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Abstract
The unique contribution of the serotonin transporter-linked polymorphic region (5-HTTLPR), intronic region 2 (STin2), and 
monoamine oxidase A (MAO-A) genes to individual differences in personality traits has been widely explored, and research 
has shown that certain forms of these polymorphisms relate to impulsivity and impulsivity-related disorders. Humans show-
ing these traits are also described as having an asymmetrical prefrontal cortical activity when compared to others. In this 
explorative study, we examine the relationship between serotonergic neurotransmission polymorphisms, cortical activity 
features (prefrontal alpha asymmetry, individual alpha peak frequency [iAPF]),  emotion-related and non-emotion-related 
impulsivity in humans. 5-HTTLPR, MAO-A, and STin2 polymorphisms were assessed in blood taken from 91 participants 
with high emotion-related impulsivity levels. Sixty-seven participants completed resting electroencephalography and a more 
comprehensive impulsivity index. In univariate analyses, iAPF correlated with both forms of emotion-related impulsivity. In 
multiple linear regression models, 5-HTTLPR polymorphism (model 1, adj. R2 = 15.2%) and iAPF were significant interact-
ing predictors of emotion-related impulsivity, explaining a large share of the results’ variance (model 2, adj. R2 = 21.2%). 
Carriers of the low transcriptional activity 5-HTTPLR and MAO-A phenotypes obtained higher emotion-related impulsivity 
scores than others did. No significant results were detected for non-emotion-related impulsivity or for a form of emotion-
related impulsivity involving cognitive/motivational reactivity to emotion. Our findings support an endophenotypic approach 
to impulsivity, showing that tri-allelic 5-HTTLPR polymorphism, iAPF, and their interaction are relevant predictors of one 
form of emotion-related impulsivity.

Keywords 5-HTTLPR · MAO-A · STin2 · Emotion-related impulsivity · Individual alpha peak frequency · Alpha 
asymmetry

Introduction

Impulsivity is a multidimensional personality construct 
associated with a wide range of psychological disorders 
(e.g., major depressive disorder, bipolar disorder, attention-
deficit hyperactivity disorder, suicide) [1–5]. While older 
impulsivity definitions tended to focus on problems with 
planning, deliberation, and attention [6, 7], newer research 
reports the importance of impulsivity in response to states of 
high positive or negative emotions [2, 8, 9]. Emotion-related 
impulsivity has been defined as the reflexive tendency to act 
impulsively during periods of heightened emotion [9]. A 
large body of work shows that emotion-related impulsivity 
is more robustly tied to psychopathologies, aggression, and 
suicide than are other forms of impulsivity [10, 11].
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Serotonergic neurotransmission modulates mood and 
emotion [12, 13], consequently affecting a wide spectrum 
of impulsivity-related traits. Two key regulators of sero-
tonergic signaling are the serotonin transporter (5-HTT) 
and the monoamine oxidase A (MAO-A), which respec-
tively remove serotonin from the synaptic cleft and catabo-
lize monoamines with a strong affinity for serotonin and cat-
echolamines [13–15]. The 5-HTT protein is encoded by the 
gene SLC6A4, whose transcriptional activity is modulated 
by several variations, including two repetitive sequences 
called the serotonin transporter-linked polymorphic region 
(5-HTTLPR) and the serotonin transporter intronic region 2 
(STin2) variable number tandem repeat (VNTR) [16]. Like-
wise, the MAO-A gene has a VNTR polymorphism modulat-
ing its transcription. Transcriptional activity levels in each of 
these monoamine genes result in different expression rates 
of their respective mRNA and subsequent proteins and can 
therefore be classified in phenotypic categories (Fig. 1) [14, 
15, 17, 18]. These phenotypic distinctions are also related 
to some psychological traits, especially impulsivity [14, 15].

More specifically, these polymorphisms have been associ-
ated with impulsivity and impulsivity-related disorders. For 
example, impulsivity [9], neuroticism [14], anxiety [19], and 
emotional instability [14] are more frequent in people having 
the low 5-HTTLPR transcriptional activity (5-HTTLPRLow) 
phenotype. The shortest repetitive sequences of STin2 are 
associated with elevated cognitive impulsivity [20], anxi-
ety scores [21], major depressive disorders [22], early-onset 
bipolar disorder [23], and suicide attempts [24]. Finally, 
MAO-A phenotypes are linked to antisocial behaviors [15], 
emotional instability [25], impulsivity [26], bipolar disor-
ders [27], and violent aggression [28].

Attempts to understand the neurogenetic basis of impul-
sivity have been limited by the relative absence of attention 
to the multidimensional nature of impulsivity. One previous 
study suggested that emotion-related impulsivity, but not 
non-emotion-related impulsivity, was tied to 5-HTTLPR [9]. 
Therefore, the aim of this explorative study was to evaluate 
serotonergic genetic markers while differentiating between 
emotion-related and non-emotion-related impulsivity.

Beyond these genetic markers, we consider other stable 
genetically modulated variables to provide a more compre-
hensive understanding of the determinants of impulsivity. 
Cortical activity, including lateralization of frontal oscilla-
tions in the alpha frequency band, is a partially genetically 
modulated parameter sometimes found to be associated with 
genetic polymorphisms such as the 5-HTTLPRLow pheno-
type [29]. For more than 50 years, research has demonstrated 
that frontocortical regions are asymmetrically related to 
motivational and emotional variables, such as approach and 
avoidance tendencies: heightened relative activity in the left 
frontal cortex is related to approach motivation, whereas 
heightened relative activity in the right frontal cortex is 

related to avoidance motivation [30–33]. Impulsivity (in 
particular, its urgency and positive urgency dimensions) 
can be depicted as the inability to inhibit approach urges 
[34, 35]. Drawing on these findings, multiple investigators 
have shown that greater left prefrontal activity during rest 
(i.e., a right-sided predominance of alpha power as alpha 
oscillations are inversely related to cortical activity [36]) is 
associated with impulsivity [37–39].

There is reason to believe that emotion-related impulsiv-
ity may be more closely tied to lateralization indices than 
non-emotion-related impulsivity is. High emotional insta-
bility has frequently been associated with lateralization of 
the frontal alpha activity [29, 37–40]. Regions of the left 
prefrontal cortex are believed to play an important role in 
inhibiting the amygdala [41, 42], and their activation leads 
to downregulation of the amygdala when participants are 
asked to downregulate negative affect [43, 44]. Accordingly, 
we hypothesize that persons exhibiting highly impulsive 
responses to emotion may show stronger right alpha pre-
frontal activity than others.

Other cortical activity characteristics, such as individual 
alpha peak frequency (iAPF), are highly heritable, appear 
to be under substantial genetic control [45–47], and show 
high stability over test–retest intervals in healthy and clini-
cal conditions [48, 49]. Given this, iAPF is considered to 
be a valuable marker for understanding psychological traits 
[50]. Furthermore, seminal research has already shown that 
alpha power and alpha peak frequency were higher in highly 
impulsive individuals when compared to low impulsive indi-
viduals [51]. Compared to the alpha power, the iAPF has 
more robust heritability estimates and better test–retest reli-
ability [48, 52].

Thus, in the current study, we used an endophenotypic 
approach, combining genetic and cortical features to bet-
ter understand the mechanisms underlying emotion-related 
impulsivity. Serotonergic neurotransmission polymor-
phisms (i.e., 5-HTTLPR, STin2, and MAO-A), prefrontal 
alpha asymmetry, and iAPF were assessed in emotionally 
impulsive humans. We hypothesized that the low transcrip-
tional activity phenotypes in serotonergic neurotransmission 
polymorphisms and high right prefrontal alpha asymmetry 
would relate to higher emotion-related impulsivity. Accord-
ing to seminal research, the iAPF should be higher in highly 
impulsive individuals when compared to others.

Material and Methods

All samples and data used in this explorative study were 
taken at the baseline testing of an intervention study called 
NoSTRESS. The authors assert that all procedures con-
tributing to this work comply with the ethical standards 
of the relevant national and institutional committees on 
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Fig. 1  Allelic variations for serotonin transporter linked polymorphic 
region (5-HTTLPR), serotonin transporter intronic region 2 (STin2), 
and monoamine oxidase A (MAO-A) leading to different transcrip-
tional activity phenotypes. Only the most frequent alleles are illus-
trated in A. Chrom., chromosome; 5-HTT, serotonin transporter; 
5-HT, serotonin; rep., repeats; VNTR, variable number tandem 
repeat. This figure has been created using BioRender.com. B Pheno-

type categorization used in this study based on genes’ transcriptional 
activity levels and their occurrence frequency (in percentage) in this 
analysis. MAO-A being located on chromosome X, male participants 
comport only one allele of the gene. All results were concordant with 
participants’ gender. The phenotype categorization was realized using 
the following references: [14, 15, 17, 18]. S, short; L, long; a, ade-
nine; g, guanine
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human experimentation and with the Helsinki Declara-
tion of 1975, as revised in 2008. The study was regis-
tered on the German Clinical Trial registration website 
(DRKS00016589) and approved by the university review 
board before data collection.

Participants

Participants were recruited through advertising on the uni-
versity website and online social networks (i.e., Facebook, 
Twitter, and LinkedIn) based on high scores on a measure of 
emotion-related impulsivity. As presented in Fig. 2, 91 par-
ticipants (one participant later excluded because of insuffi-
cient DNA quality) were included in genotyping step (mean 
age = 29.9 ± 7.7). Sixty-seven participants attended a second 
appointment where the resting electroencephalogram (EEG) 
and fuller impulsivity measurements were gathered (mean 
age = 30.3 ± 7.6). Details are presented in Fig. 2.

Experimental Design

Participants completed consent, a self-report measure of 
emotion-related impulsivity (Feelings Trigger Action) [9], 
and questions on inclusion/exclusion criteria via the Qual-
trics platform. The 35% of participants with the highest emo-
tion-related impulsivity levels were invited to the laboratory 
to perform a quasi-ramp cardiopulmonary exercise testing 
(CPET; not relevant here but available in [53]) and blood 
testing between 7 and 11 a.m. and in a fasted state (8–16 h).

The exclusion and inclusion criteria were double-checked 
at the lab, and written informed consent was gathered. A 
short medical check-up was conducted. Blood was drawn 
via venipuncture at rest. On a separate day within the same 
week, participants were invited to a second appointment to 
record resting cortical activity and complete a broader index 
of impulsivity, the Three-Factor Impulsivity index [9].

Inclusion/Exclusion Criteria

Exclusion criteria were designed for the NoSTRESS study 
[53] and included current pregnancy, breastfeeding, specific 
medical conditions or psychological disorders diagnosed 
by clinicians, use of antidepressant medication, engage-
ment in more than three hours of exercise per week, and 
fitness level (i.e.,  VO2peak) at or below fair (age and gen-
der corrected, based on the Standards of the Federal Office 
for Sport [Bundesamtes für Sport]). Participants had to be 
native German speakers, between 18 and 50 years old, and 
among the 35% highest emotion-related impulsivity scores 
[53] (DRKS00016589).

DNA Isolation

Blood samples were taken in K2 EDTA tubes, and buffy 
coats were collected after two centrifugation cycles—phos-
phate-buffered saline (PBS) re-suspension. Freezing medium 
was added to the samples (1 mL for 300 µL of buffy coat) 
that were stored at − 150 °C until study completion. On the 
day of analysis, the buffy coat was brought to room tem-
perature and then centrifuged for 10 min at 5500 rpm. The 
supernatant was discarded. The pellet was re-suspended with 
a 200 µL PBS solution. DNA was isolated using Blood DNA 
Mini Kit (Bio-Budget, Technologies GmbH, Germany). 
Quantification and quality assessment of the DNA were per-
formed using a single sample spectrophotometer (NanoDrop 
1000, peqlab, biotechnologie, GmbH). Samples were stored 
at − 20 °C until required.

Genotyping

Primers were synthesized by Invitrogen, Thermo Fisher 
Scientific, Germany (Supplementary Material A) based on 
former uses [54–56]. Participant’s genomic DNA (20 ng) 
was amplified using the premixed ready-to-use solution 
GoTaq Colorless MasterMix (Promega, Madison, USA) 
and equimolar concentrations (50 pmol final concentration) 
of forward and reverse primers for 5-HTTLPR, STin2, and 
MAO-A (Invitrogen, Thermo Fisher Scientific, Germany). 
Complete polymerase chain reaction (PCR) cycling condi-
tions for each gene are described in Supplementary Mate-
rial A. Annealing temperatures were determined using 
temperature gradient (63° for MAO-A and STin2, 61° for 
5-HTTLPR). To determine the presence of the rs25531 
single nucleotide polymorphism within the 5-HTTLPR 
region, a restriction enzyme digest was performed on the 
PCR amplicons. Twenty microliters of the product was 
digested with 1 µL MspI (New England Biolabs, Herts, 
UK) at 37 °C for 6 h. PCR amplicons were separated by 
0.5 × tris–borate-EDTA-buffered 1.5% agarose gel (loading 
dye without sodium dodecyl sulfate) and visualized with 
ethidium bromide using a UV trans-illuminator. All samples 
were duplicated for assay reliability. Interpretation of the 
PCR products are presented in Supplementary Material A. 
Phenotype and genotype occurrences are presented, respec-
tively, in Fig. 1B and Supplementary Material A.

Three‑Factor Impulsivity Index [9]

The Three-Factor Impulsivity index is a 54-item composite 
self-report measure of impulsivity. Items are rated from 1 
(“I strongly disagree”) to 5 (“I strongly agree”), with higher 
scores reflecting higher impulsivity levels. The questionnaire 
covers eight different components of impulsivity shown in 
oblique factor analyses and confirmatory structural equation 
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modeling to load onto three separate factors [9, 57]: Per-
vasive Influence of Feelings, (lack of) Follow-Through, 
and Feelings Trigger Action; alphas = 0.837, 0.897, and 

0.857, respectively. The first and the third factors are emo-
tion-related. Factor one, Pervasive Influence of Feelings, 
reflects unconstrained cognitive and motivational responses 

Fig. 2  Flow diagram of the study. Green boxes refer to valid data available at each stage of the study. In grey are recalled valid data that were 
previously gathered. Red boxes refer to excluded or dropout participants
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to negative emotions and includes items from previously 
validated scales for negative generalization [58], negative 
urgency [8], and novel items to capture lethargy in response 
to sadness and extremely negative thoughts of self and the 
world in response to emotions. Factor two, (lack of) Follow-
Through, includes items from previously validated scales 
designed to cover distractibility and lack of perseverance [8]. 
The third factor, Feelings Trigger Action, which was used 
for screening, includes items from the previously validated 
scales of Negative Urgency [8], Positive Urgency [59], and 
items to capture responding reflexively and quickly when 
experiencing emotions. The German validated version of 
the questionnaire was used [60]. One attention catch item 
(“Please select I agree”) was embedded in the online screen-
ing questionnaire, and two such items in the full Three-Fac-
tor Impulsivity index. All participants answered the three 
catch items properly, and no data were removed for failing 
these items. Means and standard deviation were 3.19 ± 0.71 
for Pervasive Influence of Feelings (n = 67), 2.80 ± 0.59 for 
(lack of) Follow-Through (n = 67), 3.11 ± 0.44 for Feelings 
Trigger Action at T0 (n = 67), and 3.22 ± 0.35 for Feeling 
Trigger Action at screening (n = 91).

Electroencephalography

Data Acquisition

The EEG was recorded continuously for 5 min while par-
ticipants sat alone in a relaxed position with eyes closed in 
a testing room with temperature and humidity maintained at 
20.5 ± 0.5 °C and 44 ± 11%, respectively. A BioSemi Active-
Two system (BioSemi, Amsterdam, Netherlands) with 64 
Ag/AgCl electrodes embedded in an elastic cap and placed 
according to the international 10–20 system was used. The 
system records the voltage between each electrode and an 
active common mode sense (CMS) electrode that forms a 
feedback loop with a passive drive right leg (DLR) elec-
trode. CMS and DLR were located in parieto-occipital posi-
tions. The sampling frequency was set at 2048 Hz, and the 
electrodes’ offset was kept below 50 µV. ActiView software 
(BioSemi, Amsterdam, Netherlands) was used to record the 
data.

Data Analysis

Offline EEG data processing was conducted using Python’s 
(v3.8.5) MNE package (v0.22.0) [61]. First, power line noise 
at 50 Hz and its respective harmonics was attenuated by 
notch filters (overlap-add finite impulse response filtering). 
Then, the data were re-referenced to the average reference. 
Bad channels were detected automatically using the noisy 
channel detection algorithm of pyprep (per deviation; thresh-
old = 5z) [62] and via visual inspection. If bad channels were 

detected, they were subsequently removed, and data were 
interpolated using spherical splines as long as three original 
neighboring signals were available for interpolation. Muscle 
artifacts were automatically detected and annotated within 
the continuous raw data using the MNE annotate_mus-
cle_zscore method. Then, the raw data were filtered with a 
1-Hz high-pass and 40-Hz low-pass filter (both overlap-add 
finite impulse response filtering). Power spectra density was 
computed by Welch’s method using 1-s segments with 50% 
overlap. Segments containing previously annotated muscle 
artifacts and a peak-to-peak amplitude exceeding 200 µV in 
any channel were rejected. On average across participants, 
533 ± 47 quality-sufficient epochs were used in the analysis.

Scientific literature provides a spectrum of studies linking 
impulsivity to different frontal cortex regions, e.g., [31–33, 
37, 39, 63–65]. Thus, we used a comprehensive approach 
going from the general to the specific. In preliminary analy-
ses, we have first tested the frontal cortex, then the prefrontal 
cortex, and finally specific pairs of electrodes from the pre-
frontal region often used in asymmetry literature: Fp2/Fp1, 
F2/F1, F4/F3, and F8/F7 (details in Supplementary Mate-
rial A). These multiple tests were adjusted using a family-
wise Bonferroni correction (see “Statistics” section). As 
suggested in previous research [29], the alpha asymmetry 
was indexed using laterality coefficients (LC) using the fol-
lowing formula: LC = (power right – power left) / (power 
right + power left) × 100. Values superior to zero indicate 
higher alpha activity in the right cortex compared to the left 
one, in other words, a greater left cortical activity. LC has 
been used for a long time in the field of laterality because 
it separates the asymmetry variance from the general mag-
nitude variance [64]. This score is perfectly correlated with 
another metric commonly reported in EEG studies (ln (right) 
– ln (left)) [66]. Nevertheless, using the LC allows easier 
comparison between different studies, different frequency 
bands, and locations [67].

IAPF was estimated from the power spectra densities 
computed from 1-s non-overlapping segments that were 
zero-padded to 10 s to have a frequency resolution of 0.1 Hz. 
The iAPF between 8 and 13 Hz was determined from the 
mean over 17 posterior electrodes (Pz, P1/2, P3/4, P5/6, 
P7/8, POz, PO3/4, PO7/8, Oz, and O1/2) [50].

Statistics

Statistical analyses were conducted using R (v1.2.1335) and 
SPSS (v23). The dataset and the R script are provided in 
Supplementary Materials B and C. Data were first z-stand-
ardized (for dependant variables and continuous predictors) 
and then winsorized at ± 3z [68]. The distribution of each 
variable was evaluated using the Shapiro–Wilk test and 
checked for linearity (via quantile–quantile plots and his-
tograms of standardized residuals), skewness, and kurtosis. 
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Pearson’s bivariate correlations were used to evaluate the 
relationship of EEG markers with impulsivity levels. As the 
alpha asymmetry was evaluated using six parameters, a Bon-
ferroni alpha correction was applied family-wise by setting 
the significance level at p < 0.008. All univariate analyses 
were controlled for age and gender.

Multiple linear regression models were used to assess 
how gene phenotypes, individual alpha frequency, and cor-
tical asymmetry LC contributed to impulsivity (continuous 
scores). The predictors were either categorical (i.e., phe-
notypes, gender) or continuous (i.e., iAPF, LCs, age) [68]. 
As the MAO-A gene is located on the X chromosome, and 
impulsivity can vary with gender, gender was included as 
a potential predictor. Because impulsivity and iAPF have 
been shown to change with age, age was included as a pre-
dictor [50, 69]. To avoid potential collinearity, we included 
F4/F3, the most commonly used asymmetry marker, as the 
only pre-frontal-asymmetry marker. Based on the literature, 
one can expect interaction between 5-HTTLPR polymor-
phisms and cortical activity [29]. Thus, these interaction 
terms were included in the regression models. Missing val-
ues were imputed based on the mean when inferior to 10% 
of the total number of values (F4/F3 LC: 4.5% and iAPF: 
8.9%) [70, 71].

All predictors were checked for multicollinearity (vari-
ance inflation factor and tolerance values were acceptable 
at < 2 and > 0.2, respectively), independence (Durbin Watson 
test was acceptable, results ranged from 1 to 3), and linear-
ity (graphically via quantile–quantile plot, scatterplot, and 
histogram of studentized residuals) [72]. All assumptions 
for the statistical analysis were met. As models 1 and 2 both 
assessed Feeling Trigger Action, a Bonferroni alpha correc-
tion was applied, bringing the significance level to p < 0.025. 
For the other parameters, the significance level was set to 
p < 0.050.

Results

Univariate Analyses

Impulsivity and Polymorphisms

Average impulsivity scores per gene and transcriptional 
activity phenotypes are reported in Supplementary Mate-
rial A. When controlled for age and gender, Feelings 
Trigger Action levels at screening differed significantly 
among 5-HTTLPR transcriptional activity phenotypes 
F(2, 85) = 8.853, p < 0.001, np2 = 0.172 and at T0 F(2, 
62) = 3.220, p < 0.050, np2 = 0.094. Post hoc analyses 
revealed that carriers of the 5-HTTLPRLow phenotype had 
significantly higher Feelings Trigger Action scores than 
the moderate  (5HTTLPRModerate) and high transcriptional 

activities (5-HTTLPRHigh) phenotype carriers. Moreover, 
Feelings Trigger Action scores were significantly higher for 
the low MAO-A VNTR transcriptional activity (MAO-ALow) 
phenotype carriers compared to the high ones (MAO-AHigh), 
F(1, 63) = 4.927, p < 0.050, np2 = 0.073 at T0, but were only 
a trend at screening, F(1, 86) = 3.620, p = 0.060, np2 = 0.040. 
No other phenotypes were significantly related to impulsiv-
ity scores (Supplementary Material A).

Impulsivity and EEG

When cortical activity markers were correlated to impulsiv-
ity scores, iAPF was positively correlated to both emotion-
related impulsivity factors, | r's |> 0.246, p's < 0.050 (Fig. 3). 
No other significant results for cortical activity makers 
with impulsivity were detected. Nevertheless, as shown in 
Fig. 3, non-significant trends between three binary prefrontal 
asymmetry LCs (Fp2/Fp1, F2/F1, F4/F3) were observed, 
0.113 > p's > 0.092. Age was not correlated with any EEG 
markers.

Multiple Linear Regression Models

Multiple linear regression models are reported in Table 1 
for Feelings Trigger Action at screening (n = 90), and 
for a smaller sample, all three impulsivity scales at T0 
(n = 67). Of the four models, only the two with Feelings 
Trigger Action were significant. Model 1 explained 21.9% 
(adj. R2 = 15.2%) of the total variance of Feelings Trig-
ger Action at screening (p < 0.010). Out of the five pre-
dictors included in the Feelings Trigger Action screen-
ing model, only 5-HTTLPR and MAO-A polymorphisms 
were significant. Beta scores (Table 1) show that carriers 

Fig. 3  Pearson’s correlation coefficients of cortical activity markers 
and impulsivity scores (T0). PIF, Pervasive Influence of Feelings; 
LFT, (Lack of) Follow-Through; FTA, Feelings Trigger Action; LC, 
Laterality Coefficient; iAPF, individual alpha peak frequency. Sig-
nificance for the asymmetry: #p < 0.008. For the rest: *p < 0.050; 
**p < 0.010; ***p < 0.001
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of  5-HTTLPRHigh and MAO-AHigh phenotypes have lower 
Feelings Trigger Action scores when compared to the low 
transcriptional activity phenotypes. When standardized, 
the 5-HTTLPR beta scores had the strongest magnitude 
(Table 1). When iAPF, F4/F3 LC, and their interaction 
terms with 5-HTTLPR were added, the second model 
explained 36.7% (adj. R2 = 21.2%) of the total variance 
(p < 0.025). Out of the nine predictors, 5-HTTLPRModerate , 
iAPF, and their interaction term were significant (Table 1). 
When compared to 5-HTTLPRLow phenotype, 5-HTTL-
PRModerate carriers had lower Feelings Trigger Action 
scores. On the contrary, Feelings Trigger Action scores 
conjointly increased with iAPF. Nevertheless, the inter-
action term 5-HTTLPRModerate / iAPF had a negative beta 
score, indicating an inverse relation. Even though not sig-
nificant, the interaction term 5-HTTLPRHigh / iAPF also 
had a negative beta score suggesting that the positive rela-
tion between iAPF and Feeling Trigger Action scores was 
very likely to be driven by 5-HTTLPRLow phenotypic cat-
egory. Even though models 3 and 4 explained an important 
part of variance (respectively, 19.3% and 25.4%), neither 
was significant (Table 1).

Significant predictors of model 2 are displayed in Fig. 4. 
The graphic clearly illustrates the interaction between 
iAPF and 5-HTTLPR phenotypes, showing a strong posi-
tive link between iAPF and Feelings Trigger Action scores 
in participants with the 5-HTTLPRLow phenotype.

Discussion

Impulsivity triggered by positive or negative emotions 
has been shown to be more clinically relevant than other 
forms unrelated to emotions [73, 74]. Given the evi-
dence that impulsivity is linked not only to serotoner-
gic neurotransmission polymorphisms (i.e., 5-HTTLPR, 
STin2, and MAO-A) but also to cortical activity (i.e., 
iAPF and prefrontal alpha asymmetry), this explorative 
study aimed to assess the conjoint importance of these 
variables in explaining emotion-related impulsivity. The 
study examined two forms of emotion-related impulsiv-
ity— Feelings Trigger Action, which captures tendencies 
to engage in regrettable behavior in response to emotion, 
and Pervasive Influence of Feelings, which covers uncon-
strained cognitive/motivational responses to emotions. 
Both forms of emotion-related impulsivity were linked to 
higher iAPF. Carriers of  MAO-ALow and 5-HTTLPRLow 
phenotypes had higher Feelings Trigger Action scores. 
Furthermore, findings of the multiple regression models 
show that the 5-HTTLPR polymorphism, iAPF, and their 
interaction term are significant predictors of Feelings Trig-
ger Action scores. Significant effects of the 5-HTTLPR 
polymorphism were observed for both administrations 

of the Feelings Trigger Action subscale. These findings 
support the endophenotypic approach to emotion-related 
impulsivity.

In line with previous research [9], the moderate to large 
effect sizes detected between Feelings Trigger Action 
scores and 5-HTTLPR (at screening and T0) and MAO-A 
(T0) transcriptional activity phenotypes confirm the impor-
tance of these polymorphisms in explaining emotion-related 
impulsivity levels. This fits with the findings from several 
studies showing that carriers of 5-HTTLPRLow and MAO-
ALow phenotypes show hyper-responsivity of the amygdala 
and anterior cingulate cortex during the display of negative 
emotional stimuli [75–78]. Even though it would be logical 
to relate the transcriptional activity levels of these genes 
to monoamine rates within neurons and synapses, research 
suggests that this relation is more complex. This reactiv-
ity is tied to decreased functional connectivity between the 
amygdala and anterior cingulate cortex in the 5-HTTLPRLow  
, compared with  5-HTTLPRHigh phenotype carriers [76]. 
The source of this functional connectivity difference might 
arise during fetal neurodevelopment, in that 5-HTTLPRLow 
and MAO-ALow phenotypes have, respectively, fewer 5-HTT 
and MAO-A mRNA levels in placenta tissue [56]. Therefore, 
emotion-related impulsivity levels could be driven by fetal 
monoamine levels affecting structural connectivity, and con-
sequently functional interactions within neural circuits that 
regulate emotional reactivity.

We observed only non-significant trend-level correlations 
between prefrontal alpha asymmetry and emotion-related 
impulsivity. Prefrontal alpha asymmetry, though, is influ-
enced not just by trait-like characteristics but also tends to 
shift in a state-dependent manner, and our current study 
design did not allow us to consider the state-like dynamic 
variation. We also did not record handedness preference or 
state levels of affect and motivation, which can potentially 
influence asymmetry results. Finally, post hoc power analy-
ses (power > 0.8) suggest that effect sizes below r = 0.260 
were probably undetectable.

Despite the null effect in the correlational analyses for 
alpha asymmetry, our findings suggest that a form of emotion-
related impulsivity related to regrettable behavior (Feelings 
Trigger Action) is tied to a set of neural (iAPF) and genetic 
variables (5-HTTLPR and MAO-A). Intriguingly, results 
were not generalized to unconstrained cognitive or motiva-
tional responses to emotion (Pervasive Influence of Feelings), 
dovetailing with previous work to suggest the importance of 
distinguishing between these two factors in understanding 
neurocognitive correlates and psychopathology.

Univariate analyses indicated that the cognitive and 
behavioral forms of emotion-related impulsivity were both 
correlated to higher iAPF. These results are counterintui-
tive when considering research linking decreasing iAPF 
to central system pathologies [50] and high resting iAPF 
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to high executive function performances [79]. Nonethe-
less, it is important to recall that these measurements were 
obtained from healthy participants without any emotional 
trigger. Furthermore, regression model 2 (Table 1) did put 
in evidence a significant interaction between the two predic-
tors (i.e., iAPF and 5-HTTLPR), displaying a very differ-
ent relationship between iAPF and Feelings Trigger Action 
scores per 5-HTTLPR phenotypes (Fig. 4). The positive 
relation depicted in the univariate analysis and in the beta 
score of iAPF (Table 1, model 2) appeared to be driven by 
the large effect in the carriers of the 5-HTTPLRLow (n = 19, 
R2 = 0.330, p < 0.010). These ties were of negligible mag-
nitude for 5-HTTLPRModerate (n = 30, R2 = 0.001, p = 0.900) 
and 5-HTTLPRHigh (n = 11, R2 = 0.014, p = 0.726). More 
research investigating the link between 5-HTTLPR and 
iAPF is warranted. Moreover, 5-HTTLPR should now be 
considered systematically in iAPF research to have a better 
understanding of the results.

Despite the intriguing and novel findings, the results of 
this study should be interpreted within the context of several 
limitations. First, even though this study used a multifacto-
rial endophenotypic approach, the scope of the investigation 
was limited. For example, polymorphisms in the dopamin-
ergic pathway [80, 81], circulating levels of tryptophan [53, 
82], central serotonin shortage [83, 84], and activity of the 
kynurenine pathway [53] have been tied to impulsivity but 
were not assessed in the present study. Second, the recruited 
sample had only a modest range of impulsivity scores (the 

35% highest emotion-related impulsivity scores), which may 
have reduced result variance and constrained effect sizes. 
Third, even though most research in the field of alpha asym-
metry underlying personality traits recommend resting EEG 
(e.g., [31, 32, 39, 63]), another body of research suggests 
that this condition might not be the most optimal [65, 85]. 
They argue that uncontrolled experimental conditions may 
affect resting measures and that individuals can engage in 
a variety of mental states that are not controlled during the 
resting tasks. As we used resting EEG condition, we cannot 
exclude that these parameters may have affected our results. 
Including an additional motivational induction paradigm 
followed by EEG measures [65, 85] in future studies may 
provide further insights into the relationship between frontal 
asymmetry and impulsivity. Finally, it is worth noting that 
future studies might also consider using clinical interviews 
and behavioral tests (e.g., Go/No-Go test) to gain deeper 
insights into impulsivity.

In conclusion, our results highlight the importance of 
using endophenotypic approaches to characterize impulsiv-
ity, demonstrating that the 5-HTTLPR polymorphism, iAPF, 
and their interaction are relevant predictors of a key form 
of emotion-related impulsivity involving regrettable behav-
ior. Moreover, carriers of 5-HTTPLRLow and MAO-ALow 
phenotypes showed higher levels of this form of emotion-
related impulsivity than did those with other phenotypes. 
This multifactorial neurogenetic approach to impulsivity 
could be applied to developing better identification and 

Fig. 4  Multiple linear regres-
sion illustrations of Feelings 
Trigger Actionand its significant 
predictors: individual alpha 
peak frequency (iAPF) and 
serotonin transporter-linked pol-
ymorphic region (5-HTTLPR) 
phenotypes
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prediction for impulsivity-related disorders. Our findings 
were specific to emotion-related impulsivity involving 
regrettable behavior, which is of importance given the bur-
geoning literature suggesting that this form of impulsivity 
is uniquely powerful in predicting externalizing, suicidal 
behavior, and other key outcomes [1]. Evaluating conjoint 
changes between impulsivity and epigenetic mechanisms 
in serotonergic neurotransmission polymorphisms (e.g., 
DNA methylation, histone acetylation) represents another 
rich domain for future work that can be incorporated into 
endophenotypic approaches.
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