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Predicting alcohol use disorder remission: a
longitudinal multimodal multi-featured machine
learning approach
Sivan Kinreich 1, Vivia V. McCutcheon2, Fazil Aliev 3,4, Jacquelyn L. Meyers 1, Chella Kamarajan 1,
Ashwini K. Pandey 1, David B. Chorlian1, Jian Zhang1, Weipeng Kuang1, Gayathri Pandey1,
Stacey Subbie-Saenz de. Viteri1, Meredith W. Francis5, Grace Chan 6, Jessica L. Bourdon 2, Danielle M. Dick 3,
Andrey P. Anokhin2, Lance Bauer6, Victor Hesselbrock6, Marc A. Schuckit7, John I. Nurnberger Jr. 8, Tatiana M. Foroud9,
Jessica E. Salvatore10,11, Kathleen K. Bucholz2 and Bernice Porjesz1

Abstract
Predictive models for recovering from alcohol use disorder (AUD) and identifying related predisposition biomarkers
can have a tremendous impact on addiction treatment outcomes and cost reduction. Our sample (N= 1376) included
individuals of European (EA) and African (AA) ancestry from the Collaborative Study on the Genetics of Alcoholism
(COGA) who were initially assessed as having AUD (DSM-5) and reassessed years later as either having AUD or in
remission. To predict this difference in AUD recovery status, we analyzed the initial data using multimodal, multi-
features machine learning applications including EEG source-level functional brain connectivity, Polygenic Risk Scores
(PRS), medications, and demographic information. Sex and ancestry age-matched stratified analyses were performed
with supervised linear Support Vector Machine application and were calculated twice, once when the ancestry was
defined by self-report and once defined by genetic data. Multifeatured prediction models achieved higher accuracy
scores than models based on a single domain and higher scores in male models when the ancestry was based on
genetic data. The AA male group model with PRS, EEG functional connectivity, marital and employment status features
achieved the highest accuracy of 86.04%. Several discriminative features were identified, including collections of PRS
related to neuroticism, depression, aggression, years of education, and alcohol consumption phenotypes. Other
discriminated features included being married, employed, medication, lower default mode network and fusiform
connectivity, and higher insula connectivity. Results highlight the importance of increasing genetic homogeneity of
analyzed groups, identifying sex, and ancestry-specific features to increase prediction scores revealing biomarkers
related to AUD remission.

Introduction
National surveys on alcohol use statistics and Alcohol

Use Disorder (AUD) studies show that only one-third of

individuals with AUD attempted to quit drinking every
year1. Of them, only 25% were successful in reducing
alcohol consumption for more than a year1. At the same
time, there are ongoing debates over courts and correc-
tional programs admitting individuals into rehabilitation
programs given their efficacy and program’s outcome2,3.
Therefore, it is of great importance to be able to identify
AUD resilience and readiness to recover features includ-
ing predisposition characteristics that can predict a
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change in drinking behavior, consequently impacting
therapeutic approaches to AUD, helping individuals
overcome addiction and overall reducing state, and fed-
eral associated financial burden. Few studies have inves-
tigated the characteristics of those with AUD who reduce
alcohol consumption, but they have often focused on
psychosocial aspects3 and initial consumption measure-
ments4,5, leaving physiological and genetic variables
unexplored.
Recently, the ability to use multimodal multi-features

machine learning (ML) applications has started to revo-
lutionize biomedical research enabling to classify and
predict diseases, as well as a better understanding of
development and treatment outcomes, outperforming
more classical analyses such as regressions6–8. Significant
ML Support Vector Machine (SVM) classifier models
were found for complex disorders, including schizo-
phrenia, bipolar disorder, and depression, identifying
discriminating features9. Our own study8 and others7,
have shown that the accuracy of ML models increases by
using multimodal, multi-features approaches to describe
complex disorders, permitting a variety of measurement
domains that could be brought to bear on different
aspects of disease pathology7. Indeed, ML studies calcu-
lating AUD classifiers/predictive models have employed
genetic loci8, psychosocial7, family history8, and electro-
physiological (EEG) measurements8 as features in a
multimodal analysis. In the current ML study, we have
utilized EEG, genetics, medication intake, and demo-
graphic as predisposition characteristics to predict AUD
remission. EEG measurements, especially resting-state
functional connectivity (EEG-FC) have been shown to be
a reliable diagnostic tool and classifier in AUD and other
brain disorders such as post-traumatic stress disorder, and
bipolar disorder10. Polygenic risk scores (PRS), which
summarize the effects of genome-wide association study
(GWAS) markers to measure the genetic liability to a trait
or a disorder, have shown promise in predicting human
complex traits and diseases11,12. Several GWAS studies
tested alcohol-related PRS for association with AUD
phenotypes, using PRS related to risky behaviors, alcohol-
use problems, and alcohol consumption with encouraging
results13,14. We also tested demographic features includ-
ing marital and employment status which have been
found to be associated with a reduction in alcohol con-
sumption and remission1 from AUD. Current medication
intake was added as a potential feature to the calculated
AUD remission predictive model. Alcohol misuse targets
areas of the brain, altering mental states such as emo-
tion15 and cognition16, thus affecting an individual’s
capability to cope with the challenges involved in the
relapse/recovery processes17. Medication can restore
brain regulation abilities, potentially strengthening and
stabilizing individual mental abilities, thus supporting

AUD remission. The substantial impact that marital and
occupational status has for those with AUD18,19, indicates
stabilizing and supportive environmental effects.
The present study, therefore, aims to create an ML

model, predicting future AUD remission among indivi-
duals who had met criteria for active DSM-5 AUD at their
first interview but no longer meet criteria for current
DSM-5 AUD at their next interview. It should be noted
that remission is a complex, multidimensional process;
this study focuses on the reduction of alcohol use and of
AUD symptoms to subclinical levels, which is one com-
ponent of remission20. We used longitudinal multi-
dimensional data from COGA (e.g., clinical,
electrophysiological, GWAS, demographics), including
individuals of European Ancestry (EA) and African
Ancestry (AA). COGA collects data and follows indivi-
duals with AUD, providing a unique opportunity to
compare an individual’s AUD status over the develop-
ment of their addiction and during their remission. Most
importantly the diverse COGA data-enabled stratified
analyses, increased group homogeneity, creating an indi-
vidualized model, and discriminative key features for
every group. To further increase group ancestry genetic
homogeneity we calculated the models when ancestry was
based on self-report and again based on genetics calcu-
lated with ancestral principal components (PCA)21. Our
central hypothesis was that model based on multi-
dimensional features will result in a better prediction than
singular modality and that being married, employed, and
taking medication will predict remission. Using stratifi-
cation to control for the confounding variables, sex, and
ancestry, we expected to find differences in the prediction
models between the groups, with higher accuracy scores
when the ancestry was calculated using genetic data. We
also examined the most discriminative features in the
predictive models, enhancing our understanding of neu-
rophysiological, genetic, and socio-demographic char-
acteristics underlying AUD resilience and recovery.

Materials and methods
Participants
The data consisted of 1376 participants (826 males and

550 females) from COGA, including EA and AA indivi-
duals. Data from seven collection sites were included in
this study. The experimental protocols were approved by
each site’s institutional review board, and informed con-
sent (for those over 18 years of age) or assent (for those
under 18 years of age) was obtained from all participants.
Ascertainment and assessment procedures of COGA
recruits have been described elsewhere22 and in Supple-
mentary Materials. Only individuals who met criteria for
lifetime DSM-5 AUD and who participated in at least two
interviews were included in the sample for these analyses.
We examined only participants who were diagnosed as
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DSM-5 AUD at their initial laboratory visit and reassessed
years later, at a follow-up visit, when they were divided
into two groups: (1) continued AUD: met criteria for
active DSM-5 AUD at time 1 and time 2, and (2) remitted
AUD: no longer met criteria for active DSM-5 AUD at
time 2. The AUD and remission phenotypes were based
on information from two consecutive interviews. Both
continued AUD and remitted AUD met criteria for cur-
rent AUD at the first interview, defined as the presence of
two or more AUD criteria within the previous 12 months.
Remission at the second interview was defined as the
absence of all AUD criteria other than craving for at least
12 months and either low-risk drinking or abstinence (n
= 688, 413 males, 275 females, mean age at initial visit:
30.62 ± 9.41, mean number of years between visits = 4.6 ±
1.7). The continued AUD group met criteria for current
AUD at both interviews (n= 688, 413 males, 275 females,
mean age: 30.79 ± 9.36, mean number of years between
visits = 4.8 ± 1.6). The analysis was done on the data
collected during the first visit to predict remission status
at the second visit. In a series of analyses, the groups were
further divided according to ancestry (EA, AA) and sex
(male, female). Stratified analysis by ancestry was done
twice: once with ancestry identified by self-report and
once identified by implementing SNPrelate23 to estimate
principal components from GWAS data which was sub-
sequently used to determine EA and AA. Sex, ancestry,
and features’ missing values dictated a series of analyses
that included different subsets of subjects. All groups were
matched on age. A full description of each of the groups
can be found in Supplementary Tables S1–S4.

Procedure
EEG data acquisition and preprocessing
EEG was recorded for 4 min as the participants were

sitting on a comfortable chair and were instructed to stay
awake with their eyes closed and not to move. Participants
sat in a dimly lit, sound-attenuated RF-shielded booth
(Industrial Acoustics, Inc., Bronx, NY, USA) with 64-
channel electrode cap (Electro-Cap International, Inc.,
Eaton, OH, USA) based on the extended 10–20 System.
EEG recording and preprocessing procedures are descri-
bed in Supplementary Materials.

Feature extraction
EEG extracted features
A full description of EEG functional connectivity cal-

culation (using MNE package)24 can be found in Sup-
plementary Materials and Supplementary Table S5.
Briefly, The FreeSurfer parcellation scheme (aparc.lh/rh),
based on the Desikan–Killiany Atlas25, was used to define
68 cortical regions from both hemispheres (list of ROIs in
Supplementary Table S5). We computed spectral coher-
ence26 to measure functional connectivity (FC) between

EEG signals of 68 regions of interest (ROI) at specific
frequency bands: theta (4–8 Hz), alpha (8–12 Hz), beta
(12–30 Hz), and gamma (30–60 Hz) with no overlap
between frequencies. The following electrophysiological
features were extracted: for each of the frequency bands
(theta, alpha, beta, and gamma), a 68 × 68 ROIs matrix of
coherence was created for each participant resulting in
9221 features. Each of these features represents an EEG
coherence functional connectivity (EEG-FC) between
two ROIs.

PRS features
PRS based on GWAS weights from 47 phenotypes were

derived from 12 publicly available large-scale GWAS of
alcohol-related traits conducted in EA and AA males and
females including GWAS of alcohol consumption27–29,
DSM-IV alcohol dependence28,30,31, and a maximum
number of alcoholic drinks within 24 h. Additional PRS
were derived from GWAS of other traits known to cor-
relate with alcohol use and problems, including educa-
tional attainment32,33, anxiety disorders34, personality
traits(e.g., aggression35, neuroticism33,36), depression33,
subjective wellbeing32, brain structure37, and environ-
mental sensitivity38 (overall number of PRS features=
1162). Details regarding the discovery of GWAS, includ-
ing the number of individuals who participated in the
GWAS and phenotypes, can be found in Table S6.
Information on genotyping and quality control is available
in the Supplemental Materials. Briefly, the well-
established process of clumping and thresholding was
used39 where single nucleotide polymorphisms (SNPs)
from discovery GWAS were clumped based on linkage
disequilibrium (LD) in the 1000 genomes EUR panel
using PLINK 1.940, based on an R2= 0.25, with a 500 kb
window. SNPs were weighted using the negative log of the
association p values. Scores were based on differing
thresholds of GWAS p values (p < 0.0001, p < 0.001, p <
0.01, p < 0.05, p < 0.10, p < 0.20, p < 0.30, p < 0.40, p <
0.50). PRSs were converted to Z-scores for interpretation.

Marital, employment status, and medication intake
This information was gathered as part of COGA’s

assessment procedure (see22 Supplementary Materials for
further description). Assessment about prescribed medi-
cation intake during the last 30 days includes medication
for sleep, anxiety, headaches, birth control, depression,
energy, containing steroids, and another category listed as
‘other medication’.

Machine learning analysis
Z Normalization was applied to all the features to

maintain a common scale, without distorting differences
in the ranges of values. Regularization methods were used
to control for variables overfitting, enhancing the
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interpretability, and prediction accuracy of the calculated
models. We used the least absolute shrinkage and selec-
tion operator (LASSO) penalty approach shown by Tib-
shirani41 for feature selection. The sparsity property of
LASSO which generates coefficient estimates of exactly
zero, shrinks the estimation variance resulting with a
more interpretable model42. Previous use of this applica-
tion for genomic data43 has shown that the selective
number of discriminating features can reach satisfactory
classification. Regularization parameters were determined
using a tenfold cross-validation (CV) procedure, with the
label: continued AUD vs. remitted AUD as the response
variable. The reduced set of the most discriminant fea-
tures with non-zero coefficient was fed into the model to
predict participants status to either continued AUD group
or remitted AUD group. A supervised linear-kernel SVM
that included parameter optimization was trained with a
tenfold CV procedure to classify participants into the two
groups. The tenfold CV procedure involved randomly
dividing the participants into ten equal groups, training
the classifier on nine of them, and tested the trained
model on the left out one. To ensure randomization of the
participants in the calculated model, the dataset was
shuffled before every fold. To take advantage of the ran-
domization procedure, we repeated this process ten times,
averaging the output results. CV was applied to all models
with additional training/testing (70:30) validation analysis
to confirm results in the larger samples (EA male and
females). Model performance was evaluated by calculating
the number of true positives (TP, number of correctly
classified remitted AUD) and true negatives (TN, number
of correctly classified continued AUD) scores. We com-
puted the classification accuracy as the ratio of sum of TP
and TN divided by the sum of all classified subjects. Area
under curve (AUC)7 was used to evaluate the classifica-
tion models. More description of AUC calculation and
comparison can be found in Supplementary Materials.

Results
Significant ML SVM models were calculated predicting

remission from AUD for individuals who were previously
diagnosed as AUD DSM-5. Sex and ancestry stratified

analysis created an individualized model for each of the
groups: EA males, EA females, AA males, and AA females
(full details of the number of participants and matching
age for each of the models in Supplementary Tables S1–
S4). Table 1 summarizes the results of the significant
predictive model scores across ancestry and sex (see
Tables S7–S10 for full results), confirming the previous
finding that the combined feature model (e.g., AA males
and females models with EEG, PRS, medication, and
demographic features) was more accurate than models
based on single domain (Fig. 1). We found higher model
accuracy when group’s ancestry was defined by genetics
than by self-report, in EA males (p < 0.001) and AA males
(p < 0.001) in models with only PRS as features (Supple-
mentary Fig. S1). No difference was found in the females’
groups between the two types of ancestry definition. The
AA male group combined feature model of PRS, EEG-FC,
marital status, and employment status achieved the
highest accuracy of 86.04% (specificity= 85.83%, sensi-
tivity= 86.257%, AUC= 0.97). The AA female group
combined feature model of PRS, EEG-FC, and depression
medication also achieved high accuracy of 85.43%

Table 1 Selected models predicting AUD remission stratified by ancestry and sex.

Model [# features] Specificity (%) STD Sensitivity (%) STD Accuracy (%) STD AUC STD

EA male PRS, EEG, Other & sleep meds8 74.96 0.5 54.82 1.8 64.96 0.9 0.74 0.0

EA female PRS, EEG, Marital status10 64.38 2.0 62.791 2.3 63.60 1.3 0.77 0.0

AA male PRS, EEG, Marital, Employment status8 85.83 6.8 86.25 6.4 86.04 5.4 0.97 0.0

AA female PRS, EEG, Depression meds7 80.66 4.9 90.476 3.1 85.43 3.2 0.98 0.0

Values are means ± standard deviation (STD). Alcohol Use Disorder (AUD), European Ancestry (EA), African ancestry (AA). Meds—Medication. Other meds—Any
medication that is not one of the seven medications listed in Supplementary materials.

Fig. 1 Model accuracy stratified by sex and ancestry. Prediction
obtained by only the PRS, the combined EEG and PRS, and features
from the highest accuracy scored model for every group (Table 1).
Results indicate higher accuracy for the combined feature models
suggesting the advantage of adding phenotypes to genetic
prediction models. The error bars are standard deviations. *p < 0.05,
**p < 0.01.
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(specificity= 80.66%, sensitivity= 86.19%, AUC= 0.9).
The models of EA male and female groups achieved AUC
>0.74 for the model with combined features of PRS, EEG-
FC, and medication (accuracy 64.96%, EA males) and PRS,
EEG-FC, and marital status (accuracy 63.60%, EA females)
(Table 1). Adding discriminatory features to the models
increased accuracy, specifically EEG-FC was the most
discriminative feature category for all groups (p < 0.001).

Discriminative features
Tables 2 and 3 present a summary of selected shared

and group-specific features stratified by ancestry and sex
for the model with the highest accuracy in each group.
Supplementary Tables S11–S14 present the significant
features separately for every model.

EEG-FC
Default Mode Network (DMN) FC, as well as, con-

nectivity levels in other brain networks, were found to
discriminate between the groups and to predict AUD
remission (selected significance FC features according to
groups in Table 3 and Fig. 2. Full list of FC features
including right, and left hemispheres can be found in
Supplementary Tables S11–S15). Lower connectivity of
DMN ROIs was found in the continued AUD group,
especially in the range of theta and gamma bands. Known
DMN hubs including the precuneus (AA female), the
posterior cingulate (AA female), and the middle frontal

(EA male, AA male) showed lower gamma connectivity.
Lower Theta connectivity was found in other more tem-
poral DMN hubs such as the temporal cortex (AA female)
and the parahippocampal formation (EA female) with
anterior and posterior brain areas. Lower theta con-
nectivity in the continued AUD versus remitted group
was also found between the fusiform and posterior and
anterior brain areas. Higher connectivity in the continued
AUD group was found in selected temporal and parietal
areas including the insula connectivity with superior
parietal (beta, EA female) and with inferior parietal (theta,
AA male) (Fig. 2).

PRS
Significant discriminative shared and specific PRS were

found between the groups (selected significance PRS
features according to groups in Table 2 and full list can be
found in Supplementary Tables S11–S14, including
weight ranking). The discriminative features include PRS
related to personality traits (neuroticism (EA males, EA
females) and aggression (EA male), as well as, depression
(EA females), socio-demographic (years of education (EA
males, EA females)) and alcohol-related (maximum
number of alcoholic drinks within 24 h (AA males)).

Medication
Adding medications to the PRS models significantly

increased model accuracy for EA males—sleep medica-
tion, AA males—other medication. (p(PRS vs PRS & sleep

medication) <0.001, p(PRS vs PRS & other medication) <0.001,
respectively). Depression medication increased the accu-
racy score of the PRS & EEG-FC model but this increase
did not reach significance (p(PRS & EEG vs PRS & EEG &

depression medication)= 0.5). In those cases, taking medica-
tion predicted maintenance of the AUD state (Table 2 for
weight ranking).

Marital status
Marital status feature discriminated between the groups

revealing that more members from the remitted AUD EA
female and AA male groups were not married compared
to their AUD counterparts. (Table 2 for weight ranking).
EA female: p(PRS & EEG vs. PRS & EEG & Marital status) <0.004,
AA male: p(PRS & EEG vs. PRS & EEG & Marital status) <0.001.

Employment status
Employment status feature discriminated between the

groups revealing that more members from the remitted
AUD AA male group were not employed compared to
their AUD counterparts. (Table 2 for weight ranking).
p(PRS & EEG vs. PRS & EEG & Marital & Employment status) <0.001.

Table 2 Selected discriminative PRS and demographic
features predicting AUD remission stratified by ancestry
and sex.

Model Weight ranking

PRS, discovery sample

Neuroticism, EDU33 EA male, EA female 7, 5

Years of education, EDU33 EA male, EA female 4, 5

Aggression, EAGLE35 EA male 2

Depression, EDU33 EA female 3

Max alcohol threshold, MVP28 AA male 4

Demographics

Marital status EA female, AA male 4, 2

Employment status AA male 2

Medication

Sleep medication EA male 6

Other medication EA male 2

Depression medication AA female 6

EA European ancestry, AA African ancestry, PRS Polygenic Risk Score. Other
medication—Any medication that is not one of the seven medications listed in
Supplementary materials. Discovery samples are described in Supplementary
Table S6.
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Discussion
Of the one-third of individuals with AUD who attempt

to quit drinking every year, only 25% are successful in
reducing their consumption a year later. Therefore,
understanding the parameters that can set an optimal
initial state (including biomarkers, demographic, and

medications) can greatly affect the success of remission
from AUD. Using multimodal, multi-featured machine
learning applications with the COGA longitudinal dataset,
we uncovered these parameters, uniquely characterized
per sex and ancestry. This is the first study to formulate a
multimodal-based prediction model to determine AUD

Table 3 Selected discriminative EEG-FC features predicting AUD remission stratified by ancestry and sex.

Frequency Model Weight ranking

Lower connectivity

Isthmus cingulate—Rostral middle frontal Theta EA male 3

Parahippocampal—Frontal pole Alpha EA female 3

Parahippocampal—Lateral occipital Theta EA female 4

Rostral anterior cingulate—Inferior temporal Theta AA female 1

Fusiform—Lateral occipital Theta EA female 1

Fusiform—Paracentral Theta EA female 2

Fusiform—frontal pole Theta AA female 3

Precuneus—Posterior cingulate Gamma AA female 2

Rostral middle frontal—Inferior temporal Gamma EA male 1

Medial orbito frontal—Caudal middle frontal Gamma AA male 1

Higher connectivity

Superior Temporal—Lingual Gamma EA male 1

Superior Parietal—Insula Beta EA female 2

Inferior Parietal—Insula Theta AA male 2

Inferior Parietal—Superior temporal Alpha EA female 1

EA European ancestry, AA African ancestry, Lower, Higher coherence of the AUD group compared to the remitted group. Weight ranking—Order of importance in the
prediction model according to the beta value.

Fig. 2 EEG functional connectivity AUD remission biomarkers. AUD remission prediction models reveal ancestry/sex group-specific brain
connectivity biomarkers discriminating between those who recovered from AUD to those who did not. Results highlight lower connectivity in theta
(blue) and gamma (red) in areas related to DMN (in bold -IT, PCC, PR, raCC, PH) and higher connectivity in theta (blue) and beta (orange) between
insula and inferior and superior parietal regions respectively (in bold INS, IP, IT) specific to every sex and ancestry predicting the maintenance of AUD.
blue-theta, green-alpha, orange-beta, red-gamma. Thinner lines—lower connectivity, Thicker lines—higher connectivity. CMF Caudal middle frontal,
FF fusiform, FP frontal pole, INS insula, IC Isthmus cingulate, IP inferior parietal, IT inferior temporal, LI lingual, LO Lateral Occipital, MOF medial orbito
frontal, PC paracentral, PCC posterior cingulate cortex, PH parahippocampus, PO parsorbitalis, PR precuneus, raCC rostral anterior cingulate cortex, SM
supramarginal, rmF Rostral middle frontal, TP temporal pole, TT Transverse temporal, SP Superior parietal, ST Superior temporal.
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individuals who are going to be in remission from AUD.
Results confirmed previous results showing that the
combined feature model (e.g., EEG, PRS, medication, and
demographic information) achieved a higher prediction
score than models based on single domain suggesting that
genetics prediction models will improve from the addition
of phenotypes to the calculation. Intriguingly, results
indicate higher accuracy scores for EA and AA males,
when the ancestry was defined by genetics than by self-
report for models with only PRS features. Several dis-
criminative features were identified for each of the models
revealing novel predisposition sex and ancestry-specific
AUD remission biomarkers. EEG-FC in all groups was
found to distinguish between the continued AUD and the
remitted AUD group, revealing DMN and fusiform lower
and insula higher functional connectivity in the continued
AUD group. Several discriminative PRS were shared
(neuroticism PRS and years of education PRS in EA
groups), while others PRS were group-specific, such as
PRS associated with aggression were important for EA
males, and depression PRS were important for EA
females. Being married, employed, and taking medication
predicted the maintenance of the AUD state. Overall, our
findings suggest that wide range of multidimensional
features with high internal homogeneity groups will for-
mulate better predictive models.
Our results underscore previous findings showing the

high predictive value of neurophysiological brain function
to predict/classify neurological disorder8. The EEG-FC
discriminative features highlight the difference in the
neural connectivity underlying resting state spontaneous
processes (mind wandering, self-reference, and other
introspective processes) between those with continued
AUD vs remitted AUD. The continued AUD group
showed a lower level of DMN connectivity confirming
previous findings of aberrant DMN function in AUD and
across psychiatric conditions such as depression, schizo-
phrenia, and autism44,45. DMN activity during resting
state is implicated in memory consolidation because of
the commonality of neural systems to both processes, and,
therefore, may be related to aberrant related mental
processes such as working memory deficit46, inferior
cognitive performance, inferior memory formation, and
poor learning of cognitive skills47 in alcoholics. Indeed the
continued AUD EA female group showed lower con-
nectivity of parahippocampal with the anterior and pos-
terior areas of the brain, previously implicated in
memory48 and cognitive49 functions, and the AA males
group showed lower connectivity in the precuneus/pos-
terior cingulate, two of the main DMN hubs, which are
suggested to play a pivotal role in how the intrinsic
activity is mediated throughout the DMN50. Both female
groups showed lower connectivity involving the fusiform
supporting previous fMRI resting-state findings linking

cognitive impairment and lower fusiform connectivity51.
The insula was found to increase connectivity with
superior temporal (EA females) and inferior parietal (AA
males) in the group that maintains AUD diagnosis. Pre-
vious study showed that greater functional coupling
between the anterior insula and the left frontoparietal
network is linked to smoking and impulsivity52. Given the
insula’s role in interoceptive awareness and homeostatic
processing, this lower activity of connectivity may relate
to bias towards immediate rewards52 and increased ten-
sion53 associated with addiction52. Interestingly, the
structural integrity of the salience network (insula) and
DMN lower activity was previously linked to the salience
network role as regulating dynamic changes in other
networks54. This theory suggests that if the salience net-
work in the continued AUD group is damaged it might
relate to the DMN lower functioning55. Overall, these
brain networks’ connectivity showed aberrant functions
related to AUD. Observed EEG differences between the
genders and between the ancestries support the impor-
tance of identifying group-specific prediction models.
EEG is a highly heritable phenotype and the differences
revealed are the first steps in identifying and distin-
guishing between different genders and ancestries for the
purpose of deepening our knowledge about disease
recovery.
The present study reinforces recent discoveries that

show the inherent power of adding phenotypes to the
genetics prediction model in order to increase accuracy8.
Several group-specific PRS were identified as distin-
guishing between the continued AUD and the remitted
AUD group. For example, while the EA male model
includes PRS related to aggression, the EA female model
includes PRS related to depression. Interestingly, both EA
group models for the prediction of AUD remission
include neuroticism PRS and years of education PRS. Our
findings are in line with recently published studies
showing PRS association with disorder outcomes in
depression56, schizophrenia57, and alcohol-related phe-
notypes58. These findings highlight the potential of PRS
collections to predict the course of development and
recovery from diseases. PRS collections representing
genetic fingerprint of various phenotypes allow embody-
ing complex diseases with multiple domains. Notably, our
results demonstrate the significance of using genetic data
over self-report to identify self-ancestry, which increases
the genetic homogeneity of the groups, leading to higher
prediction scores.
Contrary to our hypothesis, taking medication (EA

male: medication for sleep and other, AA female: medi-
cation for depression) predicted maintenance of AUD
state. Evidence indicates that individuals suffering from
comorbidity of other disorders will be disadvantaged in
dealing with the physical and psychological processes that
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accompany withdrawal from addiction59. Specifically,
alcohol and sleep disturbances have complex mutual
relationships as alcohol is used by more than one in ten
individuals as a hypnotic agent to self-medicate sleep
problems60., thus increasing the likelihood of developing
alcohol problems61. Moreover, studies show that sleep
disturbances are extremely common during withdrawal
from alcohol dependence and may persist for several
months despite continued abstinence62, and hence may
interfere with remission and contribute to relapse63.
Contrary to our hypothesis, results showed that marriage
and employment status predicted maintenance of the
AUD state. Marriage and employment may add additional
stressors to the alcoholic’s state of mind that precludes
seeking help. Co-workers, spouses, and other family
members often experience many tensions and heightened
emotional distress caused by the negative consequences of
living and working with a person with AUD64 leading to a
challenging complex environment for the AUD indivi-
dual. As many studies have noted, therapeutic programs
treating married AUD individuals should involve the
family/spouse64, and taking into account the difficulty for
married and employed individuals to leave for rehabili-
tation for long periods of time, which has led to the
development of programs such as Family Systems Ther-
apy (FST)65 and Community Reinforcement and Family
Training (CRAFT)66.
Results indicated higher accuracy for the AA groups

over the EA group models. The research of biomarkers,
prediction models, and machine learning algorithms rely
on group homogeneity and relevant features. Therefore,
the higher AA accuracy could be due to better fit of the
features to the target and that EA genetic-based ancestry
definition has variation leading to the reduction in EA
group homogeneity. Studies have shown that EA forms a
structured population due to historical immigration of
diverse source populations67. Future studies might con-
sider dividing EA groups to subgroups according to
genetic variation or finding new approaches to define
ancestry68,69.
Identifying individuals who are ready for the challenge

to renounce addiction (and those who are not ready)
holds enormous possibilities including intervention and
therapy programs. Further, strengthening the AUD indi-
vidual by altering those biomarkers, psychosocial or
demographic “protective” characteristics, can elevate
motivation for the initiation of successful remission.
Overall, our findings demonstrate the importance of
embedded ancestry and sex in the analysis towards the
formulation of personalized prediction model. Interest-
ingly, we found that identifying ancestry by genetic data
might increase group homogeneity leading to higher
accuracy of the prediction model. We further show that
the model based on various features from different areas

of health (genetics, electrophysiology, medication, and
demographic data) outperform prediction models based
on features derived from a single domain. We identified
specific robust features of PRS and EEG functional con-
nectivity for each sex/ancestry group, further expanding
our knowledge of the predisposition biomarkers including
genetics and brain mechanisms underlying the process of
remission from AUD.

Limitations
Given the uniqueness of the COGA dataset (with

genetics, EEG measurements, and AUD remitter status),
analysis on an independent dataset was not available. The
latest prediction models’ approach is towards precision
medicine, in which sex and ancestral stratification analysis
produce more group-specific tailored results. This
approach led to different sample sizes, with AA groups
showing a smaller cohort. For homogeneous analysis
across different group’ sizes, we applied CV analysis on all
models, while additional training/testing validation was
applied and confirmed the CV results on the larger
samples (EA males and females, p > 0.1 for all models).
Future studies with larger cohorts are required to further
validate these results. Another limitation is related to the
scope of features. Various symptomatic and psychosocial
features were implicated in previous studies as associated
with AUD development, including our own work8. These
features were not included in the current analysis to
enable a focus on biomarkers (genetics, brain function)
for prediction. Future studies with a wider selection of
features are required to further investigate the variables
that best predict remission from AUD.
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