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genetic consequences of long-term small

population size. They find that the

remaining k�ak�ap�o from a small island

population are inbred but have fewer

deleterious mutations compared to the

now-extinct mainland population,

providing insights into conservation
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SUMMARY
The k�ak�ap�o is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 indi-
viduals remain today, most of them descending from an isolated island population. We report the first
genome-wide analyses of the species, including a high-quality genome assembly for k�ak�ap�o, one of the first
chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also
sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes
from the extinct mainland population. While theory suggests that such a small population is likely to have
accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small
population size in k�ak�ap�o indicate that present-day island k�ak�ap�o have a reduced number of harmful muta-
tions compared tomainland individuals.We hypothesize that this reducedmutational load is due to the island
population having been subjected to a combination of genetic drift and purging of deleterious mutations,
through increased inbreeding and purifying selection, since its isolation from the mainland �10,000 years
ago. Our results provide evidence that small populations can survive evenwhen isolated for hundreds of gen-
erations. This work provides key insights into k�ak�ap�o breeding and recovery and more generally into the
application of genetic tools in conservation efforts for endangered species.
INTRODUCTION

New Zealand was one of the last landmasses colonized by hu-

mans.1 Following Polynesian colonization circa 1360 CE and Eu-
C
This is an open access article und
ropean colonization in the 1800s, and the resulting overhunting

and introduction of mammalian predators, New Zealand

experienced major extinction events of endemic species.2 The

k�ak�ap�o (Strigops habroptilus), a flightless parrot species, was
ell Genomics 1, 100002, October 13, 2021 ª 2021 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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widespread before human arrival and likely numbered in the hun-

dreds of thousands.3 By 1995, the species was reduced to 51

birds, 50 k�ak�ap�o from the isolated Stewart Island and one single

male, named Richard Henry, from the extinct mainland popula-

tion.4 Richard Henry and 39 Stewart Island birds were the only

k�ak�ap�o to reproduce and are thus the ancestors of all birds

born since 1995. As of 2021, a total of 201 k�ak�ap�o survive and

are managed on island sanctuaries. Previous studies indicate

that k�ak�ap�o have lost�70%–80% of their genetic diversity since

the 1800s and have elevated levels of inbreeding.3,5 Poor sperm

quality and low hatching success6 suggest that k�ak�ap�o carry

deleterious mutations as a consequence of genetic drift and

reduced efficacy of purifying selection, a clear evidence of

reduced fitness (i.e., genetic load7,8). However, the genome-

wide impact of the severe population bottleneck of the k�ak�ap�o

remains unknown.

Population genetic theory suggests that, in small populations,

genetic load may accumulate and increase the risk of extinction

via ‘‘mutational meltdown.’’8 However, because the effects of

observed mutations on fitness are often unknown, estimating

genetic load is challenging. Recent studies based on genomic

data from temporally spaced samples of extinct and endangered

species9–14 have instead focused on the accumulation of delete-

rious mutations by examining increases in mutational load. How-

ever, theory and empirical data suggest that mutational load can

also be purged in long-term isolated and inbred populations

when selection against recessive or partially recessive detri-

mental alleles is increased as they are expressed in the homozy-

gous state.15 To date, although simulations and comparisons

among species or subspecies have shown this to be possible

in rare examples (see, for example, Robinson et al.16 and Gros-

sen et al.17), studies on the purging of mutational load in the wild

and between recently diverged populations remain scarce.

To test these hypotheses, we compared the genomes of sur-

viving and extinct k�ak�ap�o populations, representing the first

population genomics analysis of k�ak�ap�o in the context of the

K�ak�apo 125+ project. Here, we present the reference genome

for k�ak�ap�o, one of the first chromosome-level reference ge-

nomes sequenced by the Vertebrate Genomes Project

(VGP),18 and a population genomics analysis of 49 k�ak�ap�o

from Stewart Island and the extinct mainland population. Our

population genomic analyses indicate that present-day island

k�ak�ap�o have a reduced number of predicted deleterious muta-
2 Cell Genomics 1, 100002, October 13, 2021
tions compared to mainland individuals. We suggest that this

reduced mutational load may have resulted from a combination

of genetic drift and purging of deleterious mutations through

increased inbreeding and purifying selection in the island popu-

lation since their isolation from the mainland �10,000 years ago.

Our findings will aid in the development of genetic approaches to

support the recovery of k�ak�ap�o and contribute to informing

future breeding programs and translocation efforts. More gener-

ally, such population genomic analyses of other endangered

species will be useful to inform those conservation efforts.

RESULTS

Island and mainland populations are distinct and
separated after the last glaciation
We generated a high-quality chromosome-level genome assem-

bly for a female k�ak�ap�o (Figures S1–S3) and sequenced the

genomes from 36 individuals that survived the bottleneck at its

most severe phase in the 1990s (Richard Henry and 35 Stewart

Island birds) as well as 13 genomes from �130-year-old

museum specimens that originated from the extinct mainland

population (Figure 1A; Table S1). No offspring from the surviving

individuals that subsequently founded the present-day popula-

tionwere included in the analyses. Principal-component analysis

(PCA) of the 49 re-sequenced genomes identified genetic dis-

tinctions between the mainland and Stewart Island populations

(Figures 1B and S5). We found evidence for historical samples’

mislabeling and subsequently analyzed samples according to

their genetically assigned population when estimating differ-

ences in inbreeding and mutational load (STAR Methods).

We performed pairwise sequentially Markovian coalescent

(PSMC) analysis to track changes in effective population sizes

(Ne) over time (STAR Methods). Analyses of the genomes from

the mainland and Stewart Island populations showed nearly

identical demographic histories marked by a severe decline in

Ne, starting some 30,000 years (30 ka) before present (BP; Fig-

ure 1C), a period coinciding with the onset of the Last Glacial

Maximum (LGM).20 By the end of the last glaciation �10 ka

BP, k�ak�ap�oNe had declined from�15,000–20,000 to aminimum

of �1,000–3,000. Since the PSMC has reduced power to esti-

mate recent changes inNe (i.e., <10 ka BP21), we also performed

approximate Bayesian computation (ABC) simulations and de-

mographic reconstructions using MSMC2 (Figures S6–S9),

mailto:nicolas.dussex@gmail.com
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Figure 1. Sampling locations, population structure, and past demography of k�ak�ap�o

(A) Sampling locations for historical and modern specimens on a map showing the vegetation cover circa 1840.19

(B) Principal-component analysis (PCA) for 14 mainland and 35 Stewart Island k�ak�ap�o. Asterisks indicate museum samples likely to have been mislabeled (STAR

Methods).

(C) Demographic history and divergence time between the mainland and Stewart Island population inferred using the PSMC method. Each colored curve

represents an individual bird. The black dashed curve represents the sex chromosome comparison (i.e., Z chromosome), with population size reaching infinity at

the time of divergence between the two populations.

(D) Parameter estimates for a scenario of post-glacial population divergence and expansion using ABC.

See also Figures S5–S10 and Tables S2 and S3.
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which are better suited to infer recent demography. These ana-

lyses also supported a demographic decline during the LGM

(Figure 1D, S8 and S9; Tables S2 and S3). Moreover, Late Holo-

cene Ne estimates from the MSMC2 and ABC were similar, with

Ne �300–600 for Stewart Island and Ne �14,500–42,000 for the

mainland population (Figures S8 and S9; Table S3).

Historical accounts and a lack of fossil remains originally sug-

gested that k�ak�ap�o were introduced to Stewart Island in the past

�500 years, by either Ma�ori or European settlers.4,22 However,

based on our ABC simulations and analyses of coalescence

rates between Z chromosomes, we find that the divergence

time between the mainland and the Stewart Island populations

dates back to the end of the last glaciation (Figures 1C, 1D,
S8, and S10). This timing coincides with the isolation of Stewart

Island from the mainland as sea levels rose at the end of the

Pleistocene some 12 ka BP.23 Thus, our analyses suggest that

instead of having been established by humans in the past

�500 years, the Stewart Island population constitutes a distinct

lineage that has been isolated from the mainland for up to 1,000

generations.

The island population is highly inbred
The long-term isolation and reduced Ne since the end of the last

glaciation and the severe decline in the past 150 years on Stew-

art Island due to introduced predators4 may have led to the addi-

tional loss of genetic diversity via genetic drift. Supporting this
Cell Genomics 1, 100002, October 13, 2021 3



A B Figure 2. Heterozygosity and inbreeding es-

timates for k�ak�ap�o

(A) Individual genome-wide heterozygosity. Hori-

zontal lines within boxplots and bounds of boxes

represent means and standard deviations,

respectively. Vertical lines represent minima and

maxima.

(B) Individual inbreeding coefficients estimated

using ROH (FROH). Open bars show the total pro-

portion of the genome in ROH R 100 kb and solid

bars show proportions in ROH R 2 Mb. Bars ex-

tending from the mean values represent the stan-

dard deviation (Welch’s two-sample t test; ***p <

0.001). Richard Henry is shown with a purple

triangle.

See also Figures S11–S15.
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hypothesis, we find much lower average individual heterozygos-

ity (Figure 2A) and lower population-level nucleotide diversity (p;

Figure S11) in the genomes of the Stewart Island birds. Further-

more, based on a high-quality dataset of variants covered in all

individuals, we find that extended runs of homozygosity (FROH),

an expected outcome of inbreeding, also differed markedly be-

tween the populations. Stewart Island k�ak�ap�o had, on average,

53% of their genome sequence in ROH R 100 kb, while main-

land k�ak�ap�o had 15% (Figure 2B). Genome proportions

comprising very long ROH (R2 Mb) were, on average, 34%

and 4% for Stewart Island and mainland k�ak�ap�o, respectively

(Figures 2B and S12–S15). Such comparatively long ROH indi-

cate recent mating between closely related individuals, most

likely during the past ten generations.24 Overall, these results

are in agreement with the long-term insular isolation at low Ne

as well as a recent decline in the past few hundred years.

Genomes from Stewart Island k�ak�ap�o have
comparatively fewer deleterious mutations
To test the hypotheses of small populations being affected by

either increased mutational load due to strong drift causing a

reduced efficacy of purifying selection in removing deleterious

mutations8 or purging of recessive deleterious mutations as a

consequence of increased inbreeding,15 we estimated themuta-

tional load in mainland and Stewart Island k�ak�ap�o. First, we

measured individual mutational load as the number of derived al-

leles at sites that are under strict evolutionary constraints, pre-

dicted as likely to be deleterious using genomic evolutionary

rate profiling (GERP) scores (Figures S16 and S17; STAR

Methods). These results indicate �1.1 times lower mutational

load in the genomes of Stewart Island compared to mainland

k�ak�ap�o (Figure 3A). Moreover, the difference in the number of

deleterious alleles was most pronounced at sites under the
4 Cell Genomics 1, 100002, October 13, 2021
strongest evolutionary constraint (Figures

S18 and S19), consistent with the purging

of deleterious mutations in the Stewart Is-

land population.

Second, we estimated mutational load

in each individual by identifying variants

in our annotation of 15,699 coding genes
(STAR Methods). Similar to the GERP analysis, we find �1.9

times fewer mutations classified as highly deleterious (i.e., pre-

dicted loss of function [LoF]) in Stewart Island relative to the

mainland k�ak�ap�o population (Figures 3B, S20, and S21), with,

on average, 17.6 and 34.1 predicted LoF variants per bird

genome for the Stewart Island andmainland population, respec-

tively (Figure 3B). The ratio of derived alleles (Rxy) between the

two populations also showed reduced LoF and missense vari-

ants in the Stewart Island population compared to the mainland

population (Figure 3C). Furthermore, the mainland population

had a higher number of LoF alleles in the heterozygous state

compared to the Stewart Island population (Figures S20 and

S21). This suggests that many of these mutations are primarily

deleterious in the homozygous state, consistent with theoretical

predictions.15 We also found a significantly lower number of LoF

alleles inside ROH compared to heterozygous parts of the

genomes, and this difference was 3-fold smaller in the Stewart

Island population (Figure S22), suggesting that repeated

inbreeding may have facilitated the removal of heterozygous

LoF alleles.25

To further test whether our results are consistent with the

purging of deleterious mutations, we performed forward simula-

tions recapitulating the demographic history of the mainland and

Stewart Island populations (Figure 4A). We also simulated sce-

narios for hypothetical stable and severely bottlenecked popula-

tions to model a weak and strong effect of drift, respectively

(STAR Methods). When assuming a scenario consistent with

the history of the Stewart Island population, our simulations indi-

cated that the additive genetic load (Figure 4B) and the number

of deleterious alleles were significantly reduced compared to

simulations recapitulating the mainland population’s history

(t test, p < 0.01; Figures S23–S26), particularly for mildly and

strongly deleterious mutations. This result is slightly different

from a previous study on Alpine Ibex (Capra ibex), which found



A

C

B Figure 3. Mutational load estimates for

k�ak�ap�o

(A) Individual relative mutational load measured as

the sum of all homozygous and heterozygous

derived allelesmultiplied by their conservation score

(GERP score > 2) over the total number of derived

alleles.

(B) Number of loss of function (LoF) variants per in-

dividual. Horizontal lines within boxplots and

bounds of boxes represent means and standard

deviations, respectively (Welch’s two-sample t test;

***p < 0.001). Vertical lines represent minima and

maxima.

(C) Rxy ratio of derived alleles for synonymous,

missense, and LoF variants. Rxy < 1 indicates a

relative frequency deficit of the corresponding

category in Stewart Island compared to mainland

k�ak�ap�o. Whiskers represent 95% confidence inter-

val (CI).

See also Figures S16–S22.
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evidence for the purging of highly deleterious mutations but an

accumulation of mildly deleterious mutations.17 When assuming

an extreme population decline, our simulations indicated an in-

crease in additive genetic load (Figure 4B), consistent with

strong drift increasing the number and expression of deleterious

mutations in homozygous state (Figures S23–S26). These simu-

lations thus suggest that purging requires a large enough popu-

lation for selection to be effective, whereas in a population that is

too small, drift will overwhelm purifying selection. Overall, these

results are consistent with the hypothesis that purifying selection

has led to purging in the Stewart Island population since its isola-

tion from the mainland some 15–20 ka BP.

Functional consequences of deleterious mutations in
modern k�ak�ap�o
Our findings highlight that the identification of variants with dele-

terious effects in the surviving k�ak�ap�o population is of critical

conservation relevance as these variants will help assess the

beneficial and detrimental effects of mixing the extinct mainland

and extant Stewart Island genetic lineages.26 While our results

are consistent with a historically high rate of purging of muta-

tional load in Stewart Island k�ak�ap�o, the present-day k�ak�ap�o

population likely still suffers from inbreeding depression, as indi-

cated by the generally low hatching success and poor sperm

quality in a large number of males.6 Moreover, because surviving

birds originate from two distinct populations with different levels

of mutational load, an assessment of the relative mutational load
Ce
contributed by the Stewart Island survi-

vors, Richard Henry, and his descendants

may be valuable to guide future conserva-

tion actions.27 We therefore examined the

predicted functional consequences of the

identified LoF variants (STAR Methods).

Analyzing the genomes of all modern

Stewart Island birds, we identified pre-

dicted LoF variants in 61 genes (Tables

S6 and S7). We observed predicted LoF

variants in genes that have been associ-
ated with reproduction (BUB1), development (e.g., BMPR1A,

FLT1), and immunity (e.g., IGDCC4; Tables S6 and S7), consis-

tent with observations of low reproductive and hatching success

in k�ak�ap�o.6 Interestingly, we found predicted LoF variants in 27

other genes associated with immunity and development (e.g.,

FLT1) only in the genomes of Stewart Island birds and 21 unique

predicted LoF variants in the genome of Richard Henry in genes

associated with, for instance, reproduction (e.g., BUB1) and

development (e.g., LYN; Table S6).

DISCUSSION

Our population genomic analyses indicate that Stewart Island

k�ak�ap�o are more inbred but have a lower mutational load than

mainland k�ak�ap�o. One explanation for this reduced mutational

load is that random genetic drift led to a loss of alleles that

were at low frequency before the decline in population size on

Stewart Island. However, while most deleterious alleles at low

frequency will be lost due to random drift, a small proportion

will be fixed, meaning that the average frequency of deleterious

alleles will not change. Because we observed a reduced relative

frequency of missense and LoF variants in the Stewart Island

population (Figure 3C), we therefore consider a scenario in which

mutational load was reduced through drift alone less likely.8

An alternative, and in our view more probable, explanation is

that a combination of inbreeding and purifying selection contrib-

uted to the reduction in mutational load in the Stewart Island
ll Genomics 1, 100002, October 13, 2021 5



Figure 4. Forward simulations of demographic scenarios and impact on deleterious mutations

(A) Simulated demographic scenarios representing a Stable scenario as control (Ne = 10,000), a Mainland scenario (LGM bottleneck and long-term Ne = 6,000),

a Stewart Island scenario (LGM decline and long-term Ne = 1,000), and an Extreme decline scenario (LGM decline and long-term Ne = 100).

(B) Additive genetic load calculated as the sum of selection coefficients for homozygous mutations plus the sum of selection coefficients multiplied by the

dominance coefficients for heterozygous mutations. Black dots and whiskers show the means and 95% CIs for each demographic scenario.

See also Figures S23–S27.
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population.15 This interpretation is also supported by the finding

of a less pronounced difference in LoF alleles within and outside

ROH in the genomes from Stewart Island k�ak�ap�o, possibly indi-

cating a reduction in LoF through repeated inbreeding events.

Moreover, our forward simulations demonstrated that additive

genetic load and the number of deleterious alleles can be

reduced in a scenario that recapitulates the demographic history

of the Stewart Island population.
6 Cell Genomics 1, 100002, October 13, 2021
Our results suggest that a long-term isolation and slow in-

crease in inbreeding may have offered circumstances for the

purging of mutational load in the Stewart Island population.15

However, it is important to point out that purging in the Stewart

Island population is more likely a reflection of its long-term small

Ne and that themore recent severe declinemay nowbe exposing

the population to the same level of drift load as in our simulated

extreme decline scenario.
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Previous empirical studies on populations that have experi-

enced population declines have in some cases identified in-

creases in mutational load.9,10 However, there are also multiple

studies that have identified a reduced mutational load following

population decline, similar to what we observed in the Stewart

Island k�ak�ap�o.10,17,25,28 These contrasting results have impor-

tant implications since they suggest a complex interaction

between population declines and the trajectory of deleterious

genetic variation, thus making generalizations across species

challenging.

The importance of genetic tools in k�ak�ap�o recovery has

been increasingly recognized over the past 20 years.27 Since

the translocation of all surviving k�ak�ap�o to predator-free

islands in the 1980s, efforts have been made to maintain ge-

netic diversity, reduce inbreeding, and avoid the spread of

harmful traits.4,27 Management actions have focused not

only on reducing inbreeding by preventing pairings between

related individuals27,29 but also on the maintenance of evolu-

tionary potential by favoring matings with birds of mainland

genetic heritage (i.e., Richard Henry and his offspring27). While

mixing distinct genetic lineages can result in genetic rescue in

highly inbred populations,26 our results show that Richard

Henry has a higher mutational load than birds from the Stew-

art Island population. Even though the fitness and ecological

effects of these deleterious mutations are unknown, mixing

between the mainland and Stewart Island lineages could

lead to the introduction of additional mutational load and

thus be detrimental to the viability of the remaining popula-

tion.26 Furthermore, the current extremely low population

size could be conducive to reduced efficacy of selection

and lead to the fixation of deleterious mutations in future gen-

erations (i.e., increased drift load). Isle Royal wolves are a nat-

ural example of genetic rescue with such unintended negative

consequences.30 Here, the migration of a single male wolf into

this small and isolated population resulted in a population

decline associated with the introduction of detrimental varia-

tion.16,30 It is thus crucial to balance the positive (i.e., genetic

rescue and maintenance of adaptive potential) and negative

(i.e., increase in the proportion and expression of mutational

load) effects that could result from mixing the two k�ak�ap�o ge-

netic lineages and, if necessary, limit breeding between

them.31 Our findings reinforce the need to further examine

the genetic basis of inbreeding depression in the extant

k�ak�ap�o population, in particular with relation to traits associ-

ated with fertility and hatching success.

Breeding programs and translocation efforts for other endan-

gered taxa that have experienced severe anthropogenic popu-

lation declines would benefit greatly from the type of genomic

data analyzed here. For instance, evidence of inbreeding

depression has been observed also in the New Zealand stitch-

bird (Notiomystis cincta).32 Similarly, Tasmanian devil (Sar-

cophilus harrisii) populations display very low genetic diversity

and high incidence of a tumor disease (Tasmanian devil facial

tumor disease [DFTD]).33 Because captive breeding and/or

translocations are part of the management strategy of these

species, assessing the mutational load of potential candidates

for breeding and translocations will be essential for the success

of their conservation.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Tango Buffer (10X) ThermoFisher Scientific Cat#BY5

ATP (100mM) ThermoFisher Scientific Cat#R0441

T4 Polynucleotide Kinase (10U/ul) ThermoFisher Scientific Cat#EK0032

T4 DNA Polymerase 5U/ul ThermoFisher Scientific Cat#EP0062

USER Enzyme NEB Cat#M5505L

T4 DNA Ligase (5U/ul) ThermoFisher Scientific Cat#EL0011

Bst Polymerase, Large Fragments NEB Cat#M0275S

AccuPrime Pfx ThermoFisher Scientific Cat#12344024

T4 DNA ligase (400U/ul) NEB Cat#M0202S

T4 DNA polymerase (3U/ul) NEB Cat#M0203S

PEG-4000 Sigma-Aldrich Cat#95904-250G-F

Critical commercial assays

High Sensitivity DNA kit Agilent Cat#5067-4626

DNeasy Blood & Tissue Kit QIAGEN, Hilden, Germany Cat#69504

Deposited data

Raw fastq reads This study Historical resequencing data: ENA:PRJEB35522;

modern resequencing data: https://repo.data.

nesi.org.nz/TAONGA-KAKAPO

de-novo assembly for Strigops habroptilus This study GenBank: GCF_004027225.2 and

GCA_004011185.1; https://ftp.ncbi.nlm.nih.gov/

genomes/all/GCF/004/027/225/GCF_004027225.

2_bStrHab1.2.pri/GCF_004027225.2_bStrHab1.2.

pri_genomic.fna.gz

Oligonucleotides

IS1 adaptor P5: 50- A*C*A*C*TCTTTCCCTACACG
ACGCTCTTCCG*A*T*C*T-30

Meyer and Kircher34;

Sigma-Aldrich

N/A

IS2 adaptor P7: 50- G*T*G*A*CTGGAGTTCAGAC

GTGTGCTCTTCCG*A*T*C*T-30
Meyer and Kircher37;

Sigma-Aldrich

N/A

IS3 adaptor P5+P7: 50- A*G*A*T*CGGAA*G*A*G*C-30 Meyer and Kircher37;

Sigma-Aldrich

N/A

Illumina AmplifyingPrimer IS4: 50- AATGATACGGCG

ACCACCGAGATCTACACTCTTTCCCTACACGACG

CTCTT-30

Meyer and Kircher37;

Sigma-Aldrich

N/A

Illumina Indexing Primer: 50- CAAGCAGAAGACGGC

ATACGAGATNNNNNNNGTGACTGGAGTTCAGAC

GTGT-30

Meyer and Kircher37;

Sigma-Aldrich

N/A

Ns represent indexes N/A

Software and algorithms

VGP pipeline Rhie et al.18 https://vertebrategenomesproject.org/

BLAST+ 2.5.0 Camacho et al.35 NCBI

Qualimap v2.2.1 Okonechnikov et al.36 http://qualimap.bioinfo.cipf.es/

CpG site masking script von Seth et al.14; Lord et al.37 https://github.com/tvdvalk/find_CpG

RepeatMasker v4.0.7 Smit et al.38 http://repeatmasker.org

MESPA pipeline Neethiraj et al.39 https://sourceforge.net/projects/mespa/

BRAKER v2.1.1 Hoff et al.40; Stanke et al.41,42 https://github.com/Gaius-Augustus/BRAKER

(Continued on next page)
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SPALN2 Iwata and Gotoh43 https://github.com/ogotoh/spaln

cufflinks v 2.2.1 Trapnell et al.44;

Roberts et al.45
http://cole-trapnell-lab.github.io/cufflinks/

eggNOG-mapper v4.5.1 Huerta-Cepas et al.46 http://eggnog-mapper.embl.de/

bcl2Fastq v1.17.1 Illumina https://support.illumina.com/sequencing/

sequencing_software/bcl2fastq-conversion-

software.html

SeqPrep John47 https://github.com/jstjohn/SeqPrep

BWA v0.7.13 Li and Durbin48 http://bio-bwa.sourceforge.net/

SAMtools v1.3 Li et al.49 https://sourceforge.net/projects/samtools/files/

samtools/1.3/

Picard v1.141 Broad Institute http://broadinstitute.github.io/picard

Mapdamage v2.0 Jónsson et al.50 https://ginolhac.github.io/mapDamage/

Trimmomatic v0.32 Bolger et al.51 http://www.usadellab.org/cms/?page=trimmomatic

GATK v3.4.0 McKenna et al.52 https://gatk.broadinstitute.org/hc/en-us

bcftools v1.3 Li53 http://www.htslib.org/

BEDtools v2.29.2 Quinlan and Hall54 https://bedtools.readthedocs.io/en/latest/

PLINK v1.9 Purcell et al.55 https://www.cog-genomics.org/plink2/

SNPRelate Zheng et al.56 https://www.bioconductor.org/packages/

release/bioc/html/SNPRelate.html

ADMIXTURE v1.3.0 Alexander et al.57 http://dalexander.github.io/admixture/

publications.html

RapidNJ v2.3.2 Simonsen et al.58 https://anaconda.org/bioconda/rapidnj

Timetree Kumar et al.68 http://timetree.org/

PSMC v0.6.5 Li and Durbin21 https://github.com/lh3/psmc

Fastsimcoal v2.6 Excoffier and Foll 59;

Excoffier et al.60
http://cmpg.unibe.ch/software/fastsimcoal2/

PGDspider Lischer and Excoffier61 http://www.cmpg.unibe.ch/software/PGDSpider/

Arlequin v3.5 Excoffier and Lischer62 http://cmpg.unibe.ch/software/arlequin35/

MSMC2 Schiffels and Wang 63 https://github.com/stschiff/msmc2

Beagle v5.1 Browning and Browning64 https://faculty.washington.edu/browning/beagle/

beagle.html

vcftools Danecek65 http://vcftools.sourceforge.net/

mlRho v2.7 Haubold et al.66 http://guanine.evolbio.mpg.de/mlRho/

R R Development Core Team84 https://www.r-project.org/

GERP++ Davydov et al.67 http://mendel.stanford.edu/sidowlab/downloads/

gerp/index.html

htsbox v1.0 N/A https://github.com/lh3/htsbox

SNPeff v4.3 Cingolani et al.68 http://snpeff.sourceforge.net/index.html

Pilon v1.22 Walker et al.69 https://github.com/broadinstitute/pilon/releases/

tag/v1.22

Panther v16.0 Mi et al.70 http://www.pantherdb.org/

SLiM 3 Haller and Messer71;

Kim et al.72
https://messerlab.org/slim/

Other

Proteinase K VWR Cat#1.24568.0100

dNTPs VWR Cat#733-1854

Min Elute PCR purification Kit QIAGEN Cat#28006

Agencourt AmPure XP 5mL Kit Beckman Coulter Cat#63880
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Nicolas

Dussex (nicolas.dussex@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The genome assembly can be accessed at the NCBI database under BioProject: PRJNA510145. Assembly accesion numbers are

Genbank: GCF_004027225.2 and GCA_004011185.1.

Historical resequencing data can be accessed at the European Nucleotide Archive under project ENA: PRJEB35522.

Modern resequencing data https://repo.data.nesi.org.nz from the ongoing K�ak�apo 125+ project is maintained at the Genomics

Aotearoa data repository (direct link to the K�ak�apo 125+ genome sequencing dataset at https://repo.data.nesi.org.nz/

TAONGA-KAKAPO). In this study, we used 36 genomes from a dataset currently consisting of 145 whole-genome sequences of

k�ak�apo (raw and untrimmed fastq files). This dataset ismade available with controlled access, managed via a data access committee

of the New Zealand Department of Conservation (DOC) and Te R�unanga o Ng�ai Tahu. The k�ak�apo samples were obtained under an

agreement that the genomic data is shared in accordance with principles of indigenous data sovereignty and that Te R�unanga o Ng�ai

Tahu maintain Kaitiakitanga (i.e., governance and responsibility) over the data. The terms of the controlled access and management

follow this agreement. To request access, users need to submit an application from the Genomics Aotearoa repository. This

application needs to be made on the form provided at the Genomics Aotearoa repository or directly at the K�ak�apo 125+ webpage

(https://www.doc.govt.nz/our-work/kakapo-recovery/what-we-do/research-for-the-future/kakapo125-gene-sequencing/request-

kakapo125-data/; a copy of this application form is provided in Figure S28). The application will require applicants to provide details

of their proposed research project, including names of researchers and collaborators, if phenotypic data about K�ak�apo traits is

required from DOC, what engagement with M�aori has been undertaken (e.g., discussions with Te R�unanga o Ng�ai Tahu about

the proposed project, involvement of M�aori researchers, benefit sharing with M�aori), what considerations have been made for

M�atauranga M�aori (M�aori knowledge; e.g., is M�atauranga M�aori part of the project, will results of the project be fed back to M�aori,

are there intellectual property concerns that could affect M�atauranga M�aori?). The application will also require a project summary

that details the planned research studies, and which includes a section that details how this research will benefit k�ak�apo conserva-

tion. Direct benefit to k�ak�ap�o conservation is preferred, but is not a requirement for acceptance. Applications will be regularly

assessed by DOC and Te R�unanga o Ng�ai Tahu. The default approach is to approve applications, as long as the applications are

complete. Applications for basic research and to replicate previously published analyses are highly likely to be accepted. It is

possible that an application will be rejected if there are significant concerns raised by DOC or Te R�unanga o Ng�ai Tahu. Concerns

raised might include commercial use of the data (e.g., data shared and/or used by a for-profit organization such as drug or other

companies), the applicant having a track-record of unethical behavior, and loss of the ability to exercise Kaitiakitanga (i.e., gover-

nance and responsibility) over the data, among others.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The sample for the reference k�ak�ap�o genome was from a female named Jane (deceased in 2018 of natural causes), collected as part

of the G10K-VGP Project, avian B10K Project, and the K�ak�ap�o Recovery Program. We obtained modern genomic data sequenced

from blood DNA extracts by the K�ak�ap�o 125+ Project for one mainland male (i.e., Richard Henry) and 35 birds from Stewart Island

discovered on Stewart Island in the 1980s (Table S1). Out of these 36modern birds, 28 birds, including Richard Henry, were founders

of the current population and are thus the direct ancestors of all 201 surviving k�ak�ap�o. Seven additional founders were not included in

our dataset. We also obtained samples from 13 historical birds collected between 1847 and 1924 (Table S1) from the South Island of

NewZealand hereafter referred to as themainland population. Because k�ak�ap�o have a long generation time (�15 years; seeMethods

S1), we can assume that the historical specimens correspond to the same temporal period.

METHOD DETAILS

DNA extraction
For the de-novo assembly and modern samples, DNA was extracted using a phenol/chloroform extraction protocol73 (see

Methods S1).

For historical samples, we extracted DNA from samples with high endogenous DNA content (i.e., 75.9%–91.4%)3 using a DNeasy

Blood & Tissue Kit (QIAGEN, Hilden, Germany). Appropriate precautions were taken tominimize the risk of contamination in historical

samples.74
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Library preparation
For the de-novo assembly, 15kb and 30kb PacBio libraries were generated, and long-range scaffolding performed with Bionano

optical mapping (see Methods S1).

For modern samples, double-stranded libraries were prepared according to New Zealand Genomics Limited (NZGL, Palmerston

North, New Zealand) protocols for modern DNA and sequenced on an Illumina HiSeq2500 with a 2 3 150bp setup.

For historical samples, we prepared double-stranded Illumina libraries according to Meyer & Kircher.34 We used 20 mL of DNA

extract in a 40 mL blunt-end repair reaction with the following final concentration: 1 3 buffer Tango, 100 mM of each dNTP, 1 mM

ATP, 25 U T4 polynucleotide kinase (Thermo Scientific) and 3U USER enzyme (New England Biolabs). To reduce biases caused

by erroneous variant calls in historical genomes, we performed USER enzyme treatment to excise uracil residues resulting from

post-mortem damage.75,76 Samples were incubated for 3 h at 37�C, followed by the addition of 1 mL T4 DNA polymerase (Thermo

Scientific) and incubation at 25�C for 15 min and 12�C for 5 min. We then cleaned the samples using MinElute spin columns following

the manufacturer’s protocol and eluted them in 20ul EB Buffer. Next, we performed an adaptor ligation step to ligate DNA fragments

within each library to a combination of incomplete, partially double-stranded P5- and P7-adapters (10 mM each). This reaction was

done in a 40 mL reaction volume using 20 mL of blunted DNA from the clean-up step and 1 mL P5-P7 adaptor mix per sample with a

final concentration of 1 3 T4 DNA ligase buffer, 5% PEG-4000, 5U T4 DNA ligase (Thermo Scientific). Samples were incubated for

30 minutes at room temperature and cleaned using MinElute spin columns as described above. Next, we performed an adaptor fill-in

reaction in 40 mL final volume using 20 mL adaptor ligated DNAwith a final concentration of 13 Thermopol Reaction Buffer, 250 mMof

each dNTP, 8U Bst Polymerase, Long Fragments. The libraries were incubated at 37�C for 20 minutes, heat-inactivated at 80�C for

20 minutes. These libraries were then used as stock for indexing PCR amplification.

In order to increase library complexity, we performed six indexing PCR amplifications for each library using different P7 indexing

primers34 in 25 mL volumes with 3 mL of adaptor-ligated library as template, with the following final concentrations: 1x AccuPrime reac-

tion mix, 0.3 mM IS4 amplification primer, 0.3 mM P7 indexing primer, 7 U AccuPrime Pfx (Thermo Scientific) and the following cycling

protocol: 95�C for 2 min, 12 cycles at 95�C for 30 s, 55�C for 30 s and 72�C for 1 min and a final extension at 72�C for 5 minutes.

We used Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, USA) for purification and size selection of libraries, first using

0.5X bead:DNA ratio and second 1.8X to remove long and short (i.e., adaptor dimers) fragments, respectively. We then measured

library concentration with a high-sensitivity DNAchip on a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). Finally, multiplexed li-

braries (i.e., six indexed libraries) were pooled in equimolar concentrations and sequenced on an Illumina HiSeqX with a 2 3

150bp setup in the High Output mode at the SciLifeLab sequencing facility in Stockholm.

QUANTIFICATION AND STATISTICAL ANALYSIS

De-novo assembly and annotation
The k�ak�ap�o assembly was generated with the Vertebrate Genomes Project (VGP) v1.6 assembly pipeline18 using a combination of

PacBio andHi-C libraries (seeMethods S1). The final assembly size was of 1.17Gb, with a scaffold N50 of 83.2Mb and assigned to 26

chromosomes (24 autosomes and two sex chromosomes; see Methods S1). We identified Z and W chromosomes from the assem-

bled genome by blasting all scaffolds against the Z-chromosome of zebra finch (v3.2.4, Taeniopygia guttata; GenBank:

GCA_000151805.2) and W-chromosome of chicken (v5.0, Gallus gallus, GenBank: GCA_000002315.5) using BLAST+ 2.5.0.35 The

BLAST+ parameters were set as: -evalue = 1e-10; -word_size = 15; -max_target_seqs = 1000. We excluded the identified Z chro-

mosome (CM013763.1; 101.23Mb) and W chromosome (CM013773.1; 35.7Mb), from all downstream analyses in order to avoid

bias associated with analyses relying on heterozygosity estimates. We also visually examined genome coverage estimated with

Qualimap v2.2.136 (see below) for males and females alignments to confirm the identity of the Z and W chromosomes. Males had

on average �15X and �0X for the Z and W chromosome, respectively, and females had on average �7X and �7X for the Z and

W chromosome, respectively. We identified CpG sites using a custom script masking CG sites14,37 and masked repetitive elements

in the genome assembly using RepeatMasker v4.0.738 applying the repeat element library of the aves database.

We annotated the assembly using the MESPA pipeline39 (see Methods S1). Briefly, we collapsed reference protein sets for zebra

finch (Taeniopygia guttata; GenBank: GCA_000151805.2) to 90% coverage following Uniprot90 guidelines using a custom script to

only retain sequences with at least 90% sequence identity to, and 80% overlap with, the longest sequence. We then generated an

annotation in gff format and extracted 85% (13,175 out of 15,342) high quality k�ak�ap�o protein models using zebra finch as a reference

protein set. We refined this annotation using the BRAKER2 v2.1.1 pipeline40–42 and used the resulting zebra finch proteome to predict

k�ak�ap�o proteins with the exon-aware, protein-to-genome aligner SPALN2.43 We then extracted CDSs and protein sequences from

this annotation with cufflinks v2.2.144,45 gffread command using the -V option to exclude geneswith in-frame STOP codons.We iden-

tified 16,171 k�ak�ap�o gene models with a mean length of 1,514bp (Median = 672; min = 50; max = 26,940) to be used in downstream

analyses. Finally, we performed a functional annotation of these gene models using the eggNOG-mapper v4.5.146 and obtained

15,699 annotated gene models (see Methods S1).

Two other annotations not used in downstream analyses were also generated using the Ensembl gene annotation system77 and

NCBI Eukaryotic Genome Annotation Pipeline78 (see Methods S1).
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Historical and modern data processing
All data processing and analyses were performed on resources provided by the Swedish National Infrastructure for Computing

(SNIC) at UPPMAX, Uppsala University. Raw historical sequence data were demultiplexed using bcl2Fastq v2.17.1 with default

settings (Illumina Inc.). We merged forward and reverse sequencing reads before mapping as recommended for damaged and short

reads.79We used SeqPrep v1.147 to trim adapters andmerge paired-end reads using default settings. Wemade aminor modification

to the source code, which enabled to choose the best quality score of the overlapping bases in the merged region instead of

aggregating the scores, following Palkopoulou et al.12 We mapped the merged reads against the reference genome using the

BWA v0.7.13 aln algorithm48 with deactivated seeding (-l 16,500), allowing more substitutions (-n 0.01) and allowing up to two

gaps (-o 2). We used the BWA samse command to generate alignments in SAM format and Samtools v1.349 to convert these align-

ments to BAM format, sort and index them. Finally, we removed PCR duplicate reads using a custom python script that takes into

account both start and end position of the reads.12 Even though all historical genomes were USER-treated75,76 during library prep-

aration to remove post-mortemDNA damage, we usedmapDamage v2.050 on the 13 historical samples to estimate damage patterns

(Figure S4).

For modern samples, we trimmed forward and reverse reads to remove Illumina adapters using Trimmomatic v0.32 with default

settings51 and then mapped them to the reference genome using BWA mem v0.7.13.48 Samtools was used for sorting, indexing,

and removing duplicates from the alignments.

Next, we processed historical and modern bam files using the same approach. We used Picard v1.141 to assign read group in-

formation including library, lane and sample identity to each bam file. We then re-aligned reads around indels using GATK

IndelRealigner v3.4.0,52 and only kept reads with mapping quality mapQ R 30 for subsequent analysis. For each genome, we esti-

mated the depth of coverage using Qualimap v2.2.1.36 After this filtering, average genome coverage ranged from 11.8 and 18.2

(average = 15.3) and from 10.3 to 27.7 (average = 14.2) for modern and historical genomes, respectively (Table S1).

We called variants in historical and modern genomes separately for each individual using bcftools mpileup v1.3and bcftools call

v1.349,53 using a minimum depth of coverage (DP4) of 1/3X of the average coverage (i.e., 5X) and removed SNPs with base quality

QV < 30 and those within 5bp of indels. We also filtered out SNPs in heterozygous state with an allelic balance (i.e., number of reads

displaying the reference allele/depth) of < 0.2 and > 0.8 in order to avoid biases caused by contamination,mapping or sequencing error.

We removed the Z and W chromosomes, hard masked all identified CpG sites and repeat regions using BEDtools v2.27.1.54 After

merging all 49 individual vcf. files we obtained 2,785,380 high quality SNP calls. We then used PLINK v1.955 to filter variants not

covered in all of the 49 individuals resulting in a total of 880,370 high quality SNPs that were used in all downstream analyses

(i.e., population structure, demography, genome-wide diversity and inbreeding, mutational load estimation).

Population structure
We first used the R package SNPRelate to perform a principal component analysis (PCA) based on the genetic covariance matrix

calculated from the genotypes56 using our filtered SNP dataset.

Second, we used the program ADMIXTURE v1.3.057 to identify genetic clusters (K = 1-4) within our dataset. This program esti-

mates ancestry in a model-based manner where individuals are considered unrelated and uses a cross-validation procedure to

determine the best number of possible genetic groups present in the dataset.

Third, we constructed a phylogenetic tree using RapidNJ v2.3.258 based on the neighbor-joiningmethod.80 Thismethod calculates

the distance matrix of Dij between each pair of individuals (i and j) with the following formula:

Dij =
XM

m= 1

dij
�
L

Where,M is the number of segregating sites in i and j, L is the length of regions, dij is the distance between individuals i and j at given

site. dij = 0, when individuals i and j are both homozygous for the same allele (AA/AA); dij = 0.5, when at least one of the genotypes of an

individual i or j is heterozygous (Aa/AA, AA/Aa or Aa/Aa); and dij = 1, when individuals i and j are both homozygous but for different

alleles (AA/aa or aa/AA).

Since all three methods agreed in themain population structure within the specimens in our dataset and showed a clear distinction

between the Stewart Island and the mainland population (Figure S5), we used the identified clusters for all downstream analyses. All

mislabelled specimens (i.e., VM5, AUC2, LEI2, AUS1) were analyzed as part of the population they were genetically assigned to.

Demographic reconstruction and population divergence
We used the Pairwise Sequentially Markovian Coalescent (PSMC v0.6.5)21 model to estimate temporal changes in effective popu-

lation sizes (Ne) of k�ak�ap�o. We generated consensus sequences for all autosomes of a subset of historical and modern genomes

using the Samtools mpileup v1.349 command and the ‘vcf2fq’ command from vcfutils.pl. We filtered for base and mapping quality

below 30, and depth below 1/3X of the average coverage for each specimen. We set N (the number of iterations) = 30, t (Tmax) =

15 and p (atomic time interval) = 64 (4+25*2+4+6, for each of which parameters are estimated with 28 free interval parameters).
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To estimate the substitutions rate per site/year, we used TimeTree,81 which estimates the substitution rate based on automated liter-

ature searches.We aligned 135 birds genomes and assumed a divergence time of 25my BP between the kea and k�ak�ap�o lineages.82

We obtained an estimate of 0.89 3 10�9 substitutions/site/year.

In order to scale population parameters, we assumed a generation time of 15 years making for a rate (mÞ of 1.33 3 10�8 substitu-

tions/site/generation which is biologically realistic in a large and natural k�ak�ap�o population (data not shown; see Methods S1).

Second, we reconstructed the population history of k�ak�ap�o and estimated divergence times between the Stewart Island (N = 35)

and the mainland (N = 11; excluding TEP11, AUC2 and VM5 which formed their own cluster; Figures 1and S5) populations and their

effective population sizes (Ne) using a composite-likelihood method based on the site frequency spectrum83 implemented in fastsim-

coal2 v2.6.59,60 We obtained a folded site frequency spectrum by converting the vcf file filtered for missing data (880,370 SNPs) into

Arlequin format in PGDspider61 and then by converting the resulting Arlequin file into a joint Site Frequency Spectrum (joint 2D-SFS) in

Arlequin v3.5.62 We also collapsed all SFS entries less than 5 in a single category (command line option –C5). We designed four

competing scenarios including a post-glacial population size change (bottleneck or expansion) and a divergence event of the

Stewart Island population from the Mainland: (a) Post-glacial divergence, (b) Post-glacial divergence followed by Stewart Island pop-

ulation expansion, (c) Post-glacial divergence followed byMainland population expansion and (d) Post-glacial divergence followed by

Stewart Island andMainland populations expansion (Figure S6). The latter population size change was not constrained in themodel in

order to allow for either a bottleneck or population expansion to occur but is referred to as an expansion since it was supported by the

simulations (Figure S8; Table S3). For each scenario, we carried out 50 replicate runs with the following settings: -n 100000 -m -q -M

0.001 -l 10 -L 40. Initial prior distributions followed a log-uniform distribution for population sizes (Npre-glac: 10
3 –105; NMain: 10

3 –105;

and NStewart: 10
2 –104; Nglac-main: 10

3 –105; and Nglac-Stewart: 10
2 –104), timing of glacial bottleneck (TBOT: 10

2 – 105), timing of diver-

gence (TDIV: 53102 – 1.53103), timing of terminal expansion for both populations (TEXP: 53102 – 1.53103). The data was modeled as

FREQ (1 bp simulated for each locus), with the number of independent chromosomes equal to the total number of loci (including

monomorphic loci) characterized. We used the same substitution rate and generation time as mentioned above for the PSMC.

We then used the range in parameter estimates across the initial 50 runs as the prior distribution for another 50 replicates within

each scenario, until no further increase in likelihood was detected. The parameter values from the final run with the highest likelihood

for each scenario were then used for 50 additional runs with –n = 1000000 to obtain a final estimate of the maximum observed likeli-

hood.We assessed the best fitting scenario by Akaike’s information criterion (AIC) score84 andwith the AIC’s weight (w), as described

in Excoffier et al.60 (Table S2). We then used the parameter values from the best-fitting scenario to simulate 100 parametric boot-

straps datasets. In order to obtain confidence intervals for parameter estimates, we used the *.tpl and initial prior distribution *.est

files that led to the best replicate and ran 50 replicates per simulated dataset, making for a total of 5000 parameter estimates (Table

S3). We changed the data type to DNA (1 bp), with the number of chromosomal segments equalling the total number of loci in the SFS

(including monomorphic sites).

Third, we used the multiple sequential Markovian coalescent (MSMC2) model63 based on phased haplotypes from the two pop-

ulations to infer changes in k�ak�ap�o Ne. We used Beagle v5.164 on default settings to phase the SNP-calls. Genome mappability

masks and multi-sample input files were obtained using msmc-tools following the pipelines described in Schiffels and Wang.63

MSMC2 was then run using the five genomes with highest coverage for each population and using default settings. We used the

same substitution rate (m) and generation time as those described for the PSMC for scaling.

Finally, we estimated the split time (T), assuming no coalescent events since divergence between the mainland and Stewart Island

using the PSMC approach applied to a pseudo-diploid Z chromosome genome as described in Palkopoulou et al.12We extracted the

Z-chromosomes from one mainland historical (CAN1) and one modern Stewart Island (Ruth) female. We generated a Z chromosome

haploid consensus sequence for each these two females andmerged them into a pseudo-diploid sequence using the seqtk mergefa

command.We then applied the PSMCmethod on the pseudo-diploid Z chromosome to estimate changes inNe over time. Finally, we

rescaled the pseudo-diploid Z chromosome curve to 0.25 consistent with the effective population size of chromosome Z relative to

that of autosomes (sex-chromosome/autosome ratio: 0.75). We ran the analysis using the same quality filters, parameters (i.e., 64

discrete time intervals) and the same substitution rate as above for the PSMC on autosomes. As a comparison, we also ran the anal-

ysis using fewer discrete intervals (i.e., 49 = 6+4+3+13*2+4+6 or 37 = 2+2+1+15*2+2) as recommended by Prado-Martinez et al.85 in

order to avoid underestimation of the split time.

Genomic diversity and inbreeding
We first estimated genome-wide population-level nucleotide diversity ðpÞ86 in mainland and Stewart Island birds with vcftools65 using

a sliding window of 10kbp.

Second, we used mlRho v2.766 to estimate the mutation rate (q), which approximates the per site heterozygosity under the infinite

sites model and uses bam files as input. We first filtered out bases and reads with quality below 30, and positions with root-mean-

squared mapping quality below 30 from the historical andmodern bam files. Because high or low coverage in some regions resulting

from structural variation can create erroneousmapping to the reference genome and false heterozygous sites, for each specimen, we

also filtered out sites with depth lower than five times and higher than two times the average coverage across all our specimens. We

then estimated the individual q as the number of heterozygote sites per 1,000bp. The maximum likelihood approach implemented in

mlRho has been shown to provide unbiased estimates of average within-individual heterozygosity at high coverage.66,87
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Third, we estimated individual inbreeding coefficients, by estimating the number and length of Runs of homozygosity (ROH). ROH

are long tracts of the genomewith very little or no heterozygote sites that can inform about recent and past population events and can

be used to estimate individual inbreeding levels.88 We used PLINK v1.955 to identify ROH and per sample inbreeding coefficients

(FROH). We first converted the filtered multi-individual vcf. file comprising 35 Stewart Island and 14 mainland individuals into a ped

file and identified ROH in autosomal chromosomes. We used a sliding window size of 100 SNPs (homozyg-window-snp 100). We

assumed a window to be homozygous if there were not more than 1 heterozygous site per window (homozyg-window-het 1).

Moreover, if at least 5% of all windows that included a given SNP were defined as homozygous, the SNP was defined as being in

a homozygous segment of a chromosome (homozyg-window-threshold 0.05). This threshold was chosen to ensure that the edges

of a ROH are properly delimited. Furthermore, a homozygous segment was defined as a ROH if all of the following conditions were

met: the segment included R 25 SNPs (homozyg-snp 25) and covered R 100kb (homozyg-kb 100); the minimum SNP density was

one SNP per 50kb (homozyg-density 50); the maximum distance between two neighboring SNPs was % 1,000kb (homozyg-gap

1,000). For the number of heterozygous sites within ROH, we set the value at 750 (homozyg-het 750) in order to prevent sequencing

errors to cut ROH. Based on these results, we estimated the inbreeding coefficient FROH estimated as the overall proportion of the

genome contained in ROH.

While we were mainly interested in estimating the relative difference between mainland and Stewart Island birds, we also

assessed the robustness of our results to the various parameters used and to potential sequencing errors, by running the same

analysis using more stringent parameters. Specifically, we varied the number of heterozygous sites per ROH segment (homozyg-

het 1), at least one SNP in a ROH per 100kb (homozyg-density 100) and the maximum distance between two neighboring SNPs

(homozyg-gap 500).

We statistically compared heterozygosity, FROH between mainland and Stewart Island k�ak�ap�o using a Welch’s two-sample t tests

in R.89

Mutational load estimation
We estimated mutational load in mainland and Stewart Island k�ak�ap�o genomes using two approaches. First, we measured the rela-

tivemutational load in each individual as the number of derived alleles at sites that are under strict evolutionary constraints (i.e., highly

conserved) and thus likely to be deleterious using genomic evolutionary rate profiling scores (GERP) with the GERP++ software67 and

following van der Valk et al.90 We included both heterozygous (counted as one allele) and homozygous positions (counted as two

alleles) even though the mutational effect of heterozygous positions depends on additional assumptions about the dominance co-

efficient. GERP identifies constrained elements in multiple alignments by quantifying the amount of substitution deficits (e.g., sub-

stitutions that would have occurred if the element were neutral DNA, but did not occur because the element has been under functional

constraint) by accounting for phylogenetic divergence. High GERP scores (> 1) represent highly conserved regions whereas low

scores (< 1) are putatively neutral.

To identify genomic regions under strong evolutionary constraint in the k�ak�ap�o we obtained 135 published bird genomes from

NCBI (Figure S16). We used TimeTree81 to estimate the divergence times among these genomes as described above. Each of these

genomeswere then converted into fastq-format (50 bp reads) and realigned against the k�ak�ap�o assembly using BWAmemv0.7.13,48

slightly lowering mismatch and gaps penalty scores (-B 3, -O 4,4). Additionally, we filtered out all reads from the processed bam files

aligning to more than one genomic location using Samtools.49 Next, we converted each alignment file to fasta-format using htsbox

v1.0 -R -q 30 -Q 30 -l 35 -s 1. GERP++ was then used to calculate conservation scores for each site in the genome for which at least

three bird species could be accurately aligned to the k�ak�ap�o reference (Figure S17). The kea genome (N. notabilis) alignment was

used for the ancestral allele inference.91,92

To estimate the mutational load of each individual we obtained the total number of derived alleles stratified by GERP-score within

highly conserved regions of the k�ak�ap�o genome (excluding sites with missing genotypes). The individual relative mutational load was

then calculated as the sum of the number of all derived alleles above GERP-score of two (as these are considered to be deleterious)

multiplied by their GERP-score, divided by the total number of derived alleles by individual (including those below a GERP-score of

one). Higher values indicate that a relatively larger proportion of derived alleles is found at conserved genomic sites, thus indicating

higher mutational load. We statistically compared GERP-scores between mainland and Stewart Island k�ak�ap�o using a Welch’s two-

sample t tests in R.89

Second, we estimated mutational load in coding regions for mainland and Stewart Island k�ak�ap�o genomes using SNPeff v4.3.68

We used our dataset filtered for missing genotypes (880,370 SNPs) to avoid any bias due to sequencing stochasticity when esti-

mating the difference in mutational load between populations and the annotation of 15,699 genes from the MESPA pipeline (see

Methods S1) for this analysis. In order to avoid a reference bias when identifying synonymous and non-synonymous variants, we

replaced the reference allele with the ancestral allele by using kea (N. notabilis) as reference and using a custom script as described

above. After replacing the reference allele, we obtained a total of 406,510 SNPs.

We generated a database for k�ak�ap�o using the protein sequences extracted from our annotation. We further removed any gene

model with in-frame STOP codons using the -V option of gffread from the cufflinks v2.2.144,45 package. We first identified putative

deleterious variants in four different impact categories as defined in the SNPeff manual: a) Low: mostly harmless or unlikely to change

protein behavior (i.e., synonymous variants); b) Moderate: non-disruptive variants that might change protein effectiveness (i.e.,

missense variants; Table S4); c) High: variant assumed to have high (disruptive) impact in the protein, probably causing protein
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truncation, loss of function (LoF) or triggering nonsense mediated decay (i.e., stop codons, splice donor variant and splice acceptor,

start codon lost; Table S5); d) Modifier: usually non-coding variants or variants affecting non-coding genes, where predictions are

difficult or there is no evidence of impact (i.e., downstream or upstream variants).68 Next, we identified the number of variants in these

four categories separated by homozygous and heterozygous state. Becausewe only used sites covered in all individuals, we counted

the number of variants in these four categories separated by homozygous and heterozygous state and did not need to use bootstrap-

ping of allele counts. We then compared the number of each of these variants in mainland and Stewart Island k�ak�ap�o using aWelch’s

two-sample t tests in R.89

We then estimated the difference in frequency of variants of all impact categories listed above between mainland and Stewart Is-

land k�ak�ap�o using a similar approach to the one described by Xue et al.25 and van der Valk et al.10 For each category of variants, we

calculated at each site i the observed allele frequency in Population x as fxi = dx
i / n

x
i, where nxi, is the total number of alleles called in

population x and dxi is the total number of called derived alleles. Similarly, we define fyi for population y. For each C category of var-

iants we estimated:

Freqpop�xðCÞ =
X

i ˛ C

fxi ð1� fyi Þ

We then calculated the Rxy = Freqpop-x / Freqpop-y ratio, where a value of 1 corresponds to no change in frequency, > 1 a decrease in

frequency in population y relative to population x and < 1 to an increase in frequency in population y. relative to population x We esti-

mated the variance in the Rxy ratio by running a Jackknife approach in blocks of 1000 from the set of sites in each category of mu-

tation. The Rxy ratio only included sites where at least one out of all alleles is derived in both populations.

To check for annotation bias, we performed the same analysis using a consensus mainland historical genome. We modified our

modern high quality genome by changing SNPs and indels to the historical state using the genome polishing software Pilon v.1.2269

with quality filtering (–minmq 20 –minqual 20) and by mapping merged reads from individual LEI2, which had the highest coverage of

the historical genomes (Table S1) using BWAmem v0.7.13.48 A second annotation for the historical genome was generated with the

MESPA pipeline (see Methods S1), by using the historical genome as the reference with all other steps identical. The raw data was

then mapped to this consensus and the variant calling performed as described above. After filtering for missing genotypes, we ob-

tained 834,420 SNPs. Finally, we also replaced the reference allele with the ancestral allele by using kea (N. notabilis) in order to avoid

reference bias as described above obtained a total of 371,886 SNPs. Results were consistent with those based on data mapped to

the modern assembly (Figure S21).

Purging of recessive deleterious variants (i.e., LoF alleles) is expected to lead to different signatures in homozygous (i.e., runs of

homozygosity; ROH) and non-homozygous tracts within individuals. Since the individuals in this study were adults when sampled,

recessive LoF variants with a deleterious effect on viability or survival in early infancy should thus be less common in homozygous

tracts, where they have been exposed to purifying selection, than elsewhere in the genome. To test this hypothesis, wemeasured the

number of LoF variants sites in homozygous and heterozygous portions of the genome and controlled for differing amounts of ho-

mozygosity within individuals by normalizing the rates of LoF variant sites by the rates of synonymous homozygous variant sites in the

same regions obtained from the SNPeff output.We then assessed significance of the difference between relative rates of LoF variants

in the homozygous and non-homozygous portions of the genomes using a paired t test in R.89

Gene Ontology
We performed a functional analysis for genes with LoF variants identified in SNPeff and based on Jane’s annotation (Table S6). We

obtained the gene IDs associated with each LoF allele identified in the SNPeff analysis from our functional annotation. We then as-

sessed the functional classification of these LoF variants with aGeneOntology analysis in Panther v16.070 using chicken as reference

set. Because identifying mutational load in birds that survived the peak of the 1990s bottleneck is highly valuable to guide future con-

servation actions for k�ak�ap�o, we performed this analysis only on survivor birds (i.e., 35 Stewart Island birds and Richard Henry;

Tables S6 and S7).

Forward simulations
Since the effect of drift and purifying selection are dependent on Ne

8, we estimated changes in mutational load under contrasting

demographic scenarios to assess their respective roles in declining populations. To test whether our results were consistent with

purging of deleterious mutations in the Stewart Island population, we performed forward simulations recapitulating the demographic

history of mainland and Stewart Island k�ak�ap�o. We also simulated scenarios for hypothetical stable and severely bottlenecked pop-

ulations to model a weak and strong effect of drift, respectively.

We performed individual-based simulations with SLiM 371 using the non-Wright-Fisher (non-WF) implementation. As opposed to

Wright-Fisher models, which operates under a more restrictive set of assumptions, non-WFmodels are fully customizable in terms of

mate choice, reproduction, survival and population regulation, which allowed us to approximate the k�ak�ap�o life-history traits in a

more realistic way based on Powlesland et al.4 We controlled the sex ratio to simulate the observed skewed sex ratio of k�ak�ap�o

in the wild (�2:1 in favor of males). We controlled time to sexual maturity by only allowing individuals to reproduce after females

reached sexual maturity between 7 and 11 years old and males slightly sooner, between 5 and 7 years old. We simulated the known

variance in reproductive success by allowing more experienced males (i.e., older males) to form pairs more readily as a function of
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their age. Pairs produced clutches in accordance with clutch-sizes observed in the wild, using random draws from a normal distri-

bution (mean = 3, sd = 1.5) each pair produced between two and four individuals, and rarely more than four and less than two

(including zero to represent inviable eggs). This mating scheme revealed that in our simulations, approximately a third of the individ-

uals produced all the offspring in a given generation. Therefore, we simulated 2.8 times more individuals than our target effective

population size. In non-WF simulations generations are overlapping (as in nature) and the average generation time is an emerging

property of the simulation in function of the life-history parameters used. We recorded the full genealogy of 500 simulations steps

and estimated that in average the distance between parents and offspring nodes was of�16 (sd = 2) simulation steps. This is remark-

ably consistent with the estimated generation time for k�ak�ap�o, estimated around 15 years. Thus, each simulation step can be thought

as one year (the total simulation time was 25,000 years) and the generation time in our simulation to be in average 16.5 years.

We simulated 3,291 genes across the 23 fully assembled chromosome in relative proportions and positions as observed in the

genome assembly, representing 20% of the total k�ak�ap�o exome. Each in-silico gene had a length of 1.5kb adding to a total amount

of 4,936,500 base pairs simulated for each individual. We used a per-base, per-generation mutation rate of 1.33x10�08. A recombi-

nation rate of 1x10�9 was used between genes, but no recombination was allowed within genes. Neutral and deleterious mutations

occurred at a relative proportion of 1:2.31.72 Selection coefficients of deleterious mutations were drawn from a gamma distribution

(mean = �0.024, sd = 0.14), and simulations were performed independently for fully recessive (h = 0), partially recessive (h = 0.25) or

additive (h = 0.5) dominance coefficients.

We simulated four distinct scenarios that spanned 25,000 years and that modeled distinct population trajectories since the LGM

with Ne estimates from the PSMC used as priors: (i) a Stewart Island scenario modeled a decline to a long-term Ne of �1,000; (ii) a

Mainland scenario modeled a decline to a long-term Ne of �6,000; (iii) an Extreme scenario modeled a sustained LGM decline to a

long-termNe of�100 to specifically simulate a strong effect of drift; (iv) a Stable scenario modeled a constantNe of�10,000 and was

used as a control, where the effect of drift should be weak.

We first performed a burn-in simulation step to obtain a fully coalesced population. Since our initial population size of N �28,000

with overlapping generations could take a very long time to reach coalescence, we sped-up this stage of the simulation by scaling-

down population size and scaling-up recombination/mutation rates and selection coefficients by a factor of 10 as recommended in

the SLiM 3 manual. We ran the burn-in simulation for 100,000 steps and collected the entire genealogy by the means of tree-

sequence recording93 to confirm the tree had a single root with pyslim (i.e., has reached full-coalescence94). We then loaded the

tree-sequence to start a new simulation where the scaling factors were removed. We first ran 10,000 generations and kept track

of the trend of nucleotide diversity to confirm the scaling change had not disrupted the mutation-selection equilibrium (Figure S27).

After 10,000 steps we varied the carrying capacity of the simulation to follow the different trajectories of our demographic scenarios

for 25,000 steps (Figure 4) . We randomly sub-sampled 200 individuals from the last simulation step to compare the same sampling

effort across all scenarios and models. We counted derived mutations for mutation classes of weakly deleterious (�0.001 % s < 0),

mildly deleterious (�0.01 % s < �0.001) and strongly deleterious (s < �0.01) selection coefficients. We calculated additive genetic

load as in Pedersen et al.95 by adding the sum of selection coefficients for homozygous mutations and the sum of selection coeffi-

cients times the dominance coefficients for heterozygous mutations.
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