conclusion. 
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The cases that conclusions are reversed 

The third case is that the comparative outcome obtained from FDS is reversed when PIS 

is used instead. For example, the results from one approach conclude that A is better than B, 

while the results from the other approach indicate that B is better than A within the set 

threshold (Figure 10). 

Figure 10. Reversed conclusions of the comparison of A and B using FDS and PIS. One 

method shows A is better, and the other indicates B is better. 

 
Using the framework outlined in this section, we conducted an empirical analysis using 

the ecoinvent database, and the results are discussed in the next section. 



 

 42 

3.3. Results and discussion 

3.3.1. Overlapping coefficient analysis 

10,000 pairs of elementary flows of LCIs, 𝑎'	and 𝑏' were randomly selected from 

ecoinvent v3.1, and we simulated 1,000 times of each pair of elementary flows for both PIS 

and FDS approaches. Therefore, the total number of data points used for the statistical 

analysis was 40 million (10,000 elementary flows × 2 processes × 2 approaches × 1,000 

runs). The distribution of the overlapping coefficients for 10,000 pairs of comparison is 

shown in Figure 11. Most overlapping coefficients (86.8%) of the distributions of FDS and 

PIS approaches are above 0.80, and the median is 0.89, indicating that the two methods 

generate similar distributions of 𝑎'	 − 	𝑏'. 

Figure 11. Distribution of overlapping coefficients for 10,000 pairs of elementary flows 

of LCIs (𝑎' 	− 	𝑏') using FDS and PIS approaches. 

 
Over 74.9% of the cases showed the overlapping coefficient of 0.85 or higher indicating 

that the comparative results between PIS and FDS would be very similar. However, as much 

as 2.4% of the cases showed the overlapping coefficient of 0.6 or lower, and in those cases, 
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the risk of drawing a different conclusion by using PIS instead of FDS is more pronounced. 

While OVL analysis shows the general trend of similarity between the outcomes drawn 

using the two approaches, the frequency of drawing a different conclusion can only be tested 

empirically using random sampling of actual dataset. The following section presents the 

result of the empirical analysis. 

3.3.2. Comparing randomly selected processes 

Figure 12 shows the frequency of arriving at (1) an identical, (2) moderated, and (3) 

reversed conclusions by using PIS instead of FDS under three threshold conditions, 70%, 

80%, and 90%. The chances that the conclusions are identical, moderated, and reversed were 

94.7%, 5.3%, 0.0%, respectively when 90% was used as the threshold condition (i.e., 𝑎'	 −

	𝑏' should be smaller than 0 for 90% of the cases in order to determine that A is better than 

B). In other words, the use of pre-calculated uncertainty values generated the same results of 

FDS approach at about 95% of the time even when a very stringent threshold condition of 

90% was employed. For the remaining 5.3%, the conclusion was moderated but not 

reversed. 

Figure 12. Comparison results of FDS and PIS in 10,000 pairs of random processes 

using 70%, 80%, and 90% thresholds. 
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When the threshold condition was relaxed to 80% and 70%, as expected, the chance for 

PIS to arrive at a moderated conclusion than the case of using FDS was reduced to 3.7% and 

2.7%, respectively. Irrespective of the threshold conditions, no case out of 10,000 pairs 

under each threshold condition arrived at a reversed conclusion.  

These results were drawn from the randomly selected processes regardless of their 

functional characteristics. In reality, comparative LCAs are more likely to be performed 

among the processes with the same or similar functional outputs. Functional equivalency of 

two process outputs is, however, case-dependent and often difficult to determine using only 

the intrinsic characteristics of the two processes. For example, polyethylene terephthalate 

(PET) and stainless steel are two different materials, while both of them can be used as a 

material for tumbler. In that sense, the results shown in Figure 12 is justifiable 

representation of the errors induced by PIS.  

However, we also tested a more stringent case, where the processes to be compared 

produce the outputs of which not only the functions but also the intrinsic characteristics are 

equivalent. The following section follows the same procedure, while limiting the processes 

to be compared within electricity-producing processes, in order to see whether the same 

observation holds up. 
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3.3.3. Comparing the processes with identical functional output 

This section quantifies the frequency of arriving at a different conclusion due to the use 

of PIS instead of FDS among the processes that produce electricity. The results showed that 

the chance of arriving at a moderated conclusion by using PIS was doubled as compared to 

the case of randomly selected processes. However, the results still showed that most (about 

90%) of the conclusions from the two methods were identical, only about 10% of the 

conclusions were moderated. Again, not a single case showed a reversal of the comparative 

outcome (Figure 13).  

Figure 13. Comparison results of FDS and PIS in 10,000 pairs of random electricity 

processes using 70%, 80%, and 90% thresholds. 

 
As was the case for the randomly sampled processes, more relaxed threshold conditions 

generated fewer cases where the conclusion was moderated. Table 3 shows the numerical 

results of the comparison between the two methods for 10,000 pairs of random sampled 

processes and 10,000 pairs of random sampled electricity processes. Though the number of 

weakened conclusions increases in the random electricity processes, the overall identical 

conclusions are still about 90% in the total 10,000 pairs of electricity processes. 



 

 46 

Table 3. Comparison results of LCIs generated from FDS and PIS approaches in 10,000 

pairs of random processes and 10,000 pairs of random electricity processes using 70%, 80%, 

and 90% thresholds. 

  Random processes  Random electricity processes 

Threshold 70% 80% 90%  70% 80% 90% 

Identical 9,733 9,629 9,467  9,451 9,245 8,947 

Moderated 267 371 533  549 755 1,053 

Reversed 0 0 0  0 0 0 

 
Regardless of the similarities in the functional outcome of the processes analyzed, PIS 

produced the identical comparative outcome for about 9 out of 10 times when an LCI was 

used as the basis of the comparison with the 90% threshold condition. In the remaining 1 out 

of 10 cases, the results from the use of PIS have been moderated. If the processes are 

selected randomly or if a more relaxed threshold condition can be used, the chance for PIS 

to produce a moderated conclusion is reduced to 2.7% -3.7%. If characterized or weighted 

results, instead of LCI, are used, the chances of moderating the conclusion by using PIS 

would be lower.  

The question then becomes whether the benefits of using pre-calculated uncertainty 

values by reducing computational time and the costs associated with it outweighs the cost of 

added inconsistency. Certainly, this is a question that an analyst should consider given the 

circumstances where he or she is in, and one can hardly give a universally applicable answer 

to this question. For example, if an LCA practitioner is using an LCA result to claim the 

superiority of a produce to its competitor with a close margin, the use of PIS would not be a 

wise decision given the chance that it can introduce additional error in the analysis. 



 

 47 

However, for less critical cases such as LCAs for internal purposes or with limited 

computational power, the added errors due to the use of PIS may be acceptable. If the 

computational requirement for FDS is a critical barrier for performing an uncertainty 

analysis, certainly the benefits of using PIS would outweighs the cost of not performing 

uncertainty analysis. 

It is also notable that the results shown in Figure 12 may not be reproducible if applied 

to other products with functional equivalency.      

3.4. Conclusions 

Due to the growing size of LCA databases, fully dependent sampling is often a 

challenge to lay LCA practitioners when conducting an MCS. In this study, we evaluated the 

probability that an LCA practitioner will make an erroneous conclusion due to the use of 

pre-calculated uncertainty values or PIS instead of FDS in a comparative LCA setting. The 

results show that the distributions of the LCI results from the use of PIS and FDS are 

similar, as 86.8% of their overlapping coefficients are above 0.80. Furthermore, the chances 

for the use of PIS to moderate the outcomes (i.e., ‘A is better than B’ becomes ‘A and B are 

indifferent’, or vice versa) by ignoring the dependence in the upstream processes are less 

than 10.5% for the case of electricity-generating processes and less than 5.3% for randomly 

selected processes both at 90% threshold value. When the decision threshold is relaxed to 

80% and 70%, the chances for the LCIs using PIS to moderate the conclusions become 3.7% 

and 2.7%, respectively, for randomly sampled processes and 7.6% and 5.5%, respectively, 

for electricity-producing processes. None of the 20,000 pairs of simulated LCIs, each of 

which took 1,000 runs of MCS, showed a reversal of the conclusion, which is defined in our 
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study as the case where ‘A is better than B’ becomes ‘B is better than A,’ or vice versa, 

beyond the set thresholds (70%, 80% and 90% of the 1,000 runs).   

These results are based on individual LCIs. If characterized or weighted results were 

used, we believe that the chances for PIS to produce erroneous conclusions may be even less 

pronounced that our results, given that over- and under-estimated LCIs due to the use of PIS 

are more likely to be cancelled out in the course of characterization and weighting.  

In this paper we evaluated (1) comparisons between two randomly selected processes, 

and (2) comparisons between two electricity-producing processes. The latter case presents 

larger number of common processes in the background between the product systems being 

compared, therefore the errors due to independent sampling are more pronounced. Even 

more extreme case would be to compare two slight design changes for the same product. In 

that case, there will be much more significant overlap in the upstream processes. However, 

those overlaps would already occur at the direct inputs to the foreground process under 

study, in which case they can always excluded from the comparison, as those common 

inputs do not contribute to the difference between the two designs. By excluding them, an 

LCA practitioners are essentially practicing fully dependent sampling for those common 

inputs. Therefore, the dependence that this paper is concerned is that within the upstream 

processes modelled within LCA databases, not that in direct inputs to a foreground process, 

which is better be simply excluded from a comparison. 

Our results indicate that pre-calculated uncertainty values can be used as a proxy for 

understanding the uncertainty and variability in a comparative LCA study especially when 

adequate computational resources are lacking. The number of unit processes is increasing 

for many LCI databases, adding to the challenge of running MCSs in a PC-environment in 
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the future. LCA practitioners will need to evaluate whether the additional chances of altering 

the conclusion due to the use of pre-calculated uncertainty values is tolerable given the goal 

and scope of the study. The additional errors due to the use of pre-calculated uncertainty 

values shown in our study seem justifiable if the alternative is no uncertainty analysis due to 

the lack of computational resources needed for fully dependent sampling.  

We believe that the concept of using pre-calculated distributions might be applicable to 

other related fields such as input-output analysis and material flow analysis, potentially 

saving computation times and costs. 
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Chapter 4. Perception of Uncertainty in Characterized Life Cycle 

Assessment Results 

4.1. Introduction 

Life cycle assessment (LCA) is a decision-support tool that quantifies the 

environmental impacts of products throughout their life cycles (ISO 2006). Conducting an 

LCA, however, often involves the use of uncertain data and models; measurement errors in 

input data, unrepresentive data, choices of system boundaries, underlying assumptions, and 

model incompleteness all contribute to the uncertainty of an LCA result (Lloyd and Ries 

2008; Clavreul et al. 2012, 2013). Understanding the magnitude of uncertainty helps 

interpret LCA results for decision-making (Geisler et al. 2005; Sugiyama et al. 2005; 

Finnveden et al. 2009).   

A growing number of LCA studies address uncertainty issues (Cooper et al. 2012; Sills 

et al. 2012; Groen et al. 2014). The majority of the uncertainty analyses in LCA, however, 

focuses on life cycle inventory (LCI) (Heijungs 1996; Maurice et al. 2000; Gavankar et al. 

2014; Scherer and Pfister 2016; von Pfingsten et al. 2017). The most widely used LCI 

database, ecoinvent (Frischknecht and Rebitzer 2005), includes uncertainty values, e.g., the 

geometric standard deviation for lognormal distribution, for 62.7% of its unit process data in 

ver. 3.4. (Wernet et al. 2016). Professional LCA software tools including SimaPro and 

OpenLCA provide uncertainty analysis functionality using Monte Carlo simulations, again 

focusing only on LCI (SimaPro 2016; OpenLCA 2018).  

However, not only LCI but also life cycle impact assessment (LCIA) phase of LCA are 

data- and calculation-intensive, involving many model and data assumptions that could 

cause errors in LCA results (Huijbregts 1998; Heijungs and Huijbregts 2004; Lloyd and Ries 
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2008) (Reap et al. 2008; Gavankar et al. 2014). Only few studies consider uncertainty from 

the characterization phase, and quantitative uncertainty assessments on characterization 

were mostly focusing on climate change impact category (Cellura et al. 2011; Hauschild et 

al. 2013). For example, Huijbregts (1998b) addressed characterization factors’ contribution 

to the uncertainties in the global warming and acidification results of roof gutters. Huijbregts 

et al. (2003) further extended uncertainty analysis toward parameter, scenario, and model 

uncertainties of the two characterization models.  

One of the challenges is that characterization models do not typically provide 

uncertainty information for the input parameters (Hung and Ma 2009; Noshadravan et al. 

2013; Henriksson et al. 2015; Gregory et al. 2016). As a result, the influence of the 

uncertainty in characterization models on overall uncertainty of an LCA result is largely 

unknown (Hung and Ma 2009). Characterization, however, may dominate the overall 

uncertainty of an LCA study; characterization factors are calculated from simplified models 

of complex interacting physical and chemical systems, and do often require resorting to 

linearization of non-linear relationships (Cucurachi et al. 2016). Characterization model, 

thus, may carry larger uncertainties than LCI (Lloyd and Ries 2008). 

Literature suggests that LCA practitioners tend to perceive that LCIA phase pertains 

higher uncertainty than LCI (Owens 1997; Huijbregts 1998; Clavreul et al. 2012). However, 

to our best knowledge, no studied attempted to compare perceived uncertainties between 

LCI and characterization. In this study, we collected the perceived uncertainty of LCA 

experts and compared the uncertainty LCI and characterization factors following the expert 

elicitation procedure. We also created a Pedigree matrix, which has been used for LCI data 

quality evaluation, for the characterization phase of LCIA. The survey design and the 
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respondent demographics are presented in Section 4.2 Methods; the survey results and 

Pedigree matrix for LCI and LCIA are presented in Section 4.3 Results; and discussion and 

suggestions for future work are provided in Section 4.4 Conclusions and discussion. 

4.2. Materials and methods 

This study combines the Pedigree approach and expert elicitation approach using a 

survey.  

4.2.1. Pedigree matrix 

Uncertainty characterization in LCA using Monte Carlo simulation or global sensitivity 

analysis requires the information on ranges or distributions of underlying parameters. The 

most desirable source of information for such ranges and distributions would be empirical 

measurements, which are, unfortunately, often lacking in practice. In the absence of 

measurement data, the Pedigree method was often used in LCA to estimate the variability 

and quality associated with underlying parameters (Frischknecht and Rebitzer 2005).  

The Pedigree approach—originally referred to as the Numerical Unit Spread 

Assessment Pedigree (NUSAP) system—was proposed by Funtowicz and Ravets (1990). 

The Pedigree approach is essentially a method to convert qualitative characteristics of a data 

set into quantitative uncertainties (Weidema and Wesnaes 1996; Weidema 1998). Van den 

Berg et al. (1999) is an early example of a Pedigree matrix, which uses 15 criteria for 

characterizing uncertainty. In the United State, the US Environmental Protection Agency 

(EPA) offers a guidance on the creation, management, and use of data quality information in 

LCA using a Pedigree matrix (Edelen and Ingwersen 2018). The ecoinvent database adopted 

the Pedigree method since its ver. 2.0 (Althaus et al. 2007; Weidema et al. 2013c). The 
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Pedigree method used in the ecoinvent database translates the qualitative uncertainty 

characteristics of a data using 5 criteria, “reliability”, “completeness”, “temporal 

correlation”, “geographical correlation”, and “further technological correlation”, into the 

estimated geometric standard deviation (GSD) of a lognormal distribution (Muller et al. 

2014). GSD is a measure of the spread of a lognormally distributed data points. GSD of 1.8, 

for example, translates to one order of magnitude difference between the lower bound and 

the upper bound of a data set within the 95% range. 

The Pedigree method enables quantitative uncertainty analysis in the absence of 

measured variability information, and it can assess not only parameter uncertainties but also 

non-parametric uncertainties associated with technical, methodological, and epistemic 

dimensions of a data set (Van Der Sluijs et al. 2005). Despite these strengths, however, the 

Pedigree approach fundamentally relies on experts’ subjective judgements, raising questions 

on its usefulness and validity. Ciroth et al. (2013) compared empirical observations and the 

uncertainty characteristics derived using the Pedigree approach of the ecoinvent database 

and found that the use Pedigree approach tend to underestimate underlying uncertainties. 

Yang et al. (2018) examined LCA results of major crops in the U.S. based on high-

resolution spatial data, and concluded that the uncertainty values based on ecoinvent 

Pedigree method lead to a large underestimation. 

If nothing else, the Pedigree method helps gauge the perceived level of uncertainties in 

a data set when quantitative measurements are lacking. In this study, we employed the 

Pedigree approach with various modifications to compare perceived uncertainties in 

characterization relative to those in LCI. We sent two sets of survey questions, one for 

characterization and another for LCA, to each expert. For LCI, we modified the Pedigree 



 

 54 

matrix used in the ecoinvnet database. For characterization, we created a new Pedigree 

matrix based on the Numeral Unit Spread Assessment Pedigree (NUSAP) literature and 

environmental risk assessment literature (Funtowicz and Ravetz 1990; Jaworska and Bridges 

2001; Van Der Sluijs et al. 2005; Ragas et al. 2009).  

4.2.2. Expert elicitation 

Expert elicitation is referred as the use of expert judgement on a subject which has 

insufficient data because of physical constraints or the lack of knowledge (de Franca Doria 

et al. 2009; Knol et al., 2010; McBride & Burgman, 2012; Morgan, 2014). Expert elicitation 

was first used in the Delphi method (Brown et al. 1969; Amara and Lipinski 1971; Rowe 

and Wright 1999). The use of knowledge and wisdom of experts can inform policies when 

scientific evidence is lacking and help address uncertainties when there is insufficient 

information. Elicitation of expert judgement has been implemented in various science-policy 

contexts such as the Intergovernmental Panel for Climate Change (IPCC) (Rypdal and 

Winiwarter 2001), European Environmental Agency (Meozzi and Iannucci 2006) and U.S. 

Environmental Protection Agency (2005).  

The key steps of conducting an expert elicitation are summarized in the diagram (Figure 

14) (Ayyub 2000; Knol et al. 2010). Under the expert elicitation process, experts receive a 

short description of the purpose of the expert elicitation, the conditions of the participation, 

an explanation of the performance measures, the uncertainties related to the studied 

problem, and the key literature substantiates the problem (Cooke & Goossens, 1990; Frey, 

1998). Such information elicits the formation of responses to the questions. In our study, the 

purpose of expert elicitation is to create the Pedigree matrix for characterization factors, and 

we provided the background information of the Pedigree matrix and a graphical 
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visualization of distributions with different GSDs, so that the experts can better 

conceptualize the relationship between GSDs and corresponding shapes of the distribution. 

 
Figure 14. Flow chart of expert elicitation procedures. 

 

The selection process is to identity what expertise is relevant to the elicitation and select 

a sample of experts who can best satisfy the requirements of expertise under the constraints 

of time and resource (Czembor and Vesk 2009; McBride and Burgman 2012). The quality of 

expert elicitation depends on the experts’ knowledge, experience and practice (Hickey and 

Davis 2003; Slottje et al. 2008; Martin et al. 2012). It is important to include a diverse range 

of experts because a large sample of experts can not only represent the whole community 

but also reduce the influence of individual mistakes and biases (Clemen & Winkler, 1985; 

Armstrong, 2008). We selected experts based on publication records in the field of LCA and 

uncertainty analysis. 

After the collection of expert judgements, verification and calibration of the expert 

responses were performed. This step is essential in the analysis of the expert opinions 

because it can not only check for errors and consistencies in the responses, but also 
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compares the responses to other responses in the elicitation participation and other available 

information and sources (Cooke, 1991). The sources of bias and error include carelessness, 

misinterpretation, and overconfidence (Moore and Healy, 2008). Calibration can be used to 

control overconfidence and inconsistence (Murphy and Daan, 1984). Some methods 

involved in calibration process are probability theory, aggregation method, and analysis of 

bias (Clemen and Winkler, 1985). The purpose of the calibration is to reduce the influence 

of bias and overconfidence and make the expert’s response consistent and close to expected 

true value (Winkler and Murphy, 1968; Alpert and Raiffa, 1982; Ferrell, 1994). In our study, 

we used weight and life expectancy at birth to calibrate experts’ ability to relate perceived 

distribution to a GSD value (see Section 4.2.4.1).  

4.2.3. Survey design and expert selection 

      We sent the survey information to nearly 200 potential respondents with varying 

experience levels in LCA. The web-based survey contained 12 questions. The full 

questionnaire and survey data can be found in the Supporting Information. Given the nature 

of the survey that involves human subjects, the survey was reviewed and approved by the 

Institutional Review Board at the University of California, Santa Barbara. The structure and 

the content of the survey are elaborated below. 

4.2.3.1. Background questions 

We asked the respondents about their level of experience in LCA, and assigned them 

into two groups. (1) Group 1: respondents who indicated that they have 6 years or more of 

experience in LCA and are familiar with the Pedigree approach and (2) Group 2: 

respondents who indicated that they have less than 6 years of experience or are not familiar 
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with the Pedigree method (see Figure S3 in Appendix). We asked about their degree of 

approval regarding the use of the Pedigree approach in estimating uncertainties.  

4.2.3.2. Pedigree matrix for LCI  

In the survey, we asked respondents to provide their opinions about the importance of 

each criterion to be included in the Pedigree matrix for LCI (Table 4). For the LCI Pedigree 

matrix, we used the criteria that were provided in the previous versions of the Pedigree 

matrix of data quality, including geographical correlation, temporal correlation, further 

technological correlation, completeness, reliability and sample size (Weidema 1998; Wernet 

et al. 2016). Because the current Pedigree matrix that ecoinvent uses for data quality 

evaluation has 5 criteria, we used Likert scale for respondents to indicate their perceived 

importance of the mentioned criteria so that the most important 5 criteria will be selected in 

the final version of the Pedigree matrix. The Likert scale question in the survey used 

strongly disagree, disagree, neutral, agree and strongly agree to indicate how much 

respondents agree with the inclusion of the criterion in the Pedigree matrix. 

We asked the respondents to provide their perceived GSDs for all the six criteria in the 

Pedigree matrix used for evaluating LCI data quality. We provided the criteria description of 

the original Pedigree matrix used for LCI data quality evaluation for each uncertainty level 

for each criterion without showing the actual GSDs (Weidema 1998; Wernet et al. 2016), 

and let respondents input their perceived GSD scores under each criteria description. In 

order for respondents to better link GSDs with their conceptual thinking regarding 

uncertainty, we provided the distribution of lognormal distribution with different GSDs. 
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4.2.3.3. Pedigree matrix for characterization factors 

We developed the Pedigree matrix for characterization factors and let the respondents 

indicate the importance of each criterion to be included in the matrix. Similar to the Pedigree 

questions for LCI, we used the Likert scale question to ask their opinions on the importance 

of each criterion to be included in the Pedigree matrix for characterization factors. The 6 

proposed criteria include level of consensus, model completeness, temporal specification, 

geographical specification, reliability of underlying science, and input data characteristics. 

In order to be consistent with the Pedigree matrix used in LCI, we let respondents rank each 

criterion and selected five of them to be included in the final version of the Pedigree matrix 

for characterization factors. We also asked their perceived GSDs for all the criteria we 

created for evaluating the uncertainty in characterization factors. 

The criteria provided in the survey aimed to assess the uncertainties from LCI and 

characterization models at different and comprehensive aspects (Table 4).  

Table 4. Pedigree matrix criteria for LCI and characterization factors. 
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At the end of the survey, we also collected their suggestions and concerns regarding the 

use of the Pedigree matrix in LCA uncertainty estimation. More than half (53%) of the 

respondents submitted their suggestions as well as their concerns in the survey. The 

concerns and recommendations are summarized in the discussion section. 

4.2.4. Survey analysis 

A total of 47 experts from various countries and experiences responded to the survey. 

Among the 47 responses we received, 23 were in Group 1 who had at least 6 years of 

experience in LCA and were familiar with the Pedigree approach. The remaining 24 

respondents were assigned to Group 2. 

To evaluate the importance of the criterion to be included in the Pedigree matrix, we 

calculated the average scores that were translated from the Likert scales for the criteria, e.g. 

1 means strongly disagree and 5 means strongly agree.  In our version of the Pedigree 

matrices, we only selected the top five criteria based on the respondents’ selections and 
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included the criteria and the GSDs for the selected criteria into the Pedigree matrix for LCI 

and characterization factors.  

4.2.4.1. Calibration method 

To minimize personal biases in relating a perceived distribution to corresponding GSD 

value, we used a calibration method. First, we provided the GSD value of height of 

American adult males, which was 1.04 (Fryar et al. 2012). We then let the respondents 

provide the “best guess” of the distributions for (1) the weights of American adult males and 

(2) the life expectancy at birth of global population, which were 1.07 and 1.1, respectively 

(Fryar et al. 2012; CIA 2018). We assumed a linear relationship between actual GSD and the 

GSD in the response as shown in equation 1: 

GSD = a ∗ GSDefghij + b	 	 	 (4)	

In addition, we explained—and assumed that the survey respondents understood—that 

GSD = 1 when there is no uncertainty, which provides the second equation to derive both a 

and b. For example, the GSD for the distribution of weights by American males is 1.07, but 

a respondent estimated it to be 1.1. Then we calibrate the respondent’s GSD estimates by 

solving:	

1 = a ∗ 1 + b
1.07 = a ∗ 1.1 + b,	 	 	 	 (5)	

which results in: 

GSD = 0.7GSDefghij + 0.3 
We calculated the expected GSD from both weight and life expectancy at birth for each 

respondent, and used the average of a and b as the coefficients for the expected GSD 

equation to calibrate all GSDs. 
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4.3. Results 

We analyzed the survey data and created the Pedigree matrix based on the top five 

selected criteria in the matrix and GSDs for each uncertainty level for each criterion for both 

LCI and the characterization factors. The GSDs calibrated by weight and life expectancy at 

birth for the Pedigree matrices of LCI and characterization factors are shown in Table 7 and 

8 (non-calibrated GSDs are in Table S2 and S3). For the sake of comparison, calibrated 

GSDs by ecoinvent Pedigree scores for characterization factors are given in Table S2 and S3 

in the Appendix. 

4.3.1. Survey demographics 

Most (72%) respondents have been working in the LCA field for at least 6 years: 36% 

have worked more than 10 years and 26% of the respondents have been working in the field 

for 1 to 5 years. The majority of the respondents worked in academia (72%), 13% of them 

worked in a corporate environment, and the remainder came from a consulting firm 

operating in the field of LCA (9%) and from governmental organizations/research centers 

(6%). Most respondents came from North America (49%) and Europe (34%), and 13% and 

4% came from Asia and South America, respectively. Details can be found in the 

Supplementary Information (Figure S3-S6). 

4.3.2. Degree of approval of the use of Pedigree for uncertainty quantification in LCA 

data 

Approximately half of all respondents expressed their approval to the use of the 

Pedigree matrix to estimate uncertainty in LCA data (Figure 15). However, the Group 1 (≥6 

years of experience) was more likely to disagree with the use of the Pedigree matrix for 



 

 62 

estimating uncertainty than Group 2 (<6 years of experience) was. As much as 38% of the 

Group 1 respondents selected “disagree” or “strongly disagree” with the use of the Pedigree 

method for uncertainty estimation, while only 5% of the respondents in Group 2 chose 

“disagree”. No respondents from Group 2 selected “strongly disagree” or “strongly agree” to 

the use Pedigree for uncertainty quantification.  

Figure 15. Survey results for the question of the use Pedigree for uncertainty 

quantification in LCA data. 

 

We also received comments that address the level of acceptance for the use of the 

Pedigree matrix in characterizing uncertainties in LCA. Some of the respondents strongly 

disapproved the use of the Pedigree method, largely on the ground of the lack of empirical 

support to the approach, while others strongly supported the use of the Pedigree method 

given the lack of quantitative uncertainty information. One respondent commented that 
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“LCA practitioners do not have an accurate intuitive sense of what is the GSD of the 

Pedigree matrix”. Some respondents found it difficult to provide uncertainties even when 

they had sufficient experience in this field, partly because the uncertainty characteristics 

would depend on the characterization models in question. For example, one respondent 

noted that “GWP and freshwater toxicity will express uncertainties at different orders of 

magnitude.” Such responses are reasonable given that the characterization model for climate 

change is not regionally sensitive, but that for ecotoxicity is. Thus, applying the same GSDs 

for multiple impact categories is not desirable. One respondent recommended to use “the 

distribution coming from the characterization model directly” using empirical data instead of 

using the Pedigree approach. 

However, some respondents commented that they support the use of Pedigree approach 

for the purpose of filling in the gaps in the uncertainty information in LCIA. One respondent 

commented that the method “would indeed be worthwhile to quantify the uncertainty of 

LCIA models”. Another respondent noted that “the method could be useful in the absence of 

uncertainty data”. 

4.3.3. Criteria to be included in the Pedigree matrix 

We asked respondents to what extent they agree or disagree with including each of the 

six criteria in the Pedigree matrices for LCI and characterization factors. We used numerical 

values to translate Likert scale responses that numbers from 1 to 5 represent strongly 

disagree, disagree, neutral, agree, to strongly agree. Table 5 and Table 6 show the rank and 

average scores of the six criteria used in our study.  

4.3.3.1 Criteria for LCI 
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For LCI, both temporal correlation and geographical correlation were ranked as the top 

criteria to be included in the Pedigree matrix, and were followed by completeness, then by 

further technological correlation and reliability (Table 5). Group 1 tended to rank 

technological correlation higher than completeness and reliability, while respondents from 

the Group 2 ranked reliability and sample size higher than technological correlation. We 

included temporal correlation, geographical correlation, completeness, technological 

correlation, and reliability into the Pedigree matrix for LCI (Table 7).  

Table 5. Pedigree matrix criteria selected for LCI and mean scores*. 

 

* 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly agree. 

4.3.3.1 Criteria for characterization factors 

For characterization factors, both the Group 1 and Group 2 came up with the same 

ranking. Temporal specification was the most important criterion to be included in the 

Pedigree matrix for characterization factors, followed by geographical specification, model 

completeness, reliability of underlying science, input data characteristics, and level of 

consensus. The list of top 5 criteria is shown in Table 6. 

Table 6. Pedigree matrix criteria for characterization factors and mean scores.* 
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 * 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly agree. 
 

4.3.4. Pedigree matrix obtained from the survey 

The respondents were asked to provide their best guesses of GSDs for each level of 

uncertainty for each criterion for LCI and characterization factor, as well as for weight and 

life expectancy where the uncertainty is known. Respondents tended to overestimate the 

GSDs for the distribution of weight and life expectancy at birth. The average ratios of the 

surveyed GSD to the actual GSD for distributions of weight and life expectancy at birth 

were 111% and 118%, respectively. Resulting average a and b of equation (4) were 0.60 and 

0.40, respectively.  

4.3.4.1. Pedigree matrix for LCI 

Table 7 shows the Pedigree matrix generated by averaging the responses after the 

calibration using the distributions of weight and life expectancy at birth. Both the Group 1 

and Group 2 gave similar GSD responses to LCI uncertainties. We performed a non-paired 

t-test for the two groups and found no significant difference between the average of the 

answers of the two groups to all the cell entries, as the p-value was much greater than 0.05, 

while the Group 1 tended to give slightly higher GSDs (3%) than the Group 2. 

Table 7. Pedigree matrix for LCI from the survey results with GSDs calibrated using 

GSDs of distributions of weight and life expectancy at birth. The non-calibrated results of 

the GSDs that the respondents directly provided in the survey are presented in the 
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supplementary information (Table S2). 

 

We also compared the GSDs that the respondents provided for the LCI Pedigree matrix 

with the GSDs that the Pedigree matrix of ecoinvent uses (Figure 16). We found that 

respondents generally estimated higher GSDs for LCI than for ecoinvent. The average ratios 

of non-calibrated GSDs and calibrated GSDs to traditional GSDs were 1.19 and 1.06, 

respectively, which means that the GSDs after calibration were closer to the GSDs used by 

ecoinvent. When comparing the respondent GSDs to the empirical-based GSDs produced by 

Ciroth et al. (Ciroth et al. 2013), it showed that the respondents underestimated the GSDs 

more than the original GSD scores because GSDs in Ciroth’s version are generally greater 

than the traditional version (Figure 17). 

Figure 16. Comparison of the average GSDs in the response and the GSDs in the 

ecoinvent Pedigree matrix. 
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Figure 17. Comparison of the average GSDs in the response and the GSDs in Ciroth et al. 

(2013). 
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4.3.4.2. Pedigree matrix for characterization factors 

Table 8 shows the Pedigree matrix of the calibrated GSDs for characterization factors 

from our survey results. Like the LCI results, the Group 1 gave higher GSDs than the Group 

2 on average, and the average ratio of the Group 1’s GSDs to the Group 2’s GSDs was 1.08.  

We performed statistical non-paired t-test between the average of the answers of the two 

groups to find whether the two groups provided significantly different GSDs, and we found 

their responded GSD were not significantly different in general.  

Table 8. Pedigree matrix for characterization factors from the survey results with GSDs 

calibrated using GSDs of distributions of weight and life expectancy at birth. *The non-

calibrated results of the GSDs that the respondents directly provided in the survey are 

presented in the supplementary information (Table S3). 
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4.3.5. Comparison of GSDs for LCI and characterization factors 

 We also compared the GSDs for LCI and characterization factors provided by the 

respondents to find which LCA phase has higher perceived uncertainty (Figure 17). In 

general, GSDs for characterization factors was slightly larger (3%) than those for LCI. The 

respondents gave much higher uncertainty scores for geographical correlation and reliability 

criteria and slightly higher uncertainty scores for the completeness criterion for 

characterization factors than those for LCI. For temporal correlation, the respondents gave 

lower uncertainty scores for characterization factors than that for LCI. The criterion for LCI, 

further technological correlation, and the criterion for characterization factors, input data 

characteristics, are not comparable, but the respondents provided similar GSDs for them.  

Figure 17. Comparison between non-calibrated GSDs for LCI and characterization 

factor Pedigree matrix from the survey. Light blue and grey colors represents the GSDs for 

LCI criteria, and dark blue and grey colors represents characterization criteria. Each box plot 

presents the surveyed GSDs for the five uncertainty levels for each indicator. 
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4.4. Conclusions and discussion 

In this study, we surveyed and analyzed perceive uncertainties in characterization 

factors relative to that in LCI using expert elicitation approach. We found that the perceived 

uncertainties were generally higher in the characterization factor than in LCI, which is 

consistent with the statements in the literature (Owens 1997; Huijbregts 1998; Clavreul et al. 

2012). However, the difference in mean GSDs between LCI and characterization across all 

criteria was only marginal (3%). The differences in variations were also larger in 

characterization (coefficient of variance: 24.4%) than in LCI (coefficient of variance: 

22.4%).  

About half (49%) of the respondents were in favor of using the Pedigree method to 

characterize uncertainty in LCA, while 26% of the respondents disapproved the use of the 

approach. However, the opinions were sharply divided especially among the respondents 

with 6 years or more experience in LCA; 19% of them strongly approved while 15% 

strongly disapproved the approach. In general, more experienced group were much more 

skeptical about the use of Pedigree approach than those with less experience.  

Among the criteria examined, the respondents perceived that model reliability and 

geographical correlation influence the variability in characterization more strongly than the 

two criteria do in LCI. The respondents generally perceived that temporal correlation is less 

important in characterizing the uncertainty in characterization than in LCI.  

We found it challenging to apply the Pedigree approach to characterization. Our 

intention was to create different Pedigree matrix for each impact category and per each 

characterization model, but it didn’t take too long to realize how complicated the 

questionnaire should be to differentiate characterization models in our survey. Respondents’ 
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time commitment to such survey was another major barrier to create characterization model-

specific Pedigree matrix. We believe that the wide variability in responses observed for 

characterization can be explained in part by the lack of specificity in characterization model 

in our survey, which is a major limitation in our study.  

Overall, our survey result shows that there is no strong consensus among LCA experts 

on the use of the Pedigree method in LCA, while there seems to be no alternatives available 

in the near future. The lack of appropriate methods to estimate underlying variability in LCA 

data is the main barrier to mainstreaming uncertainty analysis in LCA. Given that few 

disagrees the importance and need of uncertainty analysis in LCA, developing widely 

accepted methods to estimate underlying variability in LCA data is urgently needed, which 

would require not only continued research and development by individual researchers but 

also systematic efforts by international organizations to identify and build consensus on the 

best practices. 

Our survey also confirms that uncertainties in characterization are perceived to be at 

least as large as those in LCI. Given the virtually nonexistent uncertainty measurements in 

characterization in today’s LCA practices, our results indicate that existing uncertainty 

analyses in LCA are perceived to cover no more than half of the true uncertainties. Our 

results call for expediting the efforts to measure uncertainties in characterization and other 

steps in LCIA.          

 

4.5. Appendix 

Included in the Appendix are the survey questions, the demographics of the respondents 

and the Pedigree matrix for LCI and characterization factors by Group 1 and Group 2. 



 

 72 

We collected information such as the time of the respondents have worked in the LCA 

field and the familiarity of the Pedigree matrix. We assigned them into two groups Group 1: 

respondents with more than 6 years’ experience and familiar with the Pedigree method, and 

(2) Group 2: respondents with less than 6 years’ experience or not familiar with the Pedigree 

method. 

 

Figure S2. Survey questions.  
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The results show that most (72%) of the respondents have worked more than 6 years in 

the field of LCA. 

Figure S3. Respondents’ experiences in LCA. 

 

The majority (72%) of the respondents were from the academia and research-related 

area. Other respondents came from consulting, corporate and government, 9%, 13% and 6%, 

respectively. 

Figure S4. Respondents’ current positions. 
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Nearly half (49%) of the respondents were located in North America, and about one 

third (34%) of the respondents were from Europe. The rest of the respondents were from 

Asia and South America. 

Figure S5. Respondents’ locations. 

 

Most of the respondents are familiar with the Pedigree matrix because we sent out the 

survey to LCA practitioners who contribute to the literature related to uncertainty in LCA.  

 

Figure S6. Respondents’ familiarity with Pedigree matrix. 
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Table S2. Pedigree matrix for LCI from the survey results including non-calibrated and 

calibrated GSDs using GSDs of distributions of weight and life expectancy at birth (*). The 

responses from Group 1 and Group 2 are also provided in the table. 
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Table S3. Pedigree matrix for characterization factor from the survey results including 

non-calibrated and calibrated GSDs using GSDs of distributions of weight and life 

expectancy at birth (*) and the LCI Pedigree matrix from ecoinvent (**). The responses 

from Group 1 and Group 2 are provided in the table. 
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Chapter 5. LMDI Approach to Decomposing LCA Uncertainty  

5.1. Introduction 

Understanding uncertainty in life cycle assessment (LCA) can not only help prioritize 

research efforts but also facilitate reasonable decisions (Geisler et al. 2005; Basson and 

Petrie 2007; Lloyd and Ries 2008). Statistical uncertainty analysis has been implemented in 

many LCA studies and two common forms are sampling methods and analytical approaches 

(Heijungs 1996; Heijungs and Huijbregts 2004). Among the various statistical methods, 

Monte Carlo simulation (MCS) is widely used to characterize the variability in LCA, and 

MCS relies on pre-defined probability distributions (Huijbregts 2002; Kollmuss and 

Agyeman 2002; Sonnemann et al. 2003; Beltran et al. 2018).  LCA software now often 

supports Monte Carlo simulation and the most widely used data source, ecoinvent database, 

includes distribution information for 90% of the unit process data (Weidema et al. 2013; Qin 

and Suh 2017).  

The ecoinvent database relies on the method called Pedigree matrix to evaluate data 

quality of inventory data and provide a distribution including the GSD for most unit process 

data. The Pedigree matrix was first introduced to the LCA field by Weidema and Wesnæs in 

1996 from the literature of uncertainty analysis for environmental science (Funtowicz and 

Ravetz 1990). The Pedigree approach uses expert elicitation to translate the qualitative 

characteristics of the data into uncertainty factors which are aggregated to the geometric 

standard deviation (GSD) (Lewandowska et al. 2004). The distributions of flow data, which 

are usually assumed to be lognormal, can be estimated from the Pedigree matrix. 

By running MCS using the pre-defined distributions such as GSDs, users can generate 

the distribution of the characterized result although the characterization factors do not 
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contain uncertainty information. The distribution or the range of the LCA result gives the 

possible results of LCA considering the input, model, and scenario uncertainties, which 

helps the product designers or decision makers in decision-making.  

However, the distributions do not indicate which factor, for example LCI or the 

characterization factor, contributes the most to the uncertainty so that LCA researchers or 

practitioners can focuses on the uncertainty reduction for that factor. Furthermore, some 

LCA scholars claimed that the impact assessment phase of LCA has larger influence on the 

uncertainty of a LCA result compared with inventory phase (Owens 1996, 1997; Clavreul et 

al. 2012). However, no empirical analysis or evidence confirmed such statement, and most 

of the uncertainty analyses only focus on the inventory phase of LCA (Maurice et al. 2000; 

Lloyd and Ries 2008).  

Sensitivity analysis can be used to understand the relative importance of the parameters 

to uncertainty, but it cannot tell us the exact contribution of each parameter to the 

uncertainty. Unlike sensitivity analysis, where parameters are tested one at a time, parsing 

out the MSC results to contributing factor has been a challenge. To determine how much 

each factor within the LCA phases contributes to the overall uncertainty of the characterized 

LCA results, index decomposition analysis, a technique from economics, can be used.  

5.1.1. The logarithmic mean Divisia index (LMDI) method 

Index decomposition analysis (IDA) is used to decompose the influence of factors that 

contribute to the overall result, and it was first developed to study the impact of structural 

change on energy use in industry in the late 1970s (Jenne and Cattell 1983; Marlay 1984). 

IDA has been used to quantify the impact of different factors on the change of energy 

intensity and extended to many regions and various application areas such as transportation, 
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electricity generation and environmental study (Ang et al. 1998; Paul and Bhattacharya 

2004; Malla 2009; Al-Ghandoor et al. 2010). For example, Zhang et al. (2009) used the 

index decomposition method to decompose the influence of energy-related factors in CO2 

emission reduction in China.  

In the energy analysis field, many scholars use the logarithmic mean Divisia index 

(LMDI) method method to decompose the influence of energy factors in CO2 emission 

reduction (Boyd et al. 1987; Ang and Liu 2001). The LMDI leaves no residuals in the 

analysis and performs well where there is large variation of variables and zeros in the dataset 

(Ang 2004; Meng et al. 2018). Therefore, it is appropriate to use with LCA data because 

LCA data contain many zeros.  

The LMDI method is used to decompose changes in the total results over time, but LCI 

items and characterization factors don’t change over time. Thus, the methodology requires 

modification to decompose the uncertainty of the results. Similar to the problem of CO2 

emission from energy use, which aggregates multiple key factors, LCA can be also regarded 

as an aggregation problem that involves several factors including LCI, characterization, 

normalization, and weighting, and the change of each factor, e.g. the consumption of iron 

ore in electric car production, would contribute to the change of the final LCA result, e.g. 

the ecosystem health impact from the production of an electric vehicle. 

5.1.2. Aim of this study 

This work aims to provide a methodology for quantifying the contribution of each 

factor within the LCA phases to the overall LCA uncertainty using LMDI method. This 

paper is the first attempt to apply the technique of decomposition analysis to decompose the 

uncertainty of LCA from LCI and impact assessment phases. A detailed methodology 



 

 82 

description of using LMDI in finding the contribution of intermediate LCA phase in overall 

LCA uncertainty is provided in the Methods section. The paper provides a practical guide 

for future LCA practitioners to use LMDI approach to decompose the effect of each 

intermediate LCA step to the uncertainty of final LCA output.  

The method is demonstrated using a case study on natural gas focusing on two impact 

categories: global warming and USETox human health impacts. After each run of MCS, we 

calculated the difference in the simulated and deterministic category indicator results, and 

decomposed the difference using LMDI decomposition method, which returns the 

contribution of each factor to the difference of the run. Then, we analyzed the statistical 

properties of the contributions by each factor after 1,000 MCS runs. 

5.2. Methods 

In this study, we developed a new method which incorporates Monte Carlo simulation 

with LMDI method to find the contribution of each intermediate LCA phase to the overall 

uncertainty in LCA results. Because characterization factors do not include uncertainty 

information or distributions, we need to estimate the uncertainty for the characterization 

factors. Our concurrent work provides an estimation for characterization factors using the 

Pedigree approach based on the survey results from LCA experts’ judgement (Qin et al.). 

Therefore, we used the uncertainty estimates from the Pedigree matrix for characterization 

factors to generate the distributions used for the MCS in the analysis. The data used in the 

study are summarized in Section Methods 5.2.2 and the full dataset can be found in the 

Supplementary Information.  

The LCI items and characterization factors don’t change over time but they follow 

certain probability distributions. The LCI items and characterization factors can be 
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considered as stochastic variables, and the changes can be simulated from the MCS. We 

simulated the changes of LCI items, characterization factors, and the characterized LCA 

results and calculated the contribution of each item/factor to the overall change in 

characterized results for each run.  

To find the contribution of each LCA intermediate factor to the overall LCA 

uncertainty, the analysis involves 6 major steps (Figure 18). 

Figure 18. Flow diagram of the use of LDMI method in decomposing the uncertainty of 

LCA result 

 
 

The first step is to calculate the deterministic LCA result, ℎ'6. The second step is to 

simulate LCI items and characterization factors by randomly selecting values from their 

specified distributions and store both simulated values and the calculated LCA result, ℎ'p. 

The third step is to calculate the difference between the simulated LCA result and the 
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deterministic LCA result for each simulation, and the difference is considered the change of 

the LCA results. The fourth step is to apply the LDMI decomposition method to find the 

contribution of the change in LCA result into each LCI item and characterization factor, and 

this step will be further explained in the next section. After repeating steps 2-4 1,000 times, 

the final step is to calculate the average contribution of each LCI item and characterization 

factor to the change in LCA result. 

Steps 1, 2, 3, 5, and 6 follow the traditional Monte Carlo simulation procedures (Qin 

and Suh 2017), and this paper mainly focuses on step 4 and provides the explanation of how 

the LDMI is applied into the change in characterized LCA results in the following section. 

5.2.1. LDMI method for characterized results 

The characterized LCA result is calculated through 

												ℎ' = ℎ',q',q = 𝑐',q',q 𝑚q																																																								(6) 

where, hi is the characterized LCA result for characterization model i; 

           hi,j is the characterized LCA result from elementary flow j for characterization model 

i; 

           ci,j is the characterization factor for the elementary flow j in impact category i; 

           𝑚q is the inventory for the elementary flow j. 

To analyze the influence of LCI and characterization factor,  𝑐',q and 𝑚q respectively, on 

the change of characterized LCA results, ℎ', we introduced the simulation time, K, to 

calculate the change of ℎ'6	and	ℎ'p, (ℎ'p − ℎ'6), for each simulation.  

LCA formula without normalization and weighting phases in simulation K, as follow: 

															ℎ'p = ℎ',qp',q = 𝑐',qp',q 𝑚q
p																																																				(7) 
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where, ℎ'pis characterized LCA result for characterization model i in simulation K; 

            ℎ',qp  the characterized LCA result from elementary flow j for characterization 

model i in simulation K; 

 												𝑐',qp is the characterization factor for the elementary flow j in impact category i in  

simulation K; 

													𝑚q
p is the inventory for the elementary flow j in simulation K. 

The aggregate changes from ℎ'6 in deterministic result to ℎ'p in simulation K followed 

LMDI approach by Ang (2005, 2015). The multiplication decomposition suggests: 

𝐷st = ℎ'p ℎ'6 = 𝐷u𝐷v                           (8)  

In addictive decomposition method, the difference can be decomposed: 

∆ℎ' = ℎ'p − ℎ'6 = ∆ℎ'w + ∆ℎ'v              (9) 

Using the logarithmic mean Divisia index (LMDI) approach, the effect of 

characterization factor c and inventory m for multiplication decomposition: 

𝐷u = exp
{ st,|
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~
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For addictive decomposition: 

∆ℎ'w = 𝐿 ℎ',qp , ℎ',q6q ln
wt,|
}

wt,|
~ =

st,|
} %st,|

~

�� st,|
} %�� st,|

~ ln
wt,|
}

wt,|
~q                                       (12) 

∆ℎ'v = 𝐿 ℎ',qp , ℎ',q6q ln
v|
}

v|
~ =

st,|
} %st,|

~

�� st,|
} %�� st,|

~ ln
v|
}

v|
~q                                    (13) 

where 𝐿 𝑎, 𝑏 = (𝑎 − 𝑏)(ln 𝑎 − ln 𝑏) is the logarithmic mean (Ang, 2004). 
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5.2.2. Case study 

Natural gas was the top source (33%) of electricity generation in the U.S in 2018 and 

will remain primary energy source in the future (EIA 2019). We chose natural gas as an 

example to demonstrate the use of this method for analyzing the distribution of the entire 

LCA result and the relative contribution of LCI and characterization factor. We applied the 

Pedigree method to estimate the uncertainty for LCI and characterization factor in which the 

scores were obtained from the same group of experts (Qin et al.). Global warming potential 

and human health impact categories were chosen for the comparison because global 

warming impact is time and space-insensitive while the human health impact is time and 

space-sensitive.  

From an LCA database, e.g. ecoinvent, it shows that producing 1 cubic meter of natural 

gas in the U.S. will generate 0.45 kg of CO2 equivalence and 1.27e-8 disability-adjusted life 

year. But, how certain are these values? In order to find the distributions of the results, we 

need to first understand and obtain the uncertainty of each LCI item and each 

characterization factor. We applied the same GSDs for LCI and impact factors using the 

Pedigree approach for the demonstrational purpose of this study.  

The input data used for generating 1 cubic meter of natural gas in the U.S. and their 

distributions were presented in Table 8. Each value in Table 8 is the deterministic value 

from ecoinvent. The distribution type is lognormal because the Pedigree method assumes the 

data follow lognormal distribution. The Pedigree score is determined based on the 

characteristics of the data according to the criteria from the Pedigree matrix. The Pedigree 

tables used for LCIs and characterization factors are generated from a survey of experts in 

the previous chapter.  
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Table 8. Samples of LCI of natural gas production in the U.S. and characterization 

factors of GWP 100 from IPCC 2013 (Stocker 2014) and human health non-cancer impact 

from USEtox (Rosenbaum et al. 2008). The criteria for estimating the Pedigree score can be 

found in Chapter 4. 

LCI Value Distribution Pedigree score GSD 
Methane (kg) 1.2 Lognormal (2,2,3,3,2) 1.16 
CO2 (kg) 0.03 Lognormal (2,2,3,3,2) 1.16 
Chromium VI (kg) 0.0000067 Lognormal (2,2,3,3,2) 1.16 
…     
Characterization 
(GWP 100 CO2 eq.) 

    

Methane (kg) 24 Lognormal (1,1,3,1,1) 1.10 
CO2 (kg) 1 Lognormal (1,1,3,1,1) 1.10 
Chromium VI (kg) 0 -   
…     
Characterization 
(Human health non-
cancer DALY) 

    

Methane (kg) 0 -   
CO2 (kg) 0 -   
Chromium VI (kg) 258 Lognormal (2,5,4,5,3) 1.43 
…     

 

5.2 Results 

After running 1,000 MCSs of LDMI analysis, the results showed that LCI and 

characterization factors contribute 60% and 40%, respectively, of the uncertainty in the 

characterized results in GWP 100 IPCC 2013 (Figure 19). 48% of the uncertainty in climate 

change impact is contributed by the inventory of methane emissions, and CO2 emissions 

contribute 12%, and the remaining items in LCI only contribute to 0.2% of the overall 

uncertainty in characterized LCA result. The characterization factors of methane, CO2, and 

the remaining characterization factors contributed to 32%, 7%, and 0.2% respectively. 
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Figure 19. The LDMI decomposition result for natural gas production in GWP 100. 

The values are subject to the uncertainties based on our selections of the Pedigree scores in 

the Pedigree matrix in our study. 

 
For the human health characterization model, we used USEtox in the case study. The 

results indicated that 33% and 67% of the uncertainty can be attributed to LCI and 

characterization factor respectively (Figure 20). Among the LCI items, Chromium VI, 

hexavalent chromium, which is toxic chemical that can cause cancer through the eyes, skin, 

and respiratory system, contributed to 31% of the overall uncertainty. Arsenic, nickel, and 

the remaining of the LCI contributed to 1.3%, 0.4%, and 0.1% respectively to the 

uncertainty in LCA result. Among the characterization factors, Chromium VI contributed 

63% of the overall uncertainty. Arsenic, nickel, and the remaining of the LCI contributed to 

3%, 1%, and 0.3% respectively to the uncertainty in LCA result. 

Figure 20. The LDMI decomposition result for natural gas production in human health 

USEtox non-cancer model. The values are subject to the uncertainties that we defined in our 

study. 
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Both cases in GWP 100 and human health USEtox cancer suggested that the top 2 or 3 

factors in LCI and characterization factors contributed to the majority (>99%) of the 

uncertainty, and the remaining of LCI and characterization factors only had little (<1%) 

influence of the overall uncertainty of the characterized results. Improving the reliability of 

those top contributors could largely reduce the uncertainty of the LCA result. 

These results were based on the uncertainty estimates from the Pedigree matrix for both 

LCI and characterization factor, which was only used as a proxy in the absence of real 

uncertainty information. Therefore, the results were dependent on the scores in the Pedigree 

matrix and the characteristics we choose for LCI and characterization model. Though the 

uncertainty may be underestimated for the characterization factors, the main purpose of this 

paper is to demonstrate of the method of using the LDMI approach, and the uncertainty 

values, therefore, can be improved and replaced in the future study. 
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5.3 Discussion and conclusions 

This paper introduced the mathematical solution to quantifying the contribution of each 

LCA phase to the overall uncertainty. Unlike sensitivity analysis which only provides the 

ranking of the importance of the factors to the results, the innovative approach proposed in 

this paper can generate the percentage of the contribution to the uncertainty in the result. 

The proposed method used LMDI decomposition method combined with Monte Carlo 

simulation, which does not require additional time from simulation if uncertainty analysis is 

also performed. This work can fill the gap in the literature of analyzing the uncertainty 

contribution in LCA, which provides statistics for all the contributors so that the uncertainty 

can be further investigated and reduced, especially for those top contributors.  

In the case study, the results of decomposing uncertainties showed that LCI and 

characterization factors contributed 60% and 40%, respectively, to the uncertainties in the 

climate change impact of natural gas production in the U.S. LCI and characterization factors 

used in natural gas production also contributed 33% and 67%, respectively, to the 

uncertainties in the human health impact of USEtox. The proposed method cannot only 

provide the uncertainty decomposition of the uncertainties in LCA results into LCA phases 

but also into each LCI item and characterization factor. 48% of the uncertainty in climate 

change impact was contributed by the inventory of methane emissions, and 32% was due to 

the characterization factor of methane. In the human health impact category, the inventory 

and the characterization factor of Chromium VI contributes 31% and 63%, respectively, of 

the overall uncertainty. The top two factors in both impact categories contributed the 

majority (≥	80%) meaning that equal to or more than 80% of the uncertainty of the 
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characterized LCA results can be reduced if we can find the accurate value for these two 

factors. 

The approach presented in this study only considered parametric uncertainty, which is 

the most commonly addressed uncertainty in LCA studies (Lloyd and Ries 2008). Future 

studies can incorporate model and scenario uncertainties.  

One area can be improved in the future would be more accurate uncertainty estimates 

for the LCI and characterization factors because all the values are derived from the Pedigree 

matrix which is developed from expert judgement. The uncertainty estimates from the 

Pedigree method use lognormal probability distributions, but the proposed LMDI combined 

with Monte Carlo simulation can also work with other distributions. More investigations are 

needed to determine uncertainty values for both LCI and characterization factors. Since most 

LCA studies only focus on the uncertainty analysis for the LCI part, more efforts need to be 

made into the uncertainty aspect for the characterization factors. Improved information can 

be used and replaced in this study when the uncertainty information is available for 

characterization models in the future. 

The method can be used for other LCA calculations to analyze the influence of LCI, 

characterization, (normalization, and weighting, which can be found in the SI) to the final 

LCA uncertainty after the uncertainties for each LCA phase are defined. This approach can 

be also extended to other related fields such as material flow analysis to understand the 

contribution of the uncertainty. Using this approach, LCA practitioners can decompose the 

overall variability in the results to the underlying contributors, which can be used to 

prioritize the parameters that need further refinement to reduce overall uncertainty of an 

LCA result.    
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5.4 Appendix 

Included in the Appendix is the LDMI method including the phases of LCI, 

characterization, normalization, and weighting in LCA. The equations LDMI method for 

normalized and weighted results are provided in the following.  

LCA formula including normalization and weighting phases: 

𝑊 = 𝑤'
'

(ℎ'/𝑛') = 𝑤'
'

(ℎ'
1
𝑛'
) = 𝑤'

'

ℎ'𝑞' = 𝑤'
',q

𝑐',q𝑚q𝑞' 

where, 𝑊 is the normalized and weighted LCA result;  

             𝑤' is the weighting factor for impact category i; 

             ℎ' is characterized LCA result of characterization model i; 

             𝑛' is the reference impact factor for impact category i; 

             𝑞' is the divided reference impact factor for impact category i; 

ci,j is the characterization factor for the elementary flow j in impact category i; 

𝑚q is the inventory for the elementary flow j. 

To find how the normalized and weighted result is influenced by the four factors 

including inventory, characterization factor, reference impact factor, and weighting factor, 

we have 

𝐷� = 𝑊p/𝑊6 = 𝐷�𝐷w𝐷�𝐷�  (multiplication decomposition) 

∆𝑊 = 𝑊p −𝑊6 = ∆𝑉� + ∆𝑉u + ∆𝑉v + ∆𝑉�  (addictive decomposition) 

Multiplication decomposition: 
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Addictive decomposition: 
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Again, a step before applying the equations is to have the uncertainty of all the factors 

involved in the calculation. 
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Chapter 6. Conclusions 

This dissertation developed a series of methodologies of improving the efficiency of 

running uncertainty analysis in LCA, filling the gap of the lack of uncertainty in the LCIA 

phase, and finding the contribution of LCI and characterization to the overall LCA 

uncertainty. 

The first study proposed a method of storing distributions as uncertainty information for 

life cycle inventory for the purpose of saving computation time and cost for running 

uncertainty analysis in LCA. The study suggested that lognormal distribution (i.e. median 

and GSD) can efficiently present aggregate LCIs. Though the current database has 

uncertainty values for unit process inventory, conducting uncertainty analysis starting from 

the unit process level is neither time-efficient nor necessary for most studies. Therefore, the 

determination of the distribution that best fits the aggregate LCIs is needed. It would help 

improve the efficiency of storing uncertainty data and performing uncertainty analysis in 

LCA by saving computation time and storage of LCI data.  

In Chapter 3, the results indicated that pre-calculated uncertainty values can be used as 

a proxy for understanding the uncertainty and variability in a comparative LCA study 

especially when adequate computational resources are lacking. The study evaluated the 

probability for an LCA practitioner to make an erroneous conclusion due to the use of pre-

calculated uncertainty values instead of fully dependent sampling in a comparative LCA 

setting. The number of unit processes is increasing for many LCI databases, adding to the 

challenge of running MCSs in a PC-environment in the future. The additional errors due to 

the use of pre-calculated uncertainty values shown in the study seem justifiable if the 
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alternative is no uncertainty analysis due to the lack of computational resources needed for 

fully dependent sampling.  

Aggregate LCI uncertainty is only one of the steps in the analysis of LCA uncertainty. 

Not only LCI uncertainty, but also the uncertainty from impact assessment should be 

assessed in order to achieve the overall uncertainty of the final LCA results. Chapter 4 

collected LCA practitioners’ opinions on the use of Pedigree approach to estimate the 

uncertainty in LCI and characterization factors and their perceived uncertainty values for 

Pedigree matrix. The results showed that nearly half (49%) of the respondents strongly 

agree, 29% of them chose “neutral”, and 26% disagree of using Pedigree matrix to estimate 

uncertainty in LCA data. The results showed that the experienced group is more skeptical 

about the use of Pedigree approach in estimating uncertainty in LCA, and the inexperienced 

group generally believes that Pedigree approach is a good method for uncertainty estimation. 

Pedigree approach is not a perfectly accurate method to quantify the uncertainties in LCI 

and LCIA phases. However, due to the lack of measurement data which causes burdens of 

validating the scores with the actual uncertainty, Pedigree approach, at least, provides an 

estimate about the uncertainty in the absence of better information and works when 

comparing uncertainties for multiple LCAs. Future work could focus on collecting 

measurement data to estimate more accurate GSDs for Pedigree matrix and run 

characterization model with actual uncertainties. 

After the uncertainty values are determined for LCI and LCIA phases, another question 

is to find the influence of the uncertainty from each LCA step on the final LCA result. 

Chapter 5 demonstrated the application of LMDI method to quantify the contribution of 

each LCA phase to the overall LCA uncertainty. The mathematical solution was introduced 
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combining LMDI method and Motne Carlo simulation to quantify the contribution of each 

LCA phase to the overall uncertainty. This work can fill the gap in the literature of analyzing 

the uncertainty contribution in LCA. Future study can follow the methodology provided in 

this paper to analyze the influence of LCI, characterization, normalization, and weighting to 

the final LCA uncertainty after the uncertainties for each LCA for the four phases are 

defined.  

My research contributes to the improvement of the efficiency of performing uncertainty 

analysis in LCA and the understanding of the effects of LCA steps to the overall uncertainty 

of LCA. The approaches and the findings can be applied to all other problems outside of 

LCA that utilize MCS.  
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