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Abstract

This study presents the Precipitation Estimation from Remotely Sensed Information Using 

Artificial Neural Networks–Dynamic Infrared Rain Rate (PDIR-Now) near-real-time precipitation 

dataset. This dataset provides hourly, quasi-global, infrared-based precipitation estimates at 0.04° 

× 0.04° spatial resolution with a short latency (15–60 min). It is intended to supersede the 

PERSIANN–Cloud Classification System (PERSIANN-CCS) dataset previously produced as the 

near-real-time product of the PERSIANN family. We first provide a brief description of the 

algorithm’s fundamentals and the input data used for deriving precipitation estimates. Second, we 

provide an extensive evaluation of the PDIR-Now dataset over annual, monthly, daily, and 

subdaily scales. Last, the article presents information on the dissemination of the dataset through 

the Center for Hydrometeorology and Remote Sensing (CHRS) web-based interfaces. The 

evaluation, conducted over the period 2017–18, demonstrates the utility of PDIR-Now and its 

improvement over PERSIANN-CCS at all temporal scales. Specifically, PDIR-Now improves the 

estimation of rain/no-rain days as demonstrated by a critical success index (CSI) of 0.53 compared 

to 0.47 of PERSIANN-CCS. In addition, PDIR-Now improves the estimation of seasonal and 

diurnal cycles of precipitation as well as regional precipitation patterns erroneously estimated by 

PERSIANN-CCS. Finally, an evaluation is carried out to examine the performance of PDIR-Now 

in capturing two extreme events, Hurricane Harvey and a cluster of summer thunderstorms that 

occurred over the Netherlands, where it is shown that PDIR-Now adequately represents spatial 

precipitation patterns as well as subdaily precipitation rates with a correlation coefficient (CORR) 

of 0.64 for Hurricane Harvey and 0.76 for the Netherlands thunderstorms.
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1. Introduction

Providing consistent and accurate precipitation measurements remains one of the most 

challenging tasks facing the weather and climate community. Rain gauge, radar, and satellite 

are the primary instruments for measuring precipitation. Rain gauge observations represent 

the most direct method for precipitation measurement and provide the longest historical 

records (Kidd and Levizzani 2011; Mahmoud et al. 2018); however, the variability of 

precipitation across all spatial and temporal scales cannot be resolved by conventional rain 

gauges. For instance, it has been shown that rainfall associated with small-scale convective 

storms vary by up to 14% over a 100-m distance (Goodrich et al. 1995). Radar instruments, 

which provide real-time precipitation measurements at high spatiotemporal resolution, are 

attractive alternatives to rain gauges (Kitzmiller et al. 2013; Price et al. 2014). However, the 

high installation and maintenance costs along with the difficulties in accessibility over 

remote regions have limited the establishment of a global radar network (Habib et al. 2012; 

Westrick et al. 1999; Scofield and Kuligowski 2003). Satellite-based precipitation estimation 

promises to provide a remedy for the shortcomings of observing precipitation using radars 

and in situ rainfall gauges (Sun et al. 2018; Xie et al. 2007). Early studies that attempted to 

estimate rain rate from satellite multichannel visible (VIS) and infrared (IR) imagery dates 

back to the late 1970s (Griffith et al. 1978; Hsu et al. 1997). Today, four decades since the 

work of Griffith et al. (1978), estimation of precipitation from satellites has significantly 

advanced, and satellite-based estimates are frequently merged with in situ precipitation 

measurements to provide high-quality datasets (e.g., Huffman et al. 2007; Beck et al. 2017) 

for a range of hydrologic and hydroclimatic applications. Nonetheless, the ever-continuing 

search for an “optimum” method to accurately estimate precipitation from satellites, made 

evident by the dozens of datasets currently available to the community, stands as a testimony 

that the potential of satellites is yet to be fully realized.

The main difficulty in estimating precipitation from satellites lies in the trade-off between 

sampling temporal frequency and accuracy. On one hand, IR imagery data from sensors on 

board geostationary-Earth-orbiting (GEO) satellites are obtained almost every 5–30 min, but 

they only provide information on cloud-top characteristics (e.g., temperature, size, and the 

phase of cloud particles), an indirect proxy of surface precipitation rate (Grecu et al. 2004). 

On the other hand, passive microwave (PMW) sensors deployed on low-Earth-orbiting 

(LEO) satellites provide rich information on the vertical profile of the atmosphere and 

hydrometeors directly related to precipitation; however, their sampling is more sparse and 

less frequent compared to IR imagery (Behrangi et al. 2009; Marzano et al. 2004; Kidd and 

Levizzani 2011). Thus, IR-based precipitation estimation products have the advantage of 

providing higher spatiotemporal resolutions with a minimum latency that meet the 

requirements for many near-real-time applications (Arkin and Meisner 1987). More 

commonly, satellite-based algorithms take advantage of information from both IR and PMW 

sources (Behrangi et al. 2009; Joyce et al. 2004; Turk et al. 2000; Miller et al. 2001; 

Sorooshian et al. 2000; Hsu et al. 1997; Levizzani et al. 1996; Kummerow and Giglio 1995; 

Bellerby et al. 2000). Arguably, the most sophisticated example of such algorithms is the 

Climate Prediction Center morphing method (CMORPH) (Joyce et al. 2004), which relies 

on snapshot and propagated PMW as the primary source of precipitation, with IR estimates 
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used over cold surface or when PMW is excessively propagated. Alternatively, several 

methods use IR data as the main input to derive an empirical relationship between cloud-top 

temperature and surface precipitation rate, and they incorporate PMW only for calibration 

purposes (Miller et al. 2001; Turk et al. 2003).

During the recent years, NOAA’s Advanced Baseline Imager (ABI) on board the latest 

generation of the Geostationary Operational Environment Satellite (GOES-R series) (Schmit 

et al. 2009, 2005; Gurka and Schmit 2004), the Advanced Himawari Imager (AHI) (Letu et 

al. 2020), on board Himawari-8/-9 (H8/9), and the Advanced Geostationary Radiation 

Imager (AGRI) on board Fengyun-4A (FY-4A) (Yang et al. 2017) have been launched into 

the geostationary (GEO) orbit. These sensors provide high temporal information with 10–

15-min coverage and high spatial information with 0.5–2 km for AHI and ABI sensors and 

0.5–4 km for AGRI measurements in 16 (14 for AGRI) spectral bands. The new generations 

of GEO sensors have opened new opportunities to improve the precipitation estimates with 

both high spatial and high temporal resolutions. With this promising progress in GEO sensor 

technologies along with the advancements in machine learning (ML) techniques, such as 

support vector machines, random forests, artificial neural network (ANN), deep learning, the 

new generation of precipitation retrieval algorithms must outperform the current operational 

products (Meyer et al. 2016; Kuligowski et al. 2016; Sadeghi et al. 2019; Upadhyaya et al. 

2020). In recent years, many studies have been conducted to utilize the generation sensor 

information to improve the current precipitation retrieval algorithms. For example, 

Kuligowski et al. (2016) proposed the Self-Calibrating Multivariate Precipitation Retrieval 

(SCaMPR) algorithm as an operational precipitation product over the CONUS based on 

GOES-R series information. This dataset serves Spinning Enhanced Visible and Infrared 

Imager (SEVIRI) on board Meteosat-8 as inputs and passive microwave (PMW) 

precipitation rate estimates from the Climate Prediction Center (CPC) combined microwave 

(MWCOMB) dataset (Joyce et al. 2004) for training. Although the developed retrieval 

algorithms using new generation of sensors provide higher spatial and temporal resolution 

over the contiguous United States (CONUS), their spatial coverage limits their capability for 

global implementation.

The present study introduces a new global near-real-time dataset based primarily on IR 

imagery referred to as the Precipitation Estimation from Remotely Sensed Information 

Using Artificial Neural Networks (PERSIANN) Dynamic Infrared Rain Rate (PDIR-Now). 

PDIR-Now is intended to supersede PERSIANN–Cloud Classification System (PERSIANN-

CCS) (Hong et al. 2004), which has been the standard near-real-time precipitation dataset 

produced by the Center for Hydrometeorology and Remote Sensing (CHRS) at University of 

California, Irvine. PDIR-Now is based on the PDIR algorithm (Nguyen et al. 2020), which, 

like other IR-based algorithms, depends on empirically derived cloud-top temperature–

precipitation rate (Tb–R) relationships. PDIR, however, corrects for the errors that frequently 

result from such an approach by calibrating the empirical relationships regionally based on 

monthly precipitation climatology (Nguyen et al. 2020). In addition, the PDIR algorithm 

incorporates several techniques to further reduce estimation errors and uncertainties. 

Because PDIR-Now depends primarily on IR data, its main advantage is providing near-

global precipitation estimates at a short latency (15–60 min), hence the acronym “Now.” In 
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addition, PDIR-Now leverages from IMERG PMW dataset for training, however, the PDIR 

algorithm was trained using the MWCOMB dataset.

The remainder of this article is organized as follows. Section 2 briefly introduces input data 

used for PDIR-Now development as well as baseline datasets used for evaluation. Section 3 

provides an overview of the PDIR algorithm and its components, and it highlights how 

PDIR-Now differs from its predecessors. Section 4 provides a comprehensive evaluation of 

PDIR-Now against distinct baseline precipitation datasets across a variety of spatial and 

temporal scales. Section 5 sums up the evaluation results, draws conclusions and outlines 

future directions.

2. Data

a. Input data

1) IR data—This dataset is provided by the Climate Prediction Center at the National 

Weather Service. It merges 11-μm brightness temperature (Tb) data from all available 

geostationary satellites (GMS-5, GOES-8, GOES-10, Meteosat-7, and Meteosat-5) into a 

single half-hourly IR Tb field at the 4-km spatial resolution (Janowiak et al. 2001). This 

dataset is the main input used to produce PDIR-Now precipitation estimates.

2) IMERG merged PMW precipitation—The high-quality PMW is one of several 

fields available in the Integrated Multisatellite Retrievals for GPM (IMERG) dataset. It is 

based on intercalibrated PMW estimates and provides a global, half-hourly estimate at the 

0.1° × 0.1° spatial resolution (Huffman et al. 2018). Precipitation estimates from this dataset, 

along with IR data, are used to develop the (Tb–R) relationships in the calibration period 

(2014–16). It should be emphasized that the microwave data are only used for calibration, 

not a real-time input.

3) WorldClim 2 precipitation—A monthly, high spatial resolution (1 km2) 

precipitation dataset developed by Fick and Hijmans from spatially interpolated weather 

stations data (Fick and Hijmans 2017), this dataset provides precipitation data for the period 

1970–2000 over global land areas. It is used here as precipitation climatology to adjust the 

Tb–R relationships over global land.

4) PERSIANN-CDR—PERSIANN–Climate Data Record (CDR) (Ashouri et al. 2015) 

belongs to the PERSIANN family of precipitation datasets (Nguyen et al. 2019). It provides 

daily precipitation for the period (1983–delayed present) over land and oceans at (60°S–

60°N); precipitation estimates from PERSIANN-CDR are bias-adjusted using GPCP V2.3 

monthly 2.5° × 2.5°. Here, PERSIANN-CDR is used to complement the land-based 

WorldClim 2 dataset by providing precipitation climatology over oceans which is used to 

adjust the Tb–R relationships.

b. Evaluation data

1) NCEP Stage IV—The National Centers for Environmental Prediction (NCEP) 

provides Stage IV precipitation data at hourly temporal resolution and a spatial resolution of 

4 km. This dataset is a multisensor analysis that includes gauge and WSR-88D radar data 
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among others (Lin and Mitchell 2005). Stage IV is frequently used to perform evaluations of 

precipitation data because of its high spatiotemporal resolution, multidecadal extent, and 

proven accuracy from manual quality control (Beck et al. 2019). In the present study, Stage 

IV (hereafter referred to as ST4) is used as a baseline over the contiguous United States 

(CONUS) against which the performance of PDIR-Now and PERSIANN-CCS is 

benchmarked.

2) IMERG final run—IMERG is a half-hourly 0.1° × 0.1° precipitation dataset that uses 

both PMW and IR data. The “Final Run,” hereafter referred to as IMERGF, incorporates 

further information from gauges to create a high-quality global precipitation data with 

approximately 3.5 months delay (Huffman et al. 2018). It is used as a baseline for the global 

evaluation of daily precipitation estimates from PERSIANN-CCS and PDIR-Now.

3) GPCP 1DD—The Global Precipitation Climatology Project (GPCP) 1DD (V1.3) 

product combines data from satellites and gauges to provide a 1° × 1° daily precipitation 

dataset for the period 1996–present (Huffman et al. 2001). GCPC 1DD’s high 

spatiotemporal resolution and integration of gauge readings make it a valuable dataset for 

short-duration evaluations of high-resolution precipitation products. Daily precipitation 

estimates from this dataset are accumulated to monthly scale, and they are used here as a 

baseline for the global evaluation of monthly precipitation estimates from PERSIANN-CCS 

and PDIR-Now.

1-h KNMI gauge-adjusted radar: The Royal Netherlands Meteorological Institute 

(KNMI) provides hourly 1-km radar precipitation data that are bias adjusted using the 

KNMI rain gauge networks. This dataset is used to evaluate the performance of 

PERSIANN-CCS and PDIR-Now in estimating precipitation during an extreme rainfall 

event that hit the Netherlands in June 2019 as it is the highest spatiotemporal resolution 

gridded radar–gauge product available over the Netherlands.

4) GSMAP-NOW—The Japanese Aerospace Exploration Agency (JAXA) produces a 

series of satellite-derived precipitation products under the Global Satellite Mapping of 

Precipitation (GSMaP). Among the GSMaP products, GSMaP-Now is the most comparable 

to PDIR-Now since it is a near-real-time product mainly based on IR data, making it a 

valuable comparison dataset for PDIR-Now at subdaily time scales for extreme hydroclimate 

events. It is used to evaluate a series of summer thunderstorms over the Netherlands.

3. PDIR algorithm

In 1997, the PERSIANN algorithm (Hsu et al. 1997; Sorooshian et al. 2000) was developed 

to provide high-resolution quantitative precipitation estimation (QPE). As its namesake 

states, the original PERSIANN algorithm provides rainfall estimates by using artificial 

neural networks (ANNs). From the original framework of the PERSIANN algorithm, a 36+ 

years archive of global, daily rainfall product named PERSIANN-CDR was produced using 

the Global Precipitation Climatology Project (GPCP) V2.3 monthly rainfall dataset and CPC 

4-km IR Tb data from the beginning of the satellite era (Ashouri et al. 2015).
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Original PERSIANN’s 2-day latency, a consequence of the PMW readings used as input to 

PERSIANN, made it unusable for applications where near-real-time measurements are 

needed, like flood modeling. To overcome this issue, PERSIANN-CCS forewent the use of 

PMW data and utilized a system of trained cloud-type models with characteristic Tb–R 
relationships produced by self-organizing feature maps (SOFMs) to estimate rainfall at short 

latency periods. In addition to the short latency period, PERSIANN-CCS’s sole reliance on 

IR data made the product available in hyperspatial resolution of 0.04° and hourly temporal 

resolution. However, without PMW data, the accuracy of PERSIANN-CCS is starkly 

impaired from original PERSIANN’s performance, especially for extreme precipitation and 

precipitation in topographically complex regions, such as western CONUS.

To overcome some of the accuracy issues of PERSIANN-CCS and improve estimates of 

extreme and orographic precipitation, where short latency QPE is sorely needed for flood 

modeling applications, Nguyen et al. (2020) developed the PDIR algorithm based largely on 

the framework of PERSIANN-CCS. As such, PDIR is also a real-time, high-resolution 

precipitation product with short delay time (15 min–1 h) that uses a catalog of unique cloud 

types, created by training SOFMs with PMW data, to estimate rain rates based on the 

temperature, size, and texture features of the cloud patches at temperatures below 273 K. 

The defining feature of PDIR is the dynamical shifting of Tb–R curves using rainfall 

climatology data (spatiotemporal resolution of 0.04° and monthly) to adjust the curve’s 

position. This approach is intended to adjust biases (i.e., to produce more precipitation in 

regions with wetter climatology and vice versa). As with PERSIANN-CCS, PDIR solely 

relies on near-real-time IR data from GEO satellites as input, allowing for precipitation 

estimates in as short as 15 min after their occurrences. For more information on the 

methodology of the PDIR algorithm, see Nguyen et al. (2020).

It should be noted that the PDIR-Now dataset presented in this article is based on the 

operational implementation of the PDIR algorithm which differs slightly from that originally 

described in Nguyen et al. (2020). Specifically, the current implementation employs a 

temperature threshold of 263 K for cloud top temperature as opposed to 273 K in Nguyen et 

al. (2020). This is because a higher temperature threshold improves the detection of warm 

rain events while simultaneously increasing the false alarm rate. In the earlier work of 

Nguyen et al. (2020), which examined the performance of the PDIR algorithm only over 

western United States, it was found that a threshold of 273 K achieves favorable results 

whereas a threshold of 263 K was found in the present study to be optimal for global 

implementation. Also, the precipitation dataset used to derive Tb–R curves in the present 

study is IMERG Merged PMW precipitation (see section 2) whereas the Combined 

Microwave precipitation dataset (MWCOMB), produced by the CPC, was used in Nguyen et 

al. (2020). Moreover, the current implementation of the PDIR algorithm consists of an 

additional bias adjustment step in which PDIR-Now rainfall estimates are corrected using 

probability cumulative density function (cdf) matching with IMERG Merged PMW 

precipitation. Last, PDIR-Now dataset is produced at a spatial resolution of 0.04° with a 

quasi-global coverage (60°S–60°N).
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4. Evaluation

This section evaluates the performance of PDIR-Now in capturing precipitation amounts and 

variability across several temporal scales. The evaluation commences at the coarsest 

temporal scale, annual, and then it is narrowed down to monthly, daily, and then subdaily 

scales. All analysis is conducted either during the entire evaluation period, 2017–18, or a 

part of it. Throughout the analysis, PDIR-Now will be compared with PERSIANN-CCS to 

highlight how much improvement has been attained using PDIR-Now. The baseline datasets 

against which PDIR-Now and PERSIANN-CCS are benchmarked varies according to 

geographical region and temporal scale of analysis.

a. Annual

Figures 1a-c show the mean annual precipitation averaged during the evaluation period 

(2017–18) for IMERGF, PERSIANN-CCS, and PDIR-Now, respectively. Here, IMERGF is 

used as a baseline since it combines data from multiple sources including IR, PMW, and 

gauges. Clearly, PERSIANN-CCS overestimates precipitation in the tropical regions of 

Africa, South America, and Asia. In addition, it underestimates bands of high precipitation 

in the northwestern Atlantic Ocean, northern Pacific Ocean along the coast of western 

Canada, and over the Southern Hemisphere oceans. This last observation is clearly shown in 

Fig. 1d, which shows the average zonal annual precipitation. In particular, PERSIANN-CCS 

(blue line) deviates significantly from IMERGF over the latitudes (−60°, −20°) indicating 

considerable underestimation. On the other hand, PDIR-Now improves estimation 

significantly in terms of zonal precipitation as shown in Fig. 1d (red and black lines). In 

addition, it clearly captures bands of high precipitation previously underestimated by 

PERSIANN-CCS while reducing overestimation in tropical regions. Despite the improved 

performance of PDIR-Now, there are still apparent discrepancies between PDIR-Now and 

IMERGF. In particular, PDIR-Now overestimates bands of rainfall in western Pacific Ocean 

and scattered spots in central equatorial Africa. Overall, mean annual global precipitation 

from PDIR-Now is 1150 mm, and it is more consistent with IMERGF estimate of 1124 mm 

compared to 960 mm from PERSIANN-CCS.

b. Monthly

Here we examine the performance of PDIR-Now in capturing the seasonal cycle of 

precipitation, based on monthly precipitation, with GPCP 1DD precipitation being used as a 

baseline for evaluation. We carry out the analysis at two regions with distinct rainfall 

seasonal cycles. The first region (location 1) is a rectangular region bounded by the latitudes 

(1°–6°N) and the longitudes (16°–21°E). This region lies at the northwestern part of the 

Congo River basin with elevation in the range of 0–700 m above sea level. Due to its 

location in the tropics, rainfall is consistent throughout the year with slight peak during the 

months of August, September, and October; consequently, vegetation land cover mostly 

consists of evergreen broadleaf forest. Figure 2a shows the spatially averaged monthly 

precipitation for the year 2017. PDIR-Now (red line) closely follows the monthly GPCP 

precipitation (black line), capturing the slight peak in (August–October) period. 

PERSIANN-CCS (blue line), on the other hand, overestimates rainfall amount throughout 

the year as well as showing an erroneous two-rainy-seasons cycle that differs from GPCP. 
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Overall, the CORR and root-mean-square error (RMSE) of PDIR-Now are 0.83 and 43 mm, 

respectively, compared to 0.66 and 145 mm for PERSIANN-CCS. The second region 

(location 2) is in the humid Amazon rainforest bounded by the latitudes (13°–8°S) and the 

longitudes (70°–65°W), and it extends across Brazil, Bolivia, and Peru. Unlike location 1, 

this region exhibits a pronounced rainfall seasonal cycle with a very dry season during the 

months of June, July, and August. Figure 2b shows that both PERSIANN-CCS and PDIR-

Now adequately capture the seasonal cycle of rainfall with CORR of 0.88 and 0.85, 

respectively; however, PDIR-Now improves estimation of rainfall amounts, most notably 

reducing the overestimation of PERISANN-CCS during the months of October, November, 

and December. RMSE is reduced from 98 mm (PERSIANN-CCS) to 59 mm (PDIR-Now).

c. Daily

Despite the usefulness of the analysis presented in the previous two subsections for 

establishing the general validity of PDIR-Now, precipitation estimates at the daily and 

subdaily scales are more important from the standpoint of operational watershed hydrology 

and water resources management for applications such as flood forecasting. Furthermore, 

since PDIR-Now is an IR-based precipitation dataset, it is intended to be particularly 

advantageous in providing timely and adequate precipitation estimates when other datasets 

based on PMW and multisensor fusion are not available. With these considerations in mind, 

analysis of PDIR-Now at the daily and subdaily scales is carried out in this subsection and 

the following one.

Figure 3 shows the difference in rainfall estimation statistics, namely CORR, bias, relative 

RMSE and CSI between PDIR-Now and PERSIANN-CCS benchmarked against IMERGF. 

In other words, Fig. 3 shows the improvement obtained by PDIR-Now with respect to 

PERSIANN-CCS. Positive numbers (red colors in Fig. 3) indicate that PDIR-Now is more 

skillful compared to PERSIANN-CCS for a given metric meanwhile negative numbers (blue 

colors) indicate the opposite. Figure 3a shows the difference in CORR of daily precipitation. 

Apart from few regions in the Sahara Desert, Mediterranean Sea, and other scattered spots 

over oceans, PDIR-Now shows a better CORR compared to PERSIANN-CCS. While the 

average increase in CORR over the entire global domain is only marginal (0.52–0.57; see 

Table 1), significant regional improvement is present specifically over eastern Asia. 

Precisely, CORR in daily precipitation improves from 0.44 to 0.54 over the Asian continent 

(see Table 1). Similar patterns are observed in terms of bias in Fig. 3b with significant 

improvement over eastern Asia, central Africa, and Australia. Specifically, the biases are 

reduced from 2.07 to 0.28, from 1.38 to 0.06, and from 0.35 to 0.05 over the continents of 

Africa, Asia, and Australia, respectively. Figure 3c shows the improvement obtained in 

RMSE computed as the relative RMSE which is the RMSE difference (RMSEPERSIANN-CCS 

– RMSEPDIR-Now) normalized by RMSEPERSIANN-CCS. It shows that PDIR-Now is superior 

to PERSIANN-CCS over most of the global land; specifically, RMSE in global land is 

reduced from 7 to 5.61 mm in PDIR-Now compared to PERSIANN-CCS. Figure 3d shows 

the difference in CSI which is a skill metric that summarizes the performance of the two 

algorithms in terms of their detection of rainfall events (rain/no rain). A threshold of 0.1 mm 

is used to distinguish between rainy and non-rainy days. It clearly shows that PDIR-Now is 
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more skillful than PERSIANN-CCS in detecting rainfall events and reducing false alarms 

over most regions, particularly over the Southern Hemisphere (60°–40°S) oceans.

We now turn our analysis at the daily scale into regional scales of more unified precipitation 

regimes. Figure 4 shows the probability density functions (pdfs) of daily precipitation for 

each month spatially averaged over the northwestern United States region. The spatial 

domain considered here covers the entire states of Washington, Oregon, Idaho, Montana, 

Wyoming, and northern parts of California, Utah, and Colorado. We utilize ST4 dataset as a 

baseline for evaluation since it combines information from radar, satellite, and dense gauge 

network. Figure 4a shows the pdfs of daily precipitation during the year 2017 for values in 

the range of 1–6 mm. PDIR-Now pdfs are almost identical to those of ST4 for the rainy 

months of November, December, January, and February. While pdfs of PDIR-Now deviate 

from ST4 for some months, they provide mostly estimates better than that of PERSIANN-

CCS. Similar conclusions, albeit less significant, can be drawn from Fig. 4b for high values 

of daily rainfall in the range of 6–20 mm. It should be noted that the improvement of PDIR-

Now with respect to PERSIANN-CCS is expected to be particularly pronounced in this 

region due to its complex topography. Specifically, the motivation behind the development 

of PDIR-Now was to overcome the limitations of IR-based algorithm (e.g., PERSIANN-

CCS) in estimating precipitation over complex terrain (Nguyen et al. 2020).

d. Subdaily

1) Diurnal cycle—Here we examine the performance of PDIR-Now in capturing the 

diurnal cycle of precipitation at a regional scale, specifically over the U.S. state of Kansas. 

Although the climate in Kansas varies considerably ranging from humid continental in the 

north to humid subtropical in the south, patterns of diurnal cycle are consistent throughout 

most of the state. Specifically, the state experiences severe thunderstorms during the rainy 

seasons of summer and spring. Such storms cause a salient signature in the diurnal cycle of 

precipitation as they mostly occur around noon time. Figure 5 shows the diurnal cycle during 

each season of the year for PDIR-Now (red), PERSIANN-CCS (blue), and the baseline 

dataset ST4 (black). Of concern are the summer (JJA) and spring (MAM) seasons during 

which the region receives most of its annual precipitation. Figures 5b and 5c show the 

pronounced diurnal cycle during these seasons. While both PERSIANN-CCS and PDIR-

Now capture the diurnal cycle, which reaches its peak at noon time, PERSIANN-CCS 

overestimates the amount of rainfall in both seasons. PDIR-Now, however, estimates the 

amount of precipitation adequately during the spring season, and to a lesser extent in the 

summer season. During the winter months (DJF), Fig. 5a shows that PERSIANN-CCS 

substantially overestimates rainfall rates; on the contrary, PDIR-Now rainfall amount is quite 

consistent with ST4. However, it appears that the diurnal cycle in DJF as well as in SON are 

not well captured by PDIR-Now. This might be due to the low rain rates during both 

seasons, approximately 0.05 and 0.1 mm h−1 during DJF and SON respectively, as it is well 

recognized that satellite-based precipitation algorithms are generally less adept at estimating 

low rain rates. It is also worthwhile to mention that during both DJF and SON, the diurnal 

cycle is less pronounced; therefore, the estimates of ST4 are more susceptible to 

measurement noise.
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2) Extreme events—The performance of satellite-based precipitation datasets in 

capturing extreme rainfall events is of particular importance to be examined due to the 

important role that satellite observations can play in preparedness, risk management, and, in 

turn, mitigating the devastating impacts of such events. Here, we examine the performance 

of PDIR-Now in capturing precipitation during Hurricane Harvey, which resulted in 

unprecedented rainfall accumulations of over 1.5 m that caused extensive flooding damage 

over the Houston metropolitan region, and an extreme rainfall event of thunderstorms that 

hit most of the Netherlands in June 2019, that resulted in damages, flooding, and injuries.

(i) Hurricane Harvey: To evaluate PDIR-Now’s performance during Hurricane Harvey, 

we evaluate it against ST4 and compare its performance to PERSIANN-CCS over the states 

of Texas, Oklahoma, Kansas, Louisiana, Arkansas, and Alabama during the period of 24–30 

August 2017. Figures 6a-c illustrate PDIR-Now’s improved performance compared to 

PERSIANN-CCS at 6-h accumulations. Concretely, PDIR-Now’s CORR of 0.64, RMSE of 

7.99 mm, and BIAS of −0.32 are all clear improvements over PERSIANN-CCS’s CORR, 

RMSE, and BIAS values of 0.34, 9.89 mm, and −0.53, respectively. A quick look at the 

scatterplots between PDIR-Now and PERSIANN-CCS (Figs. 6d,e) show that while both 

products experience underestimation and overestimation, PDIR-Now better captures extreme 

precipitation, made evident by the band of points that straddle then dip slightly below the red 

line of perfect correlation. Indeed, PERSIANN-CCS’s scatterplot hugs the x and y axes to 

its extrema with few points of extreme precipitation recorded near the line of perfect 

correlation, indicating systematic and extreme overestimation and underestimation with 

PERSIANN-CCS. PDIR-Now, on the other hand, suffers more from underestimation than 

overestimation, a testament to the unprecedented nature of precipitation during Hurricane 

Harvey, which has stumped other satellite QPE methodologies (Omranian et al. 2018) When 

we consider the spatial distribution of precipitation over the study period (Figs. 6a-c), there 

are few and subtle differences between PDIR-Now, PERI ANN-CCS, and ST4. Most 

notably, PDIR-Now’s accumulation totals in northwest Louisiana/east Texas and in central 

Texas (Austin and San Antonio regions) better match those from ST4 than PERSIANN-

CCS, though totals over the latter region are still underestimated by 50+ mm.

(ii) 2019 summer thunderstorms over the Netherlands: We use a high-quality dataset 

based on gauge-adjusted radar precipitation estimates provided by KNMI [see section 2b(4)] 

as a baseline for validation. Figure 7 shows the accumulated precipitation that resulted from 

the event during the period (3–6 June 2019) as estimated by gauge-adjusted radar, GSMaP-

Now, PERSIANN-CCS, and PDIR-Now. Although PERSIANN-CCS captures the spatial 

variability of rainfall, it severely underestimates the amount of rainfall. GSMaP-Now, on the 

other hand, misses the pattern entirely, recording a blob of high precipitation from the center 

of the Netherlands to the southeast that does not appear in the evaluation radar–gauge 

dataset, while missing the bands of high precipitation over the northwest region of the 

country. PDIR-Now, however, provides better estimates of rainfall amounts, especially over 

the western half of the Netherlands, though it appears to overestimate accumulated rainfall at 

the northeastern regions. These observations also manifest at the 3-hourly scale, shown by 

the scatterplots of 3-hourly rainfall during the entire event period for PDIR-Now, 

PERSIANN-CCS, and GSMaP-Now. Clearly, PERSIANN-CCS underestimates 
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precipitation rates as evident by the cluster of points below the one-to-one line (red line). On 

the other hand, GSMaP-Now significantly overestimates rainfall, showcased by a positive 

bias, relatively large RMSE, and large patch of points above the red line of perfect 

correlation. Overall, CORR of 3-hourly rainfall are 0.76, 0.64, and 0.49 for PDIR-Now, 

PERSIANN-CCS, and GSMaP-Now, respectively.

5. Data dissemination and web-based interface

PDIR-Now dataset is available through two web-based interfaces operated by the Center for 

Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine: the 

CHRS iRain interface (https://irain.eng.uci.edu/), a website that provides a user-friendly 

interface to visualize global precipitation dataset for the last 72 h, and the CHRS Data Portal 

(https://chrsdata.eng.uci.edu/), which is intended as an accessible interface for the download 

of PDIR-Now dataset as well as other PERSIANN family datasets. The latter is described in 

detail in Nguyen et al. (2019). Here, we provide a brief description of the two interfaces.

a. CHRS data portal

The global PDIR-Now dataset is hosted for public distribution at CHRS’s in-house data 

distribution web system, the CHRS Data Portal (chrsdata.eng.uci.edu; Nguyen et al. 2019). 

Currently, the span of the PDIR-Now dataset is from 1 January 2014 to the present, with a 

latency of 15–60 min after the time of occurrence. The CHRS Data Portal emphasizes ease 

of use by allowing users to query, process, compare, and analyze precipitation data onsite. In 

addition, it focuses on intuitive distribution by employing a simple data request system that 

allows users to aggregate and/or clip data over space and time prior to download. Data can 

be downloaded in binary, TIFF, NetCDF, and ArcGrid formats. Last, CHRS Data Portal’s 

subscription tool allows users to receive rainfall information as soon as data are added to the 

archive.

b. CHRS iRain

The PDIR-Now dataset has replaced PERSIANN-CCS on the CHRS iRain web system 

(irain.eng.uci.edu) (Fig. 8). The iRain system is a web interface that allows users to visualize 

real-time global satellite precipitation observations from PDIR-Now and track extreme 

precipitation events globally using the Connected-Object (CONNECT) algorithm (Sellars et 

al. 2013) The iRain interface consists of map layers which contain different political and 

hydrological borders that can be overlaid on the rainfall pattern and rain layers from 

different rain accumulation measurement tools such as radar, rain gauges, and crowd 

sourcing. Further information on iRain’s tools and layers are provided in the subsections 

below.

1) Map layers—The iRain map layers tool (Fig. 8a) allows users to overlay polylines of 

political and hydrological divisions. For political divisions, users can query between 

overlaying country and political division (states, provinces, oblasts, etc.), while hydrologic 

divisions users can query include continental basins, major river basins, tributary basins, and 

watersheds.
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2) Rain layers—The iRain rain layer tab (Fig. 8b) consists of four precipitation 

accumulation data products, including PDIR-Now, radar from Stage II, iRain’s own 

crowdsourcing data, and rain gauges provided by MesoWest at the University of Utah. The 

combination of the data products found in iRain allows for a visualization and direct 

comparison of precipitation data from multiple sources at spatial scales from point to global. 

The rain total tab located under rain layers effects the rain layer tool, as it allows users to 

switch between the last 3 and 72 h of rain accumulation. Moreover, the 3-hourly rain 

animation tab displays an animation of 72-h rain accumulation.

3) Spatial query—The spatial query tool (Fig. 8c) allows for users to select from nine 

different spatial extents. Users can query by the political and hydrological divisions from the 

map layers, create a user-customized rectangle or polygon, or query by point. The spatial 

query tool generates a graph of rainfall in that spatial extent over the last 3 days. Depending 

on the rain layers that are active, this plot can directly compare up to three data sources. 

Data and statistics autocalculated by this tool are downloadable as an Excel spreadsheet for 

easy, deeper analysis. Selecting the full report option creates an autogenerated PDF of 

rainfall graphs, distributions, climatology, and geographic information such as distribution of 

aridity, land cover, and elevation. As with the autogenerated plots, this autogenerated PDF is 

downloadable directly off the web system.

4) Extreme events—The iRain system allows users to track extreme precipitation 

events globally using the extreme events tab (Fig. 8d). The extreme event tool uses the 

CONNECT algorithm to produce four-dimensional (latitude and longitude spatial 

dimensions, temporal, and intensity) rainfall “objects” that allow for the tracking of large-

scale precipitation event life cycles. With each update of PDIR-Now data, CONNECT is 

automatically run on the system, and from it, the 50 largest-scale (based on intensity) 

precipitation events are stored for querying purposes. When the user interacts with the 

extreme events tool, the total accumulations of these 50 objects are displayed with a pointer 

that designates it with a number that corresponds to its rank in volume. Rainfall objects 

come with layers including centroids, which displays the total number of objects or storms; 

rain totals; tracking, which displays the polyline generated by each time-lapse spatial 

centroid; and the calculated statistics, which gives information on the storm such as storm 

intensity, accumulation, coverage area, total rain volume, duration, and status. Each storm is 

trackable through its time steps through either an accumulation or time-lapse animation. 

This animation’s speed is customizable, and it also allows frame-by-frame navigation.

6. Concluding remarks

This article presented a new dataset, PDIR-Now, produced by the Center for 

Hydrometeorology and Remote Sensing (CHRS), which is intended to supersede 

PERSIANN-CCS. The dataset is evaluated across distinct temporal and spatial scales. It is 

shown that PDIR-Now is superior to PERSIANN-CCS in precipitation estimates at 

aggregate scales (i.e., continental and annual) as well as detection of seasonal and diurnal 

cycles of precipitation at regional scales. Furthermore, analysis of two extreme events, 

Hurricane Harvey and a cluster of summer thunderstorms over the Netherlands in August 

2017 and June 2019, respectively, reveals that PDIR-Now significantly improves estimation 
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of extreme events compared to PERSIANN-CCS, indicating better utility for applications 

where near-real-time readings of hydroclimate extremes are required.

The main advantage of PDIR-Now, compared to other near-real-time precipitation datasets, 

is its reliance on the high-frequency sampled IR imagery; consequently, the latency of 

PDIR-Now from the time of rainfall occurrence is very short (15–60 min). Additionally, 

PDIR-Now accounts for the errors and uncertainties that result from the use of IR imagery 

by adopting a variety of techniques most notable is the dynamic shifting of (Tb–R) curves 

using rainfall climatology. The short latency of PDIR-Now renders the dataset well suited 

for near-real-time hydrologic applications such as flood forecasting and developing flood 

inundation maps. Furthermore, the encouraging evaluation results in the present study 

indicate the potential of using the PDIR algorithm to reconstruct historical precipitation 

estimates at high spatiotemporal resolution. Preliminary investigations of such an avenue are 

underway, and their results will likely be reported in the foreseeable future.
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Fig. 1. 
Mean annual precipitation (mm) during the evaluation period (2017–18) for (a) IMERGF 

(final release), (b) PERSIANN-CCS, and (c) PDIR-Now. (d) Zonal mean annual 

precipitation for the period (2017–18) for the three datasets: IMERGF (black), PERSIANN-

CCS (blue), and PDIR-Now (red).
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Fig. 2. 
Monthly precipitation time series for the year 2017. Black, blue, and red lines represent 

GPCP, PERSIANN-CCS, and PDIR-Now, respectively. (a) The 5° × 5° region over Central 

Africa (location 1) bounded by the latitudes 1°–6°N and longitudes 16°–21°E. (b) The 5° × 

5° region over South America (location 2) bounded by the latitudes 13°–8°S and longitudes 

70°–65°W.
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Fig. 3. 
Difference in performance metrics for daily rainfall during the evaluation period (2017–18). 

All metrics are computed against the baseline product IMERGF. The maps show the 

difference between the performance metrics of PDIR-Now and PERSIANN-CCS; red color 

indicates that PDIR-Now has better performance with respect to PERSIANN-CCS. (a) 

Correlation, (b) relative bias, (c) relative RMSE (i.e., RMSE normalized by annual 

precipitation), and (d) CSI.
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Fig. 4. 
Histograms of daily precipitation over the northwestern United States for the year 2017. 

Black, blue, and red lines represent ST4, PERSIANN-CCS, and PDIR-Now, respectively: (a) 

1–6 and (b) 6–25 mm.

Nguyen et al. Page 20

J Hydrometeorol. Author manuscript; available in PMC 2021 June 21.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 5. 
Diurnal cycle of spatially averaged precipitation over Kansas for the period (2017–18). 

Black, blue, and red lines represent ST4, PERSIANN-CCS, and PDIR-Now, respectively. (a) 

DJF, (b) MAM, (c) JJA, and (d) SON.

Nguyen et al. Page 21

J Hydrometeorol. Author manuscript; available in PMC 2021 June 21.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 6. 
Accumulated precipitation of Hurricane Harvey over Texas and the surrounding area for the 

period 24–30 Aug 2017 as estimated by (a) ST4, (b) PERSIANN-CCS, and (c) PDIR-Now. 

Scatterplots of 6-hourly precipitation from (d) PERSIANN-CCS vs ST4 and (e) PDIR-Now 

vs ST4 during the period 24–30 Aug 2017.
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Fig. 7. 
Accumulated precipitation over the Netherlands for the period 3–6 Jun 2019 as estimated by 

KNMI gauge-adjusted radar, PERSIANN-CCS, PDIR-Now, and GSMaP-Now. Scatterplots 

of 3-hourly precipitation from PERSIANN-CCS vs KNMI, PDIR-Now vs KNMI, and 

GSMaP-Now vs KNMI during the period 3–6 Jun 2019.
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Fig. 8. 
CHRS iRain (http://irain.eng.uci.edu) and its various tools: (a) map layers, (b) rain layers, 

(c) rain query, and (d) extreme events.
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