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CURE/RESERVOIR

Micro RNA Targets in HIV Latency:
Insights into Novel Layers of Latency Control

Ashley I. Heinson,1 Jeongmin Woo,1 Amey Mukim,2 Cory H. White,1 Bastiaan Moesker,1 Alberto Bosque,3

Celsa A. Spina,2,4 Christopher H. Woelk,1 Ben D. Macarthur,1 and Nadejda Beliakova-Bethell2,5

Abstract

Despite the considerable progress that has been made in identifying cellular factors and pathways that contribute
to establishment and maintenance of the latent HIV reservoir, it remains the major obstacle to eradicating this
virus. Most recently, noncoding genes have been implicated in regulation of HIV expression. In this study, small
RNA sequencing was used to profile expression of microRNAs (miRNAs) in a primary CD4+ T cell in vitro
model of HIV latency. Previously, we have shown that protein-coding genes dysregulated in this model were
enriched for the p53 signaling pathway, which was confirmed experimentally. We further found a link between
p53 signaling and dysregulated long noncoding RNAs. In this study, we hypothesized that miRNAs may provide
an additional level of regulation of the p53 signaling pathway during HIV latency. Twenty-six miRNAs were
identified to be dysregulated in our latency model. A subset of these miRNAs was validated by real-time
quantitative polymerase chain reaction. Predicted messenger RNA (mRNA) targets and cellular pathways en-
riched for mRNA targets were identified using several analytical methods. Our analyses showed that many
protein-coding genes and pathways targeted by dysregulated miRNAs have relevance to regulation of HIV
expression or establishment of HIV latency. The p53 signaling pathway was found among pathways that were
targeted by dysregulated miRNAs at a greater level than expected by chance. This study provides a mechanistic
insight into regulation of the p53 pathway through miRNAs that may contribute to the establishment of latency.

Keywords: HIV latency, microRNA, miRNA, small RNA sequencing, RNA-Seq, p53 signaling

Introduction

While considerable advances have been made in
understanding the nature of the latent HIV reservoir,

effective strategies for its elimination are still lacking. HIV
expression is regulated at multiple levels, including avail-
ability of transcription factors,1,2 histone and DNA modifi-
cations3–6 at the HIV promoter long terminal repeat (LTR),
and the characteristics of the site of proviral integration.7

More recently, noncoding genes have been recognized as
novel factors that regulate gene expression,8,9 with the evi-
dence that long noncoding RNAs (lncRNAs) participate in
regulation of HIV replication and latency.10,11

One of the classes of noncoding genes, which is largely
understudied with respect to regulation of HIV latency, is
microRNAs (miRNAs). While multiple studies reported
changes in miRNA expression during HIV infection, only a

few have attempted to explore the mechanisms employed by
miRNA to control HIV latency.12 MiRNAs may act on pro-
tein coding genes that function as HIV regulators, or target
HIV RNA directly. For example, miR-155 downregulates
expression of TRIM32, which stimulates NF-jB signaling,13

a central pathway that regulates HIV expression.14,15 Four
miRNAs were found to have higher expression in resting
compared to activated primary CD4+ T cells, and have re-
inforced HIV latency by suppressing expression of cyclin
T1.16 Two reports demonstrated direct targeting of HIV
messenger RNA (mRNA) by miRNAs,17,18 with the majority
of identified miRNAs having selectively elevated expression
in resting cells,18 suggesting possible function as repressors
during latent infection.

HIV latency is difficult to study because it occurs in a very
small percentage of the host cells.19 Thus, in vitro models
of latent infection represent a valuable tool that enables
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characterization of this phenomenon. One of such mod-
els20–23 has been recently used to characterize mRNA ex-
pression from protein-coding genes in latency,24 as well as
another class of noncoding genes—lncNRA.11 The major
theme of these studies was the identification of the p53 sig-
naling pathway as a contributor to the establishment of la-
tency.24 We have found this pathway to be regulated by a set
of lncRNAs that are dysregulated in the primary CD4+ T cell
latency model.11

In this study, we further characterize another level of
control that drives latent infection. Small RNA sequencing
(smRNA-Seq) is employed to analyze the miRNA differ-
ences between the model of HIV latency and mock-infected
cells.11,22 We hypothesize that miRNAs contribute to regu-
lation of the p53 signaling pathway during HIV latency. Our
results demonstrate that miRNAs, differentially expressed
between latently infected and mock-infected cells, are pre-
dicted to target the same biological pathways that are en-
riched for differentially expressed genes (DEGs). The p53
signaling pathway and individual protein-coding genes of
this pathway are consistently identified by various analyses.

Materials and Methods

The in vitro model of HIV latency

A well-characterized cultured TCM model of HIV la-
tency11,22 was used for these experiments. Peripheral blood
mononuclear cells (PBMC) from anonymous blood donors
were obtained from blood bank, the Gulf Coast Regional
Center (Houston, TX); thus the study was exempt from the
IRB approval. Naive cells were isolated from PBMC of HIV-
seronegative donors (N = 4) and activated for 3 days using
anti-CD3-/anti-CD28-coated magnetic beads in the presence
of anti-interleukin (IL)-4, anti-IL-12, and tumor growth
factor (TGF)-b. Cells were expanded in medium containing
human IL-2 for additional 4 days. On day 7, cells were in-
fected with NL4.3 virus at multiplicity of infection (MOI) =
0.1 by spinoculation at 2,900 rpm at 37�C for 2 h; mock-
infected samples were processed in parallel. After infection,
cells were further cultured in medium with IL-2 for 3 days,
subjected to crowding in round-bottom plates with IL-2 for 3
days, and cultured in flasks in the presence of IL-2 and anti-
retroviral therapy (ART, 0.5 lM Nelfinavir and 1.0 lM Ral-
tegravir) for another 4 days. On day 17, positive magnetic
selection was used to remove any remaining productively
infected cells. At this stage, latently infected and mock-
infected conditions were collected. Additional cell aliquots
were subjected to T cell receptor stimulation by anti-CD3-/
anti-CD28-coated magnetic beads to reactivate latent HIV.
Mock-infected cells were activated in parallel. Activated
cells (both infected and mock-infected) were collected 48 h
following treatment.

The cell samples were split into aliquots and used to assess
establishment of latent infection, reactivation, and genes
dysregulated in latency. These analyses were published pre-
viously.11,24 The same RNA samples were used for both
RNA-Seq11,24 and smRNA-Seq in this study.

RNA isolation and sequencing

Total RNA was extracted using the RNeasy Plus Mini Kit,
according to manufacturer’s instructions, with addition of

extra ethanol to the flow through from the genomic DNA
(gDNA) columns (1.5 volumes of 100% Ethanol) to recover
small RNAs. On-column DNase treatment was included as
part of the protocol to remove gDNA. RNA integrity (RIN) was
assessed using a Bioanalyzer 2100 (Agilent Technologies,
Inc.). All samples were deemed of good quality for RNA se-
quencing (average RIN 9.9 and standard deviation 0.1). RNA
library preparation and smRNA-Seq were conducted at Ex-
pression Analysis Q2 Solutions, Inc. (Morrisville, NC). Briefly,
the Illumina TruSeq Small RNA Library Prep kit was used to
prepare libraries, and the BluePippin system was used for size
selection. Libraries were sequenced to a read depth of 5 million
reads using the Illumina HiSeq2000 to generate 50 base pair
single-end reads. FASTQ files are available at the Gene Ex-
pression Omnibus (GEO), accession number GSE153094.

SmRNA-seq data analysis

The quality of the small read sequences from each sequ-
enced library was accessed by using FastQC (v0.11.2).25 Raw
reads were trimmed to remove low-quality reads and adapter
sequences. Filtered reads for the samples were mapped to the
collection of human mature miRNA from miRBase v2126

using Novoalign with the following setting: novoalign -m -l
14 -h 20 -t 30. Only reads that were uniquely aligned to the
mature miRNA were considered for further analysis. Mapped
reads were sorted by name and converted to sam files using
samtools.27 Sam files were used for read counting using
HTSeq (version 0.6.1)28 with default settings, using annota-
tion derived from miRBase v21.26 The miRNA expression
data were filtered to remove lowly expressed miRNAs and
preserve miRNA with a minimum of 2 counts per million
reads (cpm) in at least 25% of samples. Read counts of the
418 miRNAs that survived filtering were input for differential
expression testing using the Bioconductor package EdgeR
(version 3.4.2).29 The data were normalized to adjust for
sample library sizes using the trimmed mean of M values
method in EdgeR.

Differentially expressed miRNAs (DEmiRNAs) between
mock-infected and latently infected cells were identified by
fitting the data to a generalized linear model (GLM) followed
by GLM likelihood ratio test. The p-values were adjusted
for multiple testing using the Benjamini and Hochberg ap-
proach.30 Significance for differential expression was set at a
false discovery rate (FDR)-corrected p-value <.05. To visualize
DEmiRNAs, data were transformed using variance-stabilizing
transformation (vst), and the heat maps were constructed using
the R package gplots heatmap.2 function and scaled by row.31,32

Functional analysis of potential miRNA targets

To investigate the biological function of DEmiRNAs be-
tween the mock-infected and latently infected conditions,
functional enrichment analysis of miRNA target genes was
performed. The publicly available tool, miRNet,32 was used
to obtain a complete list of experimentally validated targets
of the DEmiRNAs. Then, a topology-based filter was applied
to the gene-miRNA network. Specifically, only the gene
nodes (note: not miRNA nodes) with greater than one degree
(the default value) were considered for further functional
enrichment analysis with Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database33 by implementing a
hypergeometric test.

110 HEINSON ET AL.



Integrated analysis of mRNAs and miRNAs
differentially expressed in latency

We then used another functional enrichment analysis tool,
Ingenuity Pathway Analysis (IPA; Qiagen, Inc., Valencia,
CA), which allows integration of the DEmiRNA and DEG
data together by matching the predicted miRNA targets to
previously published DEGs.24 MiRNA target filter in IPA
was used to first predict mRNA targets of the DEmiRNAs.
Next, the DEGs that were previously identified in the same
laboratory experiment24 were overlaid to determine which of
the DEmiRNAs targeted DEGs. To infer biological function
of these relationships, only miRNAs that targeted mRNAs,
which had a fold change in the opposite direction, were con-
sidered (i.e., if the miRNA was increased in expression, the
mRNA was decreased, and vice versa). These final filtered
DEmiRNAs and their gene targets were visualized using
Cytoscape v3.5.134; log2-fold change between latently in-
fected and mock-infected cells was colored and overlaid
upon the network.

The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING)35,36 was then used to identify interac-
tions between proteins encoded by mRNA targets of the
DEmiRNAs and to infer their biological relevance. STRING
was used with default settings (medium confidence) to
identify protein-protein interactions. The network was then
filtered to ensure that each node had at least one interaction
within the network. The number of interactions that a protein
had within the network (degrees) was taken as the measure
of its importance.

A fast greedy community search37 method was used by
the R package iGraph38 to identify communities within this
protein interaction network. The number of DEmiRNAs that
targeted each community was then assessed to identify com-
munities of proteins encoded by DEGs, which were targeted
by DEmiRNAs at a greater level than expected by chance. To
apply a significance to the number of miRNAs targeting
each community, a hypergeometric test was implemented in
R using the dhyper function with the following parameters:
x = number of miRNAs targeting the community, m =
predicted total miRNAs targeting the community (predic-
tions made by miRNET), n = number of DEmiRNAs pre-
dicted to target the community, and k = 26 (number of
miRNAs) multiplied by the number of nodes (proteins) in the
community = equivalent to the number of tests. The com-
munity was considered to be targeted by miRNAs more than
expected by chance if the FDR-corrected p-value was <.05.
Only communities that contained more than six members
were considered.

Polymerase chain reaction

miRNAs, whose expression was upregulated in latently
infected compared to mock-infected cells and downregulated
or not affected in activated cells, were selected for validation
of expression by real-time quantitative polymerase chain
reaction (RT-qPCR): hsa-mir-4697-3p, hsa-mir-497-5p, and
hsa-mir-10a-5p. In addition, hsa-mir-1275 was selected be-
cause it was downregulated in latency and not affected during
activation. Hsa-mir-30e-3p, a miRNA that had the least
variation in expression across all the samples, was selected as
a normalizer. RNA samples, containing the mixture of long
and small RNAs, were converted to complementary DNA

(cDNA) using Universal cDNA Synthesis Kit II (Exiqon,
Inc., now available as miRCURY LNA RT Kit from Qiagen,
Inc.). Reverse transcription cycling parameters were 42�C
for 60 min, 95�C for 5 min, and 4�C indefinitely. RNA ex-
pression was quantified using miRCURY LNA SYBR Green
PCR kit (Qiagen, Inc.). RT-qPCR cycling parameters were
95�C for 2 min—1 cycle and 95�C for 10 s and 56�C for
1 min—45 cycles, with optical read.

Expression of the host genes, the predicted target of
hsa-miR-4697-3p, colony-stimulating factor 2 (CSF2), and
housekeeping control, ribosomal protein L27 (RPL27), were
quantified by droplet digital PCR (ddPCR) as described
previously,39 except 16 ng RNA per reaction was used to
quantify CSF2, due to its low expression levels in resting
cells.

Statistical analyses

The cycle threshold (Ct) values of the RT-qPCR data were
normalized to the hsa-miR-30e-3p control to obtain delta
Ct values. These values were then compared using linear
modeling in R (the lm function) to determine whether
expression of each miRNA is affected by each condition
(latently infected and activated). A p-value <.05 was con-
sidered a significant effect. For graphing purposes, miRNA
fold changes were derived based on 2(- DDCt) method and
CSF2-fold changes were calculated directly after normal-
ization to RPL27. Graphs were plotted using the box plot
function in R.

Results

Identification of DEmiRNAs and their predicted
pathway targets

When comparing the conditions of latent and mock in-
fection, 26 miRNAs were found to be differentially expressed
with an FDR-corrected p-value <.05. Figure 1 (middle)
shows a heat map of the log2-fold changes of the DEmiRNAs.
Plotted in Figure 1 are also the comparisons of miRNA ex-
pression in resting vs activated cells to facilitate identification
of miRNAs that are modulated specifically in latency, not
during cell activation (Fig. 1, left) or productive infection
(Fig. 1, right). First, we conducted prediction of protein-
coding gene targets of miRNAs using miRNet. This analysis
searched for all possible predicted targets, ignoring any prior
knowledge of modulation during HIV latency. The initial
target prediction identified 4,636 mRNAs targeted by the
DEmiRNAs. Pathway enrichment analysis of the predicted
targets using the hypergeometric method identified several
pathways relevant to HIV biology and particularly estab-
lishment and maintenance of latency (Table 1). Among these
were p53 signaling,24 Wnt signaling,40 MAPK signaling,41

JAK-STAT signaling,42 mTOR signaling,43 T cell receptor
signaling,44 and regulation of actin cytoskeleton.45

Integrated analysis of DEmiRNAs
and their DEG targets

Next, we focused on identification of miRNA targets
among protein-coding genes that were also dysregulated
during HIV latency. Due to the streamlined ability of miRNA
target prediction and expression pairing with previously
identified DEGs,24 IPA was used to predict gene targets for
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the 26 DEmiRNAs that were found between latently infected
and mock-infected samples. Out of a total 826 DEGs previ-
ously identified between latently and mock-infected cells,24

429 were IPA-predicted targets of the 26 DEmiRNAs. One of
the mechanisms by which miRNA molecules regulate gene
expression is targeting mRNA for degradation.46 To identify
possible miRNA regulators in this system, we removed any
protein-coding DEG that was predicted to be targeted by
DEmiRNAs, but was modulated in the same direction. As the
result of this filtering, 248 DEGs (Fig. 2) were retained for
further analyses.

A protein interaction network was constructed using the
STRING database to determine which of the 248 proteins,
whose mRNAs were targeted by miRNAs, are the most bi-
ologically relevant. Proteins that have the most connections
(highest degrees) in this network can be thought of as the
‘‘most influential’’ and biologically relevant proteins. The
top 10 most connected proteins in the network were then
evaluated for their relevance to HIV biology. Each of the top
10 proteins has been implicated in HIV latency mechanisms
or in known pathways involved in HIV latency establishment
or maintenance (Table 2).

To further elucidate which DEG-regulated processes are
more likely to be targeted by miRNAs, we used the fast

greedy community search algorithm to identify smaller sub-
networks of the 248 DEGs targeted by DEmiRNA (Fig. 3).
A hypergeometric test was then conducted to determine
which of the subnetworks were targeted by DEmiRNAs at a
higher rate than expected by chance (Table 3). Of these
subnetworks, specific ones (communities 3, 4, 8, 9, 10, 11,
and 12) were determined to be targeted by miRNAs (FDR-
corrected p-value <.05). Finally, IPA was used to determine
pathways enriched for the proteins present within these sub-
networks (Fig. 3). To facilitate pathway enrichment analysis,
only the communities with more than six members were
selected (communities 3, 4, and 8). In community 3, the top
significantly enriched pathway was the p53 signaling—which
suggested an additional level of regulation of this pathway in
latency by miRNAs.

Validation of DEmiRNA by RT-qPCR

To independently validate dysregulation of miRNAs
during latency, four targets were selected to be quantified by
RT-qPCR. Our model of HIV latency used cell activation to
establish HIV infection; therefore, it was important to vali-
date those miRNAs that were dysregulated specifically in
latency, and were not affected the same way by cell activation

FIG. 1. Heat map of DEmiRNAs during latent infection in resting cells. DEmiRNAs between mock-infected and latently
infected cells were identified using EdgeR by fitting the data to a GLM followed by GLM likelihood ratio test. Heat maps
were constructed using the R package gplots heatmap.2 function and is scaled by row. Fold changes were calculated by
subtracting values obtained for miRNA counts per million after variance-stabilizing transformation. For comparison, fold
changes during activated state without HIV infection and in latently infected cells following reactivation are shown.
Asterisks indicate miRNAs that were selected for validation by quantitative real-time PCR, based on differential regulation
during latency and during activation (red asterisk, upregulated in latency, downregulated during activation, or upregulated
in latency to a greater extent; blue asterisk, downregulated in latency, upregulated, or no change in activation). D1–D4
indicate samples from four different donors. Scale bar represents the row-scaled expression values (X axis) used to generate
the heat map. Count (Y axis) in the scale bar is the number of miRNAs with indicated scale expression values. DEmiRNA,
differentially expressed miRNA; GLM, generalized linear model; miRNA, microRNA; PCR, polymerase chain reaction.
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or productive infection with HIV. We ensured that expression
of the selected miRNAs was detectable with RT-qPCR by
choosing those miRNAs that had higher read counts in the
smRNA-Seq experiment. The resulting list of miRNAs for
validation included hsa-miR-4697-3p and hsa-miR-10a-5p

(upregulated in latency and downregulated during activa-
tion); hsa-miR-497-5p (upregulated in latency to a much
greater extent than during activation); and hsa-miR-1275
(downregulated in latency and not affected by activation).
These miRNAs were quantified by RT-qPCR across the four

Table 1. Pathways Targeted by Differentially Expressed MicroRNAs Identified Using miRNet

Pathway
No. of miRNA-targeted genes

that were in the pathway p-value FDR p-value

Cell cycle 71 4.34E-13 4.34E-11
Pathways in cancer 139 1.19E-12 5.95E-11
HTLV-I infection 94 2.35E-10 7.83E-09
Neurotrophin signaling pathway 65 4.97E-10 1.02E-08
Wnt signaling pathway 73 5.10E-10 1.02E-08
p53 signaling pathway 40 2.23E-08 3.50E-07
Chronic myeloid leukemia 42 2.45E-08 3.50E-07
Pancreatic cancer 40 3.96E-08 4.95E-07
Prostate cancer 47 5.39E-08 5.99E-07
Renal cell carcinoma 34 8.78E-07 8.78E-06
Colorectal cancer 29 1.67E-06 1.52E-05
Oocyte meiosis 51 3.49E-06 2.91E-05
ErbB signaling pathway 43 4.71E-06 3.62E-05
Glioma 34 9.86E-06 7.04E-05
Endometrial cancer 25 2.36E-05 1.57E-04
Adherens junction 35 2.63E-05 1.58E-04
RNA transport 55 2.69E-05 1.58E-04
Focal adhesion 79 4.49E-05 2.49E-04
Regulation of actin cytoskeleton 72 9.21E-05 4.85E-04
Insulin signaling pathway 57 1.01E-04 5.05E-04
Small cell lung cancer 37 1.32E-04 6.29E-04
Melanogenesis 44 1.79E-04 8.14E-04
MAPK signaling pathway 97 2.05E-04 8.91E-04
Acute myeloid leukemia 28 2.47E-04 1.03E-03
Epstein-Barr virus infection 40 2.78E-04 1.11E-03
Bladder cancer 17 2.94E-04 1.13E-03
Toxoplasmosis 40 4.81E-04 1.78E-03
GnRH signaling pathway 40 6.24E-04 2.23E-03
Dorsoventral axis formation 9 6.80E-04 2.34E-03
Chagas disease (American trypanosomiasis) 38 7.84E-04 2.55E-03
Non-small cell lung cancer 25 7.89E-04 2.55E-03
Influenza A 44 8.21E-04 2.57E-03
Shigellosis 23 9.33E-04 2.83E-03
TGF-beta signaling pathway 36 9.83E-04 2.89E-03
Endocytosis 41 1.65E-03 4.58E-03
T cell receptor signaling pathway 40 1.65E-03 4.58E-03
Dopaminergic synapse 48 2.28E-03 6.16E-03
Basal cell carcinoma 22 2.48E-03 6.53E-03
mRNA surveillance pathway 34 2.64E-03 6.77E-03
Osteoclast differentiation 45 5.16E-03 1.29E-02
Jak-STAT signaling pathway 38 7.36E-03 1.80E-02
mTOR signaling pathway 20 7.88E-03 1.88E-02
Protein processing in endoplasmic reticulum 47 9.60E-03 2.23E-02
Progesterone-mediated oocyte maturation 31 1.26E-02 2.78E-02
Measles 38 1.27E-02 2.78E-02
Axon guidance 43 1.28E-02 2.78E-02
Bacterial invasion of epithelial cells 23 1.40E-02 2.98E-02
RNA degradation 24 1.74E-02 3.63E-02
Thyroid cancer 13 2.00E-02 4.08E-02
Long-term potentiation 27 2.04E-02 4.08E-02
Amphetamine addiction 25 2.13E-02 4.18E-02
Apoptosis 31 2.21E-02 4.25E-02
NOD-like receptor signaling pathway 20 2.27E-02 4.28E-02

p-value, hypergeometric test p-value; FDR p-value, FDR-corrected p-value using Benjamini-Hochberg method. Pathways relevant for
regulation of HIV during latency are highlighted in bold.

FDR, false discovery rate; miRNA, microRNA.
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conditions that were sequenced. Of these, the expression
patterns were confirmed for three out of four miRNAs (hsa-
miR-4697-3p, hsa-miR-10a-5p, and miR-1275) (Fig. 4).
Among these, hsa-miR-4697-3p upregulation in latency was
significant ( p = .026) and downregulation due to activation
was also significant ( p = .0004) (Fig. 4). Upregulation of hsa-
miR-1275 during activation was significant ( p = .004 for
mock infected and p = .013 for infected), although its down-
regulation in latency did not reach significance in the RT-
qPCR experiment. Hsa-miR-10a-5p was slightly upregulated
in latency and downregulated during activation (Fig. 4),
although none of these signals reached significance.

Validation of divergent expression of hsa-miR-4697-3p
and its predicted target CSF2

Hsa-miR-4697-3p was the only miRNA that was validated
by qPCR. We therefore searched for its predicted targets in
the DEG dataset24 and identified CSF2, a rare transcript in
resting CD4+ T cells that was downregulated in latency. To
validate its divergent expression pattern with hsa-miR-4697-
3p, we used ddPCR, a sensitive method able to detect rare
transcripts. This experiment validated downregulation of
CSF2 in latency, compared to mock-infected cells, and up-
regulation in activated cells, both infected and mock-infected

FIG. 2. IPA analysis of DEmiRNA targets among the 826 DEGs previously found between latently infected and mock-
infected cells. A total of 429 genes were predicted targets for the DEmiRNAs from this study; 248 DEGs had a fold change
in the opposite direction compared to the targeting miRNA. The network was constructed using Cytoscape. (A) Down-
regulated miRNAs with their predicted upregulated gene targets; (B) upregulated miRNAs with their predicted down-
regulated gene targets. Red, upregulated; blue, downregulated; fold changes are on the log2 scale. DEGs, differentially
expressed genes; IPA, Ingenuity Pathway Analysis.

(continued)
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(Fig. 5). Its expression patterns were exactly opposite com-
pared to hsa-miR-4697-3p (Fig. 5).

Evaluation of DEmiRNAs in different models of latency

While our study was under analysis, an smRNA-Seq study
using different models of HIV latency was published.47 We
took advantage of these additional datasets to evaluate the
behavior of miRNA expression in latency across different
model systems. López-Huertas et al. used two models of
latency, where resting cells were treated with the cytokines
IL-19 or IL-7 before and during infection with NL4.3 virus.47

As a control, they also used infection of untreated resting
cells. In each case, DEmiRNAs were identified between in-
fected and mock-infected cells for untreated and IL-treated
conditions.47 Interestingly, the majority of DEmiRNAs in
their study were found in cells that were treated with IL-7
(32 DEmiRNAs), while the signal in the other 2 conditions
was much less robust (10 DEmiRNAs for cells treated
with IL-19 and 8 DEmiRNAs for untreated cells). Three
DEmiRNAs were found in common for all conditions, while
four DEmiRNAs were common for the two conditions that
were treated with the cytokines IL-19 and IL-7.47

Comparison of these data to our dataset revealed that very
few DEmiRNAs were dysregulated in common (Fig. 6). One
miRNA (hsa-miR-1307-5p) was found in common between
our model and IL-19-treated cells; however, it was modulated
in the opposite directions: upregulated in the IL-19 model and
downregulated in latency and upregulated in activated cells

in this study. Two miRNAs (hsa-miR-210-5p and hsa-miR-
150-3p) were dysregulated in common between our model
and cells that were untreated prior or during the infection,
which resulted in very few HIV integration events.47 Simi-
larity of the miRNA signatures between our model and the
resting cells in the López-Huertas et al.’s study could be
indicative of resting cell state in our model after returning to
quiescence, while IL-19-treated cells may exhibit low levels
of activation. Both the results from this study and the study
presented by López-Huertas et al.47 are consistent with the
concept that miRNA dysregulation is dependent on the
model. Such observations have been consistent with respect
to DEGs identified in different models of HIV latency,24 as
well as responsiveness of different models to latency-
reversing agents (LRAs).48

Discussion

This study aimed to determine the contribution of gene
expression regulation by miRNA to control latent HIV in-
fection. To this end, we have conducted smRNA-Seq with an
in vitro model of HIV latency and mock-infected cells; used
several complementary analytical approaches to identify
DEmiRNA (Figs. 1 and 4); predicted pathways that are reg-
ulated by DEmiRNAs (Table 1); and showed the relationship
between DEmiRNAs and protein-coding DEGs (Figs. 2, 3, 5
and Tables 2 and 3).

Several analyses highlighted miRNA regulation of indi-
vidual host gene targets and pathways implicated in HIV

FIG. 2. (Continued).
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latency establishment and maintenance. Presence of DEGs
that are dysregulated in latency in the opposite direction
compared to DEmiRNA suggests the possibility that expres-
sion of some genes dysregulated in latency is directly con-
trolled by miRNAs. Among these, we identified CSF2, the
predicted target of hsa-miR-4796-3p (Figs. 2 and 5). This
gene was also identified as one of the top biologically rele-
vant proteins by the STRING analysis (Table 2). While ini-
tially CSF2 was described as a gene with relevance to HIV
latency in macrophages,49 CSF2 is responsive to protein
kinase C (PKC) agonists in primary CD4+ T cells50 and may
be involved in regulation of HIV expression in latency
through this pathway.

Other protein-coding genes whose expression was dysre-
gulated in latency in the opposite direction from miRNA
were MDM2 proto-oncogene (MDM2), PH domain and
leucine-rich repeat protein phosphatases 1 and 2 (PHLPP1
and PHLPP2), and the members of the heat shock protein
family A (Hsp70; HSPA1A; and HSPA2) (Table 2). MDM2 is
a member of the p53 signaling pathway, which was previ-
ously linked to the establishment of HIV latency,24 and is also
a regulator of HIV replication in nonpermissive target cells
by degradation of the accessory protein Vif.51 PHLPP1 and
PHLPP2 are involved in regulation of the Akt and PCK
signaling pathways,52,53 both of which have a role in regu-
lation of HIV latency.54,55 Finally, the heat shock proteins

Hsp70 are important components of the complex with cyclin-
dependent kinase 9 (CDK9), which plays a role in folding and
stabilization of the Cdk9 protein and production of mature
Cdk9/cyclin T1, the positive transcription elongation factor
(P-TEFb) complex.56

Functional analysis of the predicted miRNA targets identi-
fied pathways that have previously been implicated in HIV
latency, including p53 signaling,24 Wnt signaling,40 MAPK
signaling,41 JAK-STAT signaling,42 mTOR signaling,43 T cell
receptor signaling,44 and regulation of actin cytoskeleton45

(Table 1). Identification of greedy communities for DEGs tar-
geted by miRNAs allowed for an additional level of assessment
of these pathways to determine which ones are targeted by
miRNAs more likely than expected by chance. (Fig. 3). This
analysis strengthened our understanding of regulation of the
p53 signaling pathway by miRNAs during latency.

While in vitro model systems are useful for studying HIV
latency because they contain a higher proportion of latently
infected cells compared to that observed in vivo, a common
limitation of these systems is the short-term culture and a
short-term latent infection. The field has developed multiple
models48 in which latency is established through various
mechanisms, and results from gene expression studies de-
pend on the model system selected.11,24,57,58 Comparison of
DEmiRNAs identified using different models of HIV latency
(Fig. 6) is consistent with this observation.

Table 2. The Top Interconnected Proteins in the Search Tool for the Retrieval

of Interacting Gene/Protein Network Have Relevance to HIV Infection, Latency,

and Pathways That Are Involved in Latency Control

Gene symbol Gene name Degrees Summary
References

(PMID)

PHLPP1 PH domain and leucine-rich
repeat protein phosphatase 1

30 Regulates Akt signaling and PKC signaling
pathways

17386267,
18162466

PHLPP2 PH domain and leucine-rich
repeat protein phosphatase 2

29 Regulates Akt signaling and PKC signaling
pathways

17386267,
18162466

CXCL8 C-X-C motif chemokine ligand 8 17 Regulates NF-jB nuclear translocation and
the HIV promoter activity in human
macrophages

24662979

HIST2H2BE H2B-clustered Histone 21 15 Is involved in histone signaling in
macrophages in response to HIV infection

28701698

OAS1 2¢-5¢-Oligoadenylate synthetase 1 14 Is associated with increased viral set point in
people with HIV

20195503

MDM2 MDM2 proto-oncogene 14 Regulates HIV replication in nonpermissive
target cells by degradation of the
accessory protein Vif

19128510

HSPA1A Heat shock protein family A
(Hsp70) member 1A

13 Is a member of the heat shock protein family
A (Hsp70), which interacts with Cdk9 to
facilitate Cdk9 folding/stabilization and
the production of the mature Cdk9/cyclin
T1 P-TEFb complex

10617616

MAPK13 Mitogen-activated protein
kinase 13

12 Activates C/EBPbeta-mediated induction of
HIV-1 gene expression in promonocytic
cell lines

17409010

HSPA2 Heat shock protein family A
(Hsp70) member 2

12 Is a member of heat shock protein family A
(Hsp70), which interacts with Cdk9 to
facilitate Cdk9 folding/stabilization and
the production of the mature Cdk9/cyclin
T1 P-TEFb complex

10617616

CSF2 Colony-stimulating factor 2 10 Suppresses HIV replication post-DNA
synthesis in macrophages; is responsive to
PKC agonists in primary CD4+ T cells

8554900,
27889530

PKC, protein kinase C; P-TEFb, positive transcription elongation factor.
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Other methods that do not involve latency models have
also been used. For example, Chiang et al.16 profiled miRNA
expression in activated CD4+ T cells and used a hypothesis-
driven approach to identify miRNAs that regulate HIV
expression through Cyclin T1. One of the miRNAs, hsa-miR-
150, was shown to be downregulated in activated CD4+

T cells16 and during T cell differentiation.59 Moreover, hsa-
miR-150 was downregulated in PBMC of ART-naive persons
with HIV60 and in the intestinal lamina propria leukocytes
in the course of SIV infection.61 Our observation that this
miRNA was the most downregulated one in activated cells
(Fig. 1) validates consistency of our in vitro system with prior
observations in vivo. The discrepancies between DEmiRNAs
identified in our study and that by Chiang et al.16 could be

explained by our focus on miRNA expression profiles in-
dicative of HIV latency and not T cell activation.

Whether miRNAs, which are dysregulated in latency and
identified in this study, can serve as host targets for latency
reversal remains an important question. López-Huertas et al.
recently suggested that knocking down expression of miR-
NAs that were upregulated in latency did not result in HIV
reactivation.47 Different model systems respond variably to
the LRAs48; therefore, it is possible that responsiveness to
miRNA knockdowns may differ across models as well.
The combined results from these studies suggest that
miRNA knockdown screens across different model systems
may be a valuable approach to determine usefulness of
miRNAs as targets for latency reversal. Ultimately, their

FIG. 3. Biological processes regulated by miRNAs during latency. The fast greedy community search algorithm was
utilized to identify subnetworks of the protein interaction network generated from DEG mRNAs targeted with an opposite
fold change to the DEG miRNAs. A hypergeometric test was used to determine whether each of these subnetworks is
targeted by miRNAs at a higher rate than expected by chance. The pathway analysis using IPA was then conducted to
determine which pathways are enriched by the proteins present in the subnetworks. Only networks targeted by more
miRNAs than would be expected by chance and communities containing more than six nodes were explored. The pathways
listed are the five most significantly enriched (lowest p-value) pathways for each community. mRNA, messenger RNA.
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FIG. 4. Validation of miRNA expression by RT-qPCR. Top, selection of the four miRNAs based on the smRNA-Seq
experiment for RT-qPCR validation. Fold changes were calculated by subtracting values obtained for miRNA counts per
million after variance-stabilizing transformation. Hsa-miR-4697-3p and hsa-miR-10a-5p were upregulated in latency and
downregulated during activation; hsa-miR-497-5p was upregulated in latency to a much greater extent than during acti-
vation; and hsa-miR-1275 was downregulated in latency and not affected by activation. All differences were significant
compared to resting mock-infected samples. Bottom, fold changes from qPCR data derived based on 2(-DDCt) method using
resting mock-infected samples as reference. Positive fold changes (upregulation) are FC >1; negative fold changes
(downregulation) are 0 < FC <1. Hsa-miR-4697-3p was found to be significantly upregulated, while hsa-miR-10a-5p and
hsa-miR-1275 had the same patterns as smRNA-Seq data, but did not reach significance for the comparison between mock-
infected and latently infected condition. Hsa-miR-497-5p was not confirmed. Asterisks indicate p < .05. Horizontal dashed
lines indicate no change in expression. FC, fold change; smRNA-Seq, small RNA sequencing; RT-qPCR, real-time
quantitative polymerase chain reaction.

Table 3. Communities of Proteins Encoded by Differentially Expressed Genes That Are Targeted

by Differentially Expressed MicroRNAs More than Expected by Chance

Community

DEmiRNAs
targeting the
community

Nodes in the
community

DEmiRNAs/
nodes

Total miRNAs
targeting the
community

Samples
drawn p-value

FDR
p-value

1 22 19 1.16 555 494 6.85E-02 1.25E-01
2 24 20 1.20 637 520 3.59E-02 1.25E-01
3 30 23 1.30 934 598 1.77E-04 1.59E-03
4 52 34 1.53 973 884 1.01E-04 1.01E-03
5 12 11 1.09 319 286 5.86E-02 1.25E-01
6 12 11 1.09 259 286 2.23E-02 1.12E-01
7 9 7 1.29 242 182 1.34E-02 8.04E-02
8 11 7 1.57 119 182 4.23E-06 5.08E-05
9 7 6 1.17 74 156 8.04E-05 8.84E-04

10 3 2 1.50 61 52 2.90E-03 2.03E-02
11 3 2 1.50 53 52 1.96E-03 1.56E-02
12 3 2 1.50 309 52 1.25E-01 1.25E-01

The column entitled ‘‘DEmiRNAs targeting the community’’ is the total number of miRNA to targeted mRNA interactions. Predicted
total miRNAs targeting the community is based on miRNet predictions using all tissue types. p-value, hypergeometric test p-value; FDR
p-value, FDR-corrected p-value using Benjamini-Hochberg method. Communities that were targeted by miRNAs more than expected by
chance are highlighted bold.

DEmiRNA, differentially expressed miRNA.
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function will need to be verified using T cells ex vivo from
people with long-term HIV infection and successful drug-
induced suppression.

Conclusions

This exploratory study predicted many targets of
DEmiRNAs among DEGs, when comparing the conditions of
HIV latent and mock infection. In addition, we have identi-
fied smaller selected subsets of DEGs that may be targeted by
miRNAs more frequently than would be expected by chance.
These studies have further explored the biology of HIV la-
tency through the identification of miRNAs, which likely
contribute substantially to regulation of HIV expression
during latency. The p53 signaling pathway, with a previously
demonstrated role in establishment of HIV latency,24 was
found enriched for DEGs,24 which were predicted targets of
DEmiRNAs. This study therefore provides a mechanistic
insight into regulation of the p53 pathway by miRNAs that
may contribute to the establishment of latency. Future studies
will be needed to validate the predicted DEmiRNA/DEG
pairs and the role of these interactions in regulating HIV
latency establishment and reactivation.

Sequence Data

Raw smRNA-Seq data and the processed file containing
the matrix of counts are available at the GEO database,
accession number GSE153094.
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