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Abstract

In function learning, the to-be-learned function always defines
the relationships between stimulus and response. However,
when a function defines the stimuli by time points, we can call
this type of function as time-varying function. Learning time-
varying function would be different from learning other ones.
Specifically, the correlation between successive stimuli should
play an important role in learning such functions. In this study,
three experiments were conducted with the correlations as pos-
itive high, negative high, and positive low. The results show
people perform well when the correlation between successive
stimuli is high, no matter whether it is positive or negative.
Also, people have difficulty learning the time-varying function
with a low correlation between successive stimuli. A simple
two-layered neural network model is evident to be able to pro-
vide good accounts for the data of all experiments. These re-
sults suggest that learning time varying function is based on
association between successive stimuli.
Keywords: Function Learning; Time Varying Function

Function Learning
Function learning is referred to as learning the relationships
between continuous variables, which can be described as a
function, y= f (x). With the learned function concept, we can
predict the magnitude of one variable (response) based on the
magnitude of the other (stimulus). For instance, we estimate
how long it would need to water the lawn according to a day’s
temperature, or the distance to the car in front needed to avoid
a car crash at current car speed.

Normally, in the function learning task, a function is
learned via the learning of the associations between stimuli
and responses which are generated from the function. On
each training trial, when the response is made, the correct an-
swer is provided as feedback to reinforce the learned associa-
tion between stimulus and response. In addition to the learn-
ing phase, the transfer phase is sometimes conducted with the
attempt to see how well people can generate the learned func-
tion to predict responses for unknown stimuli.

Past research has shown many characteristics of function
learning. For instance, the linear functions are easier to learn
than the nonlinear ones (see Busemeyer, Byun, Delosh, &
McDaniel, 1997; Koh & Meyer, 1991). Also, it is found
that it is more accurate to predict the response for the stimu-
lus whose value falls in the training range (i.e., interpolation)
than outside the range (i.e., extrapolation) (see Busemeyer et

al., 1997; McDaniel & Busemeyer, 2005). Although the func-
tion of simpler forms (e.g., linear or power function) can be
learned with the variables being of non-numeric forms (e.g.,
line length), Kalish (2013) reported that the periodic func-
tions (e.g., sine function) cannot be learned without the em-
ployment of numeric stimuli. These characteristics reveal the
limitations of human cognition for learning the functional re-
lation between variables.

What people actually form in their mind to represent a
learned function is always the main issue of function learn-
ing. According to the rule-based account, people construct
abstract rules to summarize the ensemble of experienced pairs
of stimuli and responses used to teach the function. Most
frequently, polynomial rules have been proposed as the rep-
resentations of the mappings between stimulus magnitudes
and response magnitudes (see Carroll, 1963; Koh & Meyer,
1991). On the contrary, the associative-based model assumes
that people form direct associations between each stimulus
and corresponding response without abstracting any sum-
mary information (Busemeyer et al., 1997; DeLosh, Buse-
meyer, & McDaniel, 1997). However, the rule-based account
overestimates the participants’ performance in the extrapola-
tion test but the associative-based model underestimates it.
To get a better theoretical account, a hybrid model combining
these two approaches is proposed (McDaniel & Busemeyer,
2005).

Furthermore, some researchers reported that a quadratic
function can be learned by participants as two simpler mono-
tonic functions (Lewandowsky, Kalish, & Ngang, 2002),
hence challenging the homogeneous assumption about the
representation of function. The POLE model developed by
Kalish, Lewandowsky, and Kruschke (2004) instead assumes
that the function is represented separately by independent
modules, each of which only stores the mappings between
stimuli and responses in a restricted range on the value di-
mensions and would be activated for making response when
the stimulus falls in its responsible range.

Although many forms of functions have been tested, a par-
ticular form of function, which maps the timing of observa-
tion to the event at that timing seems not have been tested
yet. We call this function as time-varying function in this ar-
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ticle. Due to the dissimilarity to the normal functions, we
are interested in examining whether the learning of the time-
varying functions has the same characteristics as the normal
functions. Also, we would like to develop a model to help
us understand the underlying mechanism for the leaning of
time-varying functions.

Time Varying Function
A time-varying function has a form of y = f (t). An example
of time-varying function would be the height of water accu-
mulated in a bucket from a constant supply source. If the
bucket is cylindrical, the height will be a linear function of
time and if the bucket is conical, the height will be a parabolic
function of time. To our knowledge, how people learn this
kind of function has never been reported in literature. How-
ever, a relevant case in category learning has been reported
recently.

Navarro and his colleagues tested how people could learn
the categories when the category structure varies along train-
ing trials. In one of their experiments, the members of two
categories moved up on the stimulus dimension constantly
along with the increase of trail number and the categorization
rule was set up as ”Respond A, if xt > t and B otherwise”
for any item xt on trial t. Their results showed that partic-
ipants could not only learn this category structure, but also
be able to predict the item value on the next trial (Navarro
& Perfors, 2009, 2012; Navarro, Perfors, & Vong, 2013). It
is implied that people are able to capture some functional
relationship between the time point (or trial number) and
the stimulus value. This is equivalent to saying that people
should be able to learn the time-varying functions in the lab-
oratory experiments. The rest of this article is organized in
the order of (1) comparing time-varying function with nor-
mal function, (2) introducing three experiments testing par-
ticipants with different forms of time-varying functions, (3)
introducing a model designed for accommodating the learn-
ing of time-varying function, and (4) showing modeling re-
sults and general discussion.

Comparison Between Time-Varying Function
and Normal Function

There are some features of the time-varying functions worth
noting. First, due to that time can never return, when learn-
ing a time-varying function, making a prediction for response
magnitude on each trial is always extrapolating what people
have learned. However, in the case of learning the function
y = f (x), both the interpolation and extrapolation tests can be
conducted.

Second, a time-varying function can be viewed as a func-
tion defining the relationships between successive stimuli,
xt = f (xt−1). A good example is the game of throwing a Fris-
bee with friends. In this case, the only observable information
is the spatial position of the Frisbee at any time point. There-
fore, the best cue for us to estimate the position of the Frisbee
at time t is its position at time t−1.

Third, the learnability or complexity of function would be
defined differently for the time-varying function. For the case
of y = f (x), the linear function has less parameters to esti-
mate than the quadratic function, hence being easier to learn.
For the case of y = f (t), learning the functional relationship
between time point to response magnitude is equivalent to
learning to predict the next response magnitude with the cur-
rent observed response magnitude. Thus, it is hypothesized
that the time-varying function would be easy to learn, if the
correlation between successive stimuli is high. If the corre-
lation between successive stimuli is low, it would be hard to
learn. To verify this hypothesis, three experiments were con-
ducted.

Experiment 1
In this experiment, we first examined whether people can
learn a linear time-varying function. The function was written
as xt = t + εt , where t was trial number from 1 to 100 and ε

was randomly sampled from the uniform distribution between
-0.5 and 0.5. All stimulus values were normalized between -
15 and 15 for the convenience of computer programming. It
was reasonable to expect that this function could be learned
well, for (1) it was linear as well as (2) the correlation be-
tween successive stimuli was high.

Method
Participants and Appartus There were in total 22 partic-
ipants recruited from National Chengchi University in Tai-
wan for this experiment. Each participant was reimbursed by
NTD$ 60 (' US$ 2) for their time and traffic expense. The
whole experiment was conducted on an IBM compatible PC
in a quiet booth. The processes of stimulus displaying and re-
sponse recording were under the control of a computer script
composed by PsychoPy (Peirce, 2007).

−10

−5

0

5

10

15

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98
trial

po
si

tio
n

Answer

Participant

Session 1

Figure 1: The stimulus structure in Experiment 1 and the par-
ticipants’ predictions in Session 1.

Procedure The participants were instructed that they were
playing a shooting game. In this game, they had to guess
the position of a target on a horizontal line on the computer
screen. On each trial, they moved the mouse cursor to where
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they thought the target would appear. After they pressed the
space key to complete the guessing, the target would appear
as an arrow on the correct position, together with a feedback
text of ”Hit” or ”Miss” on the screen. The participants were
told that ”Hit” meant that your guess was close enough to the
true answer and otherwise you would get ”Miss”. The whole
experiment was conducted in two sessions, each of which
consisted of 100 trials. The same100 stimuli were presented
in the two sessions. The distance between the target’s correct
position and the participants’ guess was error. The amount
of squared error and the proportion of received ”Hit” (e.g.,
accuracy) were the dependent variable in this experiment.

Results
Visual inspection on Figure 1 shows that participants per-
formed quite well except for the very early trials1. For sim-
plifying the complexity of data analysis, we divided the 100
stimuli to 10 blocks. The squared prediction error decreases
from 40.29 to 0.03 with the mean = 4.06 through 10 blocks
across two sessions. A Block (10) × Session (2) within-
subjects ANOVA reveals a significant main effect of Block
on the squared error [F(9,189) = 72.83, MSe = 98, p < .01],
no significant main effect of Session [F(1,21) = 2.367, MSe
= 166.30, p = .139], and a significant interaction effect be-
tween Block and Session [F(9,189) = 2.346, MSe = 166.3,
p < .05].

The participant’s accuracy is another dependent variable,
which is computed as the number of ”Hit” divided by all
trials. Due to the ”Hit” range was very small in our ex-
periments, the highest accuracy in a block was .63 and the
lowest was .36 across all sessions. A Block (10) × Session
(2) within-subjects ANOVA shows a significant main effect
of Block on the accuracy [F(9,189) = 8.281, MSe = 0.028,
p < .01], no significant main effect of Session [F(1,21)< 1],
and a significant interaction effect between Block and Session
[F(9,189) = 5.052, MSe = 0.027, p < .01].

We also check the correlation between each participant’s
predictions and the true answers. The averaged Pearson’s r
across all participants is quite high [r = .97]. Together with
the visual inspection on Figure 1, it is confirmed that people
can learn the linear time-varying function very well.

Experiment 2
In this experiment, the function was set up as xt = 50 +
(−1)t√100− t, which made the target jump left and right,
gradually moving toward the central point. Obviously, this
function was far more complex than the one used in Exper-
iment 1 and it was nonlinear. If the learning of y = f (t)
shared the same characteristics of the learning of y = f (x),
it should be expected that this function could not be learned
well. However, if our discussion about the characteristics of
time-varying function was right, it should be expected that

1For making the figure easier to read, we plot the human pre-
diction by circles and the correct answers by crosses on only the
even-numbered trials in the first session. The result pattern is the
same in the second session.

this function could be learned well, due to high correlation
between successive stimuli [r =−.99].

−15

−10

−5

0

5

10

15

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
trial

po
si

tio
n

Answer

Participant

Session 1

Figure 2: The stimulus structure in Experiment 2 and the par-
ticipants’ predictions in Session 1.

Method
Participants and Apparatus There were in total 21 par-
ticipants recruited from National Chengchi University in Tai-
wan for this experiment. Each participant was reimbursed by
NTD$ 60 (' US$ 2) for their time and traffic expense. The
testing materials and procedure are all the same as those in
Experiment 1.

Results
See the circles and crosses in Figure 2. Apparently, the partic-
ipants could capture the moving pattern of the target, although
on the early trials, they made some larger errors. Similar to
what we found in Experiment 1, the squared prediction er-
ror drops along blocks from 73.79 to 1.57 (mean = 15.35)
across two sessions. A Block (10) × Session (2) within-
subjects ANOVA reveals a significant main effect of Block
[F(9,180) = 14.24, MSe = 1303, p< .01], a significant main
effect of Session [F(1,20) = 17.22, MSe = 196, p < .01],
and a significant interaction effect between Block and Ses-
sion [F(9,180) = 16.12, MSe = 177.8, p < .01]. Although
the error curve goes down toward 0, the mean squared predic-
tion error is 15.53 far larger than that in Experiment 1, which
is 4.06. This suggests that the linear function is easier to learn
than the quadratic function.

The accuracy data also suggest that this function is harder
to learn than the linear function with the mean highest ac-
curacy in a block across all participants and sessions as .34
and the lowest as .14. A Block (10) × Session (2) within-
subjects ANOVA reveals a significant main effect of block
[F(9,180) = 9.747, MSe = 0.018, p < .01], no significant
main effect of Session [F(1,20) < 1], and no significant in-
teraction effect between Block and Session [F(9,180)< 1].

Although the accuracy is quite low, this does not mean that
people cannot learn this function. As shown in Figure 2, the
participants’ predictions are close to the true answers. Also,
the correlation between each participant’s predictions and the
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true answers is considerably high [mean r = .92]. As ex-
pected, the participants can learn this complex time-varying
function.

Experiment 3
In this experiment, we would like to examine whether peo-
ple could predict the stimulus magnitudes, when the correla-
tion between successive stimuli was lower. See Figure 3 as
an example, which was the real case for testing one partici-
pant2. The dashed line showed the true moving pattern of the
stimulus, which was generated by y = g[a]+ z[b+ 1], where
a= b((t+4)/5)c, b= t mod 5, g was the random permutation
of the vector [1,6,11,...,96], and for each g, z was a new ran-
dom permutation of the vector [1,2,3,4,5]. The correlations
between successive stimuli were averaged across all partici-
pants and all sessions as r = .80, which was lower than the
correlations in the previous experiments. No matter which
view you look at this form (i.e., number of parameters to es-
timate or correlation between successive stimuli), it was ex-
pected that this function could not be learned well.
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Figure 3: The stimulus structure in Experiment 3 and predic-
tions of participant #14.

Method
Participants and Apparatus There were in total 18 partic-
ipants recruited for this experiment from National Chengchi
University in Taiwan. Each participant was reimbursed by
NTD$ 60 (' US$ 2) for their time and traffic expense. The
testing materials and procedure are all the same as those in
Experiment 1.

Results
As shown in Figure 3, apparently, the participant could not
predict the target position. Otherwise, we will see the dashed
line (for answers) and solid line (for participant’s predictions)
superimpose on each other. However, the response pattern is
not random either. In fact, the participant’s predictions seem
always to be one step behind the true answers. Although we

2Different participants received different moving patterns to
learn.

do not show the predictions of the rest 17 participants, their
predictions are one step behind the true answers also. Thus,
strictly speaking, we do not think that the participants learned
this function.

The squared prediction error drops from 69.69 to 42.47
along blocks in Session 1 and has no clear change from 23.12
to 24.30 in Session 2. Although the performance gets better
in Session 2, the prediction error never goes close to 0. The
mean squared error for all participants across blocks and ses-
sions is 30.844, which is larger than 15.53 (mean error in Ex-
periment 2) and 4.06 (mean error in Experiment 1). Thus, the
learning performance in this experiment is the worst among
the three experiments in this study.

As done for the previous experiments, a Block (10) × Ses-
sion (2) within-subjects ANOVA was conducted for the pre-
diction error. The results show no significant main effect of
Block [F(9,153) = 1.53, MSe = 998.4, p = .142], a signif-
icant main effect of Session [F(1,17) = 14.94, MSe = 424,
p < .01], and a significant interaction effect between Block
and Session [F(9,153) = 3.206, MSe = 701.6, p < .01].

The mean accuracy in a block across all sessions is even
lower than that in the other two experiments. The high-
est mean accuracy is about .11 and the lowest is .06. It
is clear that the participants cannot capture the moving pat-
tern of the stimulus. A Block (10) × Session (2) within-
subject ANOVA shows no main effect of Block on accuracy
[F(9,153) = 1.179, MSe = 0.006, p = .312], no main effect
of Session [F(1,17) = 3.367, MSe = 0.006, p = .08], and no
interaction effect between Block and Session [F(9,153)< 1].

We also computed the Person’s r for each participant’s pre-
diction and the true answer. Although the mean correlation is
not low (r = .76), this finding might result from the fact that
the participants’ prediction is always one step behind the true
answer. To sum up, the linear function is the easiest to learn
and the quadratic function is the second. Basically, partici-
pants cannot learn the complex function in Experiment 3. In
order to get a better understanding about the underly mecha-
nism for learning the time-varying functions, we developed a
neural network model for the learning of time-varying func-
tions.

Model for Learning Time Varying Function
A time-varying function can be rewritten as xt = f (xt−1) and
the simplest form of it would be xt = β0 + β1xt−1. Thus,
learning a time-varying function is equivalent to estimating
the optimal parameter values, with which the model makes
the smallest error. To this end, a simple two-layered neural
network is proposed. There are two input nodes, which re-
spectively correspond to the position of the stimulus on the
preceding trial xt−1 and the standard moving distance which
is set as 1. There is only one output node corresponding to the
predicted position on the current trail x̂t = w1× 1+w2xt−1.
The associative weight w1 represents the size of moving dis-
tance. The weight w2 represents how much correlated the last
position is with the current position. When the true answer xt
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is provided, the error is then computed as xt − x̂t .
The associative weights are updated with WH algorithm3

(Abdi, Valentin, & Edelman, 1999) to decrease the error
made by the model. Also, we make the updating amount for
weights decay all the way through training trials. Thus, the
updated amount for w1 on trial t is ∆w1,t = ηexp−ξ(t−1)(xt −
x̂t), where η ≥ 0 is the learning rate and ξ ≥ 0 determines
how quickly the updated amount of weight drops. Likewise,
∆w2,t = ηexp−ξ(t−1)(xt − x̂t)xt−1.

There are some features of this model worth noting. First,
the associative weight w2 actually reflects the correlation be-
tween successive stimuli. Second, this model only learns the
correlation between successive stimuli and contains no sum-
mary information of the whole function. In fact, it can be
applied to account for the learning of different time-varying
functions, as no matter which form (complex or simple) the
function has, the learning of a time-varying function can al-
ways be viewed as the learning of the association between
successive stimuli. Thus, our model should be regarded as an
associative-based model, not a rule-based model.

Modeling
The model was fit to each participant’s data in each experi-
ment with the stimulus positions being normalized between 0
and 1. Each participant’s first response in each session was by
default the first input for the model. The initial weights of w1
and w2 were set as 0 for all experiments except Experiment 3.
The model provided the best fit for Experiment 3 data when
w2 was initially set as 1, suggesting that participants in Ex-
periment 3 were more likely to repeat the observed position
of stimulus on the preceding trail as the response for current
trail. The statistics of optimally estimated parameter values
and the goodness of fit (RMSD) for all experiments are listed
in Table 1.

Table 1: Mean goodness of fit and mean estimated parame-
ter values for a best fit with the standard deviation listed in
parenthesis.

RMSD η ξ

Exp 1 0.04 (0.02) 1.06 (0.71) 0.02 (0.09)
Exp 2 0.08 (0.03) 1.73 (1.14) 0.30 (0.55)
Exp 3 0.09 (0.03) 0.43 (0.55) 1.81 (4.14)

The smaller the RMSD, the better the fit is. Apparently, the
model fit all the data very well. See the crosses in Figure 4,
Figure 5, and Figure 6 for the model prediction in Session 14,
which are quite close to the circles denoting the participants’
responses.

The estimated learning rate for Experiment 1 is about 1 and
the decay rate is quite small, suggesting that decay of learning

3This algorithm is a special case of backpropagation algorithm,
which is specifically used for two-layered neural network models.

4The pattern is almost the same for Session 2.

is not fast and leaning continues through training trials. The
learned associative weights for the moving size w1 = 0.30 and
the correlation with the preceding stimulus w2 = 0.70 suggest
that the participants predict the current position of the target
by moving it a certain distance (i.e., 0.30 times of the stan-
dard moving size) from the place a bit behind (i.e., 70%) the
position just seen in the same direction of the last move.

For Experiment 2, the mean learning rate is high and so is
the mean decay rate. This suggests that the model adjusts the
associative weights largely on the early learning trials, but
quickly halts doing so. The learned associative weights are
w1 = 1.00 and w2 = −0.94. The negative weighting for the
preceding position enables the model to make symmetrical
predictions between successive trials and |w2| ≤ 1 enables the
model to gradually converge the predicted position toward the
midpoint.

For Experiment 3, the mean estimated learning rate is low
and the decay rate is high, suggesting that the model has
not updated the associative weights too much since early tri-
als. In fact, the learned associative weights, w1 = 0.01 and
w2 = 0.98, together suggest that the model merely repeats the
preceding target position as the current prediction. As the
model captures the participants’ response patterns very well,
it is implied that the participants did not actually learn the
function but just repeated what they saw as the prediction for
the next trial.
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Figure 4: The model prediction and human response in Ses-
sion 1 in Experiment 1.

General Discussion
The main purpose of this study is to examine the characteris-
tics of function learning with time-varying functions. Three
experiments were conducted with different types of time-
varying functions: linear, quadratic, and irregular. The dif-
ferences between these functions are not only the complexity
of the function form, but also the strength of correlation be-
tween successive stimuli. In the first two experiments, the
correlation is very high regardless of the direction, whereas
in the third experiment, the correlation is lower.

The behavioral data show that the learning of the linear
and quadratic functions are easier than that of the irregular
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function, suggesting that the correlation between successive
stimuli is critical to function learning with time-varying func-
tions, not the number of parameters (or the complexity) of
the function. The success of our model on accounting for the
participants’ performance in all experiments support that the
learning of time-varying functions has an associative-based
account. No matter which form it is, people learn to predict
the current stimulus magnitude based on the observed stimu-
lus magnitude of the preceding trial.

One may regard the learning of time-varying functions as
operant conditioning. That may or may not be true, de-
pending on what we think is actually conditioned. If the
response is the target for conditioning, then the learning of
time-varying functions is not operant conditioning, as every
single response is new and it is impossible to reinforce the
likelihood for the same response to be made in the future.
However, if the moving size is the target for conditioning,
then for the case in which the target moves constantly (e.g.,
the linear function in Experiment 1), we may regard the learn-
ing of the time-varying function as a kind of operant condi-
tioning. However, for the case where the target moves in a de-
creasing (or increasing) speed (e.g., the quadratic function in
Experiment 2), it might not be suitable to equate the learning
of time-varying functions and operant conditioning. Future
studies including the transfer trials are needed in order to ex-
amine whether people form any concept for the time-varying
function.
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Figure 5: The model prediction and human response in Ses-
sion 1 in Experiment 2.
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