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ABSTRACT

Serial crystallography at large facilities, such as x-ray free-electron lasers and synchrotrons, evolved as a powerful method for the high-
resolution structural investigation of proteins that are critical for human health, thus advancing drug discovery and novel therapies.
However, a critical barrier to successful serial crystallography experiments lies in the efficient handling of the protein microcrystals and solu-
tions at microscales. Microfluidics are the obvious approach for any high-throughput, nano-to-microliter sample handling, that also requires
design flexibility and rapid prototyping to deal with the variable shapes, sizes, and density of crystals. Here, we discuss recent advances in
polymer 3D printing for microfluidics-based serial crystallography research and present a demonstration of emerging, large-scale, nano-3D
printing approaches leading into the future of 3D sample environment and delivery device fabrication from liquid jet gas-dynamic virtual
nozzles devices to fixed-target sample environment technology.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/4.0000229

INTRODUCTION

Biophysical techniques, such as macromolecular x-ray crystallog-
raphy (MX)1,2 and cryogenic electron microscopy (cryo-EM), have
been actively utilized to investigate the structural mechanisms of viral
pathogenesis and develop therapeutics and vaccines. Knowledge of the
3D structures of disease-relevant proteins, their dynamic processes,
and the connection between structure and function can greatly acceler-
ate the rational design of novel and improved drug candidates and
provide insight into their roles in pathogenesis. In contrast to
approaches that use binding affinity alone to assay drug or therapeutic
effectiveness, crystallography of protein-ligand complexes determines
the 3D conformation of the protein binding site and provides comple-
mentary information relevant for structure-based and fragment-based
drug design.

Although conventional, cryogenic x-ray crystallography and
cryo-EM techniques currently account for the vast majority of struc-
tures solved, there are many samples that are less tolerant to radiation
damage, such as certain metalloenzymes,3 making measurements from
a single stationary sample intractable despite damage-mitigating cryo-
genic temperatures. Room-temperature protein crystallography pro-
vides a means to elucidate protein structure and function under more
physiologically relevant (e.g., not cryogenic) conditions. Specific appli-
cations also preclude cryogenic temperature measurements. In particu-
lar, investigations of protein dynamics and time-resolved studies on
short timescales require the sample to be at room temperature in solu-
tion phase, rather than frozen, thus tremendously profiting from
measurements at room temperature.4–8 Dynamic, time-resolved
room-temperature crystallography8–12 can provide additional informa-
tion such as mechanistic studies of protein inhibition processes related
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to the protein–ligand complex formation and, thus, aids drug discov-
ery.13,14 These technical limitations can be addressed using serial fem-
tosecond crystallography.15

Serial femtosecond crystallography (SFX) using an x-ray free-
electron laser (XFEL) provides an alternate macromolecular crystallog-
raphy approach in which a series of individual diffraction frames are
measured from a constant stream of microcrystals in random orienta-
tions. SFX enables the determination of room-temperature structures
without the effects of radiation damage influencing the measured dif-
fraction (i.e., “diffraction-before-destruction”).16 The intensity and
focus of the XFEL beam also enables the determination of high-
resolution room-temperature structures for difficult-to-crystallize pro-
teins, including many membrane proteins, using microcrystals.
Moreover, using optical pump-probe or mix-and-injection approach,
SFX enables the measurement of conformational changes induced by
the light or mixing trigger over a wide time range and facilitates deter-
mination of intermediate state structures during a molecular reaction.
Some ligand-binding or virulence-relevant processes may also be less
conventionally triggered with light,17 e.g., through the use of caged
(ligand) compounds that can be diffused into crystals in caged (inac-
tive) forms and uncaged (activated) by a light pulse.18 In case of serial
synchrotron crystallography (SSX), the x-ray dose is spread over multi-
ple crystals rather than a single one, benefiting the collection of low-
dose room-temperature data.19 In serial crystallography methodolo-
gies, small dataset is collected from each crystal, and the collection of
partial data is evaluated and merged together to generate complete
dataset. Hence, for these experiments that involve time-resolved mix-
ing component, well-controlled in situ crystallization, and for other
biochemical reactions, large quantities of small crystals needs to be
handled with micrometer precision, and their corresponding solutions
(buffer solution).20

Based on the x-ray beam properties, the typical crystal size range
can vary for serial crystallography experiments at XFELs and synchro-
trons from 1 to 150lm.21–23 To minimize both sample consumption
and contributions to background due to the presence of excess solvent
in the beam, sample delivery should ideally involve precise handling of
nano-to-microliter volumes. Serial crystallography requires high-
throughput sample introduction of small crystals in small volumes into
the x-ray beam. This can be realized and optimized for low sample con-
sumption through microfluidic methodologies. Microfluidic-based sam-
ple environment and delivery strategies have the option to include
advanced sample handling on-the-chip (e.g., mixing, switching, sorting,
trapping), thus providing valuable tools for data collection at brilliant x-
ray light sources.24,25 However, traditional fabrication methodologies for
microfluidics, such as standard soft lithography, allow for only 2D lim-
ited device features and functionality, while still requiring manual steps
and long manufacturing times. To address this challenge, researchers
from the NSF BioXFEL Center26 have started utilizing advanced 3D fab-
rication technologies, such as two-photon polymerization (2PP), projec-
tion micro-stereolithography (PlSL), and laser ablation, to achieve
feature definition down to sub-micrometer resolution.27–31 Initially,
these methodologies were only implemented to produce small nozzles
for liquid jet-based sample delivery methods, but they are now being
applied for fabrication of a much wider range of microfluidic devices
such as in fixed-target sample delivery platforms.

Liquid jets, though a proven delivery method for both static
and time-resolved experiments,9,32,33 have some limitations in

sample-limited situations. Over the period of several experiments,34–38

the authors have demonstrated fixed-target delivery strategies with
lower sample consumption rates, higher hit rates, and simplified sam-
ple handling. However, the spatial resolution of complex microfluidic
sample handling technologies has, so far, not approached the micro-
meter range to match typical crystal dimensions. The challenge lies
within non-linear scaling of 3D printing times with increasing volume,
especially for 2PP. In addition to high spatial resolution, a fixed-target
working area must typically span several millimeters, or even centi-
meters, because it is required to maximize data collection from a single
fixed-target chip before having to exchange devices. Thus, a main limi-
tation has been the relatively small maximum printing area and slow
printing speed of two-photon polymerization by nano-3D printers.
Here, we discuss advances in the field of serial crystallography at
XFELs and synchrotrons in liquid jet sample delivery using high-
resolution 3D printing and present a novel sub-micron-resolved 3D
printing technology using rapid two-photon polymerization method-
ology to print over a 16 � 16 � 3.5 cm3 volume in a reasonably short
time (i.e., seconds to minutes) that can be utilized for fixed-target plat-
forms. This new advanced manufacturing capability will facilitate fab-
rication of future complex liquid jet devices and 3D printing based
fixed-target sample environments, enabling high-throughput structure
determination experiments at XFELs and synchrotrons.

OVERVIEW OF SAMPLE ENVIRONMENTS FOR SERIAL
CRYSTALLOGRAPHY

Serial crystallography experiments require continuous sample
replenishment, which plays a crucial role in the avoidance of radiation
damage impacts on the data. Common strategies for SFX sample deliv-
ery can be broadly classified into liquid jets,27,28,31,39–41 fixed targets,34

and tape-drives.42 The liquid jets can consist of monodisperse drop-
lets,27 homogeneous droplets,43 with population of discrete sizes, gas
focused spray, electrospray,44 flat jets,32 or lipid cubic phase injectors.45

Liquid jets can include mixing elements28 to perform time-resolved
studies.46 Fixed targets can be open-to-air34 or sealed within polymer47

or other composite films.48 For fixed-target sample environments,
there is also the added requirement of maintaining hydration of the
biological samples during sample storage and measurement. This
requirement can be accomplished, for example, by sandwiching thin,
well-defined sample layers in between ultrathin polymer windows with
high barrier properties as previously demonstrated at XFELs and syn-
chrotrons.37,38 Beyond serial crystallography, ultrathin low-
background sample environments, such as FT devices and liquid sheet
jets, also offer exciting opportunities for (soft) x-ray spectroscopies
(e.g., at ChemRIXS) and fluctuation and conventional solution scatter-
ing.38,49,50 Owing to the continuously varying demands of the sample
types, mixing times, and other challenges such as clogging and exces-
sive sample consumption, 3D printed solutions have increasingly been
integrated as components of the XFEL sample environment, either in
the form of nozzles, mixing elements,28 catchers, aerodynamics
lenses,51 or fixed-target support structures (Fig. 1).

While the first XFELs have operated at moderate pulse repetition
rates of �30–120Hz, newer XFELs operate at much higher rates of
kHz up to MHz,52–54 which require much faster sample replenishment.
To meet this challenge, solutions using facile sample environment
development and high-throughput delivery have become more impor-
tant than ever. Adaptable fabrication methods for sample delivery
devices also facilitate tailoring to unique experimental and facility
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needs. Here, we will dive into the current needs and future recommen-
dations for the development of advanced fixed-target sample environ-
ment solutions and how advanced manufacturing technologies such as
3D printing can bridge the gaps.

EVOLVING MANUFACTURING TECHNOLOGIES

The first widely used sample injectors for XFELs were gas-
dynamic virtual nozzles made from glass capillaries.39 These devices

had two major advantages: (1) The gas focusing results in a smaller liq-
uid stream than the outlet diameter; and (2) glass capillary tubing is
widely available and the manufacturing is done with in-laboratory
methods. Because these devices were handmade and required careful
handling and custom polishing, the manufacturing was non-
homogeneous and slow.39,55 Furthermore, more complex devices, such
as capillary-based mix-and-inject gas-dynamic virtual nozzles
(GDVNs), can have more than 100 fabrication steps33,41 increasing

FIG. 1. Overview of various 3D printing efforts for serial crystallography at XFELs and synchrotrons. (a) Two-photon polymerization (2PP)-based gas-dynamic virtual nozzles
(GDVN) with mixing elements [Reproduced with permission from J. Kno�ska, et al., Nat. Commun. 11, 657 (2020). Copyright 2020 Authors, licensed under a Creative Commons
Attribution (CC BY) license];28 (b) Projection microlithography-based hydrodynamic flow focusing chip for serial crystallography experiments [Reproduced with permission from
D. C. F. Monteiro et al., IUCrJ 7, 207 (2020); Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) license];24 (c) 2PP fabrication-based extrusion
nozzle for Lipidic Cubic Phase (LCP) samples [Reproduced with permission from M. Vakili et al., J. Appl. Crystallogr. 56, 1038 (2023). Copyright 2023 Authors, licensed under
a Creative Commons Attribution (CC BY) license];29 (d) 2PP fabrication-based flat jet nozzle [Reproduced with permission from P. E. Konold et al., IUCrJ 10, 662 (2023).
Copyright 2023 Authors, licensed under a Creative Commons Attribution (CC BY) license].49 2PP fabrication has significantly advanced the sample environment and delivery
for serial crystallography experiments.
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fabrication difficulty, error rate, geometric variations, and manufactur-
ing time.

Later, polydimethylsiloxane soft-lithography GDVNs were devel-
oped pioneering the age of CAD-based sample environments and
microfluidic on-chip mixing GDVNs.40 The first PDMS devices had a
similar GDVN design as initial capillary devices, but moving from
glass capillary manufacturing to microfluidic soft lithography allowed
the creation of arbitrary CAD geometries, as demonstrated by the on-
chip mix-and-inject design.40 Thus, soft lithography opened the door
for future designs to be tailored to sample delivery. Traditional lithog-
raphy relies on two-dimensional masks (i.e., physical or projected),
which can limit the achievable resolution, constrain the freedom to
design 3D structures, and make the stacking of layers on a wafer a
tedious process.40

Now, less than two decades after GDVN capillaries were intro-
duced, the XFEL sample environment community has access to com-
mercial two-photon 3D printers capable of fabricating nearly arbitrary
3D structures with micrometer-scale resolution. These abilities greatly
expand the possible device geometries, including helical mixers in a
modular configuration,28 asymmetric liquid outlets,27 and high-
viscosity sample injectors.29 In direct laser writing (DLW) method, the
printing time of two-photon printers scales with the total volume writ-
ten. Because of this, the usual practice is to minimize the printed vol-
ume of two-photon devices to reduce the writing time and allow
fabrication of multiple devices within reasonable times, i.e., seconds to
minutes. A single GDVN can require several hours to print using a
commercial two-photon instrument.27,29,30 When an XFEL beamtime
requires dozens of sample injectors and fixed-target platforms, reduc-
ing the device size and fabrication time as much as possible is critical
to completing device production in a timely manner. Kno�ska et al.28

have drastically reduced writing time using a combination of: (1) vary-
ing the laser power and corresponding voxel size depending on the res-
olution required by the device geometry; and (2) using a shell-scaffold
model, followed by UV curing, to reduce internal printing volume.
The combination of these two techniques reduces writing time from
hours to minutes, which is an outstanding achievement. However, the
device size is still limited, i.e., the largest reported size is only several
cubic micrometers, and assembly and integration difficulties remain.30

For example, the 3D-printed GDVN devices still have to be assembled
by manually epoxy-gluing them onto capillaries. Hence, implementing
the existing commercial two-photon polymerization methodology for
fixed targets, which require larger print area, would not be realistic.
While we emphasize miniaturization and the ultracompact nature of
the designs, this motivation is driven not only by the desire to reduce
printing times but also to increase device efficacy and efficiency for x-
ray data collection applications.56

Modular connections reduce integration difficulties,28 but beam-
time can still be lost due to the disconnection of tubing when replacing
broken or clogged devices during shifts.57 A microfluidic solution for
this issue could be the use of dense manifold connectors, internal
microvalve switches, and addressable GDVN nozzle arrays.58

Alternatively, fixed-target sample environment platforms solve the dif-
ficulties of microfluidic connections by eliminating the extended capil-
lary connections altogether and have seen increasing adoption for
serial crystallography experiments at XFELs and synchrotrons. These
devices hold large numbers of individual microcrystals, allowing
individual data collection or spatial rastering.37,38 Originally, the

fixed-target platforms were made from silicon,59 now their relatively
simple designs are usually manufactured with laser ablation or other
subtractive manufacturing techniques, using wide range of materials
including Kapton, Mylar, and cyclic olefin copoylmers.16,37,38 This
material variety can tailor devices to x-ray characteristics and sample
environment needs.47,48

FUTURE OF 3D PRINTING TO ACCOMMODATE
THE NEEDS OF XFEL RESEARCH

Surprisingly, fixed-target sample environment platforms, despite
their demonstration of high-hit rates, in situ crystallization, and shear
sensitive sample handling, have not fully utilized the range of fabrica-
tion opportunities offered by 3D printing. The implementation of 2PP
manufacturing for fixed targets would require printing over a very
large area, nearly 10–20 times larger than the existing printing region
of most commercially available 3D printers. Overcoming these limits
will be the key to creating the next generation of microfluidics-
enabled, 3D printed, fixed-target sample environment platforms and
liquid jet injectors.

Improvements in the maximum build area of commercial two-
photon printers, such as the latest configurations of the Nanoscribe and
UpNano printers,60,61 as well as the in-house system shown in Fig. 2(a),
have created the possibility of swiftly fabricating fixed-target geometries
featuring microfluidic functional elements. By writing precise micro-
structures over a large (few-cm2 scale) working areas [Figs. 2(b) and
2(c)], comparable to the total size of fixed-target devices, these emerging
large-area fabrication methods can create fixed targets optimized for
advanced sample handling on-the-chip. Specifically, user friendliness
and earlier stages of sample preparation can be addressed, such as
enabling protein crystallization directly on the chip, thus eliminating the
need for crystal transfer and enabling in situ measurements.
Furthermore, fixed-target devices, modular features to avoid x-ray dam-
age to neighboring crystals, for crystal trapping and microfluidic mixing,
would require precise fabrication with a size range of 1–50 lm.

An emerging alternative to the 2PP-3D-microfabrication of
XFEL sample environments is projection microstereolithography
(PlSL) because it is much cheaper and more widely available than
two-photon systems.56 Unlike 2PP instruments, PlSL-3D-printers do
not raster-scan a single highly focused beam, but expose the photo
resin to a uniform projection of the desired features simultaneously.
While PlSL-3D-printers have achieved single-micron printed fea-
tures,62 the high-resolution projected pixel pitch typically comes at the
cost of a reduced exposed area due to the fixed size of the pattern-
generating digital mirror device (DMD).24,58 While the resolution
should in principle be sufficient to 3D-microprint GDVN geometries,
it remains to be seen if integrated geometries with increased complex-
ity, such as 3D micromixers, can be realized. An exciting prospect is
the combination of 2PP and PlSL: the bulk geometry could be 3D-
printed at high volume rates using PlSL, and complex features could
be added using 2PP, as demonstrated in silicon,63 glass,64,65 or micro-
stereolithography66 fabricated chips.67

However, one serious limitation of this method will remain: as a
layer-based printing process, each layer must be sufficiently supported,
making the possible 3D geometries more restricted than those achiev-
able with DLW methods. For complex 3D structures such as high-
performance mixers,28 PlSL resolution advances will not suffice.
Fortunately, two-photon DLWmethods are also making rapid capabil-
ity improvements. In addition to the drastic increase in fabrication
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speed discussed earlier, commercial manufacturers have improved build
volume, performance and developed new capabilities such as writing
objects inside an existing microfluidic channel. There has also been
research into combining various printing methods to create a single
device—using DLWmethods only for the high-resolution sections, and a
faster and cheaper alternative for the rest, for example, embedding a
DLW-fabricated GDVN into a silicon,63 glass,64,65 or microstereolithogra-
phy66 fabricated chip. If a smaller diameter outlet than can be comfortably
printed as necessary, additive manufacturing techniques can fabricate
most of the device, with high-resolution laser ablation for the outlet.67

OUTLOOK

Over the last decade, room-temperature serial crystallography at
synchrotrons and XFELs has evolved and provided exciting new capa-
bilities for dynamic structure determination of proteins and other
macromolecules. These include the ability to obtain high-resolution,
near damage-free, room-temperature structures from challenging

crystallization targets, including membrane proteins, to perform time-
resolved structural studies on conformational changes induced by light
or ligand-binding over a wide time range from sub-picoseconds to
milliseconds, and, ultimately, to produce the first molecular movies of
biomolecules in action. Developing new, tailored sample delivery tech-
niques and platforms have played a crucial role in these accomplish-
ments. Various sample environment research groups30,37,38,68–70

continue collaborative work addressing emerging sample introduction
needs for high-repetition rate XFELs, such as the EuXFEL, LCLS-II
(Linac Coherent Light Source II), and the compact CXLS (Compact x-
ray Light Source) and CXFEL (Compact x-ray Free Electro Laser)
sources under development at Arizona State University (ASU).
Advanced manufacturing techniques, such as 3D printing of
micrometer-sized structures over large areas, are expected to play a
critical role for high-throughput sample handling/introduction and
automation in the future and, thus, will accelerate discoveries in the
biological (and materials) sciences with XFELs and synchrotrons.

FIG. 2. Rapid large-area two-photon polymerization: (a) Schematic representation of large-area 2PP: here the features are enlarged for artistic rendition. The femtosecond
laser-based rapid large-area 2PP instrumentation schematic representation. This setup has a very large area of up to 160 � 160mm2 with the ability to print intricate sub-
micron features. (b) Printing demonstration of the new rapid large region 2PP setup with the features required for fixed-target sample delivery, i.e., a minimum length of 500lm
and features smaller than 5lm. As a demonstration, sub-micron featured structure is printed over a very long range of 2.5 cm (compared to a penny). The layer thickness can
be custom adjusted on-demand for each feature, down to the sub-micron range. In these examples, the layer thickness is greater for visibility. (c) The printing ability is shown in
live printing videos: Supplementary video 1 (Ref. 71) showing one pair of structures over a length of 500 lm in real time (15 fps) and supplementary video 2 (Ref. 71) showing
repeated structures over a length of 2.5 cm captured at 60 fps over a period of 34 min, which is shown with 30� accelerated speed.
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