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Surface Reconstruction from Sparse Fringe Contours

G. Cong and B. Parvin
Information and Computing Sciences Division

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

Abstract

A new approach for reconstruction of 3D surfaces
from 2D cross-sectional contours is presented.
By using the so-called \Equal Importance Cri-
terion," we reconstruct the surface based on the
assumption that every point in the region con-
tributes equally to the surface reconstruction
process. In this context, the problem is formu-
lated in terms of a partial di�erential equation
(PDE), and we show that the solution for dense
contours can be e�ciently derived from distance
transform. In the case of sparse contours, we add
a regularization term to insure smoothness in
surface recovery. The proposed technique allows
for surface recovery at any desired resolution.
The main advantage of the proposed method is
that inherent problems due to correspondence,
tiling, and branching are avoided. Furthermore,
the computed high resolution surface is better
represented for subsequent geometric analysis.
We present results on both synthetic and real
data.

1 Introduction

The problem of reconstructing a 3D surface from a set of
2D cross sectional contours is an important one in diverse
scienti�c �elds. For example, CT and MRI techniques can
provide dense serial section representation of electron den-
sity and water molecule concentration at di�erent locations
along a particular axis. Similarly, in confocal microscopy,
cross sections are obtained by focusing the optical system
at speci�c locations along the z axis. This type of data
de�nes the intersections of the object surface with a plane
along a desired orientation. We plan to utilize these cross
sections and recover the 3D surfaces of the object for vi-
sualization as well as geometric analysis.

The main idea behind existing techniques is to use small
triangles to connect contours in adjacent sections. This ap-
proach leads to three sources of ambiguities: (1) correspon-
dence, (2) tiling, and (3) branching problems. The corre-
spondence problem involves �nding the correct connection
between adjacent contours [4, 6, 7, 18, 24]. The tiling prob-
lem involves utilizing slice chords for constructing triangles
in the regions between contours [13, 11, 23, 8, 12, 5]. The
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main issue being how to �nd optimal tiling and how to
account for topological changes. The branching problem
occurs when a contour in one slice can correspond to more
than one contour in an adjacent slice, e.g., bifurcation in
the 3D shape [14, 18, 8, 5]. Most of the existing techniques
focus (at most) on resolving one or two of these problems.

In this paper, we treat the problem in a entirely new
way by computing every point on the surface directly. This
is based on representing the problem as a partial di�eren-
tial equation followed by a simple linear solution for dense
contours and a regularized solution for sparse contours. In
this sense, we can compute the coordinates of every point
on the surface to construct a high resolution map of the
3D data of which the 0 value isosurface corresponds to the
object surface. Isosurfaces have the advantage that subse-
quent geometric analysis of the object can be easily car-
ried out [19, 20]. As a result, our solution naturally avoids
the correspondence, tiling, and branching problems in fa-
vor of a more robust solution. The underlying constraint
is based on the Equal Importance Criterion (EIC), which
suggests that all points contribute equally to the shape re-
construction process. Formally, the constraint states that
surface height decreases linearly along the trajectory of its
gradient, and as a result, the problem reduces to solving
a PDE. This PDE has a simple linear solution for dense
contours. However, a regularized approach is needed for
sparse contours. Experimental results on both synthetic
and contours obtained from real images are included.

2 Preliminary de�nition

Let S represent a 3D surface with C(hi); and i = 1; :::;m
as the cross-sectional contours which may be de�ned as the
intersections of S with a series of planes z = hi. Without
losing generality, we assume that hi = i; i = 1; :::;m. Let
the projection of C(hi) on the x-y( or z = hi) be Ci; i =
1; :::;m. The problem is: Given Ci i = 1; :::;m, �nd the
surface S such that Ci are the intersections of S with the
plane z = i.

3 Equal Importance Criterion

The proposed reconstruction problem is underconstrained
and ill-posed. To constrain the problem, we impose a
smoothness measure based on EIC. Consider a simple ex-
ample of Figure 1a with a pair of contours corresponding
to C1 and C2. In order to de�ne a region R(C1; C2), let
R0

Ci
(x; y) be a function of Ci such that:

R
0

Ci
(x;y) =

(
�1; if (x; y; i) (x; y) is inside Ci
1; if (x; y) is outside of Ci
0; if (x; y) 2 Ci

(1)



R(C1;C2) is now de�ned as (see Figure1):

R(C1;C2) = f(x; y)jR0

C1
(x; y)R0

C2
(x; y) � 0g (2)
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Figure 1: R(C1; Cm). (a)Doubly connected region.
(b)Multiply connected region. (c) Intersection. (d) Iso-
lated objects.

In R(C1; C2), we want to construct a surface f(x; y) such
that, say, f(C1) = 1; f(C2) = 2. Obviously in the absence
of any constraints, in�nitely many solutions exist. To con-
strain the problem, we assert that every point in R(C1;C2)
is equally important and contributes similarly to the recon-
struction process. Any other assumption means that we
know something about the surface. We call this the Equal
Importance Criterion. This constraint is formalized by re-
quiring that the change in the gradient-magnitude along
the gradient direction should be zero, that is:

J1(f) =5(j 5 f j) �
5f

j 5 f j
= 0 (3)

where 5f indicates the gradient of f , j j the norm and �
the inner product. The above PDE implies that along each
trajectory of the gradient of the surface, the magnitude of
the gradient is a constant. In another words, the height
decreases linearly from 2 to 1. Thus, in view of height,
which is our only clue about the surface, all points are
equally important to us. J1 can be reduced to:

J2(f) = f
2
xfxx + 2fxfyfxy + f

2
yfyy = 0 (4)

where subscript indicates derivative, such as fx =
@f

@x
; fxy =

@2f

@x@y
. Thus, the problem becomes:

Find f(x; y); (x; y) 2 R(C1;C2);

such that J2(f) = 0; f(C1) = 1; f(C2) = 2: (5)

Equation (4) is called the \In�nity Laplacian" (see Ap-
pendix A), which has been studied in the literature
[1, 2, 3, 10]. Equation (4) has several important properties
[2]. These are:

1. There is at most one solution of the Dirichlet's prob-
lem for f , which may not be a smooth solution for
any C1 and C2. But if we rede�ne the \solution" in a
suitable weak sense, then a solution does exist.

2. The trajectory of the vector �eld for 5f is either a
convex curve or a straight line, and the solution is
in�nitely di�erentiable with convex curves.

4 Surface reconstruction

The proposed shape reconstruction, from cross sections,
has several advantages:

1. The correspondence, tiling, and branching problems
have been eliminated, and as we will see later, an
e�cient solution can be easily obtained.

2. The distance between C1 and C2 in the z direction
is no longer important because it only changes the
solution by a scale.

3. The surface is smooth at most locations because a
weak solution is guaranteed. Furthermore, at a singu-
lar point{if it exists{the surface is at least continuous
to C1.

In the rest of this section, we outline the details of solution
to Equation (5) and show how it can be extended to other
types of contours as well.

4.1 Solving the PDE

Many numerical methods can be used to solve Equation
(5), and at least a weak solution is guaranteed. However,
we show that a more straightforward and e�cient approx-
imation possible.

Let's de�ne DC(x; y) as the Distance Transformation
(chamfer image) of curve C, where DC(x;y) has the same
sign of R0

C(x;y). For each point p (shown in Figure 2),
there should be a gradient trajectory  passing through it
such that it intersects C1 and C2 at p1 and p2, respectively.
Since C1 and C2 are equal height contours, it is easy to show
that the normal of these two contours and the gradient of
surface are in the same direction [22]. Thus  ? C1 at p1
and  ? C2 at p2. We can approximate the curve , passing
through p, by drawing two line segments pp01 ? C1; pp

0

2 ?
C2, to create p01pp

0

2. Let l denote the length of  from p1
to p2. Hence, l � jp

0

1pj+ jp
0

2pj. The preceding formulation
indicates that jp01pj = �DC1(p), jp

0

2pj = DCi+1(p). Since
the height decreases linearly. f can be set to:

f(x;y) =
DC2(x; y)� 2DC1(x; y)

DC2(x; y)�DC1(x;y)
(6)

P
P2

P1

P’1

P’2 γ

Ci
Ci+1

(a)

Figure 2: Initialization of f(x;y) from chamfer images

4.2 Isosurface construction

The 3D isosurface representation, �(x;y; z);1 � z � 2, can
now be expressed as:

�(x; y; z) = (z � 1)DC2
(x; y) + (2� z)DC1

(x; y) (7)

This isosurface �(x; y; z) = 0 is:

z(x; y) =
DC2(x; y)� 2DC1(x;y)

DC2(x; y)�DC1(x; y)
(8)

which is exactly the surface that we reconstructed in
(6). From equation (8), since 1 � z � 2 if and only if
DC2

(x;y)DC1(x; y) � 0, �(x; y; z) = 0 occurs only in the
region R(C1;C2). Thus, we cannot get arti�cial isosurface.
Figure 3 to Figure 6 show the reconstruction results for
di�erent types of C1;C2 combinations.
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Figure 3: Surface reconstructed from two contours. (a)
contours; (b) computed surface.
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Figure 4: Surface reconstructed from two contours. (a)
contours; (b) computed surface.
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Figure 5: Surface reconstructed from two contours. (a)
contours; (b) computed surface.
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Figure 6: Surface reconstructed from two contours. (a)
contours; (b) computed surface.

4.3 Extension to multiple contours

The proposed method can be applied iteratively to every
pair of adjacent contours Ci;Ci+1; i = 1; :::;m� 1 for con-
structing a series of subsurfaces Si. These subsurfaces
Si; i = 1; :::;m � 1 form the whole surface, namely S =S
i
Si. Suppose that we want a resolution of � < 1, say 0.1,

along the z direction, then reconstruction should include
between each pair of adjacent contours Z � 1 new slices
with Z = 1

�
( a integer Z is expected). The following algo-

rithm produces the 3D data �(x; y; z); z = 1; :::;mZ+1, of
which the isosurface � = 0 is S.

Algorithm 1 Construction of the isosurface.
1. Calculate DCi ; i = 1; :::;m.
2. for i = 1 to m-1, do

2.1. for j = 0 to Z-1, do
2.1.1. z = (i� 1)Z + j + 1.
2.1.2. �(x; y; z) = j�DCi+1(x; y) + (1 �

j�)DCi(x;y).
2.2. End of j loop.

3. End of i loop.
4. �(x;y;mZ + 1) = DCm (x;y)
End of the algorithm.
Even for traditional shape recovery

from cross-sectional-contours methods, some post process-
ing(smoothing) is essential to make the reconstructed sur-
face smoother. In our method, if the Cis are considerably
apart from each other in the x; y plane, then the surface
may be not smooth on the contour locations. The sim-
plest way to smooth the surface is to convolve �(x;y; z)
with a 3D Gaussian �lter with small scale. Since Gaussian
is in�nitely di�erentiable, the smoothed data, and thus the
isosurface, is in�nitely continuous.

The experimental results are presented in Figure 7 and
Figure 8. We do not perform post-smoothing in these ex-
periments. Figure 7 shows the surface reconstructed from
real CT data. The original CT data is 64�64 at 64 slices, in
which the contours correspond to the surface of the bone.
We sample the original data along the z direction, at di�er-
ent rates, to form a volume representation that includes 32,
21, and 16 slices respectively. These contours are then used
for surface reconstruction and interpolation in order to
construct the original data set for comparison. Figure 7(c),
(d), and (e) are the reconstructed bone surfaces. Figure
8 shows another reconstruction example from segmented
magnetic resonance images of a patient with edema. Seg-
mentation was performed using a Bayesian model and iter-
ative conditioning mode algorithm. For an earlier version
of this work, see [21]. This �gure shows the white matter
corresponding to the cerebral cortex, as well as damaged
area due to edema. This original data included 68 slices,
and two new slices have been reconstructed from each pair
of adjacent slices.

4.4 A regularized solution for sparse contours

The result indicates that the proposed technique{a sim-
ple linear interpolation{behaves well for dense contours.
However, linear interpolation as well as triangulation tech-
niques produce discontinuities for sparse contour rep-
resentation. This kind of data is often generated in
fringes obtained from optical or microwave interferometry
[9, 16, 15, 17], and previous methods generate discontinu-
ities along the surface of the object, as shown in Figure
9(a) and (b). Thus, a more elaborate method to treat this
problem is needed. Here, we only consider the situation in
which Ci+1 is totally enclosed by Ci for i = 1; :::;m� 1.

We thus seek a solution for the following problem:

Minimize "
2 =

Z Z
R(C1;Cm)

J 2
1 dxdy; (9)



(a) (b)

(c) (d) (e)

Figure 7: Reconstruction results from CT data with di�er-
ent sampling rate: (a)(b)Two of the contours; (c)Sample
rate 2; (d)Sample rate 3; and (e)Sample rate 4.

Subject to : f(Ci) = i; i = 1; :::m:

We can use an iterative approach to �nd the f that mini-
mizes (9):

f
v+1 = f

v � ��f
v (10)

where � is the step size, v indicates the iteration number
and �f is the variation of f :

�f = �
@Ffx
@x

�
@Ffy
@y

+
@2Ffxx
@x2

+
@2Ffxy
@x@y

+
@2Ffyy
@y2

(11)

where derivatives of F are de�ned as:

Ffx =
@J 2

1

@fx
(12)

= 4J1
fxf

2
yfxx + f3yfxy � f2xfyfxy � fxf

2
yfyy

(f2x + f2y )2

Ffy =
@J 2

1

@fy
(13)

= 4J1
f2xfyfyy + f3xfxy � f2xfyfxx � fxf

2
yfxy

(f2x + f2y )2

Ffxx =
@J 2

1

@fxx
= 2J1

f2x

f2x + f2y
(14)

Ffxy =
@J 2

1

@fxy
= 4J1

fxfy

f2x + f2y
(15)

Ffyy =
@J 2

1

@fyy
= 2J1

f2y

f2x + f2y
(16)

�f is set to zero when 5f = 0, indicating that the
surface remains unchanged. See Figure 9(c) and other ex-
perimental results in Figures 10 and 11.

(a) (b) (c)

(d) (e)

(f)

Figure 8: Reconstruction results of white matter in cor-
tex and region due to edema: (a)(b)(c) Contours from
segmented cortex; (d)(e)(f) three views of reconstructed
surfaces.

4.5 Extension to other types of cross sections

Thus far, we applied our approach to cross sections ob-
tained along the z axis. Other types of 3D cross sections,
as shown in Figure 12(a), can be de�ned as the intersec-
tions of the surface S with serial of planes along its spine.
In this case, we can forward project the 3D contours to
a new coordinate, shown in Figure 12b, reconstruct the
surface, and then back-project the surface to its initial co-
ordinate system.

Figure 13 shows another variation due to a surface of



(a) (b) (c)

Figure 9: Reconstruction for sparse contours. (a) three
cross-sectional-contours; (b) surface reconstructed by the
algorithm 1; (c) surface reconstructed by the regularized
solution.

(a)

(b) (c)

Figure 10: Reconstruction result: (a) original contours;
(b)(c) two views of reconstruction.

revolution. Suppose we rotate a 3D object along a �xed
axis and record the cross section perpendicular to each
viewing direction. In this case, the contours are the inter-
sections of the S with a serial of planes rotated along the
axis. We can �rst reconstruct an object by treating the
cross sections as if they were in the z direction and then
arrange the reconstructed object properly according to the
rotating angles.

(a)

(b) (c)

Figure 11: Reconstruction results: (a) original contours;
(b)(c) two views of reconstruction.

(a) (b) (c) (d)

Figure 12: Reconstruction of cross section along a curve:
(a) number of cross sections along a curve; (b) projection
of cross sections were in the z direction; (c) reconstruction
along the z direction; (d) back projection the reconstructed
surface.

5 Conclusion

Shape from cross sections is an important problem in di-
verse �elds of science, and it has been studied extensively.
However, most (if not all) of these methods su�er from
correspondence, tiling, and branching problems. Further-
more, previous solutions have been limited to variants of
triangulation that are scale dependent, with unpredictable
behavior near the saddle points. The novelty of the pro-
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Figure 13: Reconstruction of surface of revolution: (a) se-
rial sections rotated along an axis; (b) serial sections pro-
jected along the z axis; (c) surface reconstruction along the
z axis; (d) surface transformation onto original coordinate.

posed method is its unique smoothness measure, the cor-
responding PDE, and its simple solution based on distance
transform. We showed that a linear solution provides an
adequate representation of dense contours. In the case of
sparse contour, we augmented our approach with a regu-
larized solution to minimize the changes of the gradient.
We have tested and veri�ed our approach on data with
di�erent degrees of complexities, ranging from simple ge-
ometric features to complex and convoluted structure of
cortex.

A A note on in�nity Laplacian

This equation is the limit for p ! 1 of the so-called p-
Laplace equation, whose solution f minimize the Lp norm
of the gradient among functions � satisfying the given
boundary values of R(C1;C2):

Lp(�) = (

Z
R(C1;C2)

j 5 �j2Ndxdy)
1
2N ; N !1 (17)

In the limit the Lp norm turns into the supermum norm.
Formally the solutions of this equation are the \minimizers
of the sup norm of the gradient"[1].
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