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Abstract

This paper studies the estimation of quantile treatment effects based on the instrumental

variable quantile regression (IVQR) model (Chernozhukov and Hansen, 2005). I develop a class

of flexible plug-in estimators based on closed-form solutions derived from the IVQR moment

conditions. The proposed estimators remain tractable and root-n-consistent, while allowing for

rich patterns of effect heterogeneity. Functional central limit theorems and bootstrap validity

results for the estimators of the quantile treatment effects and other functionals are provided.

Monte Carlo simulations demonstrate favorable finite sample properties of the proposed ap-

proach. I apply my method to reanalyze the causal effect of 401(k) plans.
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1 Introduction

Quantile regression is a powerful tool for characterizing the heterogeneous impact of policy variables

on different points of an outcome distribution. However, as with ordinary least squares, endogeneity

renders standard quantile regression methods inconsistent for estimating quantile treatment effects

(QTE). One approach to overcome this problem is to use instrumental variable (IV) methods.

The goal and main contribution of this paper is to develop a flexible yet tractable approach

for estimating conditional and unconditional QTE based on the instrumental variable quantile re-

gression (IVQR) model (Chernozhukov and Hansen, 2005) with binary endogenous variables and

binary instruments. The principal feature of the IVQR model is the rank similarity assumption,

a restriction on the evolution of individual ranks across treatment states. Rank similarity im-

plies a conditional moment restriction that can be used for constructing estimators of population

QTE. However, estimation based on this moment restriction is complicated by the non-smoothness

and non-convexity of the corresponding generalized method of moments (GMM) objective func-

tion, which occurs even for linear-in-parameters quantile models (Chernozhukov and Hansen, 2013;

Chernozhukov et al., 2017).

In this paper, I derive closed-form solutions for the IVQR estimands of the potential outcome

cumulative distribution functions (cdfs).1 These closed-form solutions are compositions of observ-

able conditional cdfs and probabilities. I estimate the conditional cdfs using distribution regression

(DR) and the conditional probabilities using parametric binary choice models. I then apply the

closed-form solutions to obtain plug-in estimators of the conditional potential outcome cdfs and

the conditional QTE. Finally, unconditional QTE are estimated by integrating the estimators of

the conditional potential outcome cdfs with respect to the empirical distribution of the covariates.2

1These identification results generalize Wüthrich (2018), who derives similar closed-from solutions under more
restrictive assumptions.

2I refer to Firpo (2007) or Frölich and Melly (2013) for a discussion of the differences between conditional and
unconditional QTE.
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This plug-in estimation strategy naturally bypasses the challenges associated with optimizing

the IVQR GMM objective function. As a result, the proposed estimators are easy to implement

and remain computationally tractable, while allowing for rich patterns of treatment effect hetero-

geneity with respect to observables covariates. Moreover, unlike other IVQR estimators, the plug-in

approach does not require practitioners to model the counterfactual structural quantile function.

Instead, they only need to specify and estimate the observable conditional probabilities and cdfs

with well-established and flexible parametric models for which specification tests are readily avail-

able.

Under standard regularity conditions, the plug-in estimators of the conditional and uncondi-

tional QTE are uniformly consistent and satisfy functional central limit theorems. Moreover, I

prove the validity of the exchangeable bootstrap for estimating the limiting laws. These results al-

low me to construct uniform confidence bands and to test functional hypotheses such as no-effects,

positive effects, constant effects, or stochastic dominance. Monte Carlo simulations demonstrate

favorable finite sample properties of the proposed estimation and inference procedures. The simula-

tions further suggest that the plug-in approach is robust against different types of misspecification

of the underlying parametric restrictions. By contrast, I show that existing estimators based on

linear-in-parameters IVQR models may be severely biased whenever the true quantile function is

nonlinear.

Although the focus of this paper is on estimating QTE, the plug-in approach to estimation and

inference also covers many other smooth functionals of the conditional and unconditional potential

outcome cdfs. Examples include average treatment effects (ATE), distributional treatment effects,

Lorenz curves, and Gini coefficients.

I illustrate my method by reanalyzing the distributional effect of 401(k) plans on individual

savings behavior using data from the 1991 Survey of Income and Program Participation (SIPP)
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as in Chernozhukov and Hansen (2004) and Belloni et al. (2017). I find that the effect of 401(k)

participation on individual assets is moderate at the lower tail, but increases substantially along

the distribution. Interestingly, my results suggest that there is considerably more treatment effect

heterogeneity than implied by the estimates based on the linear IVQR model of Chernozhukov and

Hansen (2004).

1.1 Related literature

This paper contributes to the literature on estimation and inference based on the IVQR model.

Linear-in-parameters conditional quantile models have been analyzed by Chernozhukov and Hansen

(2006), Chernozhukov et al. (2007a), Chernozhukov and Hansen (2008), Chernozhukov et al. (2009),

Kaplan and Sun (2017), and Chen and Lee (2018). Chernozhukov and Hong (2003) have considered

potentially nonlinear parametric quantile functions. Nonparametric approaches have been studied

by Chernozhukov et al. (2007b), Horowitz and Lee (2007), Chen and Pouzo (2009), Chen and Pouzo

(2012), and Gagliardini and Scaillet (2012). Chernozhukov and Hansen (2013) and Chernozhukov

et al. (2017) have provided surveys of the IVQR model including references to empirical applications.

Abadie et al. (2002) have introduced an alternative approach for estimating QTE with endoge-

nous binary treatments based on the local average treatment effects framework (cf. Imbens and

Angrist, 1994). They exploit a re-weighting result in Abadie (2003) to identify and estimate condi-

tional QTE for the compliers, referred to as local QTE (LQTE). Frandsen et al. (2012) have studied

identification and estimation of LQTE in regression discontinuity designs, Frölich and Melly (2013)

and Hsu et al. (2015) have proposed estimators for unconditional LQTE, and Belloni et al. (2017)

have suggested estimation and inference methods in high-dimensional settings. Generalizations to

non-binary instruments have been analyzed by Carneiro and Lee (2009) and Yu (2014). A recent

survey of the LQTE framework is provided by Melly and Wüthrich (2017).
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It is important to note that the assumptions of the IVQR model neither imply nor are implied

by the assumptions of the LQTE model. The IVQR model imposes rank similarity on the outcome

equation, whereas the LQTE model relies on monotonicity of the selection equation. Moreover,

the estimands of both models are different. The IVQR model recovers QTE for the whole pop-

ulation, whereas the LQTE model only identifies QTE for the subpopulation which reacts to the

instrument—the compliers. Section 3.2.2 discusses the relationship between the IVQR and the

LQTE model in more detail; see also Wüthrich (2018).

While the identification and estimation results in this paper cannot be generalized beyond

binary treatments, the underlying IVQR model naturally accommodates continuous endogenous

variables. Alternative approaches to identification and estimation in nonseparable models with

continuous regressors have been proposed by Chesher (2003), Ma and Koenker (2006), Lee (2007),

Jun (2009), Imbens and Newey (2009), D’Haultfoeuille and Février (2015), and Torgovitsky (2015)

among others.

The proposed estimators are also related to several papers that rely on estimating conditional

distributions using distribution or quantile regression models as ingredients for deriving plug-in

estimators. Chernozhukov et al. (2013) have analyzed counterfactual distributions, Yu (2014) has

proposed a flexible parametric estimation approach for marginal QTE, and Melly and Santangelo

(2015) and De Chaisemartin and D’Haultfoeuille (2018) have analyzed nonlinear difference-in-

differences models.

1.2 Outline

The remainder of the paper is organized as follows. In Section 2, I present the IVQR model, discuss

the key identification conditions, and derive the closed-form solutions. Section 3 describes the plug-

in estimators and compares them to existing methods. In Section 4, I give the asymptotic results
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and establish bootstrap validity. Section 5 presents Monte Carlo evidence on the finite sample

performance of the proposed estimation and inference procedures. In Section 6, I apply my method

to estimate the distributional effects of 401(k) plans on accumulated assets. Section 7 concludes.

All proofs and some additional results are collected in the appendix.

2 Model and closed-form solutions

2.1 The instrumental variable quantile regression model

This paper focuses on a setup with an absolutely continuous outcome variable Y , a binary treatment

D, a binary instrument Z, and a vector of exogenous covariates X. Appendix B discusses how

to incorporate non-binary instruments into the analysis. The symbols D, Z, and X denote the

supports of D, Z, and X, T is a set of quantile indices, and Y ⊂ R is the region of interest for Y .

Define p(z, x) := P (D = 1 | Z = z,X = x) and let FY |D,Z,X and fY |D,Z,X denote the cdf and the

density of Y | D = d, Z = z,X = x. Moreover, I define YX := {(y, x) : y ∈ Y, x ∈ X} and generate

other index sets accordingly; for example DZ := {(d, z) : d ∈ D, z ∈ Z}. The analysis is developed

within the potential outcomes framework (e.g., Rubin, 1974). Let Y1 and Y0 (indexed by D) denote

the two absolutely continuous potential outcomes and denote the corresponding regions of interest

as Y1 and Y0. Potential outcomes are related to the observed outcome as Y = DY1 + (1 −D)Y0.

For simplicity, I assume that the support of Yd | X = x is equal to the marginal support of Y for

(d, x) ∈ DX and I set Y0 = Y1 = Y.3 Neither of the results in this paper rely on this restriction

and it could be relaxed at the expense of a more complicated notation.

After conditioning on covariates X = x, by the Skorohod representation of random variables,

3I use y to denote a generic realization of Y , Y1, and Y0. Whenever it is important to distinguish between
realizations of Y1 or Y0, I use y1 and y0.
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potential outcomes can be represented as

Yd = QYd|X(Ud | x) with Ud ∼ U(0, 1),

where QYd|X(· | x) is the quantile function of Yd | X = x. This representation is essential for the

IVQR model.

The IVQR model is based on the following set of assumptions (some of which are representa-

tions) (Chernozhukov and Hansen, 2005, Assumptions A1–A5):

Assumption 1. Given a common probability space (Ω, F, P ), the following conditions hold jointly

with probability one:

1. Potential outcomes: Conditional on X = x, for each d, Yd = QYd|X(Ud | x), where QYd|X(τ |

x) is strictly increasing in τ and Ud ∼ U(0, 1).

2. Independence: Conditional on X = x, {Ud} are independent of Z.

3. Selection: D := ρ(Z,X, V ) for some unknown function ρ and random vector V .

4. Rank similarity: Conditional on X = x, Z = z, V = v, {Ud} are identically distributed.

5. Observed variables: Observed variables consist of Y := QYD|X(UD | X), D, X, and Z.

Assumption 1.1 restates the Skorohod representation of random variables and imposes strict

monotonicity of the structural quantile function, thus ruling out discrete outcome variables. As-

sumption 1.2 imposes conditional independence between the potential outcomes and the instrument.

Assumption 1.3 states a very general selection equation in which the random vector V captures

unobserved factors affecting selection into treatment. Assumption 1.4 is arguably the most impor-

tant condition of the IVQR model. It requires that individual ranks are constant across potential

outcome distributions up to random “slippages” from a common level U . Finally, Assumption
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1.5 summarizes the observable variables. The interested reader is referred to Chernozhukov and

Hansen (2005, 2013) and Chernozhukov et al. (2017) for in-depth discussions of Assumption 1.

The main statistical implication of Assumption 1 is the following nonlinear moment condition

(Chernozhukov and Hansen, 2005, Theorem 1):

P
(
Y ≤ QYD|X(τ | X) | X,Z

)
= τ (1)

Estimation based on (1) is challenging because the sample analogue of the GMM objective function

is non-smooth and generally non-convex. The existing approaches to overcome this problem are

referenced in the introduction and further discussed in Section 3.2.1.

2.2 Conditions for point identification

The IVQR moment restrictions (1) do not point identify QYD|X(τ | x) without additional assump-

tions. For vectors (y0, y1) and X = x define

Π(y0, y1, x) := (P (Y ≤ yD | Z = 0, X = x)− τ, P (Y ≤ yD | Z = 1, X = x)− τ)′,

where yD := Dy1 + (1 −D)y0. Chernozhukov and Hansen (2005) show that the key condition for

point identification is full rank of the Jacobian of Π(y0, y1, x) with respect to (y0, y1):

Π′(y0, y1, x) :=

fY |D,Z,X(y0 | 0, 0, x)(1− p(0, x)) fY |D,Z,X(y1 | 1, 0, x)p(0, x)

fY |D,Z,X(y0 | 0, 1, x)(1− p(1, x)) fY |D,Z,X(y1 | 1, 1, x)p(1, x)

. (2)

Lemma 1 below derives closed-form solutions for the potential outcome cdfs under this full rank

condition.

Assumption 2 (Identification). For all x ∈ X ,
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1. 0 < P (Z = 1 | X = x) < 1

2. The support of (Y0, Y1) | X = x is a closed rectangle in R2.

3. Π′(y0, y1, x) is continuous in (y0, y1) in the support of (Y0, Y1) | X = x.

4. Π′(y0, y1, x) is of full rank for all (y0, y1) in the support of (Y0, Y1) | X = x.

Assumption 2.1 is a standard overlap assumption that requires Z to be nontrivially assigned

conditional on X = x. Assumption 2.2 corresponds to Chernozhukov and Hansen (2005)’s as-

sumption that the parameter space is a closed rectangle. Assumption 2.3 imposes continuity of the

Jacobian and corresponds to Condition (i) in Theorem 2 of Chernozhukov and Hansen (2005). As

noted by Chernozhukov and Hansen (2005, p.252), conditional on X = x, Assumption 2.4 “requires

the impact of instrument Z on the joint distribution of (Y,D) to be sufficiently rich”. I refer to

Chernozhukov and Hansen (2005, 2013) and Chernozhukov et al. (2017) for in-depth discussions of

Assumption 2.4 and to Appendix A for simple sufficient conditions. Finally, note that Assumption

2 is in principle directly testable because it restricts the distribution of observables.

2.3 Closed-form solutions

The first contribution of this paper is to derive closed-form solutions for the conditional potential

outcome cdfs FY1|X and FY0|X under Assumption 2.

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then

FY1|X(y1 | x) = p(1, x)FY |D,Z,X(y1 | 1, 1, x)

+(1− p(1, x))FY |D,Z,X

(
QcY0|X

(
F cY1|X(y1 | x) | x

)
| 0, 1, x

)
, (3)

FY0|X(y0 | x) = (1− p(0, x))FY |D,Z,X(y0 | 0, 0, x)

+p(0, x)FY |D,Z,X

(
QcY1|X

(
F cY0|X(y0 | x) | x

)
| 1, 0, x

)
, (4)
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where4

F cY1|X(y1 | x) = p(1, x)FY |D,Z,X(y1 | 1, 1, x)− p(0, x)FY |D,Z,X(y1 | 1, 0, x), (5)

F cY0|X(y0 | x) = (1− p(0, x))FY |D,Z,X(y0 | 0, 0, x)− (1− p(1, x))FY |D,Z,X(y0 | 0, 1, x). (6)

The proof of Lemma 1 proceeds in two steps. First, I show that, under Assumption 1, Assump-

tion 2 implies strict monotonicity of F cY1|X(· | x) and F cY0|X(· | x). In the second step, I exploit

strict monotonicity to obtain closed-form solutions based on the IVQR moment conditions (1).

Remark 1. Lemma 1 demonstrates that it is possible to derive closed-form solutions under the

same identification conditions as in Chernozhukov and Hansen (2005). It thus extends Wüthrich

(2018), which derives similar expressions under more restrictive conditions.5

Based on the closed-form solutions in Lemma 1, the conditional QTE are identified as

δX(τ | x) = F−1Y1|X(τ | x)− F−1Y0|X(τ | x),

where F−1Yd|X denotes the (left-)inverse of FYd|X . Conditional QTE are useful for analyzing effect

heterogeneity by observable characteristics and across different quantiles. However, because the

plug-in approach allows for rich patterns of treatment effect heterogeneity, the conditional QTE

are generally high-dimensional objects that are hard to summarize and convey. Therefore, one is

often also interested in unconditional QTE, which are informative about the effect of the treatment

on the marginal outcome distribution:

δ(τ) = F−1Y1
(τ)− F−1Y0

(τ).

4The superscript c stands for compliers because F cY0|X and F cY1|X correspond to complier cdfs (multiplied by the
proportion of compliers) under the assumptions of the LQTE framework; see Appendix A for a further discussion.

5An additional more subtle difference between Lemma 1 and the results in Wüthrich (2018) is that the closed-form
solutions (3) and (4) are functions of F cYd|X(y | x) instead of F cYd|X(y | x)/(p(1, x)− p(0, x)) as in Wüthrich (2018).
This allows for weaker regularity conditions in the theoretical analysis and facilitates the practical implementation
of the plug-in estimation approach.

10



The unconditional potential outcome cdfs are obtained by integrating the conditional potential

outcome cdfs with respect to the marginal distribution of the covariates, FX :

FY1(y1) =

∫
X
FY1|X(y1 | x)dFX(x),

FY0(y0) =

∫
X
FY0|X(y0 | x)dFX(x).

Note that all the previous estimands are functions of FY |D,Z,X , p(z, x), and FX only, which naturally

suggests a plug-in estimation approach.

3 Estimation

3.1 Plug-in estimators

This section proposes a plug-in estimation approach based on the closed-form solutions derived in

Lemma 1. To make estimation practical and realistic and to overcome the curse of dimensionality,

I use flexible parametric models for the conditional cdfs and probabilities.

Assumption 3 (Parametric restrictions). For all (y, d, z, x) ∈ YDZX , p(z, x) = Λ(x′γz) and

FY |D,Z,X(y | d, z, x) = Λ(x′βdz(y)), where Λ(·) is either the Probit or Logit link function.6

The conditional probabilities are estimated using binary choice models:

p̂(z, x) = Λ
(
x′γ̂z

)
, (7)

where

γ̂z = arg max
g

n∑
i=1

1{Zi = z}
[
1{Di = 1} ln

[
Λ
(
X ′ig

)]
+ 1{Di = 0} ln

[
1− Λ

(
X ′ig

)]]
.

6Assumption 3 imposes that the link functions for p(z, x) and FY |D,Z,X are the same. The results in this paper
do not depend on this restriction and it could be relaxed at the expense of a more complicated notation.
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The conditional cdfs are estimated using DR (e.g., Williams and Grizzle, 1972; Foresi and Peracchi,

1995; Chernozhukov et al., 2013):

F̂Y |D,Z,X(y | d, z, x) = Λ
(
x′β̂dz(y)

)
, (8)

with

β̂dz(y) = arg max
b

n∑
i=1

1{Di = d, Zi = z}
[
1{Yi ≤ y} ln

[
Λ
(
X ′ib

)]
+ 1{Yi > y} ln

[
1− Λ

(
X ′ib

)]]
.

DR is a comprehensive and flexible approach for modeling the entire conditional distribution, which

allows for a different impact of covariates at different points of the outcome distribution.

In finite samples, the estimated conditional distributions may not be monotonic. To overcome

this problem, I apply the rearrangement procedure proposed by Chernozhukov et al. (2010). Under

correct specification (Assumption 3), these rearrangements do not affect the asymptotic properties

of the estimators, and I keep them implicit throughout the paper.

Remark 2. When the specifications (7) and (8) are fully saturated, the estimated conditional cdfs

and probabilities are numerically equivalent to the empirical cdfs and probabilities in each cell. Thus,

the parametric restrictions are without loss of generality in this important special case.7

Remark 3. Instead of DR, the conditional cdfs could be estimated by quantile regression (Koenker

and Bassett, 1978). In the linear quantile regression model it is assumed that, for all (τ, d, z, x) ∈

T DZX ,

QY |D,Z,X(τ | d, z, x) = x′βdz(τ).

7The specifications (8) and (7) are fully saturated when X contains indicators for all points in the support of
some original vector of discrete covariates X̃.
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The conditional quantiles are estimated as

Q̂Y |D,Z,X(τ | d, z, x) = x′β̂dz(τ),

where

β̂dz(τ) = arg min
b

n∑
i=1

1{Di = d, Zi = z}
[
τ − 1

{
Yi ≤ X ′ib

}][
Yi −X ′ib

]
.

The conditional distribution is then estimated as

F̂Y |D,Z,X(y | d, z, x) = ε+

∫ 1−ε

ε
1
{
x′β̂dz(τ) ≤ y

}
dτ,

where ε > 0 is a trimming constant to avoid estimation of tail quantiles. The interested reader is

referred to Chernozhukov et al. (2013) and Leorato and Peracchi (2015) for comparisons between

distribution and quantile regression. All the theoretical results in this paper can be extended to

accommodate quantile regression estimators of the conditional cdfs; see Remark 4.

Based on F̂Y |D,Z,X and p̂(z, x), plug-in estimators for FY1|X and FY0|X are constructed as

F̂Y1|X(y1 | x) = p̂(1, x)F̂Y |D,Z,X(y1 | 1, 1, x)

+(1− p̂(1, x))F̂Y |D,Z,X

(
Q̂cY0|X

(
F̂ cY1|X(y1 | x) | x

)
| 0, 1, x

)
, (9)

F̂Y0|X(y0 | x) = (1− p̂(0, x))F̂Y |D,Z,X(y0 | 0, 0, x)

+p̂(0, x)F̂Y |D,Z,X

(
Q̂cY1|X

(
F̂ cY0|X(y0 | x) | x

)
| 1, 0, x

)
, (10)
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where

F̂ cY1|X(y1 | x) = p̂(1, x)F̂Y |D,Z,X(y1 | 1, 1, x)− p̂(0, x)F̂Y |D,Z,X(y1 | 1, 0, x), (11)

F̂ cY0|X(y0 | x) = (1− p̂(0, x))F̂Y |D,Z,X(y0 | 0, 0, x)− (1− p̂(1, x))F̂Y |D,Z,X(y0 | 0, 1, x). (12)

The plug-in estimators for the conditional and unconditional QTE are

δ̂X(τ | x) = F̂−1Y1|X(τ | x)− F̂−1Y0|X(τ | x) and δ̂(τ) = F̂−1Y1
(τ)− F̂−1Y0

(τ),

where the unconditional cdfs, F̂Y1 and F̂Y0 , are estimated by integrating the estimators of the

conditional cdfs, F̂Y1|X and F̂Y0|X , with respect to the empirical distribution of the covariates F̂X ,

where F̂X(x) = 1/n
∑n

i=1 1{Xi ≤ x}:

F̂Y1(y1) =

∫
X
F̂Y1|X(y1 | x)dF̂X(x),

F̂Y0(y0) =

∫
X
F̂Y0|X(y0 | x)dF̂X(x).

Plug-in estimators for other functionals can be constructed similarly.

3.2 Relationship to the existing literature

3.2.1 Relationship to alternative estimators based on the IVQR model

Fully nonparametric estimation of conditional QTE based on the moment restriction (1) naturally

suffers from the curse of dimensionality and is complicated by ill-posed inverse problems. One way

to overcome these challenges is to analyze linear-in-parameters models such as

QYd|X(τ | x) = dδX(τ) + x′β(τ). (13)
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However, even for linear models as simple as (13), estimation is complicated by the non-smoothness

and non-convexity of the corresponding GMM objective function. Different approaches have been

proposed to circumvent the numerical problems. Chernozhukov and Hong (2003) employ a quasi-

Bayesian approach that relies on MCMC sampling and averaging instead of minimizing the objective

function, the inverse quantile regression (IQR) estimator of Chernozhukov and Hansen (2006)

combines robust grid search methods with convex quantile regressions, Kaplan and Sun (2017)

suggest to smooth the moment conditions, and Chen and Lee (2018) reformulate the estimation

problem as a mixed integer quadratic programming problem for which well-established solution

algorithms exist.

The plug-in estimators and the estimators based on the linear-in-parameters model both rely on

parametric assumptions to overcome the curse of dimensionality. However, these two approaches

are generally non-nested unless the specifications are fully saturated in which case their probability

limits coincide. One important advantage of the plug-in approach is that it naturally bypasses the

numerical problems associated with optimizing the non-smooth and non-convex GMM criterion

function. As a result, the proposed method is easy to implement, computationally tractable, and

tuning-free, while allowing for rich patterns of treatment effect heterogeneity with respect to the

observable covariates. Moreover, in contrast to linear-in-parameter models, practitioners do not

bear the burden of directly specifying the structural quantile function. Instead, they need to model

observable conditional cdfs and probabilities with well-established and flexible parametric models

for which specification tests are readily available in the literature.8 On the other hand, relying

on closed-form solutions, the proposed method is inherently limited to binary treatments, whereas

linear-in-parameters models can accommodate nonbinary endogenous variables. Furthermore, par-

simonious linear-in-parameters models such as (13) have the advantage of being easier to interpret

8Note that the parametric models for the conditional cdfs and probabilities imply a particular nonlinear model
for the structural quantile function.
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in the context of conditional QTE because the estimated coefficients correspond to the quantile

effects of interest. Finally, based on linear-in-parameters models, it is rather straightforward to

conduct inference which is robust to the presence of weak instruments and identification failures

(e.g., Chernozhukov and Hansen, 2008). By contrast, robust inference procedures have not yet been

developed for the plug-in approach developed here.

Because the plug-in estimators and the estimation approaches based on linear-in-parameters

models rely on parametric assumptions, they may suffer from misspecification bias. In contrast,

the nonparametric minimum–distance-type estimators listed in the introduction do not impose any

parametric restrictions. However, these methods naturally suffer from the curse of dimensionality

and require the choice of tuning parameters. Moreover, regularization is often required to overcome

the ill-posedness of the underlying inverse problems.

3.2.2 Relationship to the local quantile treatment effects framework

The LQTE model (Abadie et al., 2002) is a popular alternative framework for identifying and

estimating conditional and unconditional QTE with binary treatments. This model identifies QTE

for the subpopulation of compliers through a monotonicity assumption on the selection equation.

There are two major conceptual differences between the LQTE model and the IVQR model.

First, the underlying assumptions differ and are generally non-nested and non-contradictory. The

IVQR model imposes rank similarity on the outcome equation, whereas the LQTE model relies on

monotonicity of the selection equation.9

Second, the resulting estimands are different. The IVQR model recovers QTE for the whole

9As an example of a scenario where the IVQR assumptions appear plausible while the LQTE assumption are
questionable, suppose that one is interested in the effect of an information meeting about retirement savings options
on individual savings (in the spirit of Duflo and Saez, 2003). To encourage the treatment group to attend, subjects
are given a small financial incentive upon attendance. The LQTE monotonicity assumption is questionable here
because financial incentives sometimes crowd-out intrinsic motivation as pointed out by De Chaisemartin (2017). By
contrast, it appears reasonable that individual ranks in the savings distributions are the same with and without the
information meeting (at least in expectation).
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population, whereas the LQTE model only identifies QTE for the compliant subpopulation. I refer

to Wüthrich (2018) for a detailed theoretical analysis of the relationship between both models.

Common to both frameworks is that, in the absence of parametric assumptions, estimation of

conditional QTE suffers from the curse of dimensionality. In this paper, I overcome this problem

by parametrizing the conditional cdfs and probabilities. A similar strategy has been used by Yu

(2014) in the context of the LQTE framework. Alternatively, one can directly parametrize the

structural quantile function as in Chernozhukov and Hansen (2006) and Abadie et al. (2002).

In the context of unconditional QTE, Frölich and Melly (2013) have shown that it is possible to

construct fully nonparametric root-n-consistent estimators. They establish pointwise asymptotic

normality of their estimator and prove that its variance attains the semiparametric efficiency bound;

see also Hsu et al. (2015) and Belloni et al. (2017) for uniform results. To the best of my knowledge,

no such results have been derived for estimators based on the IVQR model.

4 Asymptotic theory and inference

4.1 Limiting distribution

Assumption 4 provides regularity conditions under which the plug-in estimators are asymptotically

Gaussian.

Assumption 4 (Regularity conditions).

1. {Yi, Di, Zi, Xi}ni=1 are i.i.d.

2. Y is a compact interval in R and X is a compact subset of Rdim(X).10 T ⊂ (0, 1) is a

compact interval such that an ε-expansion of {QYd|X(τ | x) : τ ∈ T } is contained in Y for

all (d, x) ∈ DX . For (d, z) ∈ DZ, the conditional density function fY |D,Z,X(yd | d, z, x)

10Note that YX must be chosen such that the FY1|X(y1 | x) and FY0|X(y0 | x) in Lemma 1 are well-defined on
YX whenever the components {FY |D,Z,X(yd | d, z, x)}(d,z,x)∈DZX , {F cYd|X(y | x)}(d,x)∈DX are well-defined on YX .
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exists, is uniformly bounded and uniformly continuous in (yd, x) in the support of (Yd, X) and

fY |D,Z,X(yd|d, z, x) > 0 on YX .

3. E||X||2 <∞ and, for (d, z) ∈ DZ, the minimum eigenvalues of

Jγz = E

[
1{Z = z} λ(X ′γz)

2

Λ(X ′γz)[1− Λ(X ′γz)]
XX ′

]
,

and

Jβdz(yd) = E

[
1{D = d, Z = z} λ(X ′βdz(yd))

2

Λ(X ′βdz(yd))[1− Λ(X ′βdz(yd))]
XX ′

]

are bounded away from zero uniformly over yd ∈ Y, where λ is the derivative of Λ.

4. For d ∈ D, F cYd|X(yd | x) admits a non-zero derivative f cYd|X(yd | x) which is uniformly

bounded and uniformly continuous in (yd, x) in the support of (Yd, X).

Assumptions 4.1 – 4.3 are standard regularity conditions (e.g., Condition DR in Chernozhukov

et al., 2013) that ensure that functional central limit theorems and bootstrap validity results apply

for the conditional distributions and conditional probabilities. Assumption 4.4 strengthens As-

sumption 2, which implies that f cYd|X(· | x) is non-zero, to guarantee Hadamard differentiability of

the closed-form solutions.

To describe the results, let `∞(U) denote the set of bounded and measurable functions h : U 7→ R

for a generic index set U and let `∞(U)2 := `∞(U) × `∞(U). The following theorem provides the

joint limiting distribution of the estimated conditional potential outcome cdfs.
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Theorem 1. Suppose that Assumptions 1 – 4 hold. Then

√
n

F̂Y1|X(y1 | x)− FY1|X(y1 | x)

F̂Y0|X(y0 | x)− FY0|X(y0 | x)

 
ZFY1|X (y1 | x)

ZFY0|X (y0 | x)


as stochastic processes in `∞(YX )2, where ZFY1|X and ZFY0|X are tight zero-mean Gaussian processes

defined in Appendix C.

Theorem 1 shows that, under the maintained assumptions, the estimators of the potential

outcome distributions converge weakly to a two-dimensional Gaussian process. This result is the

basis for deriving the asymptotic distribution of the estimators of the conditional QTE (Theorem

2), unconditional QTE (Theorem 3), as well as general smooth functionals (Theorem 4). The

main ingredient for proving Theorem 1 is Hadamard differentiablity of the closed-form solutions in

Lemma 1. The result then follows from the functional delta method and existing functional central

limit theorems for the conditional cdfs and probabilities.

Remark 4. The Hadamard differentiability of the closed-form solutions, which is established in

Step 2 of the proof of Theorem 1, is a generic result and may be of independent interest. Combined

with the functional delta method, it can be used to derive the asymptotic properties of F̂Y1|X and

F̂Y0|X based on many different first-step estimators, provided that these first-step estimators satisfy

a functional central limit theorem. This high-level condition can be verified for many estimators,

including linear quantile regression (cf. Chernozhukov et al., 2013).

The next theorem presents the limiting distribution of the conditional QTE estimators.

Theorem 2. Suppose that Assumptions 1 – 4 hold. Then

√
n
(
δ̂X(τ | x)− δX(τ | x)

)
 ZδX (τ | x),
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as a stochastic process in `∞(T X ), where ZδX is a mean-zero tight Gaussian process defined as

ZδX (τ | x) := ZFY0|X
(
QY0|X(τ | x) | x

)
/fY0|X

(
QY0|X(τ | x) | x

)
−ZFY1|X

(
QY1|X(τ | x) | x

)
/fY1|X

(
QY1|X(τ | x) | x

)
.

Functional central limit theorems for the unconditional QTE are derived based on the Hadamard

differentiability of the counterfactual operator, φ(G,F ) =
∫
G(y, x)dF (x), established in Cher-

nozhukov et al. (2013).

Theorem 3. Suppose that Assumptions 1 – 4 hold. Then

√
n
(
δ̂(τ)− δ(τ)

)
 Zδ(τ)

as a stochastic process in `∞(T ), where Zδ(τ) := ZQY1 (τ)−ZQY0 (τ) is a mean-zero tight Gaussian

process and ZQY1 and ZQY0 are defined in Appendix C.

Finally, I provide a general result that characterizes the limiting distribution of a generic

Hadamard differentiable functional of FY1|X and FY0|X . Examples of Hadamard differentiable func-

tionals include the ATE, distributional treatment effects, Lorenz curves, and Gini coefficients.

Theorem 4. Suppose that Assumptions 1 – 4 hold and that the map ϕ
(
FY1|X , FY0|X

)
(w) (indexed

by w) is Hadamard differentiable with derivatives ϕ′FY1|X
and ϕ′FY0|X

. Then

√
n
(
ϕ
(
F̂Y1|X , F̂Y0|X

)
(w)− ϕ

(
FY1|X , FY0|X

)
(w)
)
 
(
ϕ′FY1|X

ZFY1|X
)

(w) +
(
ϕ′FY0|X

ZFY0|X
)

(w)

as a stochastic process indexed by w.

The above characterizations of the limit processes can be used to perform inference using stan-

dard analytical methods. However, because the asymptotic variances contain terms that are difficult

20



to estimate such as conditional densities, I recommend using the resampling methods discussed in

the next section.

4.2 Inference

Here I establish the validity of a general resampling procedure called the exchangeable bootstrap

(e.g., Van der Vaart and Wellner, 1996; Chernozhukov et al., 2013). To describe the bootstrap

procedure, let (w1, . . . , wn) be a vector of nonnegative random weights that are independent of the

data and satisfy the following assumption.11

Assumption 5. For each n, let (w1, . . . , wn) be an exchangeable12, nonnegative random vector,

which is independent of the data, such that for some ε > 0,

sup
n

E[w2+ε
1 ] <∞, 1

n

n∑
i=1

(wi − w̄)2
p→ 1, w̄ :=

1

n

n∑
i=1

wi
p→ 1.

The exchangeable bootstrap uses (w1, . . . , wn) as random sampling weights to construct boot-

strap versions of the estimators. Specifically, the bootstrap versions of the conditional distri-

bution and the conditional probabilities are given by F̂ ∗Y |D,Z,X(y | d, z, x) = Λ
(
x′β̂∗dz(y)

)
and

p̂∗(z, x) = Λ(x′γ̂z
∗), where

β̂∗dz(y) = arg max
b

n∑
i=1

wi1{Di = d, Zi = z}
[
1{Yi ≤ y} ln

[
Λ
(
X ′ib

)]
+ 1{Yi > y} ln

[
1− Λ

(
X ′ib

)]]
,

and

γ̂∗z = arg max
g

n∑
i=1

wi1{Zi = z}
[
1{Di = 1} ln

[
Λ
(
X ′ig

)]
+ 1{Di = 0} ln

[
1− Λ

(
X ′ig

)]]
.

11This assumption corresponds to condition EB in Chernozhukov et al. (2013).
12“A sequence of random variables X1, X2, . . . , Xn is exchangeable if for any finite permutation σ of indices

1, 2, . . . , n the joint distribution of the permuted sequence Xσ(1), Xσ(2), . . . , Xσ(n) is the same as the joint distribution
of the original sequence.” (Chernozhukov et al., 2013, p.2230)
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Finally, F̂ ∗X(x) = (
∑n

i=1wi)
−1∑n

i=1wi1{Xi ≤ x} is a bootstrap version of the estimator of the

marginal covariate distribution.

Remark 5. As explained in Van der Vaart and Wellner (1996) and Chernozhukov et al. (2013),

by appropriately choosing the weights, the exchangeable bootstrap covers many resampling schemes

as special cases. For example, the empirical bootstrap corresponds to the case where (w1, . . . , wn)

is a multinomial vector with parameter n and probabilities (1/n, . . . , 1/n). The weighted bootstrap

corresponds to the case where (w1, . . . , wn) are i.i.d. nonnegative random variables with E[w1] =

V ar(w1) = 1. The m out of n bootstrap is nested by letting (w1, . . . , wn) be equal to
√
n/m

times multinomial vectors with parameter m and probabilities (1/n, . . . , 1/n). Finally, subsampling

corresponds to letting (w1, . . . , wn) be a row in which the number n(n − m)−1/2m−1/2 appears m

times and 0 appears n−m times ordered at random, independent of the data.

The next theorem formally establishes validity of the exchangeable bootstrap.

Theorem 5. Suppose that Assumptions 1 – 5 hold. Then the exchangeable bootstrap consistently

estimates the limiting laws for the processes in Theorems 1 – 4.

The exchangeable bootstrap distributions can be used to perform asymptotically valid inference

for the causal effects of interest. Here I focus on uniform inference methods. These methods cover

standard pointwise methods as special cases and, in addition, allow for testing richer functional

parameters and hypotheses (Chernozhukov et al., 2013). For example, one can construct asymptotic

simultaneous (1 − α)-confidence bands for the whole QTE process by inverting a Kolmogorov–

Smirnov-type test:13

δ̂±(τ) = δ̂(τ)± t̂1−αΣ̂(τ)1/2/
√
n

13Chernozhukov et al. (2013) and Melly and Santangelo (2015) use similar constructions.
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such that

lim
n→∞

P
{
δ(τ) ∈

[
δ̂−(τ), δ̂+(τ)

]
for all τ ∈ T

}
= 1− α,

where Σ̂(τ) is a uniformly consistent estimator of Σ(τ), the asymptotic variance function of
√
n
(
δ̂(τ)− δ(τ)

)
,

and t̂1−α is a consistent estimator of the (1 − α)-quantile of the Kolmogorov–Smirnov maximal t-

statistic,

t = sup
τ∈T

√
nΣ̂(τ)−1/2

∣∣δ̂(τ)− δ(τ)
∣∣.

The critical value t̂1−α can be estimated using the exchangeable bootstrap. Uniform confidence

bands for other functionals of interest can be obtained similarly.

5 Simulations

This section reports simulation evidence on the finite sample properties of the proposed estimation

and inference procedures.

5.1 Setup

To make the simulations realistic, they are designed based on the empirical application in Section 6.

The outcome of interest (Y ) is net financial assets, the endogenous variable (D) is a binary indicator

for 401(k) participation, and the instrument (Z) is a binary indicator for 401(k) eligibility. I consider

a simplified setup with two continuous covariates: income (X1) and age (X2). To describe the data

generating processes (DGPs), it is useful to write the potential outcome quantile functions under
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Assumption 3 as

QYd|X(τ | x) = Gd

(
τ,
{

Λ
(
x′γz

)}
z∈Z ,

{
Λ
(
x′βdz(y)

)}
(y,d,z)∈YDZ

)
for d ∈ D,

where Gd is (implicitly) defined as the inverse of the corresponding closed-form solution derived in

Lemma 1.

I analyze five different DGPs that are designed to capture different degrees and types of mis-

specification. For all DGPs, I draw (X1, X2) from their joint empirical distribution and generate

Z ∼ Bernoulli
(
Z̄
)
, where Z̄ is the sample average of Z in the empirical application. The treatment

D is obtained as

D = Z · 1{U > 0.9 · V }, (14)

where U ∼ U(0, 1) and V ∼ N(0, 1) are mutually independent and independent of (X1, X2, Z).14

The DGP for D in equation (14) is chosen to roughly match the joint empirical distribution of

(D,Z). Potential outcomes are either generated as

Yd = Gd

(
U,
{

Λ
(
X ′γz

)}
z∈Z ,

{
Λ
(
X ′βdz(y)

)}
(y,d,z)∈YDZ

)
, (15)

or based on the following simple linear-in-parameters quantile model

Yd = δX(U)d+X ′β(U). (16)

Finally, observed outcomes Y are obtained as Y = DY1 + (1−D)Y0.

14To generate the potential outcomes as described below, the U(0, 1) distribution of U is approximated by a
discrete uniform distribution with 100 points.
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The five DGPs differ with respect to the outcome model, the specification of X, as well as the

link function Λ(·):

1. Model (15) with X = (X1, X2, 1)′ and a Logit link.

2. Model (15) with X = (X1, X2, 1)′ and a linear link.

3. Model (15) with X as in the main specification in Section 6 (quadratic splines for income and

age) and a Logit link.

4. Model (16) with X = (X1, X2, 1)′.

5. Model (16) with X as in the main specification in Section 6 (quadratic splines for income and

age)

The coefficients in models (15) and (16) are set to the corresponding coefficient estimates based

on the dataset from the empirical application. I estimate βdz(y) using DR, γz using binary choice

models, and (δX(τ), β(τ)′)′ using IQR with X and Λ(·) as specified by the corresponding DGP.

I use DGP1 – DGP5 to assess and compare the following two estimators:

M1: Plug-in estimator with X = (X1, X2, 1)′ and a Logit link

M2: IQR estimator based on the linear model (13) with X = (X1, X2, 1)′

To enable a direct comparison of both approaches, I focus on unconditional QTE. Estimation of

unconditional QTE based on M2 proceeds in three steps. First, the conditional potential outcome

cdfs are computed by inverting the corresponding quantile functions estimated using IQR. Second,

I compute unconditional cdfs by integrating the conditional cdfs with respect to the empirical

distribution of the covariates. Finally, the unconditional cdfs are inverted to obtain estimates

of the unconditional QTE. Note that the second and the third step are identical to the plug-in
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estimation approach. Consequently, differences between the estimates of both models are solely

due to differences between the estimated conditional potential outcome cdfs.

M1 is correctly specified under DGP1 and misspecified under DGP2 – DGP5, which cover

different types of misspecification: a misspecified link function (DGP2), misspecification of the

functional form of the linear index (DGP3), and misspecification of the structural quantile function

(DGP4 and DGP5). M2 is correctly specified under DGP4 and misspecified under all other DGPs.

In all simulations, I approximate Y using a grid of 100 evenly-spaced quantiles of the true

outcome distribution (removing duplicates) and T using a grid of 100 quantiles. For the IQR

algorithm, I choose a grid of 100 evenly-spaced points between -10,000 and 35,000.

5.2 Bias and RMSE

Figure 1 displays the finite sample bias as a function of the quantile level for the sample sizes

n = 500 and n = 1000 based on Monte Carlo simulations with 500 replications. The results show

that, while both estimators perform well under correct specification (M1 under DGP1 and M2

under DGP4), their performance differs substantially when the underlying parametric assumptions

are violated. M1 is robust to different types of misspecification, including misspecification of the

structural quantile function (DGP4 and DGP5). By contrast, M2 exhibits large biases whenever

the true structural quantile function is nonlinear, even if only X is misspecified (DGP5).

[Figure 1 about here.]

Figure 2 reports the estimated root mean squared error (RMSE). Under DGP1 – DGP3, the

favorable robustness properties of M1 translate into a lower RMSE at most quantile levels, despite

M2 exhibiting a somewhat lower variance. When M2 is correctly specified (DGP4), it exhibits a

lower RMSE at most quantiles. This can mainly be attributed to its lower variance since the bias is

similar for both models. Finally, under DGP5, M1 dominates M2 in the center of the distribution,
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where the bias of M2 is maximal, while M2 exhibits a lower RMSE in the tails.

[Figure 2 about here.]

Two main conclusions can be drawn from these simulation results. First, the flexibility of the plug-

in approach translates into good robustness properties against different types of misspecification

of the underlying parametric restrictions. This is in sharp contrast to the IQR estimator based on

model (13), which can be severely biased when the true structural quantile function is nonlinear.

Second, the plug-in estimator exhibits a somewhat larger variance than IQR, suggesting that there

is a bias-variance trade-off.

5.3 Coverage properties and power analysis

Here I examine the coverage rates of the uniform confidence bands and the power properties of

the underlying Kolmogorov–Smirnov-type test. The critical values t̂1−α are estimated using the

empirical bootstrap. I generate the data according to DGP1 described in Section 5.1. The uncon-

ditional QTE process implied by this DGP is positive and increasing across quantiles. To assess the

power properties of the Kolmogorov–Smirnov-type test, I report rejection frequencies for testing

the functional null hypothesis of a zero effect, i.e., H0 : δ(τ) = 0 for all τ ∈ T .

In Table 1, I show empirical coverage rates and rejection probabilities for the sample sizes

n = 500 and n = 1000. The results are based on 500 Monte Carlo replications. Critical values t̂1−α

are estimated using 100 bootstrap replications. The uniform confidence bands exhibit close-to-

correct empirical coverage for both sample sizes. In terms of power, the Kolmogorov–Smirnov-type

tests exhibit good finite sample properties with rejection rates close to one, even in relatively small

samples with n = 500 observations.

[Table 1 about here.]
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6 Empirical application

In this section, I illustrate the proposed method by estimating the distributional impact of 401(k)

plans on accumulated assets as in Chernozhukov and Hansen (2004) and Belloni et al. (2017).

6.1 Empirical setup

As explained by Chernozhukov and Hansen (2004), the 401(k) plans were introduced in the United

States in the early 1980s in an effort to increase individual savings. 401(k) plans are provided by

employers and allow individuals to deduct contributions from taxable income. The main challenge

when estimating the effect of 401(k) plans (D) on accumulated assets is the potential endogeneity

of the actual participation status caused by non-random enrollment. To overcome this problem,

Abadie (2003), Chernozhukov and Hansen (2004), and Belloni et al. (2017) use 401(k) eligibility

as an instrument (Z) for the actual participation status, arguing that eligibility can be taken to

be exogenous after conditioning on income and a small set of other observable factors.15 I adopt

this identification strategy, noting that there are also arguments that eligibility is not conditionally

exogenous (e.g., Engen et al., 1996).

I use the same dataset as Chernozhukov and Hansen (2004) and Belloni et al. (2017). The data

consist of 9,913 observations from a sample of households from the 1991 Survey of Income and

Program Participation (SIPP).16 Descriptive statistics are presented in Tables 1 and 2 in Cher-

nozhukov and Hansen (2004). The outcome variables of interest are two measures of wealth: net

financial assets and total wealth. A key component of the argument underlying the exogeneity of

401(k) eligibility is that eligibility may only be taken as exogenous after conditioning on covariates

and, in particular, income. I therefore use a flexible specification that includes quadratic splines

15This argument is detailed in Poterba et al. (1994, 1995, 1998) and Benjamin (2003).
16Note that the original dataset has 9,915 observations but I delete the two observations with a negative income.
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in income and age17, dummies for education categories, a marital status indicator, dummies for

family size, two-earner status, defined benefit pension status, individual retirement account partici-

pation status, and homeownership. All computations have been carried out using the programming

language R (R Core Team, 2018).

Because only individuals who were eligible could actually enroll in 401(k) plans, 401(k) eligibility

satisfies one-sided non-compliance, i.e., p(0, x) = 0 for all x ∈ X . One-sided non-compliance has

two important implications. First, the key identification condition, Assumption 2.4, automatically

holds under one-sided non-compliance (cf. Chernozhukov and Hansen, 2005, Section 2.4). Second,

the computational burden is reduced because p(0, x) and FY |D,Z,X(y | 1, 0, x) need not be estimated.

6.2 Specification tests

One important practical advantage of the plug-in estimation approach is that the underlying para-

metric assumptions (Assumption 3) are directly testable. I illustrate this point by assessing the

validity of the parametric models for the conditional cdfs using the specification test by Rothe

and Wied (2013). This test is based on Kolmogorov–Smirnov- and Cramér–von–Mises-type dis-

tances between the joint distribution of (Y,X) implied by the DR models and an unrestricted

nonparametric alternative.

[Table 2 about here.]

Table 2 presents the results. Critical values are estimated using the semiparametric boostrap

procedure of Rothe and Wied (2013) with 500 replications. The employed DR specifications are

not rejected by the data for both outcomes, all three conditional cdfs, and both test statistics.

This provides evidence in favor of the flexible DR specifications underlying the plug-in estimates

reported in Section 6.3.

17Specifically, I allow for income, age, income-squared and age-squared and interact these variables with the seven
income respectively five age dummies used in the original specification by Chernozhukov and Hansen (2004).
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6.3 Empirical results and comparison to linear-in-parameters model

Figure 3 shows unconditional QTE estimated by the plug-in approach with a Logit link.18 I

approximate Y using a grid of 200 evenly-spaced quantiles of the unconditional empirical outcome

distribution (removing duplicates) and T using a grid of 200 quantiles. 95% pointwise and uniform

confidence bands are constructed based on the empirical bootstrap with 200 replications. For both

outcomes, 401(k) participation has a small to moderate impact on accumulated assets at the low

quantiles while having a much larger impact at high quantiles.19 This pattern is more pronounced

for net financial assets than for total wealth. Looking at the confidence bands, one can see that

the estimates for total wealth are much noisier than those for net financial assets.

[Figure 3 about here.]

Figure 4 compares the plug-in estimates in Figure 3 to QTE estimated based on the linear-in-

parameters model of Chernozhukov and Hansen (2004),

QYd|X(τ | x) = dδX(τ) + x′β(τ), (17)

where the specification of X is the same as described in Section 6.1. Model (17) is estimated

using the IQR algorithm with a grid search over 200 points. Unconditional QTE are obtained as

described in Section 5.1.

[Figure 4 about here.]

The results based on the linear-in-parameters model indicate that the effect of 401(k) participa-

tion on net financial assets is increasing along the distribution, while being relatively constant for

total wealth. There are considerable quantitative differences between the QTE estimates of both

18The results are robust with respect to the choice of the link function. Detailed results are available upon request.
19This pattern can be primarily attributed to the fact that the outcomes are measured in levels. Results for

percentage treatment effects are provided upon request.
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models. In particular, for total wealth, the relatively constant pattern of the estimates based on the

linear model sharply contrasts the increasing shape of the QTE function estimated by the plug-in

approach. Interestingly, the plug-in estimates are similar to the unconditional LQTE estimates

based on a flexible nonparametric model reported in Belloni et al. (2017), while the results based

on the linear-in-parameters IVQR model are comparable to the estimates based on linear LQTE

models; see Chernozhukov and Hansen (2004).

6.4 Computational performance

One practical advantage of the plug-in estimation approach is that it remains computationally

tractable, while allowing for rich patterns of effect heterogeneity with respect to covariates. Table 3

reports computation times for estimating the unconditional QTE process for net financial assets.20

I consider two different specifications for X: a simple specification where the continuous and multi-

valued covariates enter linearly (dim(X) = 12) and the quadratic splines specification described in

Section 6.1 (dim(X) = 48). For comparison, I also report the corresponding computation times for

the IQR estimator based on the linear-in-parameters model (17). Note that the computationally

expensive steps are computing the conditional cdfs (plug-in), computing the conditional quantile

functions (IQR), as well as inverting distribution and quantile functions at various steps (both

methods).

[Table 3 about here.]

Table 3 shows that the plug-in estimator remains tractable with flexible specifications of X and

fine grids for Y and T in samples of practically relevant size. Computation times for the IQR

estimator are at least one order of magnitude higher and IQR becomes computationally prohibitive

for flexible models, especially when dim(X) = 48.

20Computations were carried out on a standard desktop computer with a 3.2 GHz Intel Core i5 processor and
8GB RAM.
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7 Conclusion and directions for future research

This paper proposes a practical and flexible approach for estimating QTE based on the IVQR

model. The key idea is to exploit analytic closed-form solutions to construct plug-in estimators.

The proposed approach remains computationally tractable and root-n-consistent, while allowing

for rich patterns of treatment effect heterogeneity with respect to observable characteristics. I

prove functional central limit theorems and establish the validity of the exchangeable bootstrap

for estimating the limiting laws. Monte Carlo simulations demonstrate favorable properties of

the proposed approach in finite samples. I apply the plug-in estimator to reanalyze the effect of

401(k) plans on individual assets. My findings suggest that the effect of 401(k) plans is positive

and increasing along the distribution. Interestingly, these results imply substantially more effect

heterogeneity than the estimates based on the linear-in-parameters IVQR model of Chernozhukov

and Hansen (2004).

The proposed plug-in estimators rely on parametric models for the conditional cdfs and the

conditional probabilities. It would be interesting to extend the estimation approach to accommo-

date fully nonparametric first-stage estimators. Nonparametric plug-in estimators could also serve

as the basis for developing specification tests for linear-in-parameters models. These extensions are

beyond the scope of this paper but certainly worth pursuing in future research.

One important limitation of the proposed method is that it is inherently limited to binary

treatments since closed-from solutions are only available for this important special case. More-

over, despite the fact that nonbinary instruments can be accommodated as described in Appendix

B, the efficiency of the plug-in estimators could be improved by extending Lemma 1 to nonbi-

nary instruments and overidentified GMM objective functions. Such results could be obtained by

extending Lemma 1 using similar arguments as in Wüthrich (2018). Deriving more general ana-

lytic closed-form solutions and extending the plug-in approach accordingly constitutes a promising
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extension.

Acknowledgements

This paper was previously circulated under the title “Semiparametric estimation of quantile treat-

ment effects with endogeneity” and is based on a chapter of my PhD dissertation at the University

of Bern. I have benefited from numerous discussions with Blaise Melly. I would like to thank Isa-

iah Andrews, Daniel Burkhard, Andreas Bachmann, Victor Chernozhukov, Lutz Dümbgen, Iván
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Melly, B., Wüthrich, K., 2017. Local quantile treatment effects. In: Chernozhukov, V., He, X.,

Koenker, R., Peng, L. (Eds.), Handbook of Quantile Regression. CRC Chapman-Hall, pp. 145–

164.

Poterba, J. M., Venti, S. F., Wise, D. A., 1994. 401(k) plans and tax-deferred saving. In: Wise,

D. A. (Ed.), Studies in the Economics of Aging. University of Chicago Press.

Poterba, J. M., Venti, S. F., Wise, D. A., 1995. Do 401(k) contributions crowd out other personal

saving? Journal of Public Economics 58 (1), pp. 1–32.

Poterba, J. M., Venti, S. F., Wise, D. A., 1998. Personal retirement saving programs and asset

accumulation: Reconciling the evidence. In: Wise, D. A. (Ed.), Frontiers in the Economics of

Aging. University of Chicago Press.

R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria.

Rothe, C., Wied, D., 2013. Misspecification testing in a class of conditional distributional models.

Journal of the American Statistical Association, pp. 314–324.

Rubin, D. B., 1974. Estimating causal effects of treatment in randomized and nonrandomized

studies. Journal of Educational Psychology 66 (5), pp. 688–701.

Torgovitsky, A., 2015. Identification of nonseparable models using instruments with small support.

Econometrica 83 (3), pp. 1185–1197.

Van der Vaart, A., Wellner, J., 1996. Weak Convergence and Empirical Processes: With Application

to Statistics. Springer-Verlag.

37



Williams, O. D., Grizzle, J. E., 1972. Analysis of contingency tables having ordered response

categories. Journal of the American Statistical Association 67 (337), 55–63.
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A Assumption 2.4 under the LQTE framework

To develop further intuition for the full rank condition in Assumption 2, it is useful to analyze this

abstract condition under the LQTE framework (Abadie et al., 2002).

To lighten up the exposition, the conditioning on X = x is suppressed. Let (D1, D0) denote

the potential treatments (indexed by Z). Based on their compliance behavior, individuals can

be classified by four different types T = t: never-takers (D0 = D1 = 0; T = n), always-takers

(D0 = D1 = 1; T = a), defiers (D0 = 1, D1 = 0; T = d), and compliers (D0 = 0, D1 = 1; T = c). In

what follows, I denote the proportions, potential outcome cdfs, and densities for type T = t as πt,

FYd|t, and fYd|t. The LQTE framework is based on the following assumptions (e.g., Abadie et al.,

2002, Assumption 2.1).

Assumption 6 (LQTE Framework).

1. Independence: (Y1, Y0, D1, D0) are jointly independent of Z.

2. Nontrivial assignment: P (Z = 1) ∈ (0, 1).

3. First-stage: E[D1] 6= E[D0].

4. Monotonicity: P(D1 ≥ D0) = 1.

The key restriction of the LQTE framework is the monotonicity Assumption 6.4, which rules

out the existence of defiers. Consequently, never-takers, always-takers, and compliers exhaustively

1



partition the whole population. I refer to Melly and Wüthrich (2017) for a detailed discussion of

Assumption 6.

In the proof of Lemma 1, I show that Assumption 2.4 is equivalent to f cY1 and f cY0 being non-

zero. Under Assumption 6, f cY1 and f cY0 correspond to potential outcome density functions of the

compliers multiplied by the fraction of compliers:

f cY1(y1) = πcfY1|c(y1) and f cY0(y0) = πcfY0|c(y0).

Because the fraction of compliers, πc, is strictly positive by Assumption 6.3, Assumption 2.4 is

equivalent to

fY1|c(y1) > 0 and fY0|c(y0) > 0.

In other words, under the LQTE framework, the IVQR full rank assumption is equivalent to full

support of the complier potential outcome distributions. This analysis provides an easy-to-interpret

sufficient condition for the abstract IVQR identification assumption. Moreover, it suggests simple

setups where the full rank condition fails. For example, if the support of Y0 (Y1) for the never-takers

(always-takers) is not contained in the support of Y0 (Y1) for the compliers.

Remark 6. We know from Vytlacil (2002) that Assumption 6 is equivalent to a threshold crossing

model, D = 1{p(Z) ≥ V }, where V ∼ U(0, 1) is independent of Z. This equivalence result provides

an alternative way of analyzing the full rank condition under the LQTE framework.21 Based on the

threshold crossing model for the selection equation, compliers can be described by V ∈ (p(0), p(1)].22

It follows that F cY1(y) = P (p(0) < V ≤ p(1))P (Y1 ≤ y | p(0) < V ≤ p(1)). Because P (p(0) < V ≤

21I would like to thank an anonymous referee for suggesting this interpretation.
22Without loss of generality it is assumed that p(0) < p(1).
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p(1)) > 0 by Assumption 6.3, Assumption 2.4 is equivalent to

fY1|c(y) =

∫ p(1)

p(0)
fY1|V (y | v)dv > 0, (18)

where fY1|V is the density of Y1 | V = v. In other words, Assumption 2.4 requires that fY1|V (y |

v) > 0 for all v in some subinterval of (p(0), p(1)]. That is, full rank is equivalent to full support

for at least a subpopulation of the compliers. A similar result can be derived for F cY0.

B Nonbinary instruments and simple specification tests

If the original instrument is multivalued or continuous, estimation can proceed based on a di-

chotomized version of instrument. If there are multiple instruments, the same strategy can be

applied based on the propensity score p(Z,X). Under the assumptions put forth in the main text,

the choice of the dichotomization does not matter for consistency of the estimators. However, effi-

ciency could be improved by developing plug-in estimators based on analytic solutions with general

instruments.

With nonbinary instruments one can construct simple overidentification-type specification tests.

To fix ideas, suppose that the researcher has access to two different binary instruments Z1 and Z2,

which are obtained as transformations of the original instrument(s), and let δZ1,X(τ | x) and

δZ2,X(τ | x) denote the associated QTE estimands. Under Assumption 1, the conditional moment

restriction (1) implies that

δZ1,X(τ | x) = δZ2,X(τ | x) for all (τ, x) ∈ T X .

The intuition behind this testable restriction is as follows. Under Assumption 1, the IVQR model

identifies QTE for the whole population. These treatment effects do not depend on the choice of the

3



instrument as they are not local effects for an instrument-specific subpopulation.23 Consequently,

one can construct overidentification-type specification tests based on the following testing problem

H0 : δZ1,X(τ | x) = δZ2,X(τ | x) for all (τ, x) ∈ T X

against the unrestricted alternative.24 Kolmogorov–Smirnov- and Cramér–von Mises-type test

statistics can be used to test this hypothesis. Under the conditions presented in the main text,

critical values can be obtained using the exchangeable bootstrap.

C Proofs

Notation

To ease the exposition, I introduce some additional notation. Define

γ :=
(
γ′0, γ

′
1

)′
,

β(y0, y1) :=
(
β00(y0)

′, β01(y0)
′, β10(y1)

′, β11(y1)
′)′,

W (y0, y1) :=
(
W ′γ0 ,W

′
γ1 ,Wβ00(y0)

′,Wβ01(y0)
′,Wβ10(y1)

′,Wβ11(y1)
′)′

where, for all (d, z) ∈ DZ,

Wγz := G(κγz),

Wβdz(yd) := G(κβdz(yd)),

23This is in sharp contrast to the LQTE framework; see Section 3.2.2 and Appendix A.
24Since the first version of this paper was written, Yu (2017) and Kim and Park (2017) have developed formal

overidentification-type testing procedures for rank similarity based on similar insights.
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and

κγz := 1{Z = z}
[
Λ
(
X ′γz

)
−D

]
H(X ′γz)X,

κβdz(yd) := 1{D = d, Z = z}
[
Λ
(
X ′βdz(yd)

)
− 1(Y ≤ yd)

]
H(X ′βdz(yd))X,

where H(·) := λ(·)/{Λ(·)[1 − Λ(·)]} and G is a P -Brownian bridge. Finally, define the matrix

J(y0, y1) as

J(y0, y1) :=



Jγ0 0 0 0 0 0

0 Jγ1 0 0 0 0

0 0 Jβ00(y0) 0 0 0

0 0 0 Jβ01(y0) 0 0

0 0 0 0 Jβ10(y1) 0

0 0 0 0 0 Jβ11(y1)



.

Proof of Lemma 1

To simplify the exposition, I suppress the conditioning on X = x and use the notation pdz :=

P (D = d | Z = z). The proof proceeds in two steps. First, I show that Assumption 2 is equivalent

to f cY1 and f cY0 being non-zero, which implies strict monotonicity of F cY1 and F cY0 . In the second

step, I exploit strict monotonicity to derive the closed-form solutions.

Step 1: Here I show that full rank of Π′(y0, y1) is equivalent to f cY1 and f cY0 being both strictly

positive or strictly negative. I start with two preliminary observations. First, note that full rank

of Π′(y0, y1) is equivalent to det(Π′(y0, y1)) 6= 0, where

det
(
Π′(y0, y1)

)
= fY |D,Z(y0 | 0, 0)p00fY |D,Z(y1 | 1, 1)p11 − fY |D,Z(y0 | 0, 1)p01fY |D,Z(y1 | 1, 0)p10.
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Second, by definition of F cY1 and F cY0 ,

f cY1(y1) = fY |D,Z(y1 | 1, 1)p11 − fY |D,Z(y1 | 1, 0)p10 (19)

and

f cY0(y0) = fY |D,Z(y0 | 0, 0)p00 − fY |D,Z(y0 | 0, 1)p01. (20)

Full rank ⇒ monotonicity:25

As shown in equation (24) below, the IVQR moment restrictions (1) imply that F cY1(QY1(τ)) =

F cY0(QY0(τ)). By Assumption 1.1, QY1 and QY0 are strictly increasing and thus admit strictly

increasing inverses. Thus, substituting τ = FY0(y0) yields

F cY0(y0) = F cY1(QY1(FY0(y0))) (21)

for y0 ∈ {QY0(τ), τ ∈ (0, 1)}. Equation (21) implies that f cY0(y0) and f cY1(y1(y0)) are either both

positive, zero, or negative for y0 ∈ {QY0(τ), τ ∈ (0, 1)}, where y1(y0) := QY1(FY0(y0)).

Next, I show that f cY0(y0) 6= 0 and f cY1(y1(y0)) 6= 0 on {QY0(τ), τ ∈ (0, 1)} by contradiction.

Suppose not, then there exists y∗0 ∈ {QY0(τ), τ ∈ (0, 1)} such that f cY0(y∗0) = 0 and f cY1(y1(y
∗
0)) = 0.

Thus, by (19) and (20),

fY |D,Z(y∗0 | 0, 0)p00 = fY |D,Z(y∗0 | 0, 1)p01 and fY |D,Z(y1(y
∗
0) | 1, 1)p11 = fY |D,Z(y1(y

∗
0) | 1, 0)p10,

which implies that det(Π′(y∗0, y1(y
∗
0))) = 0 and thus that Π′(y∗0, y1(y

∗
0))) is not of full rank.

Because {QY1(τ), τ ∈ (0, 1)} = QY1(FY0({QY0(τ), τ ∈ (0, 1)})), it follows that f cYd(yd) 6= 0 on

{QYd(τ), τ ∈ (0, 1)} for d ∈ D. Moreover, by continuity, f cYd(yd) > 0 or < 0 for all yd ∈ {QYd(τ), τ ∈

25This step is similar to the proof in the Online Supplement B.3 of Vuong and Xu (2017).
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(0, 1)}. The desired implication follows because, by equation (21), f cY0(y0) and f cY1(y1(y0)) have the

same sign for all y0 ∈ {QY0(τ), τ ∈ (0, 1)}.

Monotonicity ⇒ full rank: Consider the case where f cY1 and f cY0 are both strictly positive.

Thus,

f cY1(y1) = fY |D,Z(y1 | 1, 1)p11 − fY |D,Z(y1 | 1, 0)p10 > 0,

f cY0(y0) = fY |D,Z(y0 | 0, 0)p00 − fY |D,Z(y0 | 0, 1)p01 > 0.

Consequently, we have

fY |D,Z(y0 | 0, 0)p00fY |D,Z(y1 | 1, 1)p11 > fY |D,Z(y0 | 0, 1)p01fY |D,Z(y1 | 1, 0)p10,

implying that det(Π′(y0, y1)) 6= 0, which is in turn equivalent to full rank of the Jacobian. The

case when f cY1 and f cY0 are strictly negative is symmetric and thus omitted. This proves the desired

implication.

Step 2: I now establish the closed-form solutions. Under Assumption 1, by Theorem 1 in Cher-

nozhukov and Hansen (2005),

P (Y ≤ QYD(τ) | Z = 1) = τ

P (Y ≤ QYD(τ) | Z = 0) = τ.

By the law of iterated expectations and the definition of a conditional cdf,

p11FY |D,Z(QY1(τ) | 1, 1) + p01FY |D,Z(QY0(τ) | 0, 1) = τ (22)

p10FY |D,Z(QY1(τ) | 1, 0) + p00FY |D,Z(QY0(τ) | 0, 0) = τ . (23)

7



Equating (22) and (23) and rearranging terms yields

p11FY |D,Z(QY1(τ) | 1, 1)− p10FY |D,Z(QY1(τ) | 1, 0) =

p00FY |D,Z(QY0(τ) | 0, 0)− p01FY |D,Z(QY0(τ) | 0, 1)

Thus,

F cY1(QY1(τ)) = F cY0(QY0(τ)), (24)

by definition. By step 1, F cY1 and F cY0 are strictly monotonic and thus one-to-one with strictly

monotonic inverses. Moreover, QY1 and QY0 are strictly increasing by Assumption 1.1 and thus

one-to-one with strictly increasing inverses. Therefore,

QcY1
(
F cY0(y0)

)
= QY1(FY0(y0)) (25)

and

QcY0
(
F cY1(y1)

)
= QY0(FY1(y1)). (26)

Substituting FY1(y1) = τ in equation (22) and FY0(y0) = τ in equation (23), we obtain

FY1(y1) = p11FY |D,Z(y1 | 1, 1) + p01FY |D,Z(QY0(FY1(y1)) | 0, 1),

FY0(y0) = p00FY |D,Z(y0 | 0, 0) + p10FY |D,Z(QY1(FY0(y0)) | 1, 0).

The result then follows by plugging-in (25) and (26).
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Proof of Theorem 1

The proof has two steps. In the first step, I show that the conditional probabilities and conditional

distributions converge jointly to tight mean-zero Gaussian processes. This step builds on the proof

strategy detailed in Chernozhukov et al. (2013) and Yu (2014). The second step shows that the

closed-form solutions are Hadamard differentiable maps, partly building on work by Melly and

Santangelo (2015) and De Chaisemartin and D’Haultfoeuille (2018,b).

Step 1: Under Assumptions 3 and 4.1 – 4.3, it follows from the arguments in Chernozhukov et al.

(2013, Appendix E) and Yu (2014, Proofs of Theorems 4 and 8) that

√
n



p̂(0, x)− p(0, x)

p̂(1, x)− p(1, x)

F̂Y |D,Z,X(y0 | 0, 0, x)− FY |D,Z,X(y0 | 0, 0, x)

F̂Y |D,Z,X(y0 | 0, 1, x)− FY |D,Z,X(y0 | 0, 1, x)

F̂Y |D,Z,X(y1 | 1, 0, x)− FY |D,Z,X(y1 | 1, 0, x)

F̂Y |D,Z,X(y1 | 1, 1, x)− FY |D,Z,X(y1 | 1, 1, x)



 ϕγ,β(·)
(
−J−1(y0, y1)W (y0, y1)

)
=:



Zp0(x)

Zp1(x)

ZF00(y0 | x)

ZF01(y0 | x)

ZF10(y1 | x)

ZF11(y1 | x)



,

a tight mean-zero Gaussian process, where the map ϕγ,β(·)(η, α)(y0, y1, x) is given by

ϕγ,β(·)(η, α)(y0, y1, x) =



λ(x′γ0)x
′η0

λ(x′γ1)x
′η1

λ(x′β00(y0))x
′α00(y0)

λ(x′β01(y0))x
′α01(y0)

λ(x′β10(y1))x
′α10(y1)

λ(x′β11(y1))x
′α11(y1)



.

Hence, the details are omitted for brevity.
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Step 2: This step establishes Hadamard differentiability of the closed-form solution. To simplify

the exposition and to keep track of the exact expressions for the limit processes, I proceed step-

by-step, which is justified by the chain rule for Hadamard derivatives (e.g., Van der Vaart and

Wellner, 1996, Lemma 3.9.3), and separately for FY1|X and FY0|X . Consider first F̂ cY1|X(y1 | x) and

F̂ cY0|X(y0 | x) defined by equations (11) and (12) in the main text. By the functional delta method,

√
n

 F̂ cY1|X(y1 | x)− F cY1|X(y1 | x)

F̂ cY0|X(y0 | x)− F cY0|X(y0 | x)

 
ZF c1 (y1 | x)

ZF c0 (y0 | x)

 in `∞(YX )2,

where ZF c1 and ZF c0 are tight mean-zero Gaussian processes given by

ZF c1 (y1 | x) := FY |D,Z,X(y1 | 1, 1, x)Zp1(x)− FY |D,Z,X(y1 | 1, 0, x)Zp0(x)

+p(1, x)ZF11(y1 | x)− p(0, x)ZF10(y1 | x)

and

ZF c0 (y0 | x) := FY |D,Z,X(y0 | 0, 1, x)Zp1(x)− FY |D,Z,X(y0 | 0, 0, x)Zp0(x)

+(1− p(0, x))ZF00(y0 | x)− (1− p(1, x))ZF01(y0 | x).

Under Assumptions 4.2 and 4.4, the inverse map is Hadamard differentiable uniformly with respect

to an index (e.g., Chernozhukov et al. (2010)). Therefore, by the functional delta method

√
n

 Q̂cY1|X(τ | x)−QcY1|X(τ | x)

Q̂cY0|X(τ | x)−QcY0|X(τ | x)

 
ZQc1(τ | x)

ZQc0(τ | x)

,

10



where ZQc1 and ZQc1 are tight mean-zero Gaussian processes given by

ZQc1(τ | x) := −ZF c1
(
QcY1|X(τ | x) | x

)
/f cY1|X

(
QcY1|X(τ | x) | x

)
ZQc0(τ | x) := −ZF c0

(
QcY0|X(τ | x) | x

)
/f cY0|X

(
QcY0|X(τ | x) | x

)

By Assumptions 4.2 and 4.4, Lemma 3.9.27 in Van der Vaart and Wellner (1996) (which is valid

uniformly with respect to an index under Assumption 4.2 and 4.4) and the functional delta method

imply

√
n
(
Q̂cY0|X

(
F̂ cY1|X(y1 | x) | x

)
−QcY0|X

(
F cY1|X(y1 | x) | x

))
 ZQc0◦F c1 (y1 | x) in `∞(YX ),

where ZQc0◦F c1 is a mean-zero Gaussian process defined as

ZQc0◦F c1 (y | x) := ZQc0
(
F cY1|X(y1 | x) | x

)
+

ZF c1 (y1 | x)

f cY0|X

(
QcY0|X

(
F cY1|X(y1 | x) | x

)
| x
) ,

and

√
n
(
F̂Y |D,Z,X

(
Q̂cY0|X

(
F̂ cY1|X(y1 | x) | x

)
|0, 1, x

)
− FY |D,Z,X

(
QcY0|X

(
F cY1|X(y1 | x) | x

)
| 0, 1, x

))
 ZF01◦Qc0◦F c1 (y1 | x) in `∞(YX ),

where ZF01◦Qc0◦F c1 is a tight mean-zero Gaussian process defined as

ZF01◦Qc0◦F c1 (y1 | x) := ZF01

(
QcY0|X

(
F cY1|X(y1 | x) | x

)
| x
)

+fY |D,Z,X

(
QcY0|X

(
F cY1|X(y1 | x) | x

)
| 0, 1, x

)
ZQc0◦F c1 (y1 | x).

11



Using similar arguments, obtain

√
n
(
F̂Y |D,Z,X

(
Q̂cY1|X

(
F̂ cY0|X(y0 | x) | x

)
| 1, 0, x

)
− FY |D,Z,X

(
QcY1|X

(
F cY0|X(y0 | x) | x

)
| 1, 0, x

))
 ZF10◦Qc1◦F c0 (y0 | x) in `∞(YX ),

where

ZF10◦Qc1◦F c0 (y | x) := ZF10

(
QcY1|X

(
F cY0|X(y0 | x) | x

)
|x
)

+fY |D,Z,X

(
QcY1|X

(
F cY0|X(y0 | x) | x

)
|1, 0, x

)
ZQc1◦F c0 (y0 | x),

and

ZQc1◦F c0 (y | x) := ZQc1
(
F cY0|X(y0 | x) | x

)
+

ZF c0 (y0 | x)

f cY1|X

(
QcY1|X

(
F cY0|X(y0 | x) | x

)
| x
) .

Finally, consider F̂Y1|X(y1 | x) and F̂Y0|X(y0 | x) defined in equations (9) and (10). By the functional

delta method,

√
n

F̂Y1|X(y1 | x)− FY1|X(y1 | x)

F̂Y0|X(y0 | x)− FY0|X(y0 | x)

 
ZFY1|X (y1 | x)

ZFY0|X (y0 | x)

 in `∞(YX )2,

where ZFY1|X and ZFY0|X are tight mean-zero Gaussian processes defined as

ZFY1|X (y1 | x) :=
(
FY |D,Z,X(y1 | 1, 1, x)− FY |D,Z,X

(
QcY0|X

(
F cY1|X(y1 | x) | x

)
| 0, 1, x

))
Zp1(x)

+p(1, x)ZF11(y1 | x) + (1− p(1, x))ZF01◦Qc0◦F c1 (y1 | x)

ZFY0|X (y0 | x) :=
(
FY |D,Z,X

(
QcY1|X

(
F cY0|X(y0 | x) | x

)
| 1, 0, x

)
− FY |D,Z,X(y0 | 0, 0, x)

)
Zp0(x)

+(1− p(0, x))ZF00(y0 | x) + p(0, x)ZF10◦Qc1◦F c0 (y0 | x).
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This completes the proof of the theorem.

Proof of Theorem 2

Under the assumptions of the theorem, the inverse map is Hadamard differentiable uniformly with

respect to an index (Chernozhukov et al., 2010). The results therefore follows from Theorem 1 and

the functional delta method.

Proof of Theorem 3

Under Assumption 4, Donsker’s theorem implies

1√
n

n∑
i=1

(
f(Yi, Xi)−

∫
fdP

)
 ZX(f),

as a stochastic process indexed by f ∈ F , where F is a universal Donsker class. The limit process

ZX is a tight P -Brownian bridge (e.g., Chernozhukov et al., 2013). Therefore, Lemma D.1 in

Chernozhukov et al. (2013) (Hadamard differentiability of the counterfactual operator) and the

functional delta method imply

√
n

F̂Y1(y1)− FY1(y1)

F̂Y0(y0)− FY0(y0)

 

∫
X ZFY1|X (y1 | x)dFX(x) + ZX

(
FY1|X(y1 | ·)

)
∫
X ZFY0|X (y0 | x)dFX(x) + ZX

(
FY0|X(y0 | ·)

)
 =:

ZFY1 (y1)

ZFY0 (y0)

.
Furthermore, under the assumptions of the theorem, the inverse map is Hadamard differentiable

(e.g., Van der Vaart and Wellner, 1996, Lemma 3.9.23). Thus, apply the functional delta method

to obtain

√
n

Q̂Y1(τ)−QY1(τ)

Q̂Y0(τ)−QY0(τ)

 
ZQY1 (τ)

ZQY0 (τ)

 in `∞(T )2,
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where

ZQY1 (τ) := −ZFY1 (QY1(τ))/fY1(QY1(τ)), (27)

ZQY0 (τ) := −ZFY0 (QY0(τ))/fY0(QY0(τ)). (28)

The desired result then follows from another application of the functional delta method.

Proof of Theorem 4

Follows directly from the functional delta method.

Proof of Theorem 5

Under Assumptions 3 and 4.1 – 4.3, it follows from Corollary 5.4 in Chernozhukov et al. (2013)

and Step 1 in the proof of Theorem 1 that the exchangeable bootstrap is valid for the conditional

distribution functions and conditional probabilities. The result then follows from the established

Hadamard differentiability of all maps involved and the functional delta method for the bootstrap

(e.g., Van der Vaart and Wellner, 1996, Section 3.9).

References

Abadie, A., Angrist, J., Imbens, G., 2002. Instrumental variable estimates of the effect of subsidized

training on the quantile of trainee earnings. Econometrica 70 (1), pp. 91–117.

Chernozhukov, V., Fernandez-Val, I., Galichon, A., 2010. Quantile and probability curves without

crossing. Econometrica 78 (3), pp. 1093–1125.

Chernozhukov, V., Fernandez-Val, I., Melly, B., 2013. Inference on counterfactual distributions.

Econometrica 81 (6), pp. 2205–2268.

14



Chernozhukov, V., Hansen, C., 2005. An IV model of quantile treatment effects. Econometrica

73 (1), pp. 245–261.

De Chaisemartin, C., D’Haultfoeuille, X., 2018a. Fuzzy differences-in-differences. The Review of

Economic Studies 85 (2), 999–1028.

De Chaisemartin, C., D’Haultfoeuille, X., 2018b. Supplement to: “fuzzy differences-in-differences”.

Kim, J. H., Park, B. G., 2017. Testing rank similarity in the heterogeneous treatment effect model.

Working Paper, UNC.

Melly, B., Santangelo, G., 2015. The changes-in-changes model with covariates. Working Paper.
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Tables

Table 1: Finite sample performance of inference procedure

Coverage Power

(1− α) = 0.95 (1− α) = 0.90 α = 0.05 α = 0.10

n = 500 0.958 0.918 0.930 0.984
n = 1000 0.950 0.904 0.998 1.000

Notes: Simulation based on 500 replications with 100 empirical bootstrap draws each. Cov-
erage: empirical coverage of uniform (1 − α)-confidence bands. Power: estimated power of
the α-level Kolmogorov–Smirnov-type test underlying the uniform confidence bands



Table 2: Rothe and Wied (2013) specification test

NFA TW

KS CvM KS CvM

FY |D,Z,X(y | 1, 1, x) 0.746 0.936 0.298 0.996

FY |D,Z,X(y | 0, 1, x) 0.324 0.976 0.986 0.998

FY |D,Z,X(y | 0, 0, x) 0.374 0.718 0.612 0.700

Notes: NFA: net financial assets, TW: total wealth,
KS: Kolmogorov–Smirnov, CvM: Cramér–von–Mises



Table 3: Comparison computation times

# of grid points

50 100 200

dim(X) = 12

Plug-in 12.73 19.63 33.48
IQR 127.83 509.99 2042.63

dim(X) = 48

Plug-in 26.04 45.68 85.63
IQR 889.48 3586.72 14375.67

Notes: Computation time in seconds.
Sample size n = 9913. The number of grid
points refers to the grids for Y and T for
the plug-in estimator and Y, T , and grid
search for IQR. Computations were carried
out on a standard desktop computer with
a 3.2 GHz Intel Core i5 processor and 8GB
RAM.
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Figure 1: Simulation based on 500 repetitions. DGP1 – DGP5 are described in the main text.
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Figure 2: Simulation based on 500 repetitions. DGP1 – DGP5 are described in the main text.
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Figure 3: Sample size n = 9, 913. Uniform and pointwise 95%-confidence intervals are obtained
based on the empirical bootstrap with 200 replications.
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Figure 4: Sample size n = 9, 913.
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