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Biophysical neural adaptation mechanisms
enable artificial neural networks to capture
dynamic retinal computation

Saad Idrees 1,2 , Michael B. Manookin 3, Fred Rieke4, Greg D. Field 5 &
Joel Zylberberg 1,2,6

Adaptation is a universal aspect of neural systems that changes circuit com-
putations to match prevailing inputs. These changes facilitate efficient
encoding of sensory inputs while avoiding saturation. Conventional artificial
neural networks (ANNs) have limited adaptive capabilities, hindering their
ability to reliably predict neural output under dynamic input conditions. Can
embedding neural adaptive mechanisms in ANNs improve their performance?
To answer this question, we develop a new deep learning model of the retina
that incorporates the biophysics of photoreceptor adaptation at the front-end
of conventional convolutional neural networks (CNNs). These conventional
CNNs build on ’Deep Retina,’ a previously developedmodel of retinal ganglion
cell (RGC) activity. CNNs that include this new photoreceptor layer outper-
form conventional CNNmodels at predictingmale and female primate and rat
RGC responses to naturalistic stimuli that include dynamic local intensity
changes and large changes in the ambient illumination. These improved pre-
dictions result directly fromadaptationwithin the phototransduction cascade.
This research underscores the potential of embedding models of neural
adaptation in ANNs and using them to determine how neural circuits manage
the complexities of encoding natural inputs that are dynamic and span a large
range of light levels.

Artificial neural networks (ANNs) combined with deep learning algo-
rithms are useful in modeling the function of the nervous system and
are being used to model and investigate many brain areas1. Under
relatively controlled conditions, ANNsperformwell in computer vision
tasks such as object recognition2–4, and they can successfully predict
the responses ofneurons in visual cortex5–8 and retina9–15. However, it is
less clear how ANNs perform in naturalistic settings, where, for
example, the statistics of sensory input can vary significantly from
moment to moment. A specific concern is that the static nonlinear
functions that ANNs typically employ will limit their ability to

dynamically adapt to changing input conditions. Accounting for such
dynamics is important because adaptation is a nearly universal feature
of individual neurons and neural circuits16,17.

Sensory systems provide some of the clearest examples of the
importance of adaptation. For example, adaptation causes the fading
of perceived intensity of odors18 and accommodation to sounds19.
Within the visual system, adaptation constantly adjusts neural
responses to match the prevailing input conditions. During natural
vision, the amount of light falling on the retina can change locally and
globally by several orders of magnitude on timescales ranging from
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fractions of a second (e.g., eye movements such as saccades), to
minutes (e.g., movement between sunlight and shade), and to hours
(e.g., the rising and setting sun). The limited dynamic range of indivi-
dual neurons makes adaptation essential to match the range of neural
responses to the current range of inputs. In vision, much of this
adaptation occurs in the retina, and as early as the photoreceptors.
Indeed, phototransduction can adapt rapidly and dynamically to
control the sensitivity and kinetics with which light inputs are con-
verted into electrical signals16,20–22.

We examined whether incorporating photoreceptor adaptation
into ANNs enhanced their accuracy at predicting neural responses
under varied input conditions. We tested the ability of a convolutional
neural network (CNN), similar to Deep Retina9, to predict stimulus-
evoked retinal ganglion cell (RGC) firing patterns under lighting con-
ditions that differed from those under which they were trained. CNNs
failed to generalized to new lighting conditions, and this failure
motivated us to create a new type of CNN layer that incorporates a
biophysical model of photoreceptor adaptation20,23 that emulates the
transformation of light into electrical signals. The photoreceptor layer
can be used as an input to conventional CNNs, and can be trained end-
to-end along with the other CNN layers. It thus equips deep-learning
CNNmodels of the retina with biorealistic adaptationmechanisms.We
found these biophysical photoreceptor–CNN hybrid models better
generalized across lighting conditions that were not included in
training. Furthermore, because the photoreceptor adaptation was
local, the photoreceptor–CNN model outperforms conventional CNN

models in tasks involving rapid changes in local light intensity. These
results suggest that chimericmodels blending biophysical realismwith
trainable CNNs are better at modeling neural activity. Moreover, they
provide a promising direction for investigating how adaptation
mechanisms shape neural circuit function.

Results
Photoreceptor adaptation improves CNN performance at pre-
dicting RGC responses to natural stimuli
We hypothesized that incorporating photoreceptor adaptation
could improve the performance of CNN models at predicting RGC
responses to naturalistic stimuli that involve local luminance var-
iations. To test this hypothesis, we recorded the spiking activity of
primate RGCs using a high-densitymultielectrode array (Methods),
and then attempted to predict these visually-evoked responses
using CNN models either with or without photoreceptor adapta-
tion mechanisms. CNN training used measured responses to
checkerboard noise and naturalistic movies (Methods and Fig. 1a).
The checkerboard noise provided responses to statistically stable
stimuli, while the naturalistic movies presented large and rapid
changes in light intensity characteristic of the retinal input during
natural vision. Both stimuli were presented at a mean luminance of
50 R*receptor−1 s−1, where RGC responses primarily depend on rod
photoreceptor responses, and the rods are at a light level where
their gain is adapting strongly to the stimulus24,25. We selected 57
RGCs (27 ON and 30 OFF parasol cells) for modeling purposes
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Fig. 1 | Training and architecture of photoreceptor–CNN/conventional
CNN model. a Naturalistic movie generated by displacing natural scene images
from Van Hateren dataset54 across the retina, to mimic eye movement trajectories
(red lines) derived from the DOVES dataset55. b Photoreceptor–CNN Model archi-
tecture incorporating a photoreceptor layer at the front-end (green) followed by
LayerNormalization and 3 convolution layers (orange). Themodel output is a fully-
connected layer that has N units based on the number of RGCs in the dataset
followed by a softplus activation function that transforms the outputs into RGC
spiking output (blue traces). By traversing through the input movie 80 frames at a
time, an entire time series of RGC responses is obtained. When configured as a
conventional CNN (without the photoreceptor layer), Layer Norm before the first
convolution layer is the input layer. c Schematic showing the phototransduction

cascade and corresponding components of the biophysical model (adapted from
ref. 20). Continuous synthesis of cGMP by guanylate cyclase (GC) opens cGMP-
gated channels in themembrane. Activationof light-sensitive opsin (Opsin*) results
in channel closure through the activation of G-protein transducin (Gt*), subse-
quently activating PDE* and decreasing cGMP concentration. Calcium ions (Ca2+)
enter the photoreceptor outer segment via cGMP-gated channels and are extruded
through Na+/K+/Ca2+ exchangers in the membrane. The biophysical model incor-
porates two distinct calcium-dependent feedbackmechanisms influencing the rate
of cGMP synthesis (blue line) and the activity of the cGMP-gated channels (red line).
In the experiments presented here, the strength of Ca-dependent feedback to the
cGMP-gated channels was set to zero, based on observations from rod photo-
receptor cells23. See Supplementary Table 2 for a list of parameters and their values.
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based on spike sorting quality and reliability across experimental
conditions (Methods).

We constructed a conventional CNNmodel similar to the existing
state-of-the-art Deep Retina architecture9 (i.e., the architecture in
Fig. 1b with the photoreceptor layer removed, Methods). The model
cascades multiple convolutional layers and rectification to extract
spatiotemporal information from the input. Each convolution is fol-
lowed by Batch Normalization that z-scores the outputs (Methods)
before rectification. A fully-connected layer at the end, followed by a
softplus nonlinearity, maps the extracted features to the spiking
activity of RGCs. We optimized model hyperparameters – including
the number of layers and the number of channels in each layer—for our
dataset (see Methods; Supplementary Table 1). The model takes as
input a 640 ms movie segment and produces as output an instanta-
neous spike rate for each RGC at the end of that movie segment. In
other words, the response at each time point was based on the pre-
vious 640ms. This process was repeated every 8ms to predict the
entire time series of RGC responses evoked by the stimulus movie. A
Layer Normalization (Layer Norm) layer at the input standardized the
value of each pixel of the input movie segment at each time point
relative to its mean value across the movie segment. This enabled the
CNN to compensate for changes in inputmagnitude across light levels,
ensured stability during training, and promoted faster convergence
(Methods). Model performance was quantified using the fraction
(expressed as a percentage) of explainable variance in the RGC
responses that was captured by the model (FEV; see Methods). A
perfect model, by definition, would yield an FEV value of 100%. Com-
parisons between models were facilitated by presenting median FEV
values along with 95% confidence intervals.

Due to the limited duration of the naturalistic movies in our
dataset, we could not fully train the models on the naturalistic movie
data alone. Instead, we adopted a two-stage training process. First, we
trained the model to predict RGC responses using the entire white
noise movie dataset, totaling 36min. Second, we fine-tuned the
resulting model using RGC responses to eight of the nine naturalistic
movies (8min of the data) and evaluated the model on the held-out
movie (6 s). For an example RGC, this conventional CNN model cap-
tured 59% FEV of the recorded (Fig. 2a) response with a median FEV of
38% ± 8% across the population (N = 57) of recorded cells (Fig. 3a).

To test the hypothesis that dynamic photoreceptor adaptation
improves the CNN predictions, we developed a new type of CNN layer
based on a biophysicalmodel of the phototransduction cascade by ref.
20.We then built a newCNNmodel with this photoreceptor layer at its
input and tested it with the same procedure used to test the conven-
tional CNN (above). This photoreceptor model has previously been
validated for its faithful representation of photoreceptor adaptation
dynamics20. The model is based directly on the signaling cascade that
constitutes the phototransduction process (Fig. 1c). Rapid adaptation
in this model emerges primarily from changes in the rate of cGMP

turnover produced by light intensity-dependent changes in phospho-
diesterase activity26. The biochemical reactions of the photo-
transduction cascade were represented by a set of six differential
equations that also incorporate dynamic feedback mechanisms to the
cGMP-gated channels as detailed in the biophysical model by ref. 20
(reproduced in Supplementary Note 2). Model parameters can be
adjusted to match responses of either rod or cone photoreceptors
(ref. 23; Supplementary Table 2). Here, we configured the photo-
receptor model to represent primate rods as the underlying electro-
physiology experiment was conducted at a mean luminance of
50 R*receptor−1 s−1, where rod photoreceptors primarily drive RGC
responses.

The fully trainable CNN layer encapsulating the biophysical pho-
toreceptor model is characterized by twelve parameters (Methods)
that could be trained together with the downstream network through
backpropagation. This layer converts time-varying light intensity sig-
nals at each pixel in the input movie—measured in units of receptor
activations per photoreceptor per second (R*receptor−1 s−1)—into time-
varying photocurrent values (measured in pA). In the hybrid biophy-
sical photoreceptor–CNNmodel, the photoreceptor layer functions as
the input stage of the CNN (Fig. 1b, photoreceptor layer). Following the
photoreceptor layer, Layer Normalization is implemented to normal-
ize the input distribution to the CNN, while preserving the temporal
structure of the photocurrents. This design also ensures that the
parameters of the biophysical model, having a different scale than the
downstream CNN weights, can be trained together with the CNN
through backpropagation. Henceforth, we refer to this hybrid model
as the photoreceptor–CNN model. Unless explicitly stated, we allow
someof the photoreceptormodel parameters to be learned alongwith
downstream CNN weights, and hence to deviate from the values to
which they are initialized (in this case rod photoreceptor parameter
values). A description of the trainable and non-trainable parameters is
provided in the “Methods” section.

Similar to the conventional CNN, the photoreceptor–CNNmodel
(with optimized hyperparameters; Supplementary Table 1) was
trained to predict primate RGC responses first to a white noisemovie
and then model weights were tuned by training to naturalistic
movies. When evaluated on the same held-out movie segment as the
conventional CNN, the predicted responses of an example RGC
generated by the photoreceptor–CNN model (Fig. 2b) were much
more closely matched to the actual response than the
predictions from the conventional CNN (Fig. 2b). Overall, the
photoreceptor–CNN model performed with a median FEV of
49% ± 15% (Fig. 3a). This performance gain is substantial given that
the photoreceptor layer enhanced the predictive capability of con-
ventional CNNs by approximately 29% (p = 0.002, two-sided Wil-
coxon signed-rank test, N = 57 RGCs). The enhanced capability of the
photoreceptor–CNN model was robust when trained and evaluated
over different combinations of naturalistic movies (Supplementary
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FEV = 59%

Recorded response
a b

Coventional-CNN predicted response

c

FEV = 71%

Recorded response
Photoreceptor-CNN predicted response
(trainable photoreceptor)

FEV = 69%

Recorded response
Photoreceptor-CNN predicted response
(fixed photoreceptor)

Fig. 2 | Incorporating photoreceptor adaptation improvesCNNperformance in
predicting an example RGC’s response to naturalistic movies. Recorded
response of an example primate parasol RGC to a held-out naturalistic movie
shownasnormalized spike rate (gray), andpredicted responses by (a) conventional
CNN model (blue), (b) photoreceptor–CNN model with trainable photoreceptor

layer (green), and (c) photoreceptor–CNNmodelwith non-trainable photoreceptor
layer parameters fixed to experimental fits to rods (Supplementary Table 2).
Fraction of Explainable Variance Explained (FEV) values quantify the percentage of
variance in the RGC's actual responses that could be explained by each model.
Source data are provided as a Source Data file.
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Fig. 1) and underscores the pivotal role played by the simulated
photoreceptor layer.

The superior performance of the photoreceptor–CNN model can
be attributed to its ability to capture and leverage dynamic photo-
receptor adaptation. At the ambient light level of this experiment (50
R*receptor−1 s−1) rod photoreceptors are adapting strongly24,25. Con-
ventional CNNs, despite incorporating Layer Norm at their input to
accommodate steady-state sensitivity changes associated with the
mean intensity of the stimuli, struggle to capture this adaptation.
Photoreceptor–CNNs explicitly model this dynamic adaptation, mak-
ing them more effective in predicting RGC responses in this setting.

Adaptation in thephotoreceptor layer drives performancegains
What causes the photoreceptor–CNN to outperform the conventional
CNN at predicting RGC responses? Notably the superior performance
is not attributable to an increase inmodel capacity fromthe additionof
12 trainable parameters of the photoreceptor layer. In fact, the con-
ventional CNN had to be much larger (873,642 parameters) without
the photoreceptor layer (538,107 parameters) to achieve its ceiling
performance. This difference in parameter count resulted from sepa-
rately optimizing the size of CNN and photoreceptor–CNN models to
best predict responses via grid searches over the model hyperpara-
meters (Methods; Supplementary Note 1).

Given the inherent limitation of CNNs in dynamically adapting
based on the prevailing inputs, we hypothesized that the observed
performance gains in the photoreceptor–CNN model stem from the
adaptation mechanisms embedded in the photoreceptor layer that
dynamically adjust response sensitivity and kinetics based on recent
stimulus history. To test this hypothesis, we substituted the nonlinear
biophysical photoreceptor model with an empirical linear photo-
receptormodel20 (Methods). This linearmodel consists of a linearfilter

governed by five trainable parameters. These parameters were initi-
alized based on experimentally measured single-photon responses20.
Unlike the biophysical model, the linear photoreceptor model lacks
the ability to dynamically adjust its sensitivity. In this model, a single
parameter provides sensitivity adjustment, applied to the entire linear
photoreceptor model output to account for adaptation.

Following the same procedure as for the conventional CNN and
the photoreceptor–CNN, the hyperparameters of the linear
photoreceptor–CNN model were optimized via a grid search (Meth-
ods; Supplementary Table 1). The resulting model was first trained
(including the 5 photoreceptor parameters that were initialized to
experimental values) to predict RGC responses to the white noise
movie and then fine-tuned using RGC responses to the naturalistic
movies.When evaluated on the held-out segment of naturalisticmovie
data, this model performed very similarly to the conventional CNN
model, yielding FEV of 37% ± 12% (Fig. 3b; p =0.26, two-sidedWilcoxon
signed-rank test, N = 57 RGCs). This is expected since the initial linear
filtering stages of the conventional CNN should be able to capture the
filtering performed by the simplified linear photoreceptor model.
Taken together, these experiments underscore the significance of
adaptation as crucial components influencing model predictions.

We also tested photoreceptor–CNN models in which the bio-
physical model parameters were non-trainable, ensuring that they did
not deviate from their experimental fits to rods (Supplementary
Table 2) during training. As a result, the photoreceptor layer in the
trained model represented true biological rods. The resultant
photoreceptor–CNN model trained on the same task as above,
exhibited performance comparable to its fully-trainable counterpart
when evaluated on the naturalistic movie dataset (Fig. 2c; Fig. 3c, FEV
49% ± 10%, p =0.07 two-sidedWilcoxon signed-rank test,N = 57RGCs).
These findings further suggest that the observed performance gains
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Fig. 3 | Incorporating photoreceptor adaptation improvesCNNperformance in
predicting RGC responses to naturalistic movies. a Comparison between con-
ventional CNN and photoreceptor–CNN model with the photoreceptor layer
parameters trained with the downstream CNN. Y-axis shows the performance of
conventional CNN (left) and photoreceptor–CNN model (right) as FEV values for
each RGC (circles). Light gray circles denote ON type RGCs (N = 27), and dark gray
circles denoteOFF typeRGCs (N=30).Connecting lines link the FEVvalues for each
RGCacrossmodels. Median FEV values across all RGCs (N = 57) are indicated by red
lines, and stated as FEV ± 95%c.i. in red text at the top. P-values were calculated by
performing paired two-sided Wilcoxon signed-rank test on the FEV distributions

from the CNN and photoreceptor–CNN model. An asterisk indicates statistically
significant difference (p <0.01) between performance of the two models. b Similar
comparisons as in (a) but between conventional CNN (same as a, left) and
photoreceptor–CNN, with the biophysical photoreceptormodel being replaced by
a linear empirical photoreceptor model. c Similar comparison as in a between
photoreceptor–CNN models with the biophysical photoreceptor layer parameters
fixed to experimental fits to primate rods (left; Supplementary Table 2) and where
the photoreceptor layer parameters were learned along with the downstreamCNN
(right; same as a, right). Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-50114-5

Nature Communications |         (2024) 15:5957 4



can indeed be attributed to the nonlinear properties such as adapta-
tion in the photoreceptors.

Incorporating photoreceptor adaptation enables CNNs to gen-
eralize across light levels
The results so far indicate that the photoreceptor–CNN model shows
superior performance in predicting responses to naturalistic movies
that include dynamic local changes in intensity but lack changes in
global light level. In the following sections, we shift our focus to asking
howwell themodels generalize over global changes inmean light level,
reminiscent of natural vision but occurring at slower time scales. This
entails training the models at two distinct light levels and evaluating
their performance on a third level not encountered during training.

To generate the experimental data for these computational stu-
dies, we recorded the spiking activity of primate RGCs to binary
checkerboard noise movies (Methods) presented at three different
light levels (30 R*receptor−1 s−1 (high), 3 R*receptor−1 s−1 (medium) and
0.3 R*receptor−1 s−1 (low)). Rod photoreceptors dominate signaling at
all three light levels. At 30 R*receptor−1 s−1 the gain and kinetics of rod
responses adapt strongly24,25, while at0.3 R*receptor−1 s−1 rod responses
adapt minimally because of the low rate of photon arrival at an indi-
vidual rod. RGC responses to the checkerboard noise were recorded
for 60min at each light level. The analysis focused on 37 RGCs based
on spike sorting quality and reliably tracking cells across the light
levels (Methods).

The conventional CNN architecture (same as the one used above)
was re-optimized for the numbers of convolutional layers, filters in

each layer, and the filter sizes with a grid search on this new dataset
(Supplementary Table 1). The model takes as input a 996ms movie
segment. We chose a longer segment length in these experiments to
account for longer integration times at the lower light levels.

This CNNmodelwas trained topredictRGC responses to a total of
40min of a checkerboard noise presented at high and medium light
levels. We evaluated model performance using a test data set that
included 5–10 s of held-out segments of the checkerboard noisemovie
at all light levels (Fig. 4a), including the low testing light level not used
during the training. Despite the same temporal sequence of checker-
board noise being presented at each light level, RGCs exhibited dis-
tinct responses, indicative of adaptation (Fig. 4b). The model
accurately predicted responses to movies at the two training light
levels (FEV of 93% and 83% for an example RGC, Fig. 4c, columns 1–2),
with median FEVs of 84% ± 11% for high and 78% ± 3% for the medium
light level (Fig. 5a). However, this model performed poorly at the low
testing light level (Fig. 4c, column 3) with an FEV of only 24% ± 15%
across cells (Fig. 5a).

Alterations in ambient light levels induce adaptation in the retina
that alters both the sensitivity and kinetics of RGC responses24,27,28.
CNN models can effectively capture linear sensitivity changes across
global light levels, evident by consistent amplitudes of the predicted
responses across light levels differing by a log unit (Fig. 4c). This is in
part achieved by Layer Norm at the input to the model that discounts
themean intensity from input stimuli, resulting in a simple gain change
commensurate with Weber adaptation. The failure of the CNN model
at the low test light level (Fig. 5a, column 3) can therefore be primarily
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Fig. 4 | Incorporating photoreceptor adaptation enables CNN to predict
responses of an example RGC at a light level different from those at which it
was trained. a White noise movie at three different light levels: high (column 1;
yellow),medium (column 2; orange) and low (column 3; red). b Recorded response
(normalized spike rate) of an example RGC (gray lines) to white noise movie at the
three different light levels in (a) (columns). Inset above the right column overlays a
segment of the responses at the three light levels to directly compare response

kinetics. c Responses predicted by a conventional CNN model (colored) at each
light level in (a) (columns). FEV values above each trace quantify the performance
of the model for this RGC at the corresponding light levels. d Same as in c but for
the proposed photoreceptor–CNN model. Models were trained on data at high 30
R*receptor−1 s−1 (column 1) and medium 3 R*receptor−1 s−1 (column 2) and evaluated
at low 0.3 R*receptor−1 s−1 (column 3) light level. Source data are provided as a
Source Data file.
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attributed to nonlinear sensitivity changes and shifts in response
kinetics across the light levels, aspects not captured by Layer Norm
alone. This is most prominent at the low test light level, where RGC
responses slow considerably (Fig. 4b inset) and the inability of con-
ventional CNNs to adaptively regulate both response sensitivity and
kinetics limits their performance to generalize to this condition.

We next sought to determine whether incorporating the photo-
receptor layer at the input stage could improve the ability of the CNNs
to alter their sensitivity and kinetics in a light intensity-dependent
manner and better predict the experimental data. To test this, we
subjected the photoreceptor–CNN to the same test as the conven-
tional CNN (above): we trained the model end-to-end (including the
photoreceptor layer initialized to reflect rod photoreceptor parameter
values) to predict primate RGC responses to the binary checkerboard
movie at the high andmedium light levels. Similar to the conventional
CNN model, the photoreceptor–CNN model reliably predicted
responses to held-out stimuli at the two training light levels (Fig. 4d
columns 1–2 and Fig. 5b columns 1–2). Importantly, the
photoreceptor–CNN model could also explain 54% ± 11% of the var-
iance in responses at a light level lower than those at which it was
trained (Fig. 4d column3 and Fig. 5b). This performancewas a two-fold
improvement over the conventional CNN model without the photo-
receptor layer (p = 5 × 10−8, Wilcoxon signed-rank test, N = 37 RGCs),
which only explained 24% ± 15% of the variance (Fig. 5a). We attribute
this to the model’s ability to modulate output properties, like the
response kinetics, based on mean light level (see below).

Although we observed improved performance at the test light
level, such gains were not evident at the training light levels (Fig. 5a, b).
This is unlike our previously described experiments with the natur-
alistic movies (Fig. 3a) where the photoreceptor–CNN outperformed
the conventional CNN even at the training light level. Noise stimuli
have a limited range of contrasts than natural scenes and lack temporal
correlations. Hence, photoreceptor responses to noise stimuli at a
single mean light level are nearly linear, with minimal changes in
adaptation state. This leads to similar performance across

conventional CNN and photoreceptor–CNN models (Fig. 5a, b) at the
training light levels.

We also examined the performance of the photoreceptor–CNN
across all different combinations of training and testing light levels: the
model was trained on data from two light levels, and then evaluated on
test data from a different light level (Fig. 5c; Supplementary Fig. 2
shows the population data for ON and OFF RGCs separately). For all
combinations of training and testing light levels, the
photoreceptor–CNNmodel generalized better to new light levels than
the conventional CNN model without the photoreceptor layer. The
difference was smallest for the case where the testing light level
(medium) was intermediate between the high and low training light
levels (Fig. 5c, column3; p =0.83, two-sidedWilcoxon signed-rank test,
N = 37 RGCs). This is unsurprising given that conventional CNNmodels
can interpolate between different sets of training conditions. More-
over, the similarity in responses at the high and medium light levels
(inset in Fig. 4b) means that in the interpolation condition, the model
predictions at the testing light level neednot differmuch from those at
one of the training light levels. However, in the more challenging
extrapolation tests—and especially in extrapolation to the low light
level at which the response kinetics are appreciably different—the
photoreceptor–CNN performs much better because the photo-
receptor layer enables themodels to adjust their output in a light-level-
dependent manner.

Photoreceptor–CNN model captures light-level-dependent
changes in response kinetics
Normalization layers like Layer Norm allowed both the conventional
CNN and photoreceptor–CNN models to capture steady-state sensi-
tivity changes across light levels (Fig. 4c, d). But the inability of these
normalization layers to adjust the kinetics of the predicted responses
suggested that the observed performance gains with the
photoreceptor–CNN model resulted from its intrinsic ability to cap-
ture light-dependent changes in RGC response kinetics. For instance,
measured RGC responses were faster (Fig. 6a) and temporal receptive
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Fig. 5 | Incorporating photoreceptor adaptation enables CNNs to generalize
across light levels. Performance of (a) a conventional CNN model, and (b) the
photoreceptor–CNNmodel. Eachmodelwas evaluated at three light levels (labeled
below each box plot): high (column 1; yellow) and medium(column 2; orange), at
which the models were trained, and low (column 3; red) which the models did not
see during the training. The box plots indicate the median FEV across 37 RGCs,
interquartile range (25th and 75th percentiles), and minima and maxima within 1.5
times the interquartile range. Outliers are plotted as individual points. Numbers at
the top of each box plot are the median FEVs ± 95%c.i. c Performance of the con-
ventional CNNmodel (blue color; samemodel as in a), and thephotoreceptor–CNN
model (green color; same model as in b) at all combinations of training and test

light levels. For each column, the legend below the box plot panel shows the two
light levels themodels were trained at and the third light level atwhich it was tested
(blackoutline). Theboxplots showthedistributionofFEVsat this testing light level.
Testing light levels were low (column 1), high (column 2), and medium (column 3).
The photoreceptor–CNN model and the conventional CNN model showed statis-
tically significant differences when tested at low light level (column 1; p = 5 × 10−7)
and high light level (column 1; p = 1 × 10−7).p valueswere calculatedbyperforming a
paired two-sided Wilcoxon signed-rank test on the FEV distributions (N = 37) from
the CNN and photoreceptor–CNNmodel at each testing light level. Source data are
provided as a Source Data file.
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fields had shorter latencies at the higher light level (Fig. 6b; estimated
by reverse correlation; Methods). The response latency was con-
sistently lower for the higher light level across the population of RGCs
(Fig. 6e, left column). We tested whether the trained
photoreceptor–CNN and conventional CNN models captured these
observed changes in response kinetics (Fig. 6b, e column 1). The
temporal receptive fields ofmodel RGCs (see Fig. 6c, d for an example
RGC) were calculated by averaging the instantaneous temporal
receptive fields (Supplementary Fig. 4a) across all movie segments.
These instantaneous receptive fieldswere estimated by computing the
gradients of the predicted RGC firing rates with respect to each input
pixel value12,13 and then decomposing the resulting spatiotemporal
receptive fields into spatial- and temporal components (Methods). We
restricted this analysis to a subset of 22 RGCs that displayed FEV values
greater than 50% at the training light levels (high and medium light
levels) for both models (models of Figs. 4, 5a, b). Thus, these were the
RGCs for which the predictions from both models were most reliable,
facilitating estimates of receptive fields from model RGC gradients
with respect to input stimuli.

Consistent with our hypothesis, the temporal receptive fields of
photoreceptor–CNN model RGCs exhibited intensity-dependent
changes in response kinetics, with shorter latencies at the higher
light level (Fig. 6c). This latency difference was statistically significant
at the population level (Fig. 6e column 2; p = 1 × 10−4, two-sided

Wilcoxon rank-sum test,N = 22 RGCs). This change in response latency
could already be observed at the output of the photoreceptor layer
(Fig. 6f), simply as a function of input light intensity. In contrast, the
conventional CNN model showed no changes in latencies across the
two light levels at which themodels were trained (Fig. 6d, e column 3).
This analysis underscores the effectiveness of the photoreceptor layer
in capturing and adapting to dynamic changes in response kinetics
associated with varying light conditions. In addition,
photoreceptor–CNN models can also better capture sensitivity chan-
ges across light levels (see Supplementary Note 3).

Incorporating photoreceptor adaptation enables generalization
across photopic and scotopic light levels
Having observed that the photoreceptor–CNNmodel generalizes well
across light levels that differ by 1–2 orders of magnitude (Fig. 5c), we
wondered whether it could also generalize across more extreme var-
iations in lighting. To answer this question, we trained conventional
CNN and photoreceptor–CNNmodels to predict rat RGC responses to
noise stimuli at a relatively bright photopic light level (10,000
R*receptor−1 s−1) where cone photoreceptorspredominantly contribute
to vision, and evaluated the ability of the model to generalize to the
much dimmer (scotopic) light level (1 R*receptor−1 s−1) where rod (and
not cone) photoreceptors are active (Fig. 7a). For this analysis, we used
rat RGC recordings that we previously published in ref. 28.
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Fig. 6 | Photoreceptor layer enables CNNs to adjust their response kinetics in a
light-level-dependent manner. a Normalized recorded spiking activity of an
example RGC in response to awhite noise stimulus at two light levels used inmodel
training: high (30 R*receptor−1 s−1; yellow), and medium (3 R*receptor−1 s−1; orange).
b Temporal receptive field of the same RGC calculated using reverse correlation of
a white noise movie (55min) at the two different light levels. c Temporal receptive
fields of the same RGC obtained by averaging across multiple instantaneous tem-
poral receptive fields from photoreceptor–CNN output gradients with respect to
multiple input movie segments. d Same as in (c) but for the conventional CNN
model. eMean response latency (N = 22 RGCs), calculated as the number of frames
(1 frame = 8ms) between the time of spike and peak of the temporal receptive field.
Error bars indicate 95% confidence interval of the mean. Gray circles indicate the
individual data points (N = 22 RGCs). Colors (legend in a) represent the light level at
which temporal receptive fields were calculated from reverse correlation of

experimental data (left column), photoreceptor–CNN model gradients (middle
column) and conventional CNN model gradients (right column). An asterisk indi-
cates a statistically significant difference in response latencies between two light
levels (p <0.001, N = 22 RGCs, two-sided Wilcoxon rank-sum test). Response
latency was significantly different across the two light levels when calculated from
reverse correlation (column 1; p = 2 × 10−4) and photoreceptor–CNN model gra-
dients (column 2;p = 1 × 10−4). fTop. Intensity changes over time for a single pixel in
the binary checkerboard white noise movie at the two different mean light levels.
Bottom. The output of the photoreceptor layer from the photoreceptor–CNN
model after the Layer Normalization layer that immediately follows the photo-
receptor layer. This output is fed into subsequent CNNs. Inset zooms the lag in
photocurrents at medium light level (compare orange and yellow lines). Legend in
(a) is valid for all panels (line style varies for clarity). Source data are provided as a
Source Data file.
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The conventional CNN model trained at the photopic light level
could reliably predict RGC responses to held-out data at the photopic
light level (example RGC responses in Fig. 7b, left; population data in
Fig. 7d). However this model badly failed (FEV of −52% ± 9%; N = 55
RGCs) to predict responses at the scotopic light level (Fig. 7b, right and
Fig. 7e). The proposed photoreceptor–CNN model, however, did sur-
prisingly well (Fig. 7c, right), achieving FEV of 54% ± 8% on this task
(Fig. 7e). For this experiment, we first trained the photoreceptor–CNN
model at high light level and then replaced thatmodel’s photoreceptor
parameters (which correspond to cone cells at this light level) with
those corresponding to rod cells (as explained in Fig. 7f and Supple-
mentary Note 4). The remaining CNN parameters were unchanged by
this procedure. This finding demonstrates that the changes in

photoreceptor layer parameters alone can account for much of the
difference in how thephotoreceptor–CNNmodel predicts steady-state
RGC responses at these two light levels.

Discussion
We introduced a new CNN layer for vision models that build upon a
biophysical model of phototransduction20. When used as a front-end
to CNNs, this photoreceptor layer allows the CNN outputs to adapt to
the prevailing inputs in a manner that more accurately mimics the
retina. Consequently, the photoreceptor–CNN models surpass con-
ventional CNN models at predicting RGC responses to naturalistic
movies that simulate rapid local changes in light intensity due to eye
movements, and at predicting responses across steady-state changes
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in mean light levels. The improved performance could not be repli-
cated by replacing the biophysical photoreceptor model with a line-
arized photoreceptor model. Thus, the success of the biophysical
photoreceptor–CNN model is attributable to nonlinear processes
governing adaptation within the biophysical photoreceptor model.

ANNs, of which CNNs are a sub-class, are universal function
approximators29 and therefore in principle they are capable of imple-
menting any transformation with simple nonlinear units. This suggests
that, in principle, a sufficiently large ANN can accurately model neural
responses to stimuliwith the same statistics as the training set, without
the need for any bio-inspired adaptive mechanisms. Nonetheless,
ANNs can benefit from having the right inductive biases that represent
prior knowledge about the underlying data, as demonstrated by the
benefits of CNNs in computer vision over non-convolutional forms of
ANN30–32. In the same way, our results demonstrate that equipping
CNN-based deep learning models with photoreceptor adaptive
mechanisms improves their ability to capture retinal responses to
stimuli with local luminance fluctuations, and enables them to better
generalize to out-of-distribution tasks, such as extrapolating to new
lighting conditions (Fig. 5c columns 1, 2, Fig. 7e). The new
photoreceptor–CNN is much better at this challenging task as the
photoreceptor layer enables the CNN to learn response properties
such as the dependence of kinetics on light intensity (refs. 20–22,33;
Fig. 6c). This capability is demonstrated by the difference in kinetics of
the responses at 3 R*receptor−1 s−1 and 30 R*receptor−1 s−1 (Fig. 6f, bot-
tom); a fully linear model predicts identical kinetics at different mean
light levels.

In addition to improving generalization between light levels, the
photoreceptor–CNN model also substantially improves performance
for predicting responses to high-resolution naturalistic stimuli at a
single light level (Figs. 2, 3). However, it still falls short of perfectly
predicting retinal output. This is apparent in its inability to match the
performance achieved in experiments where the models were trained
and evaluated using white noise movies only (Fig. 5b, columns 1, 2).
The lower performance with naturalistic movies might be due to the
disparity in training data (8 min of naturalistic movies in experiments
of Fig. 3 versus 40min of white noise movies in experiments of Fig. 5),
but other factors could also contribute. For example the model lacks
retinal adaptive mechanisms found downstream of the photo-
receptors, such as spike frequency adaptation in RGCs34,35, which may
be required to capture the wider range of contrasts and temporal
correlations present in naturalistic movies but absent in white noise
stimuli. Lack of such downstream adaptive mechanisms may also
explain why the photoreceptor–CNN model could not achieve the
same level of performance at held-out test light levels as it did at the
light levels used for training (Fig. 5b). Introducing adaptive recurrent
units (ARU; developed by ref. 36) to the output layer of the
photoreceptor–CNN, which implement spike frequency adaptation
through dynamic control of a nonlinearity, is a potential solution.
ARUs at the output layerwould also enable the network to have output
units with diverse properties, similar to the diversity37,38 of RGCs.

Our current model also does not explicitly capture the intricacies
of adaptation in the intervening circuitry between photoreceptors and
RGCs (i.e., in bipolar and amacrine cells). These include changes in gap
junction coupling and switching between linear and nonlinear spatial
summation (i.e., subunit rectification39–41). To capture this adaptation,
an adaptive-convolution layer based on a model for divisive gain
control22,42 could be used. This trainable layer would incorporate two
pathways with distinct kinetics, with the output of one pathway con-
trolling the sensitivity of the other, allowing for greater adaptability to
changes in stimuli.

Another limitation of the current approach is that Layer Normwas
retained at the inputs of CNN in the photoreceptor–CNN model, nor-
malizing the photoreceptor output. While this may inadvertently
mitigate sensitivity changes across light levels, typically managed by

the photoreceptor layer, it serves a crucial role in compensating for
disparities in scale between the parameters of the biophysical model
and the downstream CNN weights. The absence of Layer Norm nega-
tively impacts the convergence of the photoreceptor–CNN model.
Here, Layer Norm can, in principle, account for linear sensitivity
changes linked to the mean intensity of a training sample (640ms
movie), but will haveminimal impact onmitigating dynamic sensitivity
changes triggered by fluctuations in pixel intensities within a training
sample.

ANNs offer the potential to simulate networks of biological neu-
rons, including those in the retina or visual cortex,making themhighly
relevant for visual neuroscience. These models are capable of auto-
matically learning meaningful representations throughmultiple layers
of abstraction. Establishing correspondence between ANN layers and
neural layers8,9,13,43,44 is increasingly providing insight into biological
circuits. One challenge in using current ANNs to elucidate biological
circuits is that ANNs are primarily designed to optimize performance
on specific tasks rather than to mimic biological circuits. As a result,
the structure and function of ANNs may not accurately reflect the
complexity and organization of biological circuits which often include
feedback loops anddynamic interactions between neurons.Moreover,
ANNs typically consist of homogeneous units repeated throughout the
network, which oversimplifies real neurons and neural circuitry and
may fail to capture their full complexity. In contrast, the biophysical
phototransduction model we use in the photoreceptor layer has
parameters that map directly onto the biology, providing an oppor-
tunity for investigating the role of photoreceptor adaptation in the
retina. For example, slower rod-mediated RGC responses at dim con-
ditions compared to cone-mediated responses at brighter light
levels28,45 may explain the temporal lag between predicted and actual
response atdim light level (Fig. 7b, right): the conventionalCNNmodel
trained at bright light levels (10,000 R*receptor−1 s−1) learned the faster
kinetics of the cone pathway. While some of the differences in RGC
responses may arise due to faster cone response kinetics46–49, the
relative contribution of photoreceptors and downstream retinal
adaptation are not well understood. Fixing the photoreceptor layer
parameters to empiricallymeasured values, (like in Fig. 3c), can help in
distinguishing photoreceptor fromcircuitmechanisms. Similarly, such
biologically plausible models could provide insights into mechanisms
underlying neural adaptation in other areas of the brain.

While our current findings indicate that the photoreceptor model
we used offers superior performance (Fig. 3a) vs simpler photo-
receptor models (like the linearized model shown in Fig. 3b), we
acknowledge that other empirical models capturing similar dynamics
may perform similarly well on the retinal prediction task. It is also
possible that recurrent artificial units like the long short-termmemory
may partially capture photoreceptor adaptation effects by keeping
track of arbitrary long-term dependencies in the input sequences.
However, these units demand significantly more training data and
introduce tens of thousands of parameters to the neural network. In
stark contrast, the proposed biophysical photoreceptor layer only
adds 12 parameters. Further, these parameters could be fixed based on
direct photoreceptor recordings with minimal changes in CNN per-
formance (Fig. 3c). In addition, the overarching goal is to integrate
neural biophysics into ANNs to develop biologically interpretable
computational models that surpass the limitations of conventional
ANNs, offering a comprehensive framework for understanding com-
plex biological phenomena.

In a similar vein, other neural predictor architectures, such as
Generalized Linear Models could be used instead of CNNs, in con-
junction with the photoreceptor model. Notably, we do not consider
theCNN stages to be essential to our approach: rather, we consider the
CNN to be the flexible scaffolding for incorporating the photoreceptor
model into a trainable retina model. In future, this will allow incor-
porating fully-trainable biophysics models of downstream retinal
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components into this scaffolding. The result will be models with
biologically-interpretable components that can predict retinal
responses with high accuracy under varied conditions. We anticipate
that these models could have substantial benefits for mechanistic
investigations of visual function.

In general, models of retina that can leverage deep learning to
model multiple ganglion cells simultaneously, together with biologi-
cally interpretable components, could be used to dissect the relative
contributions bydifferent cell types in the retina. They could also serve
as an input stage to visual-cortical models to investigate higher visual
processing under dynamic conditions. From a wider neuroscience
perspective, this approach demonstrates the power of integrating
neural dynamics in ANNs modeling brain functions where biophysical
layers match the sensitivity to changing input conditions, while the
downstream layers extract relevant features from dynamically adapt-
ing input stages. In summary, this approach establishes a framework to
test which biological components are required to replicate brain
function. Beyond neuroscience, these models could also pave the way
formedical interventions, such as prosthetic devices that restore sight
to the blind50.

Methods
Retina electrophysiology
Retina electrophysiology experiments were performed in two differ-
ent labs. In the Manookin Lab, electrophysiological experiments were
performed using ex vivo retina from a 11 years old female macaque
(Macaca nemestrina) obtained through the tissue distribution pro-
gram at the University of Washington National Primate Research
Center and in accordance with the Institutional Animal Care and Use
Committee at the University of Washington. Additional primate (17
years old male Macaca mulatta) and rat (2 female Long-Evans) retina
electrophysiology experiments were performed in the Field Lab at
Duke University, in accordance with Duke University’s Institutional
Animal Care and Use Committee.

Electrophysiology experiments followed similar procedures in
both the labs. For primate electrophyiology experiments, eyes were
enucleated from a terminally anesthetized macaque monkey and
hemisected, and the vitreous humor was removed. Immediately after
enucleation, the anterior portion of the eye and the vitreous were
removed in room light. The eye cup was placed in a dark sealed con-
tainerwith Ames’ solution (Sigma, St. Louis,MO) at room temperature.
Under infrared illumination, segments of peripheral retina 6–15mm
(25–70°, 200μm/°) from the fovea and 3–5mm in diameter were dis-
sected and isolated from the retinal pigment epithelium. Preparation
for the rat retinae was similar and described in detail in ref. 28. Briefly,
the retina of an euthanized animal was extracted and dissections were
performed in darkness with the assistance of infrared converters. We
dissected dorsal pieces of the retina that were 3 × 2mm large. For
recording, the retinawas kept at 32–35 °Candwas perfusedwithAmes’
solution bubbled with 95% O2 and 5% CO2, pH 7.4.

The segment of retina was then placed flat, RGC layer down, on a
planar multielectrode array (MEA) covering an area 2000μm× 1000
μm. The MEA consisted of 512 electrodes with 60μm or 30μm spa-
cing. Spikes on each electrode were identified by thresholding the
voltage traces at 4 s.d. of a robust-estimate of the voltage s.d. For retina
experiment involving naturalistic stimuli (Manookin Lab), spike

sorting was performed using the Kilosort51 software package (version
2.5). Spike waveform clusters were identified as neurons only if they
exhibited a refractory period (1.5ms) with < 1% estimated contamina-
tion. For retina experiments across light levels (Field Lab), spike sort-
ing was performed by an automated PCA algorithm and verified by
hand with a custom software52,53. Spike waveform clusters were iden-
tified as neurons only if they exhibited a refractory period (1.5ms)
with < 10% estimated contamination. Most sorted units from the pri-
mate retina had 0% spike contamination based on refractory period
violations. Other units had contamination in the range of 0.05–0.09%
with one unit at 0.8%. Only units that could be reliably tracked across
all recording conditions were considered for further analysis.

For each retinal segment, a RetinalReliability Indexwas computed
to assess tissue quality. This involved analyzing the responses of
individual sorted RGCs to multiple trials using either white noise or
naturalistic movies. We first estimated the trial-averaged noise by
categorizing trials into two groups, averaging responses within each
subgroup, and determining the mean squared error as

σ2
noise =Et ½ðyAt � yBt Þ

2� ð1Þ

where, yAt and yBt are the observed spike rates of an RGC calculated as
an average across set of trials A and set of trials B respectively at time
bin t. The sets A and B were obtained by randomly splitting the total
number of repeats into two. We then computed the fraction of
explainable variance which is the fraction of variance of each RGC
attributable to the stimulus as

Fraction Explainable Variance=
Var½yA� � σ2

noise

Var½yA� ð2Þ

where,

Var½yA�= 1
T

XT
t = 1

ðyAt � �yAÞ2 ð3Þ

and yA is the observed spike rate at time bin t and �yA is the mean firing
rate across time. A higher fraction indicates recordings with low noise,
where most of the variance in RGC responses is stimulus-driven. The
retinal reliability index was determined by computing the median of
the fraction of explainable variance across all sorted RGCs in each
experiment. These values are presented in Table 1 for each retina used
in this study. Intuitively, higher the value (maximum 1), better the
quality of recordings.

Visual stimulation and data acquisition for primate retina
experiment using naturalistic movies (Figs. 2, 3)
Visual stimuli were created with custom Matlab code. Stimuli were
presentedwith a gamma-correctedOLEDdisplay (Emagin, Santa Clara,
CA) refreshing at 60.32 Hz. The display had a resolution of 800× 600
pixels covering 3.0 × 2.3mm on the retinal surface.

Spectral intensity profile (in μWcm−2nm−1) of the light stimuli was
measured with a calibrated CCS100 spectrometer (Thorlabs). We
transformed the stimulus intensity into equivalents of photo-
isomerizations per receptor per second (R*receptor−1 s−1). The spec-
trum was converted to photons cm−2 s−1 nm−1, convolved with the

Table 1 | Retinal reliability index for each retina used in this study

Retina Retinal Reliability Index Sorted RGCs

Macaque retina 1: Natural stimuli experiments (Figs. 2, 3) 0.90 57

Macaque retina 2: Across light level experiments (Figs. 4, 5) 0.96 37

Rat retina 1: Across light level experiments (Fig. 7) 0.99 61

Rat retina 2: Across light level experiments (Fig. 7) 0.99 58
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normalized spectrum of macaque cones and rods, andmultiplied with
the effective collection area of these photoreceptors. The ambient
light level (i.e., mean stimulus intensity) was set using neutral density
filters in the light path. The attenuation of each neutral density filter
wasmeasured for the red, green, and blue LEDs using a calibrated UDT
268R radiometric sensor (Gamma Scientific).

We recorded RGCactivity to 36-min of binary checkerboardwhite
noise stimuli and 9-min of gray scale naturalistic movies at mean light
level of 50R*receptor−1 s−1. The checkerboard stimuli in this experiment
had 100 × 75 pixels, where each pixel edge corresponded to 30μm on
the retina surface. The refresh rate of the stimulus was set to 60.32Hz
(~16.6ms per frame). The naturalistic movies were created by displa-
cing natural scene images fromVanHaterendataset54 across the retina,
incorporating eye movement trajectories derived from the DOVES
dataset55 (Fig. 1a). We used nine different natural scene images leading
to nine naturalistic movies. Each movie was 6-s long where the image
remained stationary for the first 1-s to allow time to adapt to the spatial
contrast before the motion began, which lasted for 5-s. The nine
movies were played in sequence and the entire sequence was repeated
ten times, totaling a duration of 9min for naturalistic movies. These
movieswerepresented to the retina at a resolution of 800× 600pixels
where each pixel edge corresponded to ~3.8μm on the retina surface.
We selected 57 RGCs (27 ON and 30 OFF parasol cells) for modeling
purposes based on spike sorting quality and reliability across experi-
mental conditions.

At the model training stage, each repeat of the movie was treated
as an individual movie, i.e., 9 movies with 10 trials were treated as 90
movies. 80 of which (8 unique movies and 10 trials) were used for
training the model and the held-out movie was used to validate the
model against trial averaged responses. Additionally, naturalistic
movies were spatially down-sampled by a factor of 8 to 100 × 75 pixels
to match the resolution of checkerboard white noise stimuli. This was
necessary as we first trained the models on checkerboard movie and
then fine-tuned the same model with naturalistic movies.

Visual stimulation and data acquisition for primate and rat
retina experiment at different light levels (Figs. 4–7)
Visual stimuli were created with custom Matlab code. Stimuli were
presented with a gamma-corrected OLED display (SVGA + XL Rev3,
Emagin, Santa Clara, CA) refreshing at 60.35 Hz. The image from the
display was focused onto the photoreceptors using an inverted
microscope (Ti-E, Nikon Instruments) with a ×4 objective (CFI Super
Fluor ×4, Nikon Instruments). The optimal focus was confirmed by
presenting a high spatial resolution checkerboard noise stimulus
(20 × 20μm, refreshing at 15Hz) and adjusting the focus to maximize
the spike rate of RGCs over the MEA. The display had a resolution of
800× 600 pixels covering 4 × 3 mm on the retinal surface.

Spectral intensity profile (in μWcm−2nm−1) of the light stimuli
was measured with a calibrated Thorlabs spectrophotometer
(CCS100). We transformed the stimulus intensity into equivalents
R*receptor−1s−1 by converting the power and the emission spectra of
the display to an equivalent photon flux by Planck’s equation. This
converted the emission spectrum to photons cm−2 s−1 nm−1, which
was then convolved with the normalized spectral sensitive of rods56,
and multiplied with the effective collection area of rods (0.5 μm2).
The ambient light level (i.e., mean stimulus intensity) was set using
neutral density filters in the light path. In each recording, stimuli
were first presented at the darker light level. For every subsequent
higher light level, the retina tissue was first adapted to that light
level before continuing the recordings.

Stimuli consisted of non-repeated, binary checkerboard white
noise interleaved with repeated (N = 126 or 225 trials), binary white
noise segments (5 or 10 s) to estimate noise. The total duration of
stimulationwas 60min.We recorded primate RGC activity to the same
60min white noise sequence at three different mean light levels, each

differing by 1 log unit: 0.3 R*receptor−1 s−1, 3 R*receptor−1 s−1 and 30
R*receptor−1 s−1. These light levels fall under the scotopic regime, where
mostly rod photoreceptors contribute to vision. Themovies across the
three light levels only differed in their mean pixel values which were
0.3 R*receptor−1 s−1 (low light level), 3 R*receptor−1s−1 (medium) and 30
R*receptor−1 s−1 (high). The checkerboard stimuli in this experiment
had 39 pixels × 30 pixels, where each pixel edge corresponded to
~140μmon the retina surface. The refresh rate of the stimulus was set
to 15Hz whichmeans that each checkerboard pattern was exposed on
to the retina for ~67ms. In this work, we used a subset of 37 recorded
RGCs that could be reliably tracked across light levels and were clas-
sified as high quality units after spike sorting. This subset contained 2
ONparasol, 28ONmidget, 5OFFparasol and 2OFFmidget RGC types).

The rat experiments of ref. 28 were performed at two light levels
differing by 4 log units: 1 R*receptor−1 s−1 (scotopic light level where
mostly rod photoreceptors contribute to vision) and 10,000
R*receptor−1s−1 (photopic light level where cone photoreceptors pre-
dominantly contribute to vision). Thewhite noise checkerboardmovie
in these experiments had 10 pixels × 11 pixels, with each pixel edge
corresponding to ~252μm on the retina. The refresh rate of the sti-
mulus was 60Hz and 30Hz at the photopic and scotopic light levels,
respectively. In this work, we used data from two rat experiments: a
subset of 61 RGCs fromRetina A and a subset of 55 RGCs fromRetina B
that could be reliably tracked across light levels and were classified as
high quality units after spike sorting. This subset contained OFF brisk
sustained and OFF brisk transient RGC subtypes.

Data preprocessing for models
Bothwhite noise andnaturalisticmovieswereup-sampled to 120Hzby
repeating each frame so that each frame had a duration of 8ms. This
up-sampling was necessary for the photoreceptor layer in which dif-
ferential equations are solved using the Euler method.

Spikes were grouped in 8ms time bins spanning the duration of
the movie. Firing rates were then estimated by convolving the binned
spike counts with a Gaussian of σ = 32ms (4 frames/bins) standard
deviation and amplitude of 0.25σ−1e1/2. The resulting firing rates for
each RGC were normalized by the median firing rate of that RGC over
the course of the experiment. This was done to ensure that responses
of all output units of the model (i.e., the modeled RGCs) were at the
same scale.

Conventional CNN architecture
The general architecture of the conventional CNN we used was similar
to Deep Retina9. The model (Fig. 1b) had three convolution layers
(orange color), followed by a fully-connected output layer (black
arrows). The model takes as input a movie (80 frames per training
example where each frame corresponds to 8ms) and outputs an
instantaneous spike rate for each RGC at the end of that movie seg-
ment. The first convolution layer is a 3D convolutional layer operating
in both the spatial and temporal dimensions. The output of the 3D
convolutional layer is a 2D image which is normalized using Batch
Normalization (BatchNorm) and then passed through a rectifying
nonlinearity. All the temporal information from themovie is extracted
by this layer as the temporal dimensionof the convolutionalfilter is the
same as the temporal dimension of the movie. To down sample the
spatial dimensions, we applied a 2D max pool operation (blue color)
that took themaximum value over 2 × 2 patches of the previous layer’s
output. The subsequent 2D CNN layers are followed by a final, fully
connected layer with softplus activation function that outputs the
predicted spike rate for each RGC in the dataset.

To obtain the time series of RGC responses to longer movie sti-
muli, we feed into themodelmany 80-frame video samples taken from
that longer movie, that correspond to 1-frame shifts. I.e., the model
receives as inputs frames 1–80, 2–81, 3–82, etc., and outputs RGC
responses at the times of movie frames 80, 81, 82, etc.
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A Layer Normalization (Layer Norm) at the input of the first con-
volutional layer was applied to z-score each frame of amovie segment.
Layer Norm computes normalization statistics for each pixel over its
temporal history within a single training example i.e., a single movie
segment comprising 80 frames. This step removes the mean lumi-
nance from each training example, mitigating sensitivity changes
associated with global luminance changes while preserving the tem-
poral structure within each movie segment.

Each convolution operation is followed by Batch Normalization
which contributes to stable training and faster convergence of the
model57. During model training, the distribution of inputs to a layer
undergoes changes as the network’s parameters are updated, leading
to what is known as the internal covariate shift—a phenomenon that
hampers model convergence and introduces instabilities. These Batch
Norm layers address the internal covariate shift during training by
z-scoring the input, using normalization statistics computed based on
batch statistics from batches comprising over 100 movie segments.
This process enforces a 0 mean and unit variance for the data, intro-
ducing two trainable parameters—shift and scale—that systematically
adjust weights and biases in the CNN layer. Additionally, the running
average and variance of the training data serve as non-trainable para-
meters saved for later use during the test phase. This normalization
processmitigates extreme parameter values, preventing issues such as
exploding or vanishing gradients. The scale and shift parameters
enable the model to adapt to variations in feature magnitudes across
layers and activations, facilitating improved and faster convergence.
During the test phase, Batch Norm uses the non-trainable moving
average and variance saved during the training to normalize its inputs
i.e., the outputs of the convolutional layer. Batch Norm then scales and
shifts the normalized input using the scale and shift parameters
learned during the training phase. Notably, in the current setup, Batch
Norm parameters are not influenced by the mean light level as Layer
Norm at the model’s input removes mean luminance from each
training sample.

For modeling RGC responses across light levels (experiments of
Figs. 4–7), the input to the model was a movie segment of 120 frames
instead of 80 frames. The longer movie segment allowed for longer
integration times at the lowest light level of 0.3 R*receptor−1 s−1.

Biophysical photoreceptor–CNN architecture
The proposed photoreceptor convolution layer builds upon a bio-
physical model of the phototransduction cascade by ref. 20 (Fig. 1c).
The model incorporates the various feedforward and feedback mole-
cular processes that convert photons into electrical signals, and
therefore faithfully captures the photoreceptors’ adaptation mechan-
isms. The biophysical model is reproduced in Supplementary Note 2
and described in brief below.

The biophysical model was represented by a set of six differ-
ential equations that mimics the enzymatic reactions of the pho-
totransduction cascade. Rapid adaptation in this model emerges
from changes in the rate of cGMP turnover produced by light
intensity-dependent changes in phosphodiesterase activity and by
calcium feedback to the rate of cGMP production. The model is
governed by twelve parameters. By setting the model’s parameter
values to match experimentally-derived values from cone or rod
photoreceptors, the model can be configured to represent either
photoreceptor type. For all primate retina modeling in this manu-
script, we configured the photoreceptor model to represent pri-
mate rods by setting the initial values of the model parameters to
those that were derived from separate patch-clamp experiments23

on primate rod photoreceptors (Supplementary Table 2). For rat
retina modeling, we configured the photoreceptor model as a cone
photoreceptor for modeling responses at photopic light levels, and
as a rod photoreceptor for modeling responses at scotopic light
levels. The parameter values here were obtained from fitting the

model to mouse cone and rod photoreceptors as part of patch-
clamp experiments for other studies23. The corresponding values
are stated in Supplementary Table 2.

We implemented this biophysicalmodel as a fully-trainable neural
network layer, called the photoreceptor layer, using the Keras58 pack-
age in Python. All twelve parameters of the photoreceptor layer can be
trained through backpropagation using the Keras and TensorFlow
package in Python—although the user can also set some or all of these
parameters to be non-trainable and hence held fixed at their initial
value. Photoreceptorparameterswere initialized to their knownvalues
(Supplementary Table 2). For the experiments presented herein, 7 of
the parameterswere set to be non-trainable. Someof theseparameters
like the concentration of cyclic guanosine monophosphate (cGMP) in
darkness vary across rod and cone photoreceptor types (rods and
cones). Other parameters governing cGMP conversion into current,
calcium concentration in the dark, affinity for Ca2+, and hills coefficient
are comparable across photoreceptor types. The remaining five para-
meters, set to be trainable or non-trainable depending on the model
configuration, consisted of the photopigment decay rate σ, the phos-
phodiesterase (PDE) activation rate η, the PDE decay rateϕ, the rate of
Ca2+ extrusion β and γ that controls the overall sensitivity of themodel
to light inputs. These trainable parameters also differ across photo-
receptor types. In the current version of themodel, the photoreceptor
parameters are shared by all the input pixels, and each pixel acts as an
independent photoreceptor: I.e., the conversion of each pixel into
photocurrents only depends on that pixel’s previous values and not on
the values of the other pixels.

The photoreceptor layer converts each pixel of the inputmovie
in units of receptor activations per photoreceptor per second
(R*receptor−1 s−1) into photocurrents (pA) by solving the differential
equations using the Euler’s method. Similar to the conventional
CNN model, the photoreceptor layer takes as input 80 frames,
where each frame corresponds to 8ms. The output of this layer is a
movie that is 80 frames long, and the same spatial dimensions as the
input visual stimuli. The first 20 frames of the photoreceptor layer
output are truncated to account for edge effects. The photo-
currents movie is then z-scored using Layer Norm. This normal-
ization step is crucial due to substantial differences in scale between
the biophysical model’s parameters and the downstream CNN
weights. The absence of these normalization layers hinders the
photoreceptor–CNN model’s convergence. The resulting movie is
then passed through the downstream CNN layers, where the size of
the first convolution layer filter representing the temporal dimen-
sion is 60 frames instead of the 80 frames in the case of conven-
tional CNN model.

For modeling RGC responses across light levels (experiments of
Figs. 4–7), the input to thephotoreceptor layerwasamovie segmentof
180 frames. The first 60 frames were then discarded to account for
edge effects. The longermovie segment allowed for longer integration
times at the lowest light level of 0.3 R*receptor−1 s−1.

Linear photoreceptor–CNN architecture
The linear photoreceptormodel consists of a linear convolutionalfilter
given by Eq. (4), and described previously in ref. 20.

f ðtÞ=α
t

τrise

� �4

1 + t
τrise

� �4

0
B@

1
CA× e

� t
τdecay

� �
× cos

2πt
τosc

+ω
� �

ð4Þ

The parameters for this model were initialized to the following values:
α = 631 pA/R*/s, τrise = 28.1ms, τdecay = 24.3 ms, τosc = 2 × 103 s, and
ω = 89.97°. These values corresponded to estimates of the single-
photon response, obtained by recording cone photoreceptor
responses20. However, all the parameters were set to trainable and
could therefore be learned along with the downstream CNN weights.
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Similar to the other models, the hyperparameters of the linear
photoreceptor–CNN model were optimized via a grid search.

Model training
Model weights were optimized using Adam59, where the loss function
was given by the negative log-likelihood under Poisson spike genera-
tion. The network layers were regularized with a L2 weight penalty at
each layer, to prevent loss of information and be more robust to out-
liers. In addition, a L1 penalty was applied to the output of the fully-
connected layer because the neural activity itself is relatively sparse
and L1 penalties are known to induce sparsity. Learning rates were
initially set to 0.001. A learning rate scheduler reduced the learning
rate by a factor of 10 at epoch 3, 30 and 100.

Thenumber of channels in eachCNN layer and thefilter sizeswere
optimized by a grid search for each model type and dataset. Grid
search for each experiment and model type was conducted using the
full training data for that experiment. During the grid search proce-
dure, models were trained for 50 epochs. Optimal hyperparameters
were selected by evaluating the model on validation data that was
neither used during the training phase, or during the model evalua-
tions of predicted responses. Models with these optimal hyperpara-
meters were then re-trained for at least 100 epochs. Optimal
hyperparameters for each model used in this study are described in
Supplementary Table 1.

Model evaluation
Trainedmodelswere evaluatedusing the held out test dataset not seen
during the training. We quantified the model performance with the
fraction of explainable variance in each RGC’s response that was
explained by the model (FEV). This quantity (Eq. (5)) was calculated as
the ratio between the variance accounted for by the model and the
explainable variance (denominator in Eq. (5)). Suchmetrics to quantify
how well a model predicts neural data have been used in previous
studies like ref. 6. We calculate FEV as

FEV = 1�
1
T

PT
t = 1

ðyAt � ŷtÞ
2 � σ2

noise

Var½yA� � σ2
noise

ð5Þ

where,

σ2
noise =Et ½ðyAt � yBt Þ

2� ð6Þ

yA and yB are the observed spike rate of anRGCcalculated as an average
across a set of repeats A and set of repeats B respectively. The sets A
and Bwere obtained by randomly splitting the total number of repeats
into two. ŷt represents the predicted spike rate by the model at time
bin t. The explainable variance (denominator in Eq. (5)) is the variance
of each RGC attributable to the stimulus, computed by subtracting an
estimate of the observed noise from the variance across time (Eq. (7))
in the actual RGC’s responses, calculated as

Var½yA�= 1
T

XT
t = 1

ðyAt � �yAÞ2 ð7Þ

where �yA is the the observed spike rate yA averaged across time. In all
neural data sets we considered, the number of trials was sufficient (N =
10 for naturalistic movies, N = 225 for white noise movies) and hence
the estimated noise variance was quite low. As a result, our FEV values
are quite similar to what is obtained using the usual fraction explained
variance calculation, which does not correct for unexplainable noise.
By definition, FEV can be negative if the prediction error is larger than
the variance in the actual responses. We report each model’s perfor-
mance across all RGCs as the median FEV across the set of RGCs. For

ease in interpretation, we present FEV as a percentage throughout our
results.

Model RGC temporal receptive fields (Fig. 6)
For a givenmodel RGC,wecomputed the gradient of its output spiking
rate with respect to the pixel values in the input movie segments,
similar to ref. 13 and ref. 12. These gradients were evaluated for dif-
ferent binary white noise movie segments from the primate retina
experiment across light levels (Figs. 4, 5). In total we had 400,000
input movie segments, generated by incrementing the white noise
movie that was shown to the retina forward by one frame at a time
(where 1 frame corresponds to 8ms). These input movie segments
spanned a total duration of 54min. Since all the models were imple-
mented with TensorFlow60, we calculated the gradients using auto-
matic differentiation.

The resulting gradient matrix representing spatio-temporal
receptive field were decomposed into spatial and temporal compo-
nents (Supplementary Fig. 3) using Singular Value Decomposition
(SVD), similar to the way the spatial and temporal receptive fields are
computed from the spike-triggered average (STA) analysis applied
directly to experimental data.

We normalized the spatial component to have unit mean. By
doing so, our process of decomposing the instantaneous spatio-
temporal RF into spatial and temporal components assigned any var-
iations in the receptive field’s amplitude only to the temporal com-
ponent. The average of all the instantaneous temporal receptive fields
was taken as themodel RGC’s temporal receptive field. In Fig. 6c, d, the
temporal receptive field was normalized by the maximum peak.

Statistics and reproducibility
Weused the SciPy package in Python to perform a two-sidedWilcoxon
signed-rank test to compare performance across models (Figs. 3, 5).
This non-parametric test was chosen due to its appropriateness for
paired samples (in this case the sameRGCs beingmodeled bydifferent
architectures) and its robustness against potential violations of nor-
mality assumptions. The null hypothesis tested was that the difference
between the median fraction of explainable variance explained (FEV)
by the two models for the population of RGCs modeled was 0. In
comparing response latencies between two different light levels
obtained by different methods (Fig. 6e), we performed a two-sided
Wilcoxon rank sum test of the null hypothesis that there was no dif-
ference between the distributions (N = 22 RGCs) of latencies at the two
different light levels.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The retina electrophysiology data used in this study are available
under restricted access as they are part of ongoing investigations.
Access can be obtained by contacting the corresponding authors.
Processed data underlying each figure are provided in the Source Data
file. Source data are provided in this paper.

Code availability
Codes for the proposed photoreceptor–CNN model and for the con-
ventional CNN model used in this study are available in the public
repository https://github.com/saadidrees/dynret with identifier doi:
10.5281/zenodo.11406087 (ref. 61).
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