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OBSERVATIONAL STUDY

Deriving Automated Device Metadata  
From Intracranial Pressure Waveforms:  
A Transforming Research and Clinical 
Knowledge in Traumatic Brain Injury ICU 
Physiology Cohort Analysis
IMPORTANCE: Treatment for intracranial pressure (ICP) has been increasingly 
informed by machine learning (ML)-derived ICP waveform characteristics. There 
are gaps, however, in understanding how ICP monitor type may bias waveform 
characteristics used for these predictive tools since differences between external 
ventricular drain (EVD) and intraparenchymal monitor (IPM)-derived waveforms 
have not been well accounted for.

OBJECTIVES: We sought to develop a proof-of-concept ML model differentiat-
ing ICP waveforms originating from an EVD or IPM.

DESIGN, SETTING, AND PARTICIPANTS: We examined raw ICP wave-
form data from the ICU physiology cohort within the prospective Transforming 
Research and Clinical Knowledge in Traumatic Brain Injury multicenter study.

MAIN OUTCOMES AND MEASURES: Nested patient-wise five-fold cross- 
validation and group analysis with bagged decision trees (BDT) and linear discrim-
inant analysis were used for feature selection and fair evaluation. Nine patients 
were kept as unseen hold-outs for further evaluation.

RESULTS: ICP waveform data totaling 14,110 hours were included from 82 
patients (EVD, 47; IPM, 26; both, 9). Mean age, Glasgow Coma Scale (GCS) 
total, and GCS motor score upon admission, as well as the presence and amount 
of midline shift, were similar between groups. The model mean area under the re-
ceiver operating characteristic curve (AU-ROC) exceeded 0.874 across all folds. 
In additional rigorous cluster-based subgroup analysis, targeted at testing the 
resilience of models to cross-validation with smaller subsets constructed to de-
velop models in one confounder set and test them in another subset, AU-ROC 
exceeded 0.811. In a similar analysis using propensity score-based rather than 
cluster-based subgroup analysis, the mean AU-ROC exceeded 0.827. Of 842 
extracted ICP features, 62 were invariant within every analysis, representing the 
most accurate and robust differences between ICP monitor types. For the nine 
patient hold-outs, an AU-ROC of 0.826 was obtained using BDT.

CONCLUSIONS AND RELEVANCE: The developed proof-of-concept ML 
model identified differences in EVD- and IPM-derived ICP signals, which can pro-
vide missing contextual data for large-scale retrospective datasets, prevent bias 
in computational models that ingest ICP data indiscriminately, and control for 
confounding using our model’s output as a propensity score by to adjust for the 
monitoring method that was clinically indicated. Furthermore, the invariant fea-
tures may be leveraged as ICP features for anomaly detection.

KEYWORDS: intracranial pressure; intraparenchymal monitor; machine learning; 
traumatic brain injury; ventriculostomy
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Intracranial pressure (ICP) monitoring is used 
for guiding the management of acute brain in-
jury (ABI) in patients at risk for elevated ICP or 

hydrocephalus (1, 2). Although mean ICP has been 
widely integrated into treatment standards (3), ICP 
waveforms capture continuous, high-resolution data 
on the trajectory of ICP, providing valuable informa-
tion about cerebral perfusion pressure (CPP), cere-
bral compensatory reserve, and regulation of cerebral 
blood flow and volume (4, 5). ICP-derived features 
have provided significant additional information and 
have been increasingly implemented in recent years, 
such as pulse amplitude index, the correlation between 
cerebral CPP, and pulse amplitude (RAC) (6, 7).

Machine learning (ML) approaches are powerful 
tools to further analyze and interpret ICP waveform 
data, which offer the promise to expand our ability to 
detect and predict intracranial hypertension or clinical 
deterioration (8–12). Quantitative characteristics have 
been used to enhance ICP signal quality and recognize 
nonartifactual ICP pulses (7), identify clamping of ex-
ternal ventricular drain (EVD)-derived ICP waveforms 
(13), and quantify the P1, P2, and P3 peaks within ICP 
pulse (which reflect the routine cycle of ICP in the 
brain, containing valuable continuous information on 

dynamic cerebrospinal pathophysiology, rather than 
the overall mean value) (14) (Fig. 1).

Although ML-derived ICP waveform characteris-
tics have increasingly informed treatment, there are 
gaps in understanding how ICP monitor type may 
bias waveform characteristics used for these predictive 
tools. Differences between EVD- and intraparenchy-
mal monitor (IPM)-derived waveforms have not been 
well accounted for, which may be critical to prevent 
bias in computational models that ingest ICP data in-
discriminately, particularly as these contextual data are 
missing in many large-scale retrospective datasets.

The decision to place an EVD versus an IPM may 
relate to the need for cerebrospinal fluid (CSF) drain-
age to manage intracranial hypertension (1, 3, 15–17). 
Accordingly, tools that use waveform data may be con-
founded by clinical indication, predicting outcomes 
based on patient characteristics associated with EVD 
placement, rather than signal features that encode the 
physiologic underpinnings of future risk. For example, 
EVD waveforms are altered during continuous or inter-
mittent CSF drainage (1, 18, 19), may be dampened by 
catheter malpositioning or partial occlusion (1, 20), and 
may be inaccurate after patient movement until relevel-
ing (1, 20). IPMs may also have inaccuracies related to 
varying degrees of zero drift over time, which influence 
the ICP waveform (1, 3, 16, 21). We, therefore, hypoth-
esized that there are differences in the ICP waveform 
features between EVDs and IPMs. However, in many 
clinical datasets, ICP monitor-type data are unavailable; 
the information is not encoded in physiologic monitor 
outputs and can be missed or expensive to obtain (22). 
If predictive models developed without this contextual 
information are to be robust and reliable in guiding clin-
ical management without confounding by monitor in-
dication, learning the provenance of ICP data will likely 
be necessary to ensure models are accurate and gener-
alizable. For example, this type of device information is 
essential when seeking Food and Drug Administration 
approval for software algorithms, given the need to de-
fine a “context of use” for algorithms using clinical data. 
We, therefore, sought to understand the effect of ICP 
monitor type on ICP waveform features and to develop 
a tool identifying the source of an ICP waveform that 
can aid efforts to use ICP waveform data for clinical de-
cision support (8, 14, 23–25).

In this proof-of-concept framework, we examined 
the multicenter Transforming Research and Clinical 

 
KEY POINTS

Question: What is the effect of intracranial pres-
sure (ICP) monitor type on ICP waveform features, 
and can a machine learning model be developed 
to identify the source of the ICP waveform and aid 
efforts in using waveform data for clinical decision 
support?

Findings: Sixty-two robust and top-performing 
ICP features were identified to differentiate external 
ventricular drain (EVD) from intraparenchymal 
monitor (IPM) recordings. The developed proof-of-
concept model can accurately and robustly clas-
sify ICP waveforms originating from EVD or IPM.

Meanings: This tool can impute metadata from 
large-scale retrospective datasets lacking data for 
monitor type, summarize confounding by indica-
tion for placing one monitor type versus another, 
and the invariant features may be leveraged as ICP 
features for anomaly detection.
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Knowledge in Traumatic Brain Injury (TRACK-TBI) 
ICU physiology cohort. We aimed to identify the dis-
tinctive waveform characteristics associated with each 
type of ICP monitor and to develop an ML framework 
for classifying ICP waveform data as originating from 
an EVD or an IPM.

MATERIALS AND METHODS

Population and Inclusion Criteria

The TRACK-TBI study was approved by the institu-
tional review board (IRB) of each site, and written 
informed consent was obtained from all subjects (see 
Supplementary Materials for IRB details, http://
links.lww.com/CCX/B362). Procedures were fol-
lowed in accordance with the ethical standards of IRB 
and with the Helsinki Declaration as revised in 2013. 
Inclusion and exclusion criteria for the TRACK-TBI 
study (ClinicalTrials.gov; No. NCT02119182) have 
been previously described (26–28). Inclusion crite-
ria for this study were age greater than or equal to 
18 years, enrollment from hospitals with the capa-
bility to record and extract bedside telemetry, avail-
able ICP waveform recordings with ground-truth 
labeling of ICP source, and undergoing ICP moni-
toring. Exclusion criteria for ICP epochs were cor-
rupted files, flat signal with no physiologic content, 
or duration less than 10 minutes (precluding ap-
propriate windowing for feature extraction; Fig. 2). 
The term “ICP epochs” here refers to the division of 
ICP recordings into separate files or segments. Each 
epoch typically corresponds to a distinct time period 
within the recordings. The Kruskal-Wallis one-way 
analysis of variance test for nonparametric data was 

used to investigate if there were clinical differences 
between groups with EVD, IPM, and both monitor 
types (Table S1, http://links.lww.com/CCX/B362).

ICP Data Preprocessing

To ensure consistency in our analysis, we resampled 
the ICP waveforms to a common sampling frequency 
using a finite impulse response antialiasing low pass 
filter on the raw signal (29). This low pass filter attenu-
ates the frequency components above a specific cutoff 
frequency, downsampling the bandwidth of a signal. 
Given that most waveforms were recorded at a sam-
pling frequency of 125 Hz and that this was the lowest 
frequency present in our study population, we selected 
this as our desired sampling frequency and subse-
quently down-sampled the remaining waveforms to 
align with it. Furthermore, a straightforward outlier de-
tection protocol was implemented based on the prob-
ability of occurrence of each sample value within each 
waveform. This protocol identifies outliers as samples 
with a probability equal to or less than 0.01, which was 
empirically obtained. These outliers were replaced with 
the median value of the respective waveform to ensure 
that artifacts with high absolute amplitude do not im-
pact our features. In post hoc experiments to evaluate 
whether the care environment or the innate monitor 
signal was imprinting information in the waveform, 
we extended our analysis by removing to ensure that 
our model performance was representative of true 
elements of the ICP signals, rather than the influence 
of environmental factors such as adjustment of EVD 
height. In the Supplementary Materials (http://links.
lww.com/CCX/B362), we have conducted comparative 
analyses to demonstrate that the added value of such 

Figure 1. Example intracranial pressure (ICP) waveform data from this cohort. A, Normal triphasic ICP. B, Abnormal, uncompliant ICP.  
C, Critical ICP.

http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
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artifacts to our model did not significantly improve its 
performance.

Feature Extraction

The necessity to extract features from various domains 
(including time, frequency, time-frequency, and non-
linear) in physiologic waveform analysis stems from 
the multidimensional nature of such data. Each do-
main captures distinct aspects of the data, facilitat-
ing a comprehensive understanding of the underlying 
patterns and dynamics. Time series data often contain 
noise or irrelevant information that can obscure the 
underlying signal. Transforming the data into different 
domains through techniques such as Fourier or wavelet 
transforms facilitates the separation of the signal from 
the noise, enhancing the ability to identify meaningful 
features and patterns within the data.

Thus, in this study, a comprehensive and established 
set of features from various domains was extracted 
and can be classified into four distinct categories: 1) 
general features, capturing the overall characteristics 
of the entire ICP waveform, 2) beat-to-beat features, 
capturing the characteristics of each ICP beat, defined 
as the period between each P1 (percussion wave), 3) 
beat variability features, capturing the fluctuations of 
time between ICP beats caused by the cardiac pulsa-
tion cycle, and 4) window-based features, capturing 
the ICP features within rolling windows with a length 
of 5 minutes and no overlap. The selection of features 
was based on previous literature in the field of time 

series analysis. These in-
cluded, but were not limited 
to, autocorrelation, en-
ergy in short-time Fourier 
transform domain, power 
spectral density features, 
approximate and Shannon 
entropy, Hurst exponent, 
Higuchi fractal dimension, 
and polynomial curve fit-
ting, calculated as previ-
ously described (6, 30–35). 
To account for the varying 
size of the ICP waveforms 
and incorporate temporal 
information, we extracted 
a secondary set of features 

that included the maximum, median, sd, 1st, 25th, 
75th, and 99th percentiles, as well as the mean and sd of 
first and second differences (lags) of beat-to-beat, beat 
variability, and window-based features. Lag features 
incorporate historical data into a time series analysis 
or forecasting model and can help capture important 
patterns and trends in the data. The first difference is 
created by taking the difference between a value in a 
time series and a previous value. The second difference 
is the first difference of the first difference feature. This 
approach allowed us to create a fixed input feature vec-
tor despite the variability in waveform length. In total, 
we extracted 842 features (Table 1).

Feature Selection and Classification

For feature selection and classification tasks, we 
used a nested five-fold patient-wise cross-validation 
scheme. The outer loop partitioned the data into five 
folds, with four of these folds comprising 80% of 
the data being used for feature selection and model 
training, whereas the remaining 20% was used for 
evaluating the model performance (Fig. S1, http://
links.lww.com/CCX/B362). This process was re-
peated until each fold had served as the test set. The 
inner loop applied another five-fold cross-validation 
procedure to the training set to select the most sig-
nificant features and repeated this process 10 times 
with different random seeds. In each fold of the inner 
loop, the top features were selected based on the out-
of-bag feature importance (36, 37). We defined a 

Figure 2. Consolidated Standards of Reporting Trials diagram of included data. ICP = intracranial 
pressure.

http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362


Observational Study

Critical Care Explorations	 www.ccejournal.org          5

TABLE 1.
List of Extracted Features

Feature 
Category Description Features Secondary Features

General Captures the overall 
characteristics of the 
entire ICP waveform

Autocorrelation
Hurst exponent (Torres-García et al [33])
Kolmogorov Complexity (Kaspar and Schuster, 1987)
Approximation entropy
Higuchi fractal dimension (Kesić and Spasić [30])
Katz fractal dimension (Wijayanto et al, 2019)
Energy at different frequency bands in the short-time 

Fourier transform domain
Spectral centroid (Kulkarni and Bairagi [31])
Spectral spread
Spectral entropy
Spectral rolloff (Tobore et al [32])
Mean and median frequency (Phinyomark et al, 2012)
Occupied and power bandwidth (Mert, 2016)
Energy in different frequency bands in power spectral 

density
Shannon entropy (Liang et al, 2015)
Periodogram slope (Lendner et al, 2020)

None

Beat-to-beat Captures the  
characteristics of 
each ICP beat, de-
fined as the period 
between each P1 
(percussion wave)

Autocorrelation
Energy in different frequency bands in power spectral 

density
Polynomial curve fitting over ICP’s beat with degree 4

Mean
Maximum
Minimum
Median
sd

1st, 25th, 75th, and 99th 
percentiles

Mean (diff1)
sd (diff1)
Mean (diff2)
sd (diff2)

Beat 
variability

Captures the  
characteristics of the 
fluctuations of time 
between ICP beats

Root mean square of successive differences
Probability of intervals > 50 ms or < –50 ms
Average beats interval in 1 min
Mean of the first lag of beats’ intervals
Histogram-based features from beat intervals (Oster  

et al, 2013)

Mean
Maximum
Minimum
Median
sd

1st, 25th, 75th, and 99th 
percentiles

Mean (diff1)
sd (diff1)
Mean (diff2)
sd (diff2)

(Continued)
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threshold, referred to as k1, as the top 600 features. 
The threshold for selecting top features is a trade-
off between choosing only the most significant fea-
tures and ensuring, we have a sufficiently large set 
for analysis (i.e., identifying jointly selected features) 
within our nested cross-validation framework. Our 
choice of threshold is purely data-driven and was de-
termined through various trials and iterations only 
on the training data to strike the right balance. The 
inner five-fold cross-validation loop was repeated 10 
times, resulting in 50 sets of k1 features. These k1 fea-
tures were then ranked by selection frequency, and 
based on a threshold, referred to as k2, the 75th per-
centile, the most frequent ones were chosen as the 
final selected feature set.

For each outer loop iteration, our model was 
trained to differentiate waveform data from an EVD 
from an IPM, using the features selected in the inner 
loop by using 150 bootstrap-aggregated decision 
trees. Subsequently, the model was evaluated on the 
hold-out test set. To conduct a comparative analysis, 
we also used linear discriminant analysis (LDA) for 
classification in the outer loop. As a more simple clas-
sifier, LDA allowed us to evaluate the robustness of 
the model and ensure performance was not a result 

of overfitted decision trees (36–38). Additionally, for 
a fair evaluation, as an extra step, we retained the 
nine patients with both monitoring types as unseen 
held-out data and used them solely for evaluation 
purposes.

Evaluation Metrics

We used a comprehensive set of seven metrics to eval-
uate the model’s performance. These included the 
area under the receiver operating characteristic curve 
(AU-ROC), sensitivity, specificity, precision, false-
positive rate, accuracy, and F1 score, where EVDs were 
classified as the positive class and IPMs as the negative 
class.

Subgroup Analysis

To ensure the reliability of our model, we analyzed its 
robustness and extracted features by assessing them 
across various patient subgroups. These subgroups 
were created using 24 potential clinical confound-
ing variables (Tables S1 and S2, http://links.lww.
com/CCX/B362). Two different strategies were used: 
clustering and propensity score-based confound-
isolating cross-validation schemes, as illustrated in 

Feature 
Category Description Features Secondary Features

Window-
based

Captures the inherent 
ICP features using a 
rolling window with a 
length of 5 min and no 
overlap

Hurst exponent (Torres-García et al) (33)
Energy in different frequency bands in power spectral 

density
Petrosian fractal dimension (Chyzhyk et al [33], Zabihi  

et al [34])
Shannon entropy
Higuchi fractal dimension (Kesić and Spasić [30])
Spectral centroid (Kulkarni and Bairagi [31])
Spectral spread
Spectral entropy
Spectral rolloff (Tobore et al [32])
Mean and median frequency (Phinyomark et al, 2012)
Occupied and power bandwidth
Energy in different frequency bands in spectral power 

density
Shannon entropy (Liang et al, 2015)
Periodogram slope (Lendner et al, 2020)

Mean
Maximum
Minimum
Median
sd

1st, 25th, 75th, and 99th 
percentiles

Mean (diff1)
sd (diff1)
Mean (diff2)
sd (diff2)

Eigenvalues of phase space (Zabihi et al [34])
Phase space nullcline (Zabihi et al [34])

diff1 = first difference, diff2 = second difference, ICP = intracranial pressure, .

TABLE 1. (Continued)
List of Extracted Features

http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
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Figure S2 (http://links.lww.com/CCX/B362). These 
methods allowed us to assess the extent to which our 
model and features remained robust in the presence of 
patient variability and potential confounding factors.

Unlike conventional cross-validation, which ran-
domly partitions data into training and testing sets, 
confound-isolating cross-validation uses various tech-
niques to stratify the data into a series of strata or folds 
(35, 38). These methods isolate one or a specific com-
bination of confounding variables within each fold, 
allowing for a more thorough evaluation of the model’s 
robustness. During the training and testing phases, 
the model is tested on a fold with a distinct confound-
ing distribution than the training folds, decreasing the 
probability of spurious correlations influencing the 
evaluation.

First, we adopted a cluster-based approach in which 
we used the k-medoids clustering algorithm (39) and 
iteratively partitioned the data into three, five, and eight 
clusters with unique clinical phenotypes. Testing on a 
distinct cluster from those used for training enabled 
us to assess the model’s performance or features when 
accounting for the confounding variable.

Additionally, we used a propensity score-based 
approach to stratify the data based on a calculated 
propensity score, representing the likelihood of an 
ICP waveform belonging to the EVD class given the 
patient’s clinical characteristics. We partitioned the 
data by propensity score quantile, forming four dis-
tinct subgroups used within the confound-isolating 
cross-validation process (Fig. S2, http://links.lww.
com/CCX/B362).

RESULTS

Patient Characteristics

Of 84 patients meeting inclusion criteria, 82 patients 
with 2667 ICP epochs, totaling 14,109.8 hours of signal 
available, met the criteria for analysis (Fig. 2). Forty-
seven patients were monitored with an EVD, 26 with 
an IPM, and 9 with both (Table S1, http://links.lww.
com/CCX/B362). As mentioned in Figure S1 (http://
links.lww.com/CCX/B362), we used the random 
downsampling approach to balance the number of 
EVD and IPM samples before training the model. 
Mean age, Glasgow Coma Scale (GCS) total, GCS 
motor score upon admission, presence and amount 
of midline shift, decompressive hemicraniectomy, 

and traumatic brain pathology were similar between 
groups. Monitor type was significantly associated with 
institutions due to differing local practices regarding 
monitor choice at the contributing institutions despite 
otherwise similar clinical presentation among their 
patients. Additionally, IPM was used more frequently 
in patients with unilateral sluggish or nonreactive 
pupils with the right pupil reactivity, yielding a statisti-
cally significant difference between the EVD and IPM 
groups. Other nonsignificant univariate differences 
between patients with an EVD or IPM can be found in 
Table S1(http://links.lww.com/CCX/B362).

Model Performance

In patient-wise five-fold cross-validation in the unseen 
test data using bagged decision trees (BDT) and LDA 
classifiers, sensitivity, specificity, F1, and AU-ROC 
exceeded 0.81 (BDT: 0.944 ± 0.038, LDA: 0.883 ± 0.051), 
0.704 (BDT: 0.869 ± 0.097, LDA: 0.817 ± 0.064), 0.828 
(BDT: 0.922 ± 0.032, LDA: 0.876 ± 0.032), and 0.866 
(BDT: 0.932 ± 0.043, LDA: 0.900 ± 0.016) across all 
folds, respectively (Tables S3 and S4, http://links.lww.
com/CCX/B362).

Adding 11 features based solely on artifactual seg-
ments did not meaningfully alter model performance, 
with no changes in any evaluation metric larger than 
0.005 for BDT (Table S10, http://links.lww.com/CCX/
B362) and 0.015 for LDA (Table S11, http://links.lww.
com/CCX/B362).

Furthermore, using the BDT (our primary classi-
fier), we obtained a sensitivity of 0.848, specificity of 
0.747, F1 score of 0.805, and AU-ROC of 0.826, based 
on nine patients with both monitoring types as unseen 
held-out data (Table S12, http://links.lww.com/CCX/
B362).

Subgroup Analyses for Rigor and Robustness

In cluster-based confound isolation cross-validation, 
we observed an average sensitivity above 0.947 when 
classifying with BDT (cluster 3, 0.947 ± 0.017; cluster 
5, 0.948 ± 0.038, cluster 8, 0.963 ± 0.033; Fig. 3A; Table 
S6, http://links.lww.com/CCX/B362) and 0.834 when 
classifying with LDA (cluster 3, 0.834 ± 0.079; cluster 5, 
0.890 ± 0.056; cluster 8, 0.917 ± 0.039; Fig. 3B; Table S7, 
http://links.lww.com/CCX/B362). Average specificity 
was above 0.724 with BDT (cluster 3, 0.724 ± 0.084; 
cluster 5, 0.813 ± 0.160; cluster 8, 0.844 ± 0.146;  

http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
http://links.lww.com/CCX/B362
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Fig. 3A; Table S6, http://links.lww.com/CCX/B362) 
and 0.692 with LDA (cluster 3, 0.692 ± 0.047; cluster 
5, 0.772 ± 0.010; cluster 8, 0.813 ± 0.128; Fig. 3B; Table 
S7, http://links.lww.com/CCX/B362). F1 scores were 
above 0.864 for BDT (cluster 3, 0.864 ± 0.071; cluster 5, 
0.902 ± 0.074; cluster 8, 0.922 ± 0.072; Fig. 3A; Table S6, 
http://links.lww.com/CCX/B362) and 0.796 for LDA 

(cluster 3, 0.796 ± 0.091; 
cluster 5, 0.858 ± 0.066; 
cluster 8, 0.874 ± 0.048; 
Fig. 3B; Table S7, http://
links.lww.com/CCX/
B362). Lastly, AU-ROC was 
greater than 0.852 for BDT 
(cluster 3, 0.852 ± 0.094; 
cluster 5, 0.901 ± 0.090; 
cluster 8, 0.929 ± 0.092; 
Fig. 3A; Table S6, http://
links.lww.com/CCX/B362) 
and 0.811 for LDA (cluster 
3, 0.811 ± 0.024; cluster 
5, 0.888 ± 0.049; cluster 
8, 0.919 ± 0.058; Fig. 3B; 
Table S7, http://links.lww.
com/CCX/B362). Across 
all metrics, performance 
increased as the number of 
clusters increased. Detailed 
reporting and further met-
rics are available in the 
Supplementary Materials 
(http://links.lww.com/
CCX/B362).

The worst groups in our 
cluster analyses, defined 
as those with sensitivity or 
specificity below 70%, were 
significantly less severe in 
pupil reactivity, total GCS 
score, and midline shift. 
The cluster 3 analysis con-
tained one worst group 
(vs. remaining patients: L 
pupil, p = 0.023; R pupil, p = 
0.039; GCS, p < 0.001; mid-
line shift, p = 0.003; Table 
2). There were two worst 
groups in the cluster 5 (vs. 

remaining patients: L pupil, p = 0.001 and p = 0.063; 
R pupil, p = 0.004 and p = 0.072; GCS, p = 0.016 and 
p < 0.001; midline shift, p = 0.004 and p = 0.011) and 
cluster 8 analyses (vs. remaining patients: L pupil, p = 
0.095 and p = 0.086; R pupil, p = 0.111 and p = 0.097; 
GCS, p = 0.800 and p < 0.001; midline shift, p = 0.004 
and p = 0.022; Table 2).

Figure 3. Model performance of confounder-isolating cross-validation for subgroup analysis.  
A, Evaluation metrics from cluster-based approach to confounder-isolation with bagged decision 
tree classifier. B, Evaluation metrics from cluster-based approach to confounder-isolation with 
linear discriminant analysis. C, Evaluation metrics from propensity score-based approach to 
confounder-isolation with bagged decision tree classifier (fold 1: 0–0.478, fold 2: 0.478–0.691, fold 
3: 0.691–0.835, fold 4: 0.835–1). D, Evaluation metrics from propensity score-based approach to 
confounder-isolation with linear discriminant analysis (fold 1: 0–0.228, fold 2: 0.228–0.582, fold 3: 
0.582–0.927, fold 4: 0.927–1).
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Using propensity score-based cross-validation, we 
found a mean sensitivity of 0.954 ± 0.048, mean speci-
ficity of 0.788 ± 0.143, mean F1 score of 0.871 ± 0.090, 
and mean AU-ROC of 0.904 ± 0.120 when classi-
fying with BDT (Fig. 3C). When using LDA, mean 
sensitivity was 0.915 ± 0.037, mean specificity was 
0.761 ± 0.090, mean F1 score was 0.887 ± 0.032, and 
mean AU-ROC was 0.898 ± 0.043 (Fig. 3D). A com-
plete list of results for the subgroup analysis can be 
found in the Supplementary Materials (Tables S6–S9, 
http://links.lww.com/CCX/B362).

Feature Selection

Examining standard, cluster-based, and propensity 
score-based cross-validation schemes, feature selec-
tion converged on 62 features jointly selected by both 
BDT and LDA methods across all evaluated cross-
validation schemes. Figure S4 (http://links.lww.com/
CCX/B362) articulates observed differences between 
EVDs and IPMs in boxplots and kernel density plots 
for a sample of the selected features, which demon-
strate greater complexity and volatility in EVDs versus 
consistency and stability in IPMs as key differentia-
tors. Features selected were Higuchi fractal dimension 
short-time-frequency energy band (11–16 Hz), spec-
tral centroid, summation of power spectral density in 
20–40 Hz, autocorrelation, coefficients of polynomial 
fit on ICP beat, Hurst exponent, eigenvalues of phase 

space (34) (Fig. S4, A and B, http://links.lww.com/
CCX/B362), coefficients of an autoregressive model 
with order 4 (Fig. S4, C and D, http://links.lww.com/
CCX/B362), Petrosian fractal dimension, Shannon 
entropy, singular values of phase space, spectral en-
tropy, spectral rolloff, mean normalized frequency of 
the power spectrum, spectral slope, and phase space 
nullcline (34) (Fig. S4, http://links.lww.com/CCX/
B362). For a complete list of features, including their 
definitions, we refer to Table S2 (http://links.lww.com/
CCX/B362).

DISCUSSION

This proof-of-concept study developed an ML model to 
accurately and robustly classify ICP waveform features 
distinct to ICP monitor type and generate automated 
metadata designating the ICP monitor as originating 
from an EVD or IPM. Our model was able to achieve 
an average F1 score of 0.922 (± 0.032) and 0.876 (± 
0.032) using BDT and LDA, respectively, in a patient-
wise five-fold cross-validation. This demonstrates the 
promise of our approach, which is further reflected in 
all computed evaluation metrics and confusion ma-
trices. These results indicate that there are meaningful 
differences in ICP waveforms from EVDs and IPMs 
and that the data source should be carefully consid-
ered and accounted for as a potential source of bias in 
future ICP waveform analysis. Additionally, where this 

TABLE 2.
Comparison of Four Potential Confounding Factors Between the Worst-Group Patients 
Against the Remaining Patients in Two Subgroup Analyses (p values)

Confounder 
Subgroup Strategy

Worst Group 
vs. Resta

Left Pupil 
Reactivityb

Right Pupil 
Reactivityb

Total Glasgow 
Coma Scale Score

Midline 
Shift

Confounder cluster 
strata

Cluster 3 0.033 0.039 < 0.001 0.003

Cluster 5 0.001 0.004 0.016 0.004

Cluster 5 0.063 0.072 < 0.001 0.011

Cluster 8 0.095 0.111 0.800 0.004

Cluster 8 0.086 0.097 < 0.001 0.022

Propensity score 
strata

Bagged decision 
trees

0.905 0.788 0.593 0.649

Linear discriminant 
analysis

0.572 0.447 0.384 0.741

aWorst-group patients were defined as any of those with either sensitivity or specificity below 70%.
bAt admission.
Cluster 5 and cluster 8, both contained the worst-group patients.
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contextual metadata is unavailable, our model may be 
trusted to generate it through analysis of ICP wave-
form characteristics with further validation on broader 
datasets.

To our knowledge, this is the first effort to detect the 
source of ICP waveforms, that is, EVDs versus IPMs, 
from signatures of their recordings. As we have dem-
onstrated, meaningful differences in ICP waveforms 
from EVDs and IPMs indicate that the ICP monitor 
type should be carefully considered and accounted 
for in future ICP waveform analyses, as it may cause 
bias and influence clinical decision-making. The de-
veloped framework illustrates that features of ICP 
monitor types are identifiable, and such features can 
be potentially informative for various analyses of ICP 
waveforms.

Lessons Learned From ICP Features

We identified 62 distinct characteristics of ICP that 
consistently emerged as the most significant features, 
regardless of the classifier, cross-validation scheme, 
or subgroup analysis used. These invariant features 
exhibit promising potential for other ICP analyses. 
Notably, of these 62 features, 44 are window-based. In 
contrast, only 15 and 4 are chosen from beat-to-beat 
and general features, respectively. This observation 
implies that the type of monitor significantly influ-
ences trends within the ICP waveform over time, as 
opposed to each cycle of the ICP pulse or the overall 
ICP signal. Additionally, the most frequently selected 
secondary features (24/62) were lag (first and second 
differences) features, which supports this conclusion 
and underscores the efficacy of lag features in ICP 
analysis. As adding features based on artifacts did not 
meaningfully alter model performance, we conclude 
that our data preprocessing did not eliminate impor-
tant information for accurate classification.

We observed a trend of higher complexity levels in 
EVDsversus IPMs. Differences in the eigenvalues of 
the covariance matrix of reconstructed phase space of 
the ICP waveform (Fig. S4, A and B, http://links.lww.
com/CCX/B362) indicate unique underlying dynamics 
and patterns present in the time series data, especially 
in such cases of complex and nonlinear systems (40). 
We speculate that this increased complexity in EVD 
signals arises from either the use of a fluid column to 
generate the signal and resulting debris or transmitted 

vibrations, lack of discretization at an intermediate 
ICP monitor breakout box before being relayed to the 
patient’s physiologic monitor, or alternatively the com-
plex milieu of the ventricular system, in which CSF 
pulsations in the lateral ventricles have phasic cou-
pling between adjacent compartments such as fourth 
ventricle or circle of Willis arterial signals (41).

EVDs exhibit a higher sd of autoregressive 
parameters (Fig. S4, C and D, http://links.lww.com/
CCX/B362), which capture the temporal patterns 
and dependencies within the time series (42), that 
is, how consistent or uniform the signal is. This 
suggests that EVDs have more significant fluctua-
tions and vary widely from one window to another 
than IPMs, which demonstrate more stability and 
consistency in the model parameters. This indi-
cates greater complexity or nonlinearity in the un-
derlying process generating EVDs compared with 
IPMs. Similarly, the distances among the inter-
sected nullclines in the phase space (Fig. S4, E and 
F, http://links.lww.com/CCX/B362), representing 
cluster 3 exhibiting distinct characteristics within 
each ICP monitor type (34), are greater in EVDs 
compared with IPMs, suggesting more volatility. 
This may arise from various factors, including ab-
rupt shifts in underlying ICP patterns, outliers, or 
alterations in the system’s dynamics, all of which 
could be attributed to clamping and drainage of the 
EVD. Unfortunately, due to the historical nature 
of this dataset, details on EVD probes and institu-
tional clamping protocols were not available to in-
clude in this analysis.

Lessons Learned From Subgroup Analysis

To ensure the reliability of our model, we have used 
subgroup analysis using clustering and propensity 
scores. In our cluster analysis, we found that increasing 
the number of clusters led to improved performance 
across all evaluation metrics. This improvement can 
be attributed to providing more clusters for training, 
allowing the model to learn more efficiently. This ob-
servation was held for BDT and LDA models (7.7% 
and 10.8% improvement in AU-ROC of BDT and 
LDA, respectively; Tables S6 and S7, http://links.lww.
com/CCX/B362). However, we also found that certain 
patients consistently performed relatively poorly (the 
worst group, defined as those with either sensitivity or 
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specificity below 70%) in the unseen test fold, regard-
less of the chosen model or number of clusters. Upon 
closer inspection, we discovered that these patients 
had significantly less severe total GCS scores, pupil re-
activity upon admission, and the amount of midline 
shift in most clustering configurations (Table 2). This 
may suggest that our identifiable ICP features are more 
apparent when ICP is abnormal and that our model 
may be limited in application to less severe patients, al-
though no significant changes were identified between 
the potential confounders of the worst-group patients 
and other patients in the propensity score-based anal-
ysis (Table 2). Importantly, our model performance 
was strongest for the most critical populations com-
pared with the marginally weaker performance in 
clusters of less severe patients, allowing for reason-
able applicability of our findings in the clinical areas of 
greatest need. However, future studies should examine 
this finding in a larger cohort, including other diagno-
ses of ABI beyond TBI, to increase the generalizability 
of this proof-of-concept study.

Sample Size to the Number of Features Ratio

In this study, the number of extracted features is rela-
tively larger than that of the sample (patients). In clas-
sical statistics, this implies overfitting. However, we 
would like to provide the following perspectives: 1) 
tree-based ensembles are highly adaptive to “large p, 
small n” problems: the robustness of tree-based ensem-
bles (our primary choice for classifier) has been proved 
empirically when the number of samples is lower than 
the features (43). Such scenarios are common in studies 
focused on genomic data analysis, where the number 
of features (genes) often exceeds the number of sam-
ples (patients). 2) Proper evaluation matters: to ensure 
our findings’ validity and avoid overfitting, we not only 
used nested cross-validation but also used confound-
isolating cross-validation to detect potential biases, 
albeit at the expense of reducing our performance. 3) 
A naive classifier shows the true discriminant power 
of features: in addition to using BDT, we repeated all 
the analyses by using a simple classifier, that is, LDA. 
This choice was made to underscore the discrimina-
tive capabilities of features rather than relying solely on 
advanced ML techniques. Thus, our proof-of-concept 
framework provides a robust performance despite the 
lower number of features.

Limitations

Our analysis confirms that decision tree-based mod-
els have demonstrated their considerable power and 
superiority in various applications (44, 45). We also 
used a simple LDA classifier to showcase the discrim-
inating ability of our features. Although LDA exhib-
ited relatively lower performance than BDT, it still 
yielded promising results on average (0.9 AU-ROC 
and F1 score 0.876) and showed smaller decreases in 
performance in subgroup analyses (5.6% reduction 
in specificity and 0.2% decrease in AU-ROC vs. 8.1% 
and 2.8% for BDT). Further, in the worst-performing 
group, LDA significantly outperformed BDT in terms 
of specificity and AU-ROC (Fig. 4, C and D). These 
results demonstrate that BDT is prone to overfitting 
despite being more sophisticated than LDA, suggest-
ing that bias may contribute to the model performance 
and highlighting the necessity of conducting further 
subgroup analyses with external datasets to robustly 
evaluate the model’s performance.

In addition, the developed ML model in this study 
is based solely on patients with TBI. Further research 
is necessary to investigate if the developed framework 
can also be used in patients with diagnoses beyond 
TBI.

CONCLUSIONS

The developed proof-of-concept ML framework ac-
curately and robustly identified features of ICP de-
rived from an EVD or IPM and was able to generate 
automated metadata designating the provenance of 
an ICP monitor based on monitor type. Accuracy was 
evident across procedures designed to ensure robust-
ness through confound-isolating cross-validation. The 
developed framework can impute metadata from ret-
rospective ICP datasets lacking data for monitor type, 
enabling future waveform analysis controlling for the 
bias introduced by the monitor type. This is especially 
critical for multicenter collaboration across datasets 
in which labels have not been harmonized or remain 
unknown due to the lack of metadata during data col-
lection. Our model can also consequently summarize 
confounding by indication for placing one monitor 
type versus another, which may itself account for dif-
ferences in treatment response or outcomes. The in-
variant ICP features may additionally be leveraged in 
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future strategies implementing ML for classification 
and prediction.

ACKNOWLEDGMENTS

The authors thank Jason K. Barber, a biostatisti-
cian from the Department of Biostatistics at the 
University of Washington, Seattle, for his help 
in data collection, as well as the Transforming 
Research and Clinical Knowledge in Traumatic 
Brain Injury Investigators: Shankar Gopinath, MD, 
Baylor College of Medicine; Ramesh Grandhi, 
MD MS, University of Utah; Christopher Madden, 
MD, UT Southwestern; Michael McCrea, PhD, 
Medical College of Wisconsin; Randall Merchant, 
PhD, Virginia Commonwealth University; Laura 
Ngwenya, MD PhD, University of Cincinnati; 
Claudia Robertson, MD, Baylor College of Medicine; 

David Schnyer, PhD, UT Austin; John K. Yue, MD, 
University of California, San Francisco.

	 1	 Department of Neurology, Massachusetts General Hospital, 
Harvard Medical School, Boston, MA.

	 2	 Department of Neurosurgery, Leiden University Medical 
Center, Leiden, The Netherlands

	 3	 Department of Neurology, University of Cincinnati, 
Cincinnati, OH.

	 4	 Department of Neurology, University of California San 
Francisco, San Francisco, CA.

Supplemental digital content is available for this article. Direct 
URL citations appear in the printed text and are provided in the 
HTML and PDF versions of this article on the journal’s website 
(http://journals.lww.com/ccejournal).

Dr. Foreman received honoraria from UCB Pharma, grant fund-
ing from the National Institute of Neurological Disorders And 
Stroke (NINDS) of the National Institutes of Health (NIH; 
K23NS101123), and he is a member of the Curing Coma 
Campaign Scientific Advisory Committee. Dr. Rosenthal 

Figure 4. Model performance of intracranial pressure (ICP) waveform-derived features. A, Area under the receiver operating 
characteristic curve (AU-ROC) with bootstrap-aggregated decision trees used for classification. B, AU-ROC curve with the linear 
discriminant analysis (LDA) used for classification. Note that the LDA method demonstrated better consistency of the AU-ROC across 
all folds (better worst-fold performance).

http://journals.lww.com/ccejournal


Observational Study

Critical Care Explorations	 www.ccejournal.org          13

receives grant funding (R01NS117904 from the NIH/NINDS, 
K23NS105950 from the NIH/NINDS, OT2OD032701 from 
the NIH/Office of the Director, W81XWH-18-DMRDP-PTCRA 
from the U.S. Army (subcontract from Moberg Analytics), and 
R01NS113541 from the NIH/NINDS, and he is a member of 
the Curing Coma Campaign Scientific Advisory Committee and 
Technical Working Group. The remaining authors have disclosed 
that they do not have any potential conflicts of interest.

Ms. Ack and Dr. Dolmans are co-first authors.

Dr. Rosenthal and Dr. Zabihi are co-senior authors.

For information regarding this article, E-mail: mzabihi@mgh.har-
vard.edu

REFERENCES
	 1.	 Berlin T, Murray-Krezan C, Yonas H: Comparison of paren-

chymal and ventricular intracranial pressure readings utilizing a 
novel multi-parameter intracranial access system. SpringerPlus 
2015; 4:1–8

	 2.	 Hagel S, Bruns T, Pletz M, et al: External ventricular drain infec-
tions: Risk factors and outcome. Interdiscip Perspect Infect Dis 
2014; 2014:708531

	 3.	 Carney N, Totten AM, O’Reilly C, et al: Guidelines for the 
management of severe traumatic brain injury, fourth edition. 
Neurosurgery 2017; 80:6–15

	 4.	 Kirkness CJ, Mitchell PH, Burr RL, et al: Intracranial pres-
sure waveform analysis: Clinical and research implications. J 
Neurosci Nurs 2000; 32:271–277

	 5.	 Czosnyka M, Pickard JD: Monitoring and interpretation of 
intracranial pressure. J Neurol Neurosurg Psychiatry 2004; 
75:813–821

	 6.	 Dai H, Jia X, Pahren L, et al: Intracranial pressure monitor-
ing signals after traumatic brain injury: A narrative overview 
and conceptual data science framework. Front Neurol 2020; 
11:959

	 7.	 Megjhani M, Alkhachroum A, Terilli K, et al: An active learning 
framework for enhancing identification of non-artifactual intra-
cranial pressure waveforms. Physiol Meas 2019; 40:015002

	 8.	 Güiza F, Depreitere B, Piper I, et al: Novel methods to pre-
dict increased intracranial pressure during intensive care and 
long-term neurologic outcome after traumatic brain injury: 
Development and validation in a multicenter dataset. Crit Care 
Med 2013; 41:554–564

	 9.	 Hüser M, Kündig A, Karlen W, et al: Forecasting intracranial hy-
pertension using multi-scale waveform metrics. Physiol Meas 
2020; 41:014001

	10.	 Quachtran B, Hamilton R, Scalzo F (Eds): Detection of intra-
cranial hypertension using deep learning. In: 2016 23rd in-
ternational conference on pattern recognition (ICPR). IEEE, 
2016

	11.	 Schweingruber N, Mader MMD, Wiehe A, et al: A recurrent 
machine learning model predicts intracranial hypertension in 
neurointensive care patients. Brain 2022; 145:2910–2919

	12.	 Ye G, Balasubramanian V, Li JK, et al: Machine learning-based 
continuous intracranial pressure prediction for traumatic injury 
patients. IEEE J Transl Eng Health Med 2022; 10:1–8

	13.	 Megjhani M, Terilli K, Kwon SB, et al: Automatic identification 
of intracranial pressure waveform during external ventricular 
drainage clamping: Segmentation via wavelet analysis. Physiol 
Meas 2023; 44:064002

	14.	 Hu X, Xu P, Scalzo F, et al: Morphological clustering and anal-
ysis of continuous intracranial pressure. IEEE Trans Biomed 
Eng 2008; 56:696–705

	15.	 Brean A, Eide PK, Stubhaug A: Comparison of intracranial 
pressure measured simultaneously within the brain paren-
chyma and cerebral ventricles. J Clin Monit Comput 2006; 
20:411–414

	16.	 Harary M, Dolmans RGF, Gormley WB: Intracranial pressure 
monitoring-review and avenues for development. Sensors 
(Basel) 2018; 18:465

	17.	 Schimpf MM: Diagnosing increased intracranial pressure. J 
Trauma Nurs 2012; 19:160–167

	18.	 Muralidharan R: External ventricular drains: Management and 
complications. Surg Neurol Int 2015; 6(Suppl 6):S271–S274

	19.	 Slazinski T, Anderson T, Cattell E, et al: Nursing management 
of the patient undergoing intracranial pressure monitoring, 
external ventricular drainage, or lumbar drainage. J Neurosci 
Nurs 2011; 08:233

	20.	 Zhong J, Dujovny M, Park HK, et al: Advances in ICP monitor-
ing techniques. Neurol Res 2003; 25:339–350

	21.	 Lescot T, Reina V, Le Manach Y, et al: In vivo accuracy of two 
intraparenchymal intracranial pressure monitors. Intensive 
Care Med 2011; 37:875–879

	22.	 Foreman B, Lissak IA, Kamireddi N, et al: Challenges and 
opportunities in multimodal monitoring and data analytics in 
traumatic brain injury. Curr Neurol Neurosci Rep 2021; 21:6

	23.	 Scalzo F, Hamilton R, Asgari S, et al: Intracranial hypertension 
prediction using extremely randomized decision trees. Med 
Eng Phys 2012; 34:1058–1065

	24.	 Scalzo F, Liebeskind D, Hu X: Reducing false intracranial 
pressure alarms using morphological waveform features. IEEE 
Trans Biomed Eng 2012; 60:235–239

	25.	 Wijayatunga P, Koskinen L-OD, Sundström N: Probabilistic 
prediction of increased intracranial pressure in patients with 
severe traumatic brain injury. Sci Rep 2022; 12:9600

	26.	 Krishnamoorthy V, Temkin N, Barber J, et al; and the 
Transforming Clinical Research and Knowledge in TBI 
(TRACK-TBI) Investigators: Association of early multiple organ 
dysfunction with clinical and functional outcomes over the 
year following traumatic brain injury: A transforming research 
and clinical knowledge in traumatic brain injury study. Crit Care 
Med 2021; 49:1769–1778

	27.	 McCrea MA, Giacino JT, Barber J, et al; TRACK-TBI 
Investigators: Functional outcomes over the first year after 
moderate to severe traumatic brain injury in the prospec-
tive, longitudinal TRACK-TBI study. JAMA Neurol 2021; 
78:982–992

	28.	 Yue JK, Vassar MJ, Lingsma HF, et al; TRACK-TBI Investigators: 
Transforming research and clinical knowledge in traumatic 
brain injury pilot: Multicenter implementation of the common 
data elements for traumatic brain injury. J Neurotrauma 2013; 
30:1831–1844

	29.	 Harris FJ: Multirate Signal Processing for Communication 
Systems. Denmark, River Publishers, 2022

mailto:mzabihi@mgh.harvard.edu
mailto:mzabihi@mgh.harvard.edu


Ack et al

14          www.ccejournal.org	 July 2024 • Volume 6 • Number 7

	30.	 Kesić S, Spasić SZ: Application of Higuchi’s fractal  
dimension from basic to clinical neurophysiology: A  
review. Comput Methods Programs Biomed 2016; 
133:55–70

	31.	 Kulkarni N, Bairagi V: Role of different features in diagnosis 
of Alzheimer disease. In: EEG-Based Diagnosis of Alzheimer 
Disease: A Review and Novel Approaches for Feature Extraction 
and Classification Techniques Elsevier Science. United States, 
Elsevier Science, 2018, pp 37–46

	32.	 Tobore I, Li J, Kandwal A, et al: Statistical and spectral analysis 
of ECG signal towards achieving non-invasive blood glucose 
monitoring. BMC Med Inform Decis Mak 2019; 19:266

	33.	 Torres-García A, Mendoza-Montoya O, Molinas M, et 
al: Pre-processing and feature extraction. In: Biosignal 
Processing and Classification Using Computational Learning 
and Intelligence: Principles, Algorithms, and Applications, 
2022, pp 59–91

	34.	 Zabihi M, Kiranyaz S, Jantti V, et al: Patient-specific seizure 
detection using nonlinear dynamics and nullclines. IEEE J 
Biomed Health Inform 2020; 24:543–555

	35.	 Zabihi M, Rubin DB, Ack SE, et al: Resting-state electroen-
cephalography for continuous, passive prediction of coma 
recovery after acute brain injury. bioRxiv 2022:2022.09. 
30.510334

	36.	 Loh W-Y: Regression trees with unbiased variable selection 
and interaction detection. Stat Sin 2002:361–386

	37.	 Nguyen T-T, Huang JZ, Nguyen TT: Unbiased feature selec-
tion in learning random forests for high-dimensional data. Sci 
World J 2015; 2015:1–18

	38.	 Chyzhyk D, Varoquaux G, Milham M, et al: How to remove or 
control confounds in predictive models, with applications to 
brain biomarkers. GigaScience 2022; 11:giac014

	39.	 Kaufman L, Rousseeuw PJ: Finding Groups in Data: An 
Introduction to Cluster Analysis. John Wiley & Sons, 2009

	40.	 Takens F: Detecting strange attractors in turbulence lecture 
notes in mathematics. Dyn Syst Turbul 1981:366–381

	41.	 Butler WE, Agarwalla PK, Codd P: CSF in the ventricles of the 
brain behaves as a relay medium for arteriovenous pulse wave 
phase coupling. PLoS One 2017; 12:e0181025

	42.	 Kay S: Spectral estimation. In: Advanced Topics in Signal 
Processing, 1988, pp 58–122

	43.	 Chen X, Ishwaran H: Random forests for genomic data anal-
ysis. Genomics 2012; 99:323–329

	44.	 Kotu V, Deshpande B: Data Science: Concepts and Practice. 
Morgan Kaufmann, 2018

	45.	 Shwartz-Ziv R, Armon A: Tabular data: Deep learning is not all 
you need. Inf Fusion 2022; 81:84–90




