Lawrence Berkeley National Laboratory

Recent Work

Title

DESIGN CALCULATIONS FOR PASSIVE SOLAR BUILDINGS BY A PROGRAMMABLE HAND CALCULATOR

Permalink https://escholarship.org/uc/item/99n4k3tr

Author

Goldstein, D.B.

Publication Date

1979-08-01

LBL-9371 (1.2 EEB-W-79-09

BL -9371

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

ENERGY & ENVIRONMENT DIVISION

Presented at the Izmir International Symposium - II On Solar Energy Fundamentals and Applications, Izmir, Turkey, August 6-8, 1979

DESIGN CALCULATIONS FOR PASSIVE SOLAR BUILDINGS BY A PROGRAMMABLE HAND CALCULATOR

David B. Goldstein, Metin Lokmanhekim, and Robert D. Clear

August 1979

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.

, p

RECEIVED LAWRENCE BERKELEY LABORATORY

JAN 14 1980

LIBRARY AND DOCUMENTS SECTION

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

LBL-9371 EEB-W-79-09

DESIGN CALCULATIONS FOR PASSIVE SOLAR BUILDINGS

BY A PROGRAMMABLE HAND CALCULATOR

David B. Goldstein, Metin Lokmanhekim, and Robert D. Clear

Lawrence Berkeley Laboratory University of California, Berkeley Berkeley, California 94720

August 1979

Presented at the Izmir International Symposium - II On Solar Energy Fundamentals and Applications, Izmir, Turkey, 6-8 August 1979.

The work described in this report was funded by the Office of Buildings and Community Systems, Assistant Secretary for Conservation and Solar Applications of the U.S. Department of Energy under contract No. W-7405-ENG-48. Additional support for the presentation was provided by the United Nations under the TOKTEN program.

CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	1
THEORY: RESPONSE FUNCTIONS	4
PROGRAM INPUT PARAMETERS	5
PROGRAM OPERATION	11
HP-67 Program	11
TI - 59 Program	19
ACKNOWLEDGMENT	24
NOTES AND REFERENCES	25
APPENDIX A: Listing of the $R_{12}^{}$, ABC, $T_R^{}$ (t), PSA-1, and	
PSA-2 Sub-Programs	29
APPENDIX B: Theory	38
APPENDIX C: Detailed Description of the Programs	47
APPENDIX D: Long Term Weather Responses	64
APPENDIX E: Example Problem Using the Program	66

DESIGN CALCULATIONS FOR PASSIVE SOLAR BUILDINGS

BY A PROGRAMMABLE HAND CALCULATOR

David B. Goldstein, Metin Lokmanhekim, and Robert D. Clear Lawrence Berkeley Laboratory University of California, Berkeley Berkeley, California 94720

USA

ABSTRACT

The behavior of room temperature in a passive solar building without backup heat is of great interest to the building designer. This paper presents programs for card-reading programmable hand-calculators which compute room temperature over the course of a design day. Instructions for calculating the input parameters, and for running the programs are given, and a brief review of the theory is provided. The program can presently be used only for single-zone unmanaged, direct-gain buildings.

INTRODUCTION

Floating, or non-thermostat-controlled, room temperature in a passive solar building is an important measure of the building's performance. Optimally designed buildings will provide temperature which floats within the comfort range of the occupants without the use of heaters or air conditioners. Even if some supplementary heating or cooling is used, the floating performance of the building is of interest to the designer in assuring that full use is made of the solar energy collected by a building, and that the optimum window area is chosen.

Solar energy collected by a passive solar building is useful only to the extent that it either balances heating loads during sunny periods or can be stored for use at night. If solar heat gain increases room temperature beyond the comfort range, then the excess heat is either lost through ventilation or else it results in discomfort. In either case, a design whose maximum temperature is lower than the designer's upper limit, (e.g., $80^{\circ}F(26.7^{\circ}C)$) is preferable to one which heats up beyond this limit.

The lowest floating temperature is also of interest to the designer. The magnitude of the minimum, and the time of day at which it occurs, will determine, for a given occupant's thermal preference characteristics, whether supplementary heat is needed.

Tradeoffs can be made in building design which affect different aspects of floating temperature behavior. Increasing the window area increases the maximum room temperature, but may also decrease the minimum temperature. Adding to the building's thermal mass decreases the magnitude of daily fluctuations in temperature without changing the daily average. Thermal mass can also delay the times of temperature extrema; for a Trombe wall, these delays can exceed 12 hours.

This paper presents a hand-calculator program which can be used to predict the floating temperature of a building, given a few simple building parameters and weather data. The calculations describe the building's response to a design day -- that is, a day with idealized (sinusoidal) weather. Two versions of the program are given; one for a Hewlett-Packard HP-67 calculator and the other for a Texas Instruments TI-59. Listings of the program are given in Appendix A.

The programs described here can be run in less than one-half hour; in some cases (e.g., those in which a few parameters are varied from an initial design), the run-time is considerably less. The methodology used in the programs can be generalized beyond the level of detail available in the programs. Some of these extensions can be done as hand calculations using intermediate outputs of the programs.

Use of this program will allow the building designer to easily predict the floating performance of a proposed single-zone, unmanaged passive, solar building. The effect on floating temperature of varying parameters such as properties of the thermal mass and area of windows can be seen and, thus, optimal values can be chosen for such parameters.

The theoretical basis of the programs is described in Appendix B, and detailed derivations can be found in Ref. 1. Some familiarity with the theory will be helpful to the user of the programs, as it will assist in evaluating the input parameters to the program. As can be seen, the theory parallels that used in many public-domain building energy use analysis computer programs (e.g., NBSLD², DOE- $2^{3,4}$, TWOZONE⁵, BLAST⁶), except that Fourier transformations are used instead of Laplace transformations, and some additional approximations are made.

The program has been validated by comparing its predictions with the measurements of floating temperature performed in two passive solar test cells at Los Alamos Scientific Laboratories.⁷ Predictions of the temperature elevation (above average ambient temperature) were accurate to within $\pm 10\%$ of measurements at all hours of the day for two tests days (see figure, page 27).⁸

THEORY: RESPONSE FUNCTIONS

This section describes the use of response functions in the programs. Their derivation is discussed Appendix B. The response functions describe the response of temperatures in the building to driving forces such as sunlight and outside air temperature. They are functions of frequency (denoted by ω); that is, they give the effect of regular variations in the driving forces at a frequency ω on the variation of building temperatures at the same frequency. The most interesting frequency is generally one cycle per day.

The surface temperatures on the inside surface of building elements (e.g., walls and floors) are described by the materials response functions R_1 and R_2 . These are complex-valued functions which are evaluated by the sub-programs for each building element. R_1 describes the response to sunlight inside the room, and R_2 gives the response to outside temperature.

The overall building performance is described by three building response functions A, B, and C, which are computed using the R_1 and R_2 results for each building element. A and C have the form of design heat loss rates. The A function relates the floating of room temperature to heating or cooling loads, while the C function describes the building response to ambient temperature variations. Response to sunlight is given by the B function.

Room temperature as a function of time is calculated using the building response functions A, B, and C, and weather data for a design day.

PROGRAM INPUT PARAMETERS

The passive solar programs require some simple weather inputs, and some data on building parameters. The building parameters are in a form which differs somewhat from other building models, since a simple format which accounts for most of the passive solar effects is desired.

Before any building parameters can be evaluated, the building must be divided into a small number of different types of construction sections. Each construction section is associated with a surface which faces the inside of the building. A typical house, for example, might have envelope wall sections, ceiling, floor, partition walls, and windows.

If a section is of thermally light construction (e.g., a window or a wall or floor with an insulating material on the inside) the 'U-value' (overall heat transfer coefficient) should be calculated, and no further data entries are needed. If a section is heavy (e.g., masonry construction; solid wood, gypsum board), then more detail is needed.

A heavy wall is divided conceptually into two layers: a thermally massive, inside-facing layer (e.g., concrete walls or floor) and an outside insulating layer (e.g., foam insulation plus sheathing or dry soil). For the inside thermally massive layer, data are needed on conductivity, heat capacity per unit volume, and thickness of the massive layer. For the insulating layer, only U-value of the insulation is needed. If there is no exterior insulation, the outside film coefficient is used.

For thermally massive elements connected to the room by an insulating layer, such as face brick on the outside of an insulated wall, the thermal mass of the outer layer is ignored. For walls with two layers of similar but not exactly equal thermal properties, such as drywall or plaster on solid wood, averaged parameters are used as an approximation. For example, a 4-inch wood wall covered on the outside by sheathing and on the inside by 1/2-inch plaster may be considered as a 4-1/2-inch wall with an insulating layer outside whose resistance is equal to that of the sheathing plus the outside air film. The properties of the thermal mass are the weighted average properties of the wood and plaster.^{*}

Walls which cannot be approximated by this two-layer method are beyond the scope of the present programs because different formulas are needed to evaluate their response functions R_1 and R_2 . Hand calculation methods which can compute these response functions are discussed in Ref. 1, appendix 2.4. An example of such a section might be a 1-inch-thick wood panel covering the inside of an 8-inch concrete wall or floor.

The program is fastest to run when the number of different surfaces or sections is minimized. The TI-59 program can only treat three different sections. To reduce the number of sections, different walls or floors with similar thermal properties can be combined into a single section; and sections which are much lighter than the rest of the house can be considered light.

To make the whole wall's U-value come out correct, one should average the inverse of conductivity rather than conductivity itself.

One can, for example, combine 4-inch frame envelope walls, 8-inch frame ceilings and floor, and 4-inch frame partition walls into a single section (call it a 6-inch frame wall) if the outside layer's U-value (U_r) is adjusted such that the heat transfer coefficient is the same as it would have been if each section were treated separately. (See Appendix E for an illustration of this process.)

In detailed building energy use analysis programs, such as DOE-2, NBSLD, BLAST and TWOZONE, frame walls are considered as two different sections; one with the properties of the solid wood (stud) fraction, and the other with the properties of the insulated section. This approach will also work in the hand-calculator programs, at the expense of adding an extra surface.

Once the number of surfaces has been established, the user must estimate how much of the solar radiation entering the house is absorbed on each surface. The fraction of solar gain absorbed on a surface is designated by α . The sum of α 's for all heavy surfaces is less than one, because some fraction of the sunlight is absorbed by light surfaces or furniture. This fraction is released immediately to the room, and is called α_R . There are at present no simple methods for determining the values of the α 's from theory, even for simple room geometries. For complex geometries, even the detailed computerized methods break down. Empirical evaluation is a possibility. Fortunately, building performance does not appear to depend crucially on the exact evaluation of these parameters.

As a rough guideline, for a dark floor and light walls and ceiling, $\alpha_{\text{floor}} \approx .45$, $\alpha_{\text{envelope walls}} \approx .10$, $\alpha_{\text{partition walls}} \approx .20$, $\alpha_{\text{ceiling}} \approx .10$, $\alpha_{\text{R}} \approx .15$. These estimates are based on computer runs using the "Lumen

II" program⁹ to calculate radiation balance for a prototype passive solar room in winter.

If the walls are dark, this changes to: $\alpha_{floor} \approx .30$, $\alpha_{envelope walls} \approx .20$, $\alpha_{partition walls} \approx .35$, $\alpha_{ceiling} \approx .05$, $\alpha_{R} \approx .10$.

Following is a list of input parameters needed.

For each massive surface:

- K- The thermal conductivity of the inside massive layer (in Btu/OFft-hr). (Note that many handbooks express K in other units, such as Btu-in/OF-ft²-hr).
- ρc The heat capacity per unit volume (Btu/OF-ft³). This is usally obtained by finding the density ρ and specific heat c from handbook tables, and multiplying these values. $\rho c \approx 9$ for wood and varies from about 15 to 30 for concrete.
- d The thickness (in feet) of the massive part of the section.
 For the partition walls use half the wall thickness.
- h The inside film heat transfer coefficient coupling the surface to the room air (in $Btu/^{OF}$ -hr-ft²). A typical value is 1.5, although sparsely furnished buildings with few partition walls may have lower values (\sim 1).
- U_r The U-value of the resistance between the outside of the massive part of the section and the ambient air (in Btu/OF-ft²-hr). Typically, $U_r \cong 5$ for a bare thermal mass or about 0.1 for an insulated mass. Concrete slab floors on grade with perimeter insulation have $U_r \sim 0.01$. For partition walls, $U_r = 0$.

- α The fraction of solar energy entering the house which is absorbed on the surface (including multiple reflections). α is dimensionless.
- A The total area of the surface facing the room (ft 2).

For the whole building:

- \hat{U}_q The design heat loss of the building per degree temperature difference through all quick heat transfer mechanisms, including window heat loss, infiltration loss, and conduction through quick construction sections (in Btu/OF-hr).
- α_R The fraction of solar energy entering the house which is absorbed on light surfaces, furniture, carpet, etc. (α_R is dimensionless.)
- H The daily average heater output plus internal loads (Btu/hr).
 Typically, internal loads are about 2000 Btu/hr for a residential unit in the United States.

Weather parameters:

- ω_0 Daily frequency: 2π radians/24 hr.
- t_d The length of the day (in hours) from sunrise (or time of first solar gain through the window) to sunset (or time of last solar gain).
- $|S_1|$ Amplitude of daily solar gain through the windows (Btu/hr). In practice this is obtained by requiring that daily total solar gain is correct; that is, $\int |S_1| \sin \omega_1 t$ equals the daily solar gain. Thus

$$S_{1} = \frac{\pi}{2t_{d}} \times \text{daily solar gain}$$

Daily solar gain can be obtained for a sunny day from ASHRAE solar heat gain factors, 10^{10} or it can be approximated by multiplying window

transmissivity by measured solar heat flux on a surface oriented in the same direction as the window. Typical winter transmissivities for south-facing windows are ~ 0.85 for single-pane, 0.75 for doublepane, and 0.65 for triple-pane glass. To model cloudy days, the value of S₁ must be reduced. Solar gain through all windows is considered in computing S₁. Errors can result if east or west window area is large compared to south window area.

- \overline{T}_A Average ambient temperature in OF .
- $|\Delta T_A|$ The amplitude of diurnal temperature fluctuations (°F) or one-half the difference between maximum and minimum temperature.
- t_{ϕ} The number of hours between sunrise and maximum ambient temperature. Note that minimum temperature is modeled as occurring 12 hours from maximum, so choose t_{ϕ} for best overall fit of sinusoidal temperature,

 $T_{A} = \overline{T}_{A} + \Delta T_{A} \cos(\omega_{o}(t-t_{\phi}))$ to real temperature.

- \overline{S} For a weather cycle in which $|S_1|$ varies sinusoidally from day to day, the average value of $|S_1|$, (Btu/hr).
- ΔS_w For a weather cycle, the amplitude of variation of $|S_1|$ over the cycle, (Btu/hr).
- ω_W Frequency of weather variations (in radians/hr). ω_W is smaller than ω_0 ; typically $\omega_W \cong .1\omega_0$.
- ΔT_{A_v} Amplitude of weather-cycle variation in ambient temperature (°F).
- t_a The time in the weather cycle at which the ambient temperature is maximized (hrs).

 t_s - The time in the weather cycle at which solar gain is maximized (hrs).

Results of weather cycle variations are not presently computed in the HP-67 program; however, the response functions can be obtained from the program and the weather cycle response may be computed by hand, as discussed in the HP program description.

PROGRAM OPERATION

This section describes the operation of the program from the point of view of the user. It assumes that the user has already evaluated all the building and weather parameters. A more detailed description of the HP-67 and TI-59 programs is given in Appendix C. A listing of the programs will be found in Appendix A. The HP-67 program and the TI-59 program are different in structure, so they are described separately below. The instructions must be followed exactly to assure correct output.

To check the performance of the programs and the selection of input parameters, a sample problem is set up and solved in Appendix E.

HP-67 Program

This program consists of three sub-programs. The first, sub-program 'R₁₂', calculates the R₁ and R₂ functions for a surface, given the building parameters for its construction section. The functions as evaluated at five frequencies $(0, \omega_W, \omega_0, 2\omega_0, \text{ and } 3\omega_0)$ and the results are read out on a data card. This program is run once for each surface.

The results on the data card produced by this program are valid for any material surface with the same construction as the one computed, so that

if many runs are to be made on buildings of similar construction, the user may wish to build up a library of R_{12} data cards for commonly used construction sections.

For construction sections beyond the scope of the R_{12} sub-program, response functions can be computed manually and written onto data cards to be used in the rest of the calculation.

The second sub-program, 'ABC', computes the Building Response Functions from the data stored on R_{12} data cards. Each data card is read into the calculator once, some additional data are entered, and the calculator computes the effects of the new surface on A, B, and C. Any number of surfaces may be used. When the ABC sub-program is completed, the results are written on a data card; the card contains A and B (evaluated at all five frequencies) and $C(\omega_w \text{ and } \omega_0)$. Note that $C(0) \equiv A(0)$.

The final sub-program, 'T_R', takes the data from the 'ABC' sub-program and computes coefficients of e^{iwt} from Eq. (B11) in Appendix B. The program next evaluates the temperature for each hour of the design day using (B11). It displays t, the time (relative to sunrise), for one second; then displays T_R(t) for 5 seconds (or prints it); then displays t for the next hour and the new T_R. The first time and temperature displayed correspond to (solar) midnight, the second to la.m., etc. The coefficients of Eq. (B11) used to evaluate T_R are retained in memory.

At present, the effects of internal load and heater output must be added manually by reading A(O) from the ABC data card, decoding the entry using subroutine 'd' of the ABC or T_R sub-programs, and adding the temperature difference H/A(O) to the results for T_R . Response to weather cycles longer

than one day must also be computed manually, as described at the end of the ${\rm T}_{\rm R}$ sub-program.

 R_{12} sub-program: Run this once for each material. Angle mode must be set to 'radians'.

1) Enter Input: ω_0 in STO A $\frac{\omega_0}{\omega_W}$ in STO B^{*} $\left(\frac{\omega_0}{\omega_W}\right)$ is the period of the weather cycle in days) K in STO 1 ρ_c in STO 2 d in STO 3 h in STO 4 U_r in STO 5 O (zero) in STO I.

2) Press E.

Wait ~ 2 minutes.

Program will stop and read 'Crd' in display.

3) Feed in blank data card (both sides).

Note that the data card applies to this particular material.

Output:

The output R_1 and R_2 are encoded; can be interpreted with D routine of ABC program. The 'D' routine places the magnitude of R_1 or R_2 in the 'x' register and the phase angle in 'y'

*Program will not run if this storage register contains 'zero'.

R ₁ ((0)	i	n	S	то	()
R ₂ ((0)	i	n	S	т0		l
R ₁ ((ω _w)	i	n	S	TO	ć	2
R ₂ ([ω _w)	i	n	S	то		3
R ₁ ((ω ₀)	1	n	S	то	2	1
R ₂ ([ω ₀)	1	n	S	то	Į	5
R ₁ ((2ω ₀)	i	n	S	то	e	5
R ₂ ((2ω ₀)	i	n	S	т0	: 7	7
R_1	(3 _{ω0})		in		ST	0	8
R ₂	(3ω ₀)		in		ST)	9.

<u>ABC sub-program</u>: Run this once for the whole building after all R_{12} data cards have been obtained. Angle mode must be set to 'radians'.

1) First: press E.

Calculator will display '8'.

Press 'g' MERGE (or 'f' MERGE on HP 97). 2)

3) Read in R_{12} data card for 1st material.

4) Input h in STO A

A in STO B for the 1st material. α in STO C

5) Press R/S; wait \sim 2 minutes.

Calculator will stop and display '8'.

Repeat steps (2) - (5) for each surface. 6)

- 7) After inputting all R_{12} data cards,
 - enter \hat{U}_q in STO A
 - α_R in STO B.

Set Flag O (press 'h' 'SF' 'O').

- Press R/S; wait ∿2 minutes.
 Display will read 'Crd'.
- 9) Feed in blank data card for ABC data.
 - Note that output is encoded. Output for A and C can be decoded using by pressing 'd'. Output for B can be decoded by pressing 'D' The magnitude of the response function appears in 'x' register and the phase angle in the 'y' register.

Output:	A(0)	in	ST0	0
	B(0)	in	ST0	1
	Α(ω _W)	in	ST0	2
	Β(ω _W)	in	ST0	3
•	Α(ω ₀)	in	ST0	4
	Β (ω ₀)	in	ST0	5
	A(2ω ₀)	in	ST0	6
	B(2ω ₀)	in	ST0	7
	A(3ω ₀)	in	ST0	8
· · · ·	B(3ω ₀)	in	ST0	9
	C(ω _W)	in	ST0	10
	C(ω ₀)	in	ST0	11.

$T_{R}(t)$ sub-program:

 Read ABC data card. (This may be unnecessary if ABC has just been calculated.) 2) Press $P \leftrightarrow S$.

3) Enter weather data

0 (zero) in STO I $|\Delta T_A|$ in STO 5 t_{ϕ} in STO 6 t_d^* in STO 7 S_1 in STO 8 $\overline{T_A}$ in STO 9 ω_0 in STO C.

4) Press 'E'.

Output: After ~ 1 minute calculator will flash for <u>1 sec</u> the time⁺ at midnight, then for 5 sec, the temperature at that time; then flash for <u>1 sec</u> the time 1 hour later and flash for 5 sec the temperature at 1 a.m.; etc. Note that these temperatures do not include the effects of internal loads or supplementary heat.

On HP 97, hour will flash, ${\rm T}_{\rm R}$ will be printed.

 ${\rm T}_{\rm R}$ also provides the following coefficients from Eq. (B11)

 $|S_1| d_0 \frac{B(0)}{A(0)}$ in STO 0 $|S_1| d_0 \frac{B(\omega_w)}{A(\omega_w)}$ in STO 2 - 3[‡]

^{*}Program may fail for $t_d = 6$ or 12; if there is a problem, try 6 or 12±.001.

[‡]Magnitude of complex number is in the first register; argument is in the second.

⁺Relative to sunrise.

$$|S_{1}| d_{1} \frac{B(\omega_{0})}{A(\omega_{0})} \text{ in } STO 4 - 5^{*}$$

$$|S_{1}| d_{2} \frac{B(2\omega_{0})}{A(2\omega_{0})} \text{ in } STO 6 - 7^{*}$$

$$|S_{1}| d_{3} \frac{B(3\omega_{0})}{A(3\omega_{0})} \text{ in } STO 8 - 9^{*}$$

$$\frac{C(\omega_{W})}{A(\omega_{W})} \text{ in } STO 10 - 11^{*}$$

$$\frac{C(\omega_{0})}{A(\omega_{0})} \text{ in } STO 12 - 13^{*}$$

Subroutine D of ${\rm T}_{\rm R}$ decodes representations of ${\rm R}_1,~{\rm R}_2,$ and B into polar format.

Subroutine d of T_R decodes representations of A and C.

Calculating response to weather cycles:

As discussed in Appendix D, only three terms need be added to the daily response calculation to compute response on any given day of a weather cycle. These terms are given in Eq. (D4) of Appendix D, "Long-term Weather Response."

To perform the computation; set $|S_1|$ equal to the amplitude of solar gain on the day in question:

 $|S_1| = \bar{S} + \Delta S_w \cos \omega_w (t-t_s)$

where t is evaluated at noon of the day of interest.

Magnitude of complex number is in the first register; argument is in the second.

 \overline{T}_A is set equal to the average temperature for the whole cycle. The program is then run and results recorded for T_R at each hour. To these results are added the three terms from Eq. (D4).

The first term, $(\bar{S} - |S_1|) B(0)/A(0) d_0$, is computed by pressing RCL 0 and multiplying the result by $(\bar{S} - |S_1|)/|S_1|$. This temperature change is added to T_R at all hours.

The second term, $\Delta S_w B(\omega_w)/A(\omega_w) d_0 e^{i\omega_w(t-t_s)}$, is obtained as follows: Compute $\omega_w(t-t_s)$ and then enter '1'. Press RCL 3, then RCL 2. Press 'B' for complex multiplication. Then multiply the result by $\Delta S_w/|S_1|$ to get the complex number represented by this term. The temperature change is the real part of this number; Press \neq R and read the result from the x register. In principle, this result is different each hour of the day, but the variation is usually so slow that only two or three hours need be calculated; the rest can be obtained by linear interpolation.

The third term, $\Delta T_{A_W} C(\omega_W)/A(\omega_W) e^{i\omega_W(t-t_a)}$, is obtained similarly to the second. $\omega_W(t-t_a)$ is computed, then '1' is entered. The programmer presses $P \leftrightarrow S$, then RCL 1 and RCL 0, then (subroutine) B. The result is multiplied by ΔT_{A_W} and the real part taken by pressing $\rightarrow R$.

Addition of these three terms completes the calculation of response to long-term weather.

TI - 59 Program

This program consists of two sub-programs, PSA-1 and 2, which take input data on the building and weather and compute building response. The response is calculated at each frequency, and the results added cumulatively.

When the next term changes the results by a sufficiently small amount, usually when the frequency is greater than 3 cycles per day ($\omega > 3\omega_0$), the user terminates the calculation.

The first sub-program, PSA-1, accepts all the building parameter data and most of the weather data in its first steps. It calculates and displays the steady-state room temperature response of the building, then Fourier analyzes the solar gain function S (t) into its amplitudes d_n . These results are displayed (and printed) by the calculator, and must be retained by the user for manual entry in PSA-2.

The second sub-program, PSA-2 uses the data which were stored in the memory registers by PSA-1, and the d's generated from PSA-1. The program calculates the room temperature component at a given frequency, then adds these results to the sum of those previously computed at other frequencies. After four to five passes through this program, the results for $T_R(t)$ converge to the final answer. To get the room temperature, the user must input the steady-state term computed in PSA-1.

This program expresses the time delays somewhat differently than they are defined in the parameter section of this paper. It uses the variable ϕ to represent the phase delay (in hours) of a given weather term.

- For the ΔT_A terms, $\phi = -$ (the number of hours from midnight to the time of the temperature maximum).
- For the ΔT_{A_w} term, $\phi = -$ (the number of hours from the beginning of the temperature cycle to the time of maximum temperature).
- For the ΔS_w term ϕ = (the number of hours from the beginning to the weather cycle to the maximum of solar amplitude S_1).

• For the $|S_1|$ solar terms, $\phi = -$ (the number of hours from midnight to sunrise).

Note the negative signs in the definitions of all ϕ 's.

PSA-1 sub-program instructions: (using Master Library module)

- Read in program by entering 1, then pressing INV 2nd WRITE and feeding in the first side of the card. Next, enter 2, press the same keys, and read in side 2.
- 2) Choose the surface (i=0,3) for which you will enter the parameters. Surface 0 refers to general parameters such as $|S_1|$ and \hat{U}_q . Up to three surfaces are allowed.
- 2a) Enter surface number (i) and press E. Calculator will display '20'.

3) Enter parameter in order for surface i

(0)	Enter d _i	or	s ₁	Press A
(1)	Enter (<mark>1</mark>) i	or	Ûq	Press A
(2)	Enter h _i	or	TA	Press A
(3)	Enter K _i	or	π/t _d	Press A
(4)	Enter $(\rho c)_i$	or	H	Press A
(5)	Enter a _i	or	α _R	Press A
(6)	Enter A _i	or	∆T _A	Press A
Then	return to Step	2a.		

3b) To correct a parameter, return to step (2), and enter the number of the surface; then press E and enter the substep number shown in step 3 (e.g., '4' for ρ c) and press B, then enter the correct

	parameter value and press 'R/S'.
4)	Enter the number of surfaces used; press E. Calculator will display '20'.
5)	Press C; calculator computes H/A(0) and prints result.
6)	Press 'R/S'; calculator computes and adds steady-state ambient temperature and prints \overline{T}_{A} .
7)	Enter t_d^* ; press R/S. Calculator prints $d_0 S_1 $ B(0)/A(0).
8)	Press 'R/S'. Calculator prints steady-state component of T_R . Record this value for future use.
9)	Compute Fourier components of solar gain d _n for each frequency of interest 'n'. a) Enter n (you will need n=1, 2, and 3 in most cases). b) Press D [*] .
	 c) Calculator displays Im(d_n) (imaginary part of d_n). Record this value for later entry. d) Press x ↔ t. e) Calculator displays Re(d_n) (real part of d_n): Record this value for later keyboard entry. f) Go back to step 9a) and enter another value of n.
10)	Press 2nd D; calculator computes and displays d _o .
11) _.	Keep calculator on and run sub-program PSA-2.
*_	

*For $t_d = 6$, 12, or few other values, calculator will attempt to divide by zero, resulting in an error. If this happens, re-enter t_d as .001 larger or smaller and try again.

PSA-2 sub-program instructions:

- Read in PSA-2 (after having run PSA-1 to fill the calculator memories with data). Enter '1', press INV 2nd WRITE and feed in the first side of the card. Then enter 2, press the same keys, and read in side 2.
- 2) Run through steps 3 10 once for each frequency of interest (except $\omega=0$). Choose a frequency ω .
- 3) Computes $R_1(\omega) R_2(\omega)$, and $A(\omega) B(\omega)$ and $C(\omega)$. Enter the period length in days (ω_0/ω) ; press A. Calculator will display $Im(R_1(\omega))$ for the first surface. To see Re $(R_1(\omega))$, press 'x \leftrightarrow t'. To see Re $(R_2(\omega))$, press RCL 10. To see Im $(R_2(\omega))$, press RCL 11.
- 4) Press R/S. (If R_1 or R_2 has been examined, press R/S twice.)
- 5) For two or more surfaces press 'R/S' to compute R_1 and R_2 for each surface. Display is as shown in Step 3.
- 6) Press R/S
- 7) Compute ambient temperature term at frequency ω . If there is no such term, go to step 9.

Enter ΔT_A or $|\Delta T_{A_w}|$.

Press B.

Calculator displays Imaginary Part of weather term. To see real part, press 'x \leftrightarrow t'. To see the term hour by hour, press 'R/S'. Calculator flashes time for 1 sec and temperature from this term for 4 sec.

- 8) Enter ϕ for the weather term, press E; calculator will display '2'.
- 9) To compute solar term at frequency ω , enter Re(d_n) and press C.
 - (If $\omega = \omega_w$, enter d_0). Enter Im (d_n) and press 'R/S'. Enter $|S_1|$ or $|\Delta S_w|$ and press 'R/S'.
 - Calculator will display imaginary part of solar term at frequency ω . Press 'x \leftrightarrow t' to see real part.

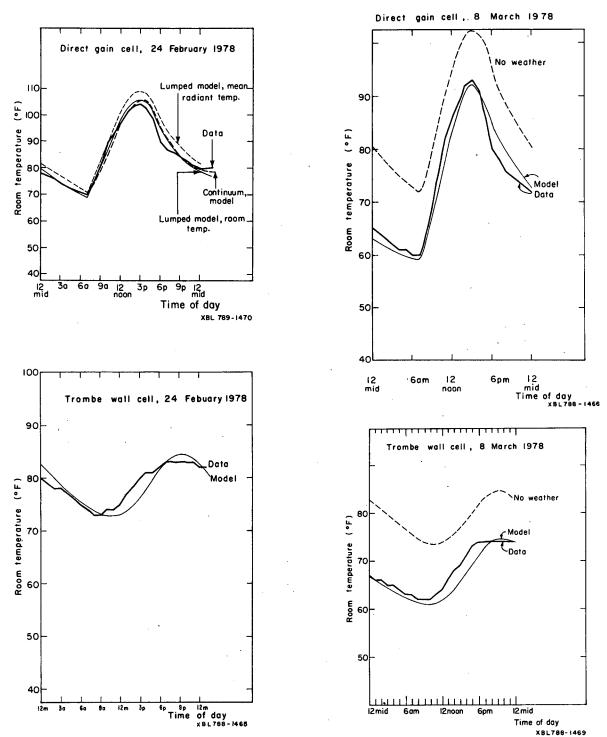
To see the term hour-by-hour, press R/S; calculator flashes hour for 1 sec and solar term for 4 sec.

- 10) Enter ϕ for solar term, press E. Calculator will display '2'.
- 11) Go back to Step (2) and run through the program for another frequency.
- 12) If all frequencies of interest have been run, enter 0 and press STO 23 and STO 4. Then enter the steady-state part of T_R obtained from Step 8 of PSA-1 and press STO 3. Press E, then press D and calculator will print $T_R(t)$ for every other hour of the day beginning with midnight. If no printer is available, these 12 temperatures are found successively in RCL 48-59.

ACKNOWLEDGMENT

This passive solar building model was developed as part of a project on analytic building calculations at Lawrence Berkeley Laboratory, initiated by Sam Berman of LBL and Robert Richardson of New York University.

We wish to thank Ray Kinoshita for her assistance in performing the calculations in support of the frame wall model used herein. Her comments on the program operating instructions and evaluation of the parameters were also helpful in improving the usability of the program.


NOTES AND REFERENCES

- D. B. Goldstein, <u>Some Analytic Models of Passive Solar Building</u> <u>Performance</u>. Lawrence Berkeley Laboratory, LBL-7811, November, 1978, and Garland Press, New York City, 1979.
- T. Kusuda, "NBSLD, Computer Program for Heating and Cooling Loads in Buildings." Center for Building Technology, U.S. National Bureau of Standards, NBS Building Science Series 69, 1976.
- 3. Metin Lokmanhekim, et al. "DOE-1: (Formerly Cal-ERDA), A New Stateof-the-Art Computer Program for the Energy Utilization Analysis of Buildings." Lawrence Berkeley Laboratory, LBL-8974, 1979. Presented at the Third International Symposium on the use of Computers for Environmental Engineering Related to Buildings, Banff, Alberta, Canada, May 10-12, 1978.
- 4. Metin Lokmanhekim, et al. "DOE-2: A New State-of-the-Art Computer Program for the Energy Utilization Analysis of Buildings," Presented at the Second International CIB Symposium on Energy Conservation in the Built Environment, Copenhagen, Denmark, May 28-June 1, 1979.
- 5. A. J. Gadgil et. al. "TWOZONE User's Manual." Lawrence Berkeley Laboratory, LBL-6840, 1978.
- BLAST is copyrighted by the Construction Engineering Research Laboratory,
 U.S. Department of the Army, Champaign, Illinois.
- J. D. Balcomb, J. C. Hedstrom, and R. D. McFarland, "Passive Solar Heating of Buildings." Los Alamos Scientific Laboratory, LA-UR-77-1162, 1977.
- 8. See Ref. 1, Section 3.

9. Lumen-II is a proprietory lighting analysis program written by David
L. DiLaura of Smith, Hinchman, and Grylls, available for use from Computer Sharing Services, 2498 W. Second Ave., Denver, Colorado, 80223.

ŗ

10. ASHRAE, <u>Handbook of Fundamentals</u>. 1977. Chapter 26, Tables 17-25

Predicted room temperature and observed data as a function of time of day for 24 February 1978 (left), and 8 March 1978 (right). <u>Top</u>: LASL direct gain cell; <u>bottom</u>: LASL Trombe wall cell. For 8 March, the curve labeled "no weather" assumes that all previous days had the same weather; the curve labeled "model" accounts for the previous two weeks' weather.

APPENDIX A: Listing of the R₁₂, ABC,

T_R(t), PSA-1, and PSA-2 Sub-Programs

R.	_		T _R (t), PSA	-1, and	PSA-2	Sut	-Programs		
R2		<u></u>	-						76
8 01	BLBLA	21 11	851	ST09	35		101 102	ENT†	- 35 -21
8 02	+R o⊤op	44	652 653	RTH #LBLC	21	24	102	ся <i>11</i> 7 Р	-21
60 3	STOD	35 14	8 54	EEX		-23	183 184	STOO	35 8 0
884	RI STOF	-31	65 5	4		0 4	105	XZY	-41
90 5	STOE R4	-31	8 56	· x		-35	106	STOC	35 13
886 887	×+ →R	-31 44	6 57		16		107	CHS	-22
88 8	RCLD	36 14	858			01	108	XZY	-41
869	+	-55	859			80	109	1/X	52
610	X≠Y	-41	868			-35	110	RCL4	36 84
011	RCLE	36 15	861			-41	111	X	-35
812	+	-55	862		21		112	RCL5	36 85
813	XZY	-41	863		16-	-45	113	X	-35
814	+F	34	8 64	ST 01	. 22		114	RCLC	3 6 13
815	RTH	24	865			-55	115	RCLØ	36 8 0
016	#LBL B	21 12	86 6			24	116	CSBA	23 11
8 17	STOD	35 14	. 867		21		117	RCL9	36 8 9
8 18	K ‡	-31	8 68			82	118	RCL8	36 8 8
619	STOE	35 15	0 69		16-		119	CSE E	23 12
820	R↓	-31	878			-35	129	PIS	16-51
021	RCLD	36 14	071			-55	121	ST08	35 88
822	X	-35	8 72		22		122	XIY	-41
823	XZY	-41	073		21			ST09	35 8 9
824	RCLE	36 15	874		36		124	.P#S	16-5 1
825	+	-55	875		16-		125 126	0 RCL4	00 36 04
826	XIY	-41	0 76		22	87 82	120	RCL4	36 85
827	RTN	24	877 878			-24	127	KULJ +	-55
9 28	#LBL0	21 00 35 13	679			81	129	RCL7	36 87
8 29 838	STOC Entt	-21	88 8			-45	130	RCLE	36 86
0 30 0 31	ex	33		. 3		83	131	C SB5	23 12
0 32	RCLC	36 13			16-		132	PIS	16-51
833	Chs	-22	883		16 21		133	RCL9	36 09
834	ENTI	-21	8 84			-31	134	RCL8	36 88
035	ex	33	6 85		21 16		135	PIS	16-51
836	ESBA	23 11	886		36		136	ESBA	23 11
03 7	2	02	087	X		-35	137	1/X	52
838	÷	-24	8 88	RCL2	36		138	XZY	-41
839	ST06	35 BE	88 9	x	-	-35	139	CHS	-22
848	X≓Y	-41	890	RCL1	36		148	P\$S	16-51
841	ST07	3 5 <i>0</i> 7	e 91	÷		-24	141	ST09	35 8 9
842	X≓Y	-41	8 92			82	142	XZY	-41
843	RCLC	36 13	8 93			-24	143	ST08	35 88
844	CHS	-22	094	{X}		54	144	PIS	16-51
845	ENT†	-21	89 5		35		145	RCLC	36 13
84 6	e×	33	896	RCL3	36		146	CHS	-22
847	CHS	-22	897			-35	147	RCLØ	36 88
54 8	CSBA	23 11	69 8	C SB0	23		148	1/X	52 76 85
84 9	ST08	35 88			36		149	RCL5	36 8 5
850	X‡Y	-41	180	RCLO	36	88	150	×	-35

151	RCL9	36 89	208	XZY	-41	836	ST0 2	. 22 82
152	RCL8	36 88	289	ESB C	23 13	837	#LBLD	21 14
153	CSE B	23 12	218	STO:	· 35 45	838	CF2	16 22 82
154	RCL7	36 87	211	ISZI	16 26 46	839	#LBL6	21 86
155	RCL6	36 86	212	XZY	-41	848	1	81
156	CSBA	23 11	213	<u> </u>	80	° 841	8	· 00
157	P≓S	16-51	214	XZY	-41	842	· +	-24
. 158	RCL9	36 8 9	215	G SBC	23 13	•••••••••••••••••••••••••••••••••••••••	STOE	35 15
159	RCL8	36 8 8	216	STOI	35 45	844	FRC	16 44
160	C SBB	23 12	217	ISZI	16 26 46	64 5	1	01 .
* 161	CSB C	23 13	218	P‡ S	16-51	846	0	80
162	RCL9	36 89	219	RCLB		847	X	-35
16 3	RCL8	36 8 8	228	1/X	52		STOD	35 14
164	8	80 ·	221	etod		84 9	- CLX	-51
165	Rt	16-31	222	#LBLc	21 16 13	650 .		36 15
166	STO i	35 45	223	NDTA	16-61	851	INT	16 34
167	ISZI	16 26 46	224	• P ‡S •	16-51		F2?	16 23 82
168	PZS	16-51	:		•	853	GT04	22 84
169	CLX	-51	. •			654	EEX	-23
170	RCL5	36 85				# 55	CHS	-22
171	GSBB	23 12	AB	C	•	856	4	84
172	GSBC	23 13				- 657	X	-35
173	PIS	16-51	• • • • • • • • • • • • • • • • • • •	#LBLA	21 11	85 8	#LBL5	21 05
174	STOI	35 45	882	÷Ę	44	859	RCLD	36 14
175	'ISZI	16 26 46	86 3	STOD	35 14	668	XZY	-41
176	F2?	16 23 82	68 4	RJ	-31	9 61	RTH	24
177	GTOC	22 16 13	. 885	STOE	35 15	* 86 2	*LBLC	21 16 13
178	P#S	16-51	896	R4	-31	8 63	EEX	-23
179	GTOE	22 15	89 7		44 36 14	864	2	8 2 -35
180	#LBL9	21 89 36 01	898	RCLD	-55	865	X GT03	22 83
181	RCL1 RCL3	36 03	68 9	XZY	-41	866	#LBLd	21 16 14
182	KULJ ÷	-24	018 011	RCLE	36 15	867	SF2	16 21 82
183 184	STOR	35 88	012	KULE	-55		572 6706	22 8 6
185	1/X	52	012	XZY		070	*LBL4	21 84
186	RCL4	36 84	8 14	→P	34	871	EEX	-23
187	X	-35	815	RTN	24	672	CHS	-22
188	RCL5	36 85	8 16	#LBLC	21 13	673	2	82
189	X	-35	017	EEX	-23	874	x	-35
198	RCL4	36 84	018		84	875	GT05	22 85
191	+	-55	0 19	x	-35	676	#LBLE	.21 15
192	RCL5	36 85	828	#LBL3	21 83	67 7	CF.Ø	16 22 86
193	· +	-55	821	INT	16 34	9 78	CLRG	16-53
194	STOC	35 13	822	- 1	81	8 79	PIS	16-51
195	1/8	52	. 823	8	88	890	CLRG	16-53
196	RCL5	36 85	824	. x ,	-35	681	PIS	16-51
197	RCL8	36 88	825	XZY	-41	862	#LBLe	21 16 15
198		-24	626	#LBL2	21 82	68 3	8	88
199	1	. 01	827	X<8?	16-45	684	STOI	35 46
200	· +	-55	828	GT01	22 81	68 5	R/S	51
201	x	-35	829	+	-55	66 6	F0?	16 23 80
282	RCL5	36 85	830	RTN	24	887	STOO	22 88
203	P:S	16-51	031	#LBL1	21 01	688	#LBL7	21 87
284	RCLC	36 13	832	2	82	889	0	80
285	÷	-24	833	. Pi	16-24	` 69 0	STOI	35 46
206	XZY	-41	834		-35	891	RCLE	36 15
207	. 8	. 80	635	. +	-55	892	ST07	35 87
-							•	

ŗ

e 93	àlBL.	21 16 11		RCLA		11	20 7	ND TA	16-6 1
894	RCLi	36 45	151	X		-35	208	RTN R/S	24 51
- 895	CSBD	23 14		CL7		87	28 9	K/3	-71
8 96	RCLA	36 11		SBd	23 16	11			
89 7	CHS	-22		SBA	23 16				
8 98	×	-35		558 c 5707		13 87	TR	(t)	
899	e Enta	88		F8 ?	16 23		<u> </u>		
188	ENTT	-21 · 01		STOB		12	69 1	#LBLB	21 12
101	. 1 GSBA	23 11		STOE		15	882	STOD	35 14
182 183	RCLA	36 1 1			22 16		80 3	5100 R4	-31
103	KULH X	-35		BLO		00	80 4	STOE	35 15
107	RCLB	-35 36 12		RCLE		15	885	RJ	-31
106	X	-35		ST07		07	886	RCLO	36 14
107	PIS	-55 16-51		BL9		89	897	X	-35
188	RCL	36 45		RCLI		46	888	XZY	-41
189	GSBa	23 16 14	166	2	-	82	889	RCLE	36 15
110	C SBA	23 11	167	+		-55	616	+	-55
111	SSB c	23 16 13		STOI		46	611	XZY	-41
112	STO:	35 45	169	8		88	812	RTH	24
113	PIS	16-51		RCLA	36	11	013	#LBLD	21 14
114	RCLI	36 45		RCLI		45	814	CF2	16 22 82
115	6SBD	23 14		SBd	23 16		015	#LBL6	21 86
116	RCLC	36 13		SBA		11	016	1	0 1
117	x	-35		SSB c	23 16	13	817		
118	rcla	36 11		STOI		45	. 018	÷	-24
119	x	-35	176	ISZI	16 26	46	819	STOE	35 15
120	ISZI	16 26 46	177	0		80	828	FRC	16 44
121	P=s	16-51		RCLB		12	B 21	1	81
122	RCLi	36 45	179	rcl i	- 36	45	822	8	60
123	€ SBD	23 14		ssbd		14	02 3		-35
124	CSB A	23 11		SSBA	. 23		824	STOD	35 14
125	G S B C	23 13		SBC		13	82 5	CLX	-51
126	sto:	35 4 5		STOI		45	826	RCLE	36 15
127	P‡S	16-5 1		RCLI	36	46	8 27	INT	16 34
128	ISZI	16 26 46	185	. 1		01	628	F2?	16 23 02
129	RCLI	36 46	- 186	9		89	829	CSB4	23 84
130	9	8 9		X=Y?		-33	830	EEX	-23
131	X£Y?	16-35		STOB		12	031	CHS	-22
132	ST06	22 16 12		DSZI	16 25		832	4	84
133	STŨa	22 16 11		ST09		89	633	X	-35
134	#LBLb	21 16 12				12	834	RCLD	36 14
135	RCL3	36 03		RCL9		89	035	XZY	-41
136	ESBD	23 14			23 16		836	RTN	24
137	RCLB	36 12	194	0	7/	88	637	#LBLd	21 16 14
138	X	-35		RCLA		11	838	SF2	16 21 82 22 85
139	RCLA	36 11		SSBA		11	839	GT06	22 86
140	λ 2010	-35		SBC	23 16		64 8	#LBL4	21 84 -23
141	RCL9	36 8 9		STOO		90 97	1 1	EEX 2	-23 82
142	C SBa	23 16 14		RCL7		87	64 2	×	-35
143	CSBA	23 11			23 16		84 3		-35 24
144	SSB C	23 16 13	29 1		74		64 4		21 15
145	ST09	35 8 9 76 85		RCLA		11	845	#LBLE P#S	21 15 16-51
- 146	RCL5	36 85		SBA SSBc	23 16	11	84 6 847		21 16 11
147 140	SSBO	23 14		556C 5701		01	64 8	RCLI	36 45
148	RCLB	. 36 12						6SBd	23 16 14
149	×	-35	206	P2S	10	-51			23 10 17

	• •			· •				
858	1/8	52	108	RTH	24	166	RCL6	36 8 6
851	STUA	35 11	109	#LBL0	21 96	167	, – BOLO	-45
852	X≓Y.	-41	- 110	PIS	16-51	168	RCLC	36 13
853	CHS	-22	111	RCLI	36 46	169	Χ.	-35
854	STOB	35 12	112	3	• 03	170	RCL3	36 83
65 5	- ISZI	16 26 46 a	. 113	· · •	-45	171	+	-55
656	CSB Ø	23 86	114	· 2	82	172	RCL2	36 82
857	RCL :	36 4 5	115	X>Y?	16-34	173	RCL5	36 85
858	CSBD	23 14	1 16	ST07	22 87	174	x	-35
65 9	CSB B	23 12	117	÷	-24	175	. P#S	16-51
868	PIS	16-51	118	RCLC	36 13	176	+R	-44
861	RCL8	36 88	119	X	-35	177	ST01	35 81
862	₽₽S	16-51	120	STOD	35 14	178	RCLI	36 46
863	*	-35	121	CHS	-22	179	3	83
864	RCLB	36 12	122	RCL7	36 97	180	X	-35
8 65	RCLA	36 11	123	X	-35	18 1	RCLC	36 13
86 5	GSBB	23 12	124	1	. 01	182	X	-35
66 7	DSZI	16 25 46	125	+R	44	163	RCL9	36 89
868	SPC	16-11	126	1	01	184	+	-55
		35 45	127	+	-55	185	RCL8	36 88
66 9	STO:			≁₽	34	186	→R	44
878	ISZI	16 26 46	120	RCLC	36 13	187	ST+1	
071	XZY	- 4 1 75 45	130	X	-35	188	RCLI	
072	' STOI				-35 36 87	189	2	82
073	9	89	131	RCL7 ÷	-24	105 1 96	x	-35
874	RCLI	36 46	132		16-24	191	RCLC	36 13
875	X=Y?	16-33	133			191 192	XULL	-35
876	GT09	22 89	134	RCL7	36 8 7	192	RCL7	-35 36 07
877	3	03	135	÷ +	-24			-55
678	X= Y?	16-33	136		53	194		-33 36 86
6 79	GSB 8	23 88	137	RCLD	36 14	195	RCL6	.
0 60	RCLI	36 46	138	X5	53	196	→R	35-55 8 1
6 81	5	85	139		-45	19 7	ST+1	
8 82	X=Y?	16-33	. 140	÷	-24	198	RCLI	36 46
683	GSB 8	23 08	141	P#S	16-51	19 9	RCLC	36 13
8 84	ISZI	16 26 46	142	RTN	. 24	280	X	-35
685	GTŰa.	22 16 11	143	≠LB L7	21 87	201	RCL5	36 85
68 6	#LBL8	21 88	144		80	202	+	
687	7	87	145	RCLC	36 13	293	RCL4	36 84
8 88	+	-5 5	146	RCL7	36 87	294	→R	*44
08 .9	STOI	35 46	i - 147	X	-35	28 5	ST+1	35-55 01
090	RCLI	36 45	. 148	P i	16-24	28 6 ·	RCLO	36 00
891	SSBd	23 16 14	149	X2	53	29 7	ST+1	35-55 01
892	RCLB	36 12	150	÷	-24	29 8	P#S	16-5 1
893	RCLA	36 11	151	P#S	16-51	209	RCL9	36 8 9
094	GSBE	23 12	152	RTH	24	210	P:S	16-51
69 5	STOI	35 45	153	#LBL9	21 89	211	ST+1	35-5 5 8 1.
896	XZY	-41	154	PIS	16-51	212	RCLI	36 46
897	ISZI	16 26 46	155	RCL7	36 97	213	PSE	16 51
098	RCLI	36 45	156	2	82	214	RCL1	36 01
0 98	XZY	-41	157	÷	-24	215	PRTX	-14
100	STOI	35 45	158	1	81	216	ISZI	16 26 46
	ISZI	35 4 5 16 26 46	159	.2	82	217	SPC	16-11
101	1521 XZY	-41	160	· _	-45	218	RCLI	36 46
102		35 45	161	STOI	35 46	219	2	6 2 -
183	STO i		162	· P\$\$	16-51	228	4	84
104	RCLI	36 46	163	#LBLA	21 11	221	X≟Ÿ?	16-35
185	9	89	163	P#S	16-51	222	RTH	24
106		-45			36 46	223	GTOA	22 11
187	STOI	35 46	165	R CLI	JO 70	224 224	R/S	51
•			,			624	K∕J	JI

žĘ

•	PSA-1			
	432799G 432799E33T08 432799E33T08 432799E33T08 432850407508 500407508 50040759406 50040759406 5004070708 50040708 500708	157 44 SUM 158 01 01 158 91 R/S 159 91 R/S 160 76 LBL 161 11 A 162 72 ST* 163 01 01 164 69 01 165 91 R/S 166 91 R/S 166 91 R/S 165 91 R/S 166 91 R/S 167 12 B 168 44 SUM 167 12 ST 167 91 R/S 177 13 C 177 13 RCL 177 13 C 178 43 RCL 182 09 09 183 21 21 184 21 ST0	110 35 1/2 111 48 50 111 48 50 111 48 50 111 48 50 111 18 43 3 = 0 111 18 43 3 = 0 111 18 43 3 = 0 111 18 40 1 50 111 19 0 40 5 3 9 5 50 111 19 0 40 5 5 3 9 5 3 9 5 3 7 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Ť

	39 DP 14 04 43 RCL 22 SUM 14 DP 15 RCL 16 RCL 17 RCL 18 DP 19 O4 19 O4 19 O4 102 STD 11 2 11 4 11 4 11 4 11 4 11 4 11 4 11 4 11 4 11 4 12 R 13 R 14 14 </th <th>$\begin{array}{c} 220\\ 222\\ 222\\ 222\\ 222\\ 222\\ 222\\ 222$</th> <th>02 2 55 ÷</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>02 01 STD 01 STD 04 PGM 05 BP 21 PGM 04 C 35 DP 4 C 35 DP 4 C 35 DP 4 C 35 DP 4 C 1 DP 6 X:T 2 4 DP 6 X:T 2 4 DP 6 K 1 DP 7 C 1 D 7 C 1 DP 7 C 1 DP 7 C 1 DP 7 C 1 DP 7 C 1 DP 7 C 1 DP 7 C 1 DP 7 C 2 C 1 DP 7 C 2 C 1 DP 7 C 2 C 1 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 DP 7 C 2 DP 7 DP 7 DP 7 DP 7 DP 7 DP 7 DP 7 DP</th>	$\begin{array}{c} 220\\ 222\\ 222\\ 222\\ 222\\ 222\\ 222\\ 222$	02 2 55 ÷	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 01 STD 01 STD 04 PGM 05 BP 21 PGM 04 C 35 DP 4 C 35 DP 4 C 35 DP 4 C 35 DP 4 C 1 DP 6 X:T 2 4 DP 6 X:T 2 4 DP 6 K 1 DP 7 C 1 D 7 C 1 DP 7 C 1 DP 7 C 1 DP 7 C 1 DP 7 C 1 DP 7 C 1 DP 7 C 1 DP 7 C 2 C 1 DP 7 C 2 C 1 DP 7 C 2 C 1 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 DP 7 C 2 DP 7 C 2 DP 7 C 2 DP 7 DP 7 C 2 DP 7 DP 7 DP 7 DP 7 DP 7 DP 7 DP 7 DP
197 2 198 4 2001 5 2002 4 2002 4 2005 4 2005 4 2006 7 2009 0 2011 2 2006 7 2009 0 2011 2 2009 0 2011 2 2009 0 2011 2 2015 4 2009 0 2011 2 2015 4 2009 0 2011 2 2009 0 2011 2 2011 2 2012 2 2011 2 2011 2 2012 2 2010 2 2011 2 2012 2 2010 2 2000 2000 2 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 20	55 × 43 RCL 11 11 55 ÷	253	65 × 01 1 02 2 55 ÷	307 06 308 22 309 37 310 99 311 32	06 INV PRT PRT X:T PRIV RDV RDV RDV RDV D RCL3 X 1

.

.

PSA-2 054 36 PGM 10 055 04 04 11 000 76 LBL 056 13 C 11	42 STD
000 76 LBL 056 13 C 11 001 43 RCL 057 92 RTN 11 003 97 DS2 059 39 CDS 11 004 09 09 060 42 STD 11 005 57 ENG 061 02 02 11 006 03 3 062 94 +/- 11 007 03 3 063 42 STD 11 008 42 STD 064 01 01 12 010 85 + 066 066 12 011 53 (067 13 C 12 013 42 STD 068 42 STD 12 014 07 07 070 42 STD 12 014 02 NCL 073 42 STD <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

152 95 $=$ 207 03 03 153 35 1/X 208 43 RCL 154 42 STD 209 03 03 155 07 07 210 42 STD 156 43 RCL 211 04 04 157 08 08 212 43 RCL 158 65 \times 213 10 10 159 43 RCL 214 49 PRD 160 27 27 215 03 03 161 95 = 216 43 RCL 162 42 STD 217 11 11 163 06 06 218 49 PRD 164 31 RCL 221 04 04 165 39 CDS 220 36 PGM 166 43 RCL 221 04 04 167 07 07 222	261 49 PRD 262 12 12 263 49 PRD 264 13 13 265 43 RCL 266 12 12 266 12 12 266 12 12 266 12 12 266 12 12 266 12 12 266 12 12 266 12 12 267 44 SUM 269 43 RCL 271 44 SUM 272 17 17 273 49 PRD 274 29 29 275 94 +/- 276 49 PRD 278 65 × 282 65 × 283 43 RCL 284 33 PRD 285 94 PRD 290 02 02 291
--	---

317890123456789012345678901 333333333333333333333333333333333333	29 29 97 DSZ 97 DSZ 97 LNX 91 LXS 414 L 55 RCL4 55 STD 42 STD 36 STD 32 STD 32 STD 42 STD 32 STD 42 RTN 52 STD 42 RTN 52 STD 42 RTN 52 STD 52 STD 53 RCL4 54 STD 55 STD 55 RCL4 55 RCL4 55 STD 55 RCL4 55 STD 55 RCL4 55 STD 56 STD 56 STD 57	366 367 368 370 372 377 377 377 377 377 377 377 377 377	02 2 44 SUM 05 05 69 0P 28 DSZ 09 SIN 91 R/S 76 LBL 99 RCL 23 ÷ 76 PRCL 23 ÷ 25 ÷ 35 1/X 42 ST0 76 LBL 76 LBL 76 LBL 76 LBL 76 LBL 23 RCL 23 RCL 23 RCL	11111222222222222222222222222222222222	7 18 18 9 01 01 9 01 01 0 43 RCL 1 19 19 2 49 PRI 3 02 02 4 71 SBF 6 91 R/S 7 99 PR 9 91 R/S 1 42 STE 3 91 R/S 6 91 R/S 6 91 R/S 7 91 R/S 6 91 R/S 6 91 R/S 7 91 R/S 6 91 R/S 9 01 02 9 49 PR
344 3445 3445 3447 3447 3555 3555 3555 3	05 05 01 1 02 2 42 STD 09 09 04 4 08 8 42 STD 08 STD 08 STD 08 STD 08 STD 02 02 43 RCL 05 STD 02 02 43 RCL 23 PRD 02 SBR 65 X 74 SM* 08 08	393 394 395 396 397 398 399 400 402 403 404 402 404 405 406 407 409 410 411 412 413 414 415	07 07 66 PAU 99 PRT 95 = 42 STD 02 02 71 SBR 65 X 66 PAU 66 PAU 66 PAU 66 PAU 99 PRT 97 DSZ 07 07 90 LST 92 RTN 76 LBL 12 B 42 STD 01 01 42 STD 02 02	44444455555555555555666666666666666666	5 03 03 6 43 RCl 7 17 17 8 42 STI 9 04 04 10 36 PGF 10 36 PGF 11 04 04 12 13 CF 13 71 SBF 14 55 RZS 14 55 RZS 14 55 RZS 15 91 RZS 16 91 RZS 16 91 RZS 16 91 RZS 16 91 RZS 16 91 RZS 17 99 PR 18 91 RZS 19 04 8 19 04 8 19 04 8 19 04 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1

.

37

j.

٠

7

•

APPENDIX B: Theory

This section describes the mathematical model which is the basis for the programs. The model looks at the response of interior (that is, room-side) surfaces of building elements, such as envelope and partition walls, on which solar heat may be absorbed. An equation is developed to describe the response of material surface temperatures to weather variables in terms of Fourier materials response functions R_1 and R_2 , which are evaluated in the programs.

Next, the room temperature response is computed from the surface temperature results. Room temperature can be given as a function of weather variables in terms of three Building Response Functions, called A, B, and C. These functions are also evaluated in the programs.

The final results for room temperature are derived from the weather description and the Building Response Functions, and hourly temperature is displayed or printed by the programs.

We now proceed to the theory.

Solar energy entering a direct-gain building passes through the room air until it reaches a surface (e.g., a floor). When it strikes the surface, some fraction is absorbed and the rest is reflected. The reflected component eventually is absorbed on some surface. The fraction of sunlight which is absorbed a given surface depends on the sun angles and room geometry in a very complex way. We assume that the internal solar radiation balance is already known, either from direct measurement or through simulation; and that the amount of sunlight absorbed on a surface "j" is given by

 α_j S, where S is the total amount of sunlight entering the building (in watts or Btu hr⁻¹).

For each surface "j", the surface temperature, T_{sj} , can be determined by a surface heat balance, which is expressed as:

$$h_{j}A_{j}(T_{sj}-T_{R}) - A_{j}K_{j} \frac{\partial T_{j}(x,t)}{\partial x} = \alpha_{j}S$$
(B1)

where

 h_j is the combined radiation/convection film heat transfer coefficient for the jth surface (watts m⁻² oC^{-1} or Btu hr^{-1} ft⁻² oF^{-1}),

 $A_{\rm j}$ is the area of the surface (m 2 or ft $^2),$

 T_R is the room temperature, (°C or °F),

 $T_j(x,t)$ is the temperature distribution within the jth material, (^oC or ^oF),

 K_j is the conductivity of the jth material (watts m⁻¹ oC⁻¹ or Btu hr⁻¹ oF⁻¹ ft⁻¹,

 $^{\alpha}j$ is the fraction of sunlight absorbed on the jth surface,

x is the distance into the material (m or ft), and S is the solar gain transmitted through all the windows (watts or Btu/hr). This equation sets heat losses from the surface (left-hand side of (B1)) equal to heat gains (right-hand side). It assumes that the surface transfers heat directly to the room air, rather than being in radiative contact with other surfaces, which results in a substantial simplification of the computation effort.^{B2}

Heat-flows within a material satisfy the diffusion equation:

$$\langle_j \frac{\partial^2 T_j(x,t)}{\partial x^2} = (\rho c)_j \frac{\partial T_j(x,t)}{\partial t}$$
 (B2)

where $(\rho c)_j$ is the heat capacity per unit volume of the jth material (watt-hr ${}^{O}C^{-1}m^{-3}$ or Btu ${}^{O}F^{-1}$ ft⁻³).^{B3}

Equations (B1) and (B2) describe heat-flows at the inside surface of a material and in its interior; at the outside surface we assume that the material is coupled to the ambient air (at temperature T_A) by a pure resistance which can be described by a heat transfer coefficient U_r . (For an uninsulated material this coefficient is just equal to an exterior surface film coefficient).

This description allows the solution for surface temperatures in terms of the driving forces of solar gain and ambient temperature. This solution can be written in simple form if we look at the amplitudes of temperature (and solar) fluctuations at a steady harmonic frequency. The result can be expressed as:

$$T_{sj} = (h_j T_R + \alpha_j S/A_j) R_{1j} + T_A R_{2j}$$
(B3)

where R_{1j} and R_{2j} are frequency-dependent response functions whose forms are given in Table B1. These response functions give all the information

needed to describe the thermal behavior of the material and its surface. They are evaluated and can be displayed in the programs.

Response functions are computed for all surfaces of materials with significant thermal mass. They would be needed, for example, for surfaces of masonry materials, and also for surfaces of wood or drywall if the house is relatively lightweight. For surfaces of materials with little thermal mass, such as upholstery furniture, thin wood, carpet, insulation, etc., no computation of response functions is necessary. Solar absorption on these surfaces is accounted for by the parameter α_{p} , which appears below in Eq. (B4), and represents the portion of solar energy absorbed on light surfaces. If the light weight surface is an envelope wall, the U-value of the wall is computed by conventional methods. The sum of U-value times areas for all thermally light elements, including windows, is added to the heat loss rate due to infiltration, given by the heat capacity of air $(0.018 \text{ Btu/}^{\circ}\text{F-ft}^3 \text{ at sea level})$ times the volume of the building (in ft³) times the air change rate (in air changes per hour), to produce a single term, called $\hat{U}_{\mbox{\scriptsize q}}$, which describes all quick heat transfer. Heat losses through massive elements are already taken into account in the R₂ functions.

In most cases, only a few sets of response functions need be evaluated. For example, if both walls and floor are made of masonry with similar thermal properties, they can be combined into a single surface. No distinction need be made between directly solar-illuminated materials and those in the shade -- all that is required is that the <u>total</u> solar absorption on the surface be correctly specified (as a fraction of total solar heat gain S).

We combine the surface temperature results into an expression for room temperature using a heat balance for the room air. This is given by:

$$\sum_{i=1}^{N} \hat{h}_{j} (T_{R} - T_{sj}) + \hat{U}_{q} (T_{R} - T_{A}) = H + \alpha_{R} S$$
(B4)

where

 $\hat{h}_j = h_j A_j$, H is the heater output,

 α_R is the fraction of sunlight absorbed directly into the room air or on the surfaces of light-weight objects (e.g., upholstery), \hat{U}_q is the quick heat transfer coefficient, the sum of U values time areas for all pure conductances (e.g., windows) plus the loss rate due to infiltration.

This heat balance says that heat losses from the room air to material surfaces plus losses directly to the outside air are equal to heat gains from the heater or from solar absorption on light material surfaces (which conduct immediately into the room air).

We can use Equations (B4) and (B3) to derive the room temperature; at any frequency, the amplitude of room temperature is given by:

$$T_R \cdot A(\omega) = S \cdot B(\omega) + T_A \cdot C(\omega) + H$$
 (B5)

where

$$A(\omega) = \sum_{j=1}^{N} \hat{h}_{j} (1-h_{j} R_{1j}) + \hat{U}_{q} , \qquad (B6a)$$

$$B(\omega) = \sum_{j=1}^{N} \alpha_j h_j R_{1j} + \alpha_R , \text{ and}$$
(B6b)

$$C(\omega) = \sum_{j=1}^{N} \hat{h}_{j} R_{2j} + \hat{U}_{q} . \qquad (B6c)$$

For the case of Trombe wall buildings, an additional term is included in each of the three building response functions; this term is not presently computed in the programs.

The building response functions are combined with weather data to give an expression for room temperature at each hour. Weather data are expressed in idealized (approximate) form, as simple sine waves. Ambient temperature is given by

$$T_{A}(t) = \overline{T}_{A} + |\Delta T_{A}| \cos (\omega_{o}(t - t_{\phi})) = \overline{T}_{A} + \Delta T_{A} e^{i\omega_{o}t}$$
(B7)

where

 \bar{T}_A is the average temperature for the day, $|\Delta T_A|$ is the amplitude of diurnal temperature variation, t_{g} is the number of hours from sunrise until the hour

at which temperature reaches its maximum, ΔT_A is the complex number given by $|\Delta T_A| e^{-i\omega_0 t}\phi$, and $\omega_0 = 2\pi/24$ hrs. Solar heat gain is given by a half-sine wave corresponding to a period ' of t_d hours of sunlight per day.

$$S(t) = \begin{cases} |S_1| \sin \omega_1 t & daytime \\ 0 & night \end{cases}$$

where

$$\omega_1 = \pi/t_d$$

To perform the calculations, S(t) is Fourier analyzed into components at frequencies of zero, one, two, and three cycles per day. Further terms are unnecessary for two reasons: their size is smaller than the first few terms, and the building response functions reduce their effect on room temperature. This Fourier analysis allows us to express S(t) as:

$$S(t) = |S_1| \sum_{n=0}^{3} d_n e^{in\omega_0 t}$$

(B9)

(B8)

where $\omega_{\rm b} = 2\pi/24$ hours

and t is measured beginning at sunrise.

This expression requires that

$$d_{n} = \frac{\omega_{0} t_{d}}{\pi^{2}} \qquad n=0$$

$$\frac{\omega_{0}}{t_{d}} \frac{1 + e^{-in\omega_{0} t_{d}}}{\left(\frac{\pi}{t_{d}}\right)^{2} - (n\omega_{0})^{2}} \qquad n\neq 0$$

(B10)

The programs calculate d_n and evaluate T_R using the equation

$$T_{R}(t) = |S_{1}| \sum_{n=0}^{3} \frac{B(n\omega_{0})}{A(n\omega_{0})} d_{n} e^{in\omega_{0}t} + \overline{T}_{A} + \Delta T_{A} \frac{C(\omega_{0})}{A(\omega_{0})} e^{i\omega_{0}t} .$$
(B11)

If a heater is present, then T_R is increased by the constant H/A(0) where H is the heater output and A(0) turns out to equal the conventional design heat loss of the building per degree.

Notes and References

- B1. Simulating radiant energy interchange in buildings in very complex. One computer program which performs this calculation is G.P. Mitalas and D. G. Stephenson, "Fortran IV Programs to Calculate Radiant Energy Interchange Factors." Computer Program No. 25 of the Division of Building Research, National Research Council of Canada, Ottawa, Canada, 1966.
- B2. D. B. Goldstein. <u>Some Analytic Models of Passive Solar Building</u> <u>Performance</u>. Lawrence Berkeley Laboratory, LBL-7811, November, 1978, and Garland Press, New York City, 1979. See Section 2.2.5 and Appendix 2.4.
- B3. If the material consists of several layers, a separate diffusion equation is needed for each layer; but in practice, all layers beyond the first (inside) layer can usually be modeled as pure resistances, as is done in the programs.

Table B1. Equations for response functions.

<u>Materials Response Functions R_1 and R_2 :</u>

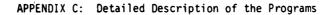
$$R_{1}(\omega) = \frac{\cosh kd + \frac{1}{RKk} \sinh kd}{(h + \frac{1}{R}) \cosh kd + (Kk + \frac{h}{RKk}) \sinh kd}$$

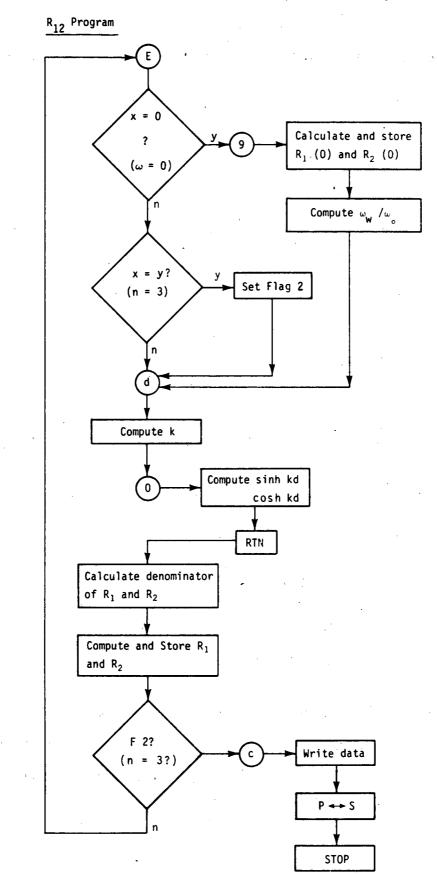
$$R_{2}(\omega) = \frac{\frac{1}{R}}{(h+\frac{1}{R}) \cosh kd + (Kk + \frac{h}{RKk}) \sinh kd}$$

where

K is the thermal conductivity of the material,

d is the thickness of the material,


R is the thermal resistance of the exterior insulating layer, $(R = U_r^{-1})$,


k = $\sqrt{i\omega\rho c/K}$ with ρc = the volumetric heat

capacity of the material, and

h is the film heat transfer coefficient for

the surface.

XBL 7910 - 4517

R₁₂ Sub-Program

Calculates $R_1(\omega)$ and $R_2(\omega)$ for a surface, at $\omega = 0$, ω_w^s , ω_0 , $2\omega_0$, $3\omega_0$

			the second s		
Inputs:	ST0	1	К		•
	ST0	2	ρ c		
•	STO -	3	d	· · ·	
	ST0	4	• h		
. •	STO	-5	Ur		
	STO -	A	ωο	•.	· · ·
	ST0	В	ω ₀ /ω _w (or 1; car	i't be zero
	STO	I	0		
Outputs:	(encode	ed or	n data card)		
	ST0	0	R ₁ (0)	. •	
•	ST0	1	R ₂ (0)		•
•	ST0	2	$R_1(\omega_w)$	· · · ·	•
•	ST0	3	$R_2(\omega_w)$		
	STO	4	R ₁ (ω ₀)		
	ST0	5	$R_2(\omega_0)$		
	ST0	6	$R_1(2\omega_0)$ -	•	
· .	STO	7	$R_2(2\omega_0)$	•	· · · ·
	ST0	8	$R_1(3\omega_0)$	· · · · · ·	
	ST0	9	$R_2(3\omega_0)$	· · ·	•

Outputs are decoded with subroutine D of ABC or T_R programs. Note that outputs are calculated in registers 10-19 and switched to the primary registers for readout. Note also that $R_2(2\omega_0)$ and $R_2(3\omega_0)$ will not be used in subsequent calculations.

R₁₂ Sub-Program: Subroutines A- Complex addition: $R_1 e^{i\theta_1} + R_2 e^{i\theta_2}$ Requires STO D and STO E Input: x R_1 θ y R2 Ζ· θ, t Output: complex sum (polar) R in x, θ in y. B- Complex multiplication: $R_1 e^{i\theta_1} \times R_2 e^{i\theta_2}$ input, output, and storage requirements like A. O- Cosh and sinh: Calculates $\cosh r$ (1+i) and $\sinh r$ (1+i) for r real. Requires STO C, D, E; calls subroutine A Input: Х cosh r (1+i) (polar) Output: STO 6-7 sinh r (1+i) (polar). STO 8-9 C- Complex encode: Concatenates two components (R and θ) of a complex number into one number for storage. Decoding is accurate to 5place accuracy; can be done with subroutine D of ABC and T_R programs. Valid for R $\stackrel{\scriptstyle \sim}{_{\scriptstyle \sim}}$ 10 and θ < 10 radians. Loses one significant figure for $R \stackrel{>}{<} 10^{\pm 1}$; two for $R \stackrel{>}{<} 10^{\pm 2}$, etc. Accuracy is lost from θ for large R and from R for small R. requires LBL 1 and LBL 2 Input: x - R **y** - θ Output: x - encoded number.

* - performed by user

Calculates A(0, _{ww} ,wo,2	²ω ₀ ,3	ω ₀),	B(0	,	ı ^{, w} c	, ^{2ω}	ο' ^{3ω}	_o), a	ind C	(ω <mark>, ω</mark>) 9	jiven
R_1 and R_2 .							· .	ł.			· · · · · · · · · · · · · · · · · · ·	. '
Inputs:	R ₁₂ data	çard	and	h _i	Ai	α _i	for	eaçh	surf	ace	,	
Data card fil	ls STO	0 -	ST 0	8			•				•	
	ST0	A -	h _i					• •				
	ST0	В -	Ai								•	
	ST0	C -	α _i									
Outputs:	(encode	d on	data	car	d)							
	ST0	0	A(0)									
	ST0	1	B(O)									
	ST0		A(ω _w)						· .		· ·	
	ST 0		B(ω _w)								•	
	ST0		Α(ω)			,						
			Β(ω ₀)							۰,		
	STO		ο΄ Α(2ω _c						• .			
	·		R(2ω _c	,							•	•.
	ST0			· .								
			Α(3ω _C	, ,								
	STO		Β(3ω _c	,				•		· .	:	
	STO 2		C(ω _W)									
	STO :	11	C(ω ₀)	i								

A's and C's are decoded with 'd' subroutine; B's are decoded with 'D' Note that program reverses $p \leftrightarrow s$ before output is finished, so $A(0) \neq B(3\omega_0)$ are accumulated in STO 10-19. $C(\omega_w)$ is accumulated in STO 9.

 $C(\omega_{\rm O})$ is accumulated in STO 7, but transferred to STO E during data or card entry.

All storage registers are used.

ABC Sub- Program: Subroutines

A- Complex addition: $R_1 e^{i\theta_1} + R_2 e^{i\theta_2}$ requires STO D and STO E

θ

R2

θ,

Input: $x R_1$

y :

Z

t

Output: complex sum (polar form in x-y)

C- Complex encode:

Concatenates two components (R and θ) of a complex number into one number to 5-digit accuracy.

Good for R $\stackrel{<}{\sim}$ 10 and θ < 10 radians.

Loses one significant figure to R $\geq 10^{\pm 1}$, two for R $\geq 10^{\pm 2}$, etc. Accuracy is lost from θ for large R and from R for small R.

Requires LBL 1, LBL 2, and LBL 3.

Input: x - R

y _ θ

Output: encoded number - x

C- complex encode

like C only for R $\stackrel{<}{_\sim}$ 1000 and θ < 10.

D- Complex decode - inverse of C.

d- inverse of c.

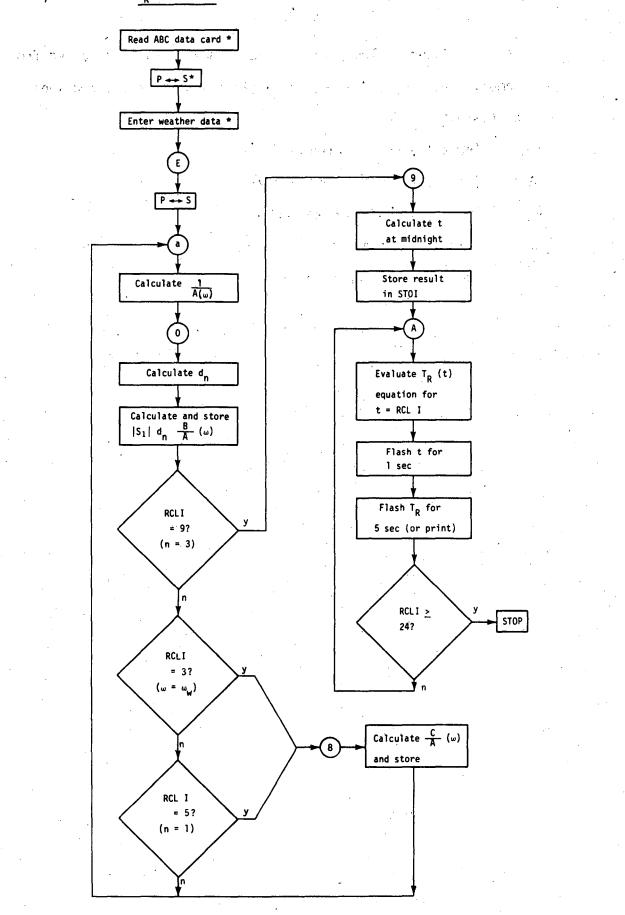
D and d both require flag 2, LBL 4, LBL 5, LBL 6, STO D, and STO E.

D and d are structured so as to preserve the contents of the y and z

stack registers. Thus, two complex numbers can be recalled from memory, decoded, and added or multiplied using these routines,

as follows:

RCL 1 (recall encoded number)


D (decode and place in x and y)

RCL 2 (recall second encoded number)

D (decode and place in x-y; number from RCL 1 now in z-t)

A (add the two complex numbers)

* Performed by user

XBL 7910 - 4516

$T_{R}(t)$ Sub-Program

 $in \omega_0 t$ Evalulates coefficients of e $\hfill in$ in the following equation:

$$T_{R}(t) = |S_{1}| \sum_{n=0}^{3} \frac{B(n\omega_{0})}{A(n\omega_{0})} d_{n} e^{in\omega_{0}t} + \Delta T_{A} \frac{C(\omega_{0})}{A(\omega_{0})} e^{i\omega_{0}t} + \overline{T_{A}}$$

$$+ \left(|S_{1}| \frac{B(\omega_{w})}{A(\omega_{w})} d_{0} e^{i\omega_{w}t} + \frac{C(\omega_{w})}{A(\omega_{w})} e^{i\omega_{w}t} \right)$$
(C1)

(Terms in parenthesis are not correct, but are evaluated in the form given.)

Evaluates $T_R(t)$ using Eq. (C1) (but not the part in parentheses) for each hour of the day, beginning at solar midnight.

Inputs: ABC data card fills STO 0-11

ST0	-I	0
ST0	15	∆T _A
ST0	16	t_{ϕ}
ST0	17	td
ST0	18	s ₁
ST0	19	Ť
ST0	Ç	ω

Outputs: Time (t) at midnight flashed for 1 sec, then room temperature $T_R(t)$ flashed for 5 sec (or printed) Time (t) at 1 a.m...

Iterates for \approx 24 hours. Outputs of $T_R(t)$:

ST0	0	$ S_{1} d_{0} \frac{B}{A} (0)$
ST0	2-3	$ S_1 d_0 \frac{B}{A} (\omega_w)$
ST0	4-5	$ S_1 d_1 \frac{B}{A} (\omega_0)$
ST 0	6-7	$ S_1 d_2 \frac{B}{A} (2\omega_0)$
ST0	8-9	$ S_1 d_3 \frac{B}{A} (3\omega_0)$
ST0	10-11	· <u>C</u> (ω _w)
ST0	12-13	<u>C</u> (ω ₀)

Subroutines:

D- decodes complex numbers $\sim 10^0$ (e.g., B(ω)) requires flag 2, LBL 4, LBL 5, LBL 6, STO D and STO E

Input: encoded number in x

Output: complex number (polar) in x-y

d- like D; decodes complex numbers $\sim 10^2$ (e.g., A(ω), C(ω))

B- complex multiply $R_1 e^{i\theta_1} \times R_2 e^{i\theta_2}$

θ1

 R_2

^θ2

requires STO D, E

У

Z

t

Input; x R₁

	Output:	complex p	roduct ((polar)	in x-y		• • •	
D-	calcula	tes d _n usin	g conter	nts of	STO I for	• n,		v est
	require	s STO D			ta na di		• . •	· .
	Input:	STO I; S	TO I = 1	l,3; ca	lculates	d _o ,		· .
			· .	5	C	1 1 :.	÷	:
				7		2		
				9		l ₃		
•		STO C - ω	0					
		STO 17 - t	d :	· · · .		· · ·	· · · ·	

Output: d_n in x-y

A- calculates $T_R(t)$ given coefficients of Eq. (B11) in STO 10 - STO 19 and STO 0 - STO 3, as described in " $T_R(t)$ Program Output" above, with primary and secondary storage registers reversed, and

 $|\Delta T_A|$ in STO 5 t_{ϕ} in STO 6 \overline{T}_A in STO 9 ω_0 in STO C t in STO I

Iterates until t > 24 hr.

Sub-Program PSA-1

PSA-1 stores weather and building data in memories 20-46. It then computes and prints the steady-state temperature terms that arise from the heater, ambient temperáture, and solar gain. The sum is printed last. Finally the Fourier components for the solar gain component can be calculated, but are not stored.

Procedure:

LBL E (46-59) sets the counter at $20 + (i \times 7)$ where i is the index of the surface (equal to 0 for the weather terms).

LBL A (60-66) stores an input parameter at the location specified by the counter and adds one to the counter.

If the user wishes to change a parameter the surface number is re-entered (LBL E) and then the parameter number and its new value and entered via LBL B (67-76). LBL B also adds one to the counter so further changes can be made through LBL A. After all parameters are entered the number of surfaces used is stored via LBL E.

LBL C (77-233) computes, stores, and prints the steady-state components from the input parameters entered in LBL E and LBL A. Steps 77-90 are used for initialization. A loop from steps 91-140 computes $A_j(0)$, $B_j(0)$ and U_j for each surface j and keeps a running sum. A subroutine call (93-94) to SBR RCL (00-45) is used to swap the locations of the jth surface parameter with those of the first surface so that direct address arithmetic can be used in the loop. A second call at 135-136 swaps the locations back again. Steps 142-233 print an identifier for each steady-state term and compute and print their values. The hours of sunshine must be entered at step 174-175 and is echoed by print-out at steps 180-183. The formulas used in this section are:

$$A_{i}(0) \equiv (Area)_{i} \left(\left(\frac{1}{U_{r}} \right)_{i}^{i} + \frac{1}{h_{i}} + \frac{d_{i}}{K_{i}} \right)^{-1}$$
 (95-118)

$$A(0) = \sum_{i=1}^{i_{max}} A_{i}(0) + \hat{U}_{q}$$

(A(0) was initialized \hat{U}_q is steps 83-86).

 $B_{i}(0) (1 - U_{i}/h_{i}) \alpha_{i}$

(119-132, with $\rm U_i$ computed in steps 110-112. $\rm U_i$ is the U-value of the $\rm i^{th}$ construction section.)

$$B(0) = \sum_{i=1}^{i} B_{i}(0) + \alpha_{R}$$

(B(O) was initialized to α_R in steps 87-90)

$$d_0 = t_d / 12\pi$$

(174-194 with input and echo to print of t_d)

 $T_{H} = H(0)/A(0)$

(142-160 with print commands)

 $T_s = |S_1| d_0 B(0) / A(0)$ (195-219 with print command)

The definition of the variables can be found in the input list. In addition to the above calculations LBL C also recalls and display T_A (161-173) and prints $T_R = T_H + T_A + T_S$ (220-233)

LBL D computes the Fourier components for sunshine from the following formula

$$d_{n} = \frac{\omega_{1}}{12(\omega_{1}^{2} - (n\pi/12)^{2})} \qquad (1 + e^{-in\omega_{0}t_{d}})$$

where $\omega_0 = \pi/12$ and $\omega_1 = \pi/t_d$

n is entered in steps 236-237 and the first factor accumulated in steps 236-262. The master-library routines for complex exponentiation and multiplication are then used in steps 273-290 to compute d_n . Steps 291-316 generate the label and calculate d_n in both polar and rectangular form. Only the latter is automatically printed.

LBL D' (317-339) comutes and displays the zeroth Fourier component $d_0 = \omega_0/\pi\omega_1 = t_d/12\pi$

Storage registers:

				•
10 -	ΣAj	(0)	27	d1
11 -	Σ ^B j	(0)	28	(1/U _r) ₁
12 -	т _н	(0)	· · ·	•
13 -	т _s	(0)	. 34	d ₂
14 -	Τ _R	(0)	· · · · · ·	•
20 -	S		41	d ₃
21 -	Ûq			•,
	•			

Sub-Program PSA-2

PSA-2 calculates the frequency dependence of the response functions. From these functions the time dependent temperature terms can be calculated and summed with specified phase lags between them. The results for every other hour of a sample day are summed into memories 48-59.

Procedure:

LBL A (94-320): Computes the material response functions, and the building response functions for a specified ω . ω is calculated in steps 94-104 from the period entered by the user. After counters and initializations are performed (95-125) the imaginary and real components of the R_1 , R_2 A, B and C are calculated in the loop from 126-320. The subroutine calls 128-129 and 313-374 to SBR RCL(00-45) perform the identical purpose as in LBL C of PSA-1. The formulas for R_1 and R_2 are taken from Table B1. R_1 is calculated in steps 130-219 and 238-254.

The complex hyperbolic functions cosh and sinh are evaluated by a subroutine call to SBR cos (58-93) which uses the master library's complex trigonometric functions and the relationships $\cosh z = \cos i z$ and $\sinh z$ = -i sin iz. The numerator is calculated in steps 130-180 and the denominator is calculated in re-arranged form in steps 181-219. $R_{\mbox{\scriptsize 1}}$ ($\omega \mbox{\scriptsize)}$ is then calculated with a complex divide in steps 238-254.

 $R_2(\omega)$ is calculated in steps (130-237). Since $R_2(\omega)$ is so similar to $R_1(\omega)$ the initial sums are carried out in the same location. The final complex divide is calculated in steps 220-237.

A'R/S'is present at step 254 so that the R (ω) can be examined if it is so desired. A(ω), B(ω), and C(ω) are computed as:

$$A(\omega) = \sum_{j=1}^{j_{max}} A_{j}h_{j} (1-h_{j}R_{1j}) + \hat{U}_{q}$$
(273-302)

$$B(\omega) = \sum_{j=1}^{j_{max}} (\alpha_{j}h_{j}R_{1j}) + \alpha_{R} \qquad (255-272)$$

$$C(\omega) = \sum_{j=1}^{j_{max}} (A_{j}h_{j}R_{2j}) + \hat{U}_{q} \qquad (273-294 \text{ and } 303-310)$$

where the $A_{\mbox{j}}$ are the $_{\mbox{j}}$ th sunface areas. Steps 311-320 merely control the loop.

LBL B (410-429) computes a frequency dependent weather term;

$$T_{\mathbf{R}}(\omega) = \Delta T_{\mathbf{A}} C(\omega) / A(\omega).$$

The complex divide (C (ω)/A(ω)) is computed by a call (424-425) to SBR '÷' (321-339) which divides a complex number in registers O1 and O2 by A(ω) via the complex divide routine of the master library.

LBL C (430-458) computes a frequency dependent solar term:

$$\Delta T(\omega) = |S_1| \frac{d_n B(n\omega_0)}{A(n\omega_0)}$$

(438-455)

The real and imaginary components of d_n and $|S_1|$ are entered in steps 430-438. If a weather frequency solar term is examined, substitute the magnitude of this term for $|S_1|$ and use d_0 in place of d_n . The complex divide by $A(n\omega_0)$ is performed by a call to SBR '÷'.

Both LBL B and LBL C can call SBR PRT (375-404). SBR PRT prints hourly temperature increments over the period of the term.

LBL E (340-374): This subroutine calculates bihourly temperature increments for a given frequency dependent solar or weather term. The results are summed into registers 48-59. The phase of the term (ϕ) is entered at the beginning. The subroutine calculates the temperatures in a loop from the formula:

 $T(t) = \text{Real part} \left(\Delta \text{Te}^{-i\omega(t + \phi)} \right) (352-373)$ The ΔT from LBL C or LBL D are complex numbers. LBL E calls SBR X (46-57) to perform the complex multiply.

LBL D (459-466): LBL D advances the paper and prints the contents of registers 48-59.

- A note on speeding up the program. If the program is not intended to be modified it can be noticeably sped up by replacing labels by absolute addresses. In particular, the loops to LBL SIN and LBL LIST in LBL B and LBL PRT respectively, are very slow. Delete LBL SIN (352-353) and insert one pause. Insert one step at 370 and rewrite the decrement statements as DSZ, 9, 352 (steps 370-373). Do the same with LBL LIST. Since these labels are called many times, this replacement is very noticeable in terms of program execution time.

APPENDIX D: Long Term Weather Responses

To evaluate the effect of multi-day cycles of temperature and sunlight, we assume that the cycle can be described by sinusoidal terms. Ambient temperature is taken to be of the form.

$$T_{A}(t) = \overline{T}_{A} + |\Delta T_{A_{W}}| e^{i\omega_{W}(t-t_{a})} + \Delta T_{\Lambda} e^{i\omega_{O}t}$$
(D1)

where $\omega_{\!_{\boldsymbol{W}}}$ is the frequency at which weather variations take place

(typically $2\pi/1$ week),

 $|\Delta T_{A_{u,l}}|$ is the amplitude of weather-variation of temperature,

is the time at which the ambient temperature is at

its maximum,

t_a

and T_A is now the average temperature over the whole cycle. Solar gain is still taken as a half sine-wave for each day, but the amplitude is assumed to be sinusoidally modulated, as shown:

$$S(t) = \left(\overline{S} + \Delta S_{W} \cos \omega_{W} (t-t_{S})\right) \sin \omega_{1}(t-t_{Sr}) \quad day \qquad (D2)$$

$$0 \qquad \qquad night$$

where

 \bar{S} is the average amplitude of solar gain (average $|S_1|$),

 ΔS_{w} is the amplitude of modulation of $|S_{1}|$ over the cycle,

 $\ensuremath{t_{\mathrm{S}}}$ is the time at which the solar energy in the cycle is at its maximum, and

 $T_{\rm sr}$ is the time of the most recent sunrise. It can be shown ^{D1}that room temperature is then given by:

$$\begin{split} T_{R}(t) &= (S + \Delta S_{w} \cos \omega_{w} (t-t_{s})) \frac{3}{n=1} \frac{B(n\omega_{o})}{A(n\omega_{o})} d_{n} e^{in\omega_{o}t} + \bar{S} \frac{B(0)}{A(0)} d_{o} \\ &+ \Delta S_{w} \frac{B(\omega_{w})}{A(\omega_{w})} d_{o} e^{i\omega_{w}(t-t_{s})} + \bar{T}_{A} + \Delta T_{A_{w}} \frac{C(\omega_{w})}{A(\omega_{w})} e^{i\omega_{w}(t-t_{a})} \\ &+ \Delta T_{A} \frac{C(\omega_{o})}{A(\omega_{o})} e^{i\omega_{o}t} + \frac{H}{A(0)} . \end{split}$$
(D3)

Comparing Eq. (B11) with Eq. (D1), it can be seen that if we set $S_{1} = \bar{S} + \Delta S_{w} \cos \omega_{w}(t-t_{s})$, Eq. (D1) says
$$T_{R}(t) = (old terms) + (\bar{S} - |S_{1}|) \frac{B(0)}{A(0)} d_{o} \\ &+ \Delta S_{w} \frac{B(\omega_{w})}{A(\omega_{w})} d_{o} e^{i\omega_{w}(t-t_{s})} + \Delta T_{A_{w}} \frac{C(\omega_{w})}{A(\omega_{w})} e^{i\omega_{w}(t-t_{a})} . \end{split}$$

Thus only three new terms and only two new combinations of Building Response functions are needed to account for multi-day weather cycles.

(D4)

Notes and References

D1. D. B. Goldstein, <u>Some Analytic Models of Passive Solar Building</u> <u>Performance</u>. Lawrence Berkeley Laboratory, LBL-7811, November, 1978, and Garland Press, New York City, 1979. See Section 2.4 and Appendix 2.4.

APPENDIX E: Example Problem Using the Program

This section sets up a simple problem of modelling a passive solar house on a sunny winter design day, and computes the input parameters to the programs. Intermediate and final results are given. The user can employ this example to check the answers he computes using the programs.

The example house is a single-story wood-frame residential structure of conventional American construction. Its only passive solar features are its bare (or tile-covered) slab-on-grade floor and its large south-facing collector window area. As the results in Table E.4 show, it should not be considered "optimized."

The use of a wood-frame house for the example illustrates some of the simplifications that can be made in using the model to describe a house. In principle, seven material surfaces would be needed for a model of this building: the stud portion of envelope walls, of partition walls, and of the ceiling; the cavity portion of envelope walls, partition walls, and ceiling; and the floor. But to increase computational speed and convenience, in this problem we use only three surfaces. This procedure can be shown to lead to less than $1^{\circ}F$ errors.

Consider a 30 X 50 foot single-story house with 8-foot ceiling. The walls have R-11 insulation between 2 X 4 studs; the ceiling uses R-30 insulation and 2 X 6 joists; while the floor is a bare concrete slab on grade. There are 250 ft^2 of south-facing double-glazing and 30 ft^2 of glazing on each of the other elevations. We assume 1.5 ft^2 of partition wall per ft^2 of envelope wall.

We consider three surfaces:

 Wall and ceiling studs (25% of envelope wall area, + 15% of partition wall area + 10% of ceiling area)

2) Wall and ceiling cavities

3) Floor

For the first two, we consider a wall section composed of the following layers (from inside to outside)

 $R = .68 \text{ hr} - \text{ft}^2 - ^0 \text{F/Btu}$ (walls)

.61 (ceiling)

1) Inside film resistance

- 2) Gypsum wall board K = .075 Btu/F-ft-hr $pc = 13 \text{ Btu/ft}^3 - F$ d = 1/24 ft
- 3) Insulation R 11 wall R 30 ceiling

or

4) (Ceiling studs only) Insulation over studs R - 11 5) Stucco plus exterior film coefficient R = .41 or attic (for the ceiling) R $\stackrel{\sim}{=} 3$

Areas are:

1) Studs: .25 X (8 X (30 + 50) X 2 - (250 + 3 X 30))

gross wall area window area +.15 X 1.5 X 8 X (30 + 50) X 2 + .10 X 1500 = 235 + 288 + 150 = 673 ft² 2) Cavities .75 X (8 X (30 + 50) X 2 - (250 + 3 X 30) + .85 X 1.5 X 8 X (30 + 50) X 2 + .90 X 1500

= 705 + 1632 + 1350

 $= 3687 \text{ ft}^2$

3) Floor: 1500 ft²

For two-layer wall approximation; we average the parameters as follows:

1) Studs

The massive layer has the average properties of the gypsum board and the studs.

For the envelope walls, we take the weighted average of 1/K and ρc for 1/2" of gypsum and 3 1/2" of wood

$$K_{e} = ((1/2" \times \frac{1}{.075} + 3 1/2" + \frac{1}{.068}) \div 4")^{-1} = .0688$$
$$(\rho c)_{e} = (1/2" \times 13 + 3 1/2" \times 9) \div 4" = 9.5$$
$$d_{e} = 1/3 \text{ ft}$$

For the ceiling, we take the weighted average of 1/K and ρc for 1/2" gypsum and 5 1/2" wood:

 $K_{c} = (1/2" \times \frac{1}{.075} + 5 1/2" \times \frac{1}{.068}) \div 6")^{-1} = .06853$ $(\rho c)_{c} = (1/2" \times 13 + 5 1/2" \times 9) \div 6" = 9.333$

The thickness d is 1/2 foot

For the partition walls, we do the same average for $1 \ 3/4$ " of wood (half the stud thickness)

$$K_{p} = (1/2" + \frac{1}{.075} \times 1 \ 3/4" \times \frac{1}{.068}) \div 2 \ 1/4")^{-1} = .06944$$
$$(\rho c)_{p} = (1/2" \times 13 + 1 \ 3/4" \times 9) \div 2 \ 1/4" = 9.889$$
The thickness d is 2 1/4 inches or .1875 ft

We take the area-weighted average of K, ρ c, d, and h to derive the properties of the first material (the studs).

$$K_{1} = (235 \text{ ft}^{2} \text{ X} .0688 + 288 \text{ ft}^{2} \text{ X} .06944 + 150 \text{ ft}^{2} \text{ X} .06853)$$

$$\div 673 \text{ ft}^{2}$$

$$= .06901 \text{ Btu/}^{0}\text{F-hr-ft}$$

$$(\rho c)_1 = (235 \text{ ft}^2 \times 9.5 + 288 \text{ ft}^2 \times 9.889 + 150 \text{ ft}^2 \times 9.333) \div 673 \text{ ft}^2$$

= 9.629 Btu/^oF-ft³

$$d_1 = (235 \text{ ft}^2 \text{ X } 1/3 + 288 \text{ ft}^2 \text{ X } .1875 + 150 \text{ ft}^2 \text{ X } .5) \div 673 \text{ ft}^2$$

= .3081 ft
h₁ = (235 ft² X
$$\frac{1}{.68}$$
 + 288 ft² X $\frac{1}{.68}$ + 150 ft² X $\frac{1}{.61}$) ÷ 673 ft²
= 1.508 Btu/ft² -hr-⁰F
A₁ = 673 ft²

To compute U_r , we require that the steady-state heat loss through the approximate version of material 1 is the same as for the exact case.

· · · · · ·

For the exact case, the heat loss rate is

$$U_eA_e + U_cA_c$$

or

$$\frac{1}{\left(\frac{.075}{1/24}\right)^{-1} + \left(\frac{.068}{.292}\right)^{-1} + .41} \times 235 \text{ ft}^2 + \frac{1}{\left(\frac{.075}{1/24}\right)^{-1} + \left(\frac{.068}{.458}\right)^{-1} + 11 + 3} \times 150 \text{ ft}^2$$

= 51.22 Btu/⁰F-hr

For the model, the heat loss rate is

$$\begin{pmatrix} \left(\frac{K_{1}}{d_{1}}\right)^{-1} + U_{r1}^{-1} \right)^{-1} & A_{1} \\ so & \left(\frac{A_{1}}{51.22} - \frac{d_{1}}{K_{1}}\right)^{-1} = U_{r1} \\ or & U_{r1} = .117 \text{ Btu}/^{0}\text{F-hr-ft}^{2}$$

Note that we have ignored the inside film resistance in computing U_r for both cases.

2) Cavities

The same process is followed. The massive layer is the gypsum board and the outside layer contains everything else. Since the massive layer has only one component, the averaging process is unnecessary and K_2 , (Pc)₂, and d₂ are just given by the parameters of gypsum board. A₂ is 3687 ft². We calculate the average h for this surface as the area-weighted average:

$$h_2 = (705 \text{ ft}^2 \text{ X} \frac{1}{.68} + 1632 \text{ ft}^2 \text{ X} \frac{1}{.68} + 1350 \text{ ft}^2 \text{ X} \frac{1}{.61}) \div 3687 \text{ ft}^2$$

1.532 $Btu/ft^2-hr-^{O}F$

We still have to calculate U_{r2}

For the exact case, the heat loss rate is

$$U_e A_e + U_c A_c$$

$$\frac{1}{(\frac{.075}{1/24})^{-1} + 11 + .41} \times 705 \text{ ft}^2 + \frac{1}{(\frac{.075}{1/24})^{-1} + 30 + 3} \times 1350 \text{ ft}^2$$

For the model, the heat loss rate is

$$\left(\left(\frac{K_2}{d_2}\right)^{-1} + U_r^{-1}\right)^{-1} A_2$$

SO

or

$$\left(\frac{A_2}{99.15} - \frac{d_2}{K_2}\right)^{-1} = U_{r2}$$

or

$$U_{r2} = .0273 \text{ Btu}/^{0}\text{F-ft}^{2}-\text{hr}$$

3) Floor

For the floor parameters, we assume that the slab floor is coupled to the ground, and that the ground-water migration is not important in the area of the house. The mean length of a path of heat flow from the floor through the ground to the outside air is on the order of 20 feet, so, we assume a 20-foot floor thickness. (The results are not sensitive to exact floor thickness.) We use typical materials properties for concrete (and soil) of

K = .8 Btu/⁰F-ft-hr,
$$\rho c = 20$$
 Btu/⁰F-ft³; h = $\frac{1}{.61}$

= 1.639 $Btu/^{O}F-ft^{2}-hr$

For U_r , we take the outside film coefficient at the soil, $h = 6 \text{ Btu/ft}^2$ -^OF-hr, though the results would not change if h were changed from this value.

To compute the α 's, we use the "typical" values given in the text for a dark floor and light walls. Thus $\alpha_3 = .45$, $\alpha_R = .15$.

To compute α_1 , and α_2 , we average the solar gain on the envelope walls, partition walls, and ceiling over surfaces 1 and 2 on an area-weighted basis. The total solar gain absorbed on these surfaces is

$$.10 + .20 + .10 = .40$$
, so $\alpha_1 = .40 \times \frac{673 \text{ ft}^2}{673 \text{ ft}^2 + 3687 \text{ ft}^2}$

and

$$\alpha_2 = .40 \times \frac{.3687 \text{ ft}^2}{673 \text{ ft}^2 + 3687 \text{ ft}^2}$$
 or $\alpha_1 = .062 \text{ and } \alpha_2 = .338$

We next compute the final remaining parameter for the house, U_q . This term is composed of infiltration losses (assumed to be at 0.6 air changes per hour) and window losses.

Infiltration loss rate is (8 X 30 X 50) ft³ X 0.018 Btu/^oF-ft³ X 0.6 air changes/hr = 129.6 Btu/^oF-hr. Window losses through double glazing with U = 0.49 Btu/^oF-ft²-hr (1/2" air space) are given by UA or 0.49 X (250 ft² + 3 X 30 ft²) = 166.6 Btu/^oF-hr. So \hat{U}_{q} = 296.2 Btu/^oF-hr.

Weather Parameters

The example we take describes a northern California climate on a relatively cool but clear winter design day in January. We set $\overline{T}_A = 45^\circ$ and $\Delta T_A = 10^\circ$ F, so the daily high temperature is 55 and the low is 35. We set the length of day at nine hours ($t_d = 9$ hr). Maximum ambient temperature is at 3 pm or 7 1/2 hours after sunrise ($t_{\phi} = 7.5$ hr).

Solar gain is taken from Ashrae solar heat gain tables for 40°N. latitude for January and summed over all four elevations:

S:	250	ft ²	Χ	1630	Bt	tu/da	ау	=	407,500	Btu/day
E &	W:	2 X	30	ft ²	X	508	Btu/day	=	30,480	Btu/day
N:	30 1	t ²)	(1	18 B1	tu,	/day		.=	3,540	Btu/day
		Tot	tal						441,520	Btu/day

This total is modified by a shading coefficient of about 0.85 for doublepane glass and multiplied by 0.9 to account for opaque window frame area, so total daily solar gain entering the house is 337,760 Btu/day. S₁ is given by: (daily solar heat gain) X $\frac{\pi}{2t}$ so S₁ = 58,950 Btu/hr.

We set $\omega_W = \frac{1}{10} \omega_0$ to calculate response functions; however, this will not be used in the calculation. To run this problem on the TI-59, the phase terms are: $\phi = -7.5$ for the solar terms and $\phi = -15$ for the temperature term.

This completes the derivation of the building and weather parameters. They are summarized in Table E.1.

Results of the Calculation

We next display intermediate results to check the operation of each of the programs. The parameters for each surface are used to compute R_1 and R_2 . Table E.2 gives the values of the response functions for each of the three surfaces, while Table E.3 gives the building response functions. The room temperature results are given in Table E.4 under the assumption of no heater output. To include the effect of 2000 Btu/hr of internal loads, add $4^{O}F$ (= 2000 Btu/hr/A(0)) to each entry in Table E.4. (This effect is calculated directly in the TI-59 program).

As seen in the results from Table E.4, the response of the example building is not optimal. Afternoon temperatures are too warm and morning temperatures too cool. As an alternate to this design, one could consider the effects of more insulation and smaller collector area, or more thermal mass.

<u>R</u>12 Program

Table E.1

House Parameters for Example	Problem
------------------------------	---------

	Surface 1	Surface 2	Surface 3
к	.06901	.075	0.8
ρ	9.629	13	20
d	. 3081	.04167	20
h	1.508	1.532	1.639
U _r *	.117	.0273	6
A	673	3687	1500
α	.062	.338	.45

 \hat{U}_{q} = 296.2 α_{R} = .15 ΔT_{A} = 10 t_{ϕ} = 7.5 t_{d} = 9 S_{1} = 58950 \overline{T}_{A} = 45

 $^{*}\mathrm{U_{r}}^{-1}$ is used for input in the TI-59 program.

<u>R</u>	esponse Functions fo	or the Example House [*]	•
		R ₁ (hr- ⁰ F-ft ² /Btu)	
	Surface 1	Surface 2	<u>Surface 3</u>
0 ^w o	.6309 .5473e ^{-i0.1851}	.6414 •6374e ^{-i0.0891}	.5956 .2933e ^{-i0.4385}
2ω ₀	-5022e ^{-i0.2163}	-i0.1752 .6258e	-i0.5069 .2372e
3ω ₀	•4780e ^{-i0.2443}	.608e ^{-i0.2558}	-i0.54383 .2064e

Table E.2

R2

ŗ.

•

0.0484 .0	.0236
ω_{0} .0291e ^{-i1.2979} .01716	-i0.1281 0
$2\omega_0$.0161e ^{-i1.9614} .0167e	-i0.2531 0
$3\omega_0$.0102e ^{-i2.4303} .0162e	-i0.3725 0

*Note that $e^{x} = e^{x-2\pi}$ for any x.

	Table	E.3	
	Building Response Function	s for the Example Ho	ouse
<u>ω</u> .	<u>A(Btu/⁰F-hr)</u>	<u>B</u>	<u>C(Btu/^OF-hr)</u>
0.	502.2	.9802	502.2*
ωo	2332.3e ^{i0.514}	.7364e ^{-i0.1783}	402.0e ^{-i0.1016}
2 ω ₀	2953.0e i0.562	.6847e ^{-i0.2231}	+
3 ω ₀	3493.4e ^{i0.588}	.6504e ^{-i0.2631}	+

*Set equal to A(0)

‡Not computed

<u>t</u>	<u>Solar Time</u>	T _R <u>or</u> i	(no heater nternal loads)
-7.5 -6.5 -5.5 -4.5 -3.5 -2.5 -1.5 5 1.5 2.5 3.5 4.5 5.5 7.5 8.5 9.5 10.5 12.5 13.5 14.5 15.5 16.5	12 m 1 am 2 3 4 5 6 7 8 9 10 11 12 n 1 pm 2 3 4 5 6 7 8 9 10 11 12 n 1 pm 2 3 4 5 6 7 8 9 10 11 12 n 1 pm 2 3 4 5 6 7 8 9 10 11 12 n 1 12 n 1 12 n 12 n		68.0 67.1 66.4 65.9 65.3 64.6 64.1 64.2 65.5 68.4 72.7 77.7 82.1 85.0 85.7 84.3 81.5 78.4 75.6 73.6 72.3 71.3 70.3 69.2 68.0

Ę

Table E.4

Room Temperature as a Function of Time

U.S.GPO:1980-698-101 F-101

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

T

5

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

۳

1

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720