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Influence of dietary nonstructural carbohydrate concentration on 
growth performance and carcass characteristics of Holstein steers

Daniel Ramos-Aviña1, Alejandro Plascencia1,*, and Richard Zinn2

Objective: Since very little information exists about the topic; in this experiment we compare, 
in a long-term finishing program, the growth-performance responses and carcass character-
istics of Holstein steers where non-structural carbohydrate concentration of the diet is reduced 
from 64% to 51% (dry matter basis).
Methods: Sixty Holstein steer calves (129±2.2 kg) were blocked by initial weight into five 
groups and randomly assigned within weight groupings to 10 pens. Calves were fed with a 
steam-flaked corn-based finishing diets containing 51% higher fiber (HF) or 64% lower fiber 
(LF) nonstructural carbohydrates. Non-structural carbohydrates concentrations were mani-
pulated substituting dried distiller grain with solubles and alfalfa hay for flaked corn. Cattle 
were weighed every 112 days and at the end of the experiment (day 308) when the cattle were 
harvested and carcass characteristics were evaluated.
Results: Steers fed the HF diet showed improvement (8.8%) in average daily gain (ADG) 
during the initial 112-d period. This effect was followed by a numerical trend for greater ADG 
throughout the remainder of the study so that overall ADG tended to be greater (4.9%, p = 
0.06) for the HF than for LF. There were no treatment effects on dry matter intake. Gain 
efficiency and estimated dietary net energy (NE) were greater 8.3% and 5.2%, respectively 
for HF during the initial 112-d period. Overall (308-d) gain efficiency and estimated dietary 
NE were similar for both dietary treatments. However, due to differences in tabular dietary 
NE, the ratio of observed:expected dietary NE tended to be greater (4.1%, p = 0.06) for the 
HF vs LF diet. There were no treatment effects on carcass characteristics except for a tendency 
toward a slightly greater (0.5%, p = 0.09) estimated carcass yield. 
Conclusion: Reducing the non-structural carbohydrate concentration of a conventional 
steam-flaked corn-based growing finishing diet for Holstein steers can effectively enhance 
growth performance, particularly during the early growing and late finishing phases.

Keywords: Holstein; Finishing; Diet Energy Density; Performance; Carcass

INTRODUCTION 

Holstein steers calves grow faster than beef steers at comparable weights [1], capable of dou-
bling their daily live weight during the first 90 to 100 d in the feedlot [2,3]. To fully express 
this growth potential, receiving and growing diets for the calf-fed Holsteins are energy dense 
[4,5]. Due to their light initial weight upon entering the feedlot (~130 kg) and heavy mature 
final weight (>575 kg), the duration of the growing-finishing period of calf-fed Holsteins 
is protracted, exceeding 300 days [6,7]. Protracted feeding of energy-dense diets (charac-
teristically high in starch and low in forage), increases individual risk of digestive upset and 
overall growth-performance [8]. This effect is magnified in Holsteins due to their genetically 
enhanced gut capacity, potentiating wider swings in voluntary feed intake and associated 
incidence of metabolic death, bloat, and liver abscess than observed in conventional beef 
breeds [6]. Conventional steam-flaked corn-based growing finishing diets fed to Holstein 
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steers in the Southwestern USA are high in readily fermentable 
non-structural carbohydrate (64% to 66% dry matter [DM] 
basis). Decreasing the level of non-structural carbohydrate 
may reduce the risk of digestive dysfunctions. However, the 
alternative of increasing dietary forage and reducing dietary 
starch in growing finishing diets may, itself, limit energy intake 
and hence, increase the risk for decreased growth-performance 
[9,10]. To our knowledge, very little, if any information has 
been reported that evaluates the impact of feeding decreased 
levels of non-fiber carbohydrate across the entirety of the grow-
ing finishing phases on feedlot performance of calf-fed Holstein 
steers. In this study we compare the growth-performance res-
ponses and carcass characteristics of calf-fed Holstein steers 
where non-structural carbohydrate concentration of the diet 
is reduced from 64% to 51% (DM basis). 

MATERIALS AND METHODS

All procedures involving animal care and management were 
in accordance with and approved by the University of Cali-
fornia, Davis, Animal Use and Care Committee.

Animals, feeding, treatments, and carcass measurements
Sixty Holstein steer calves (129±2.2 kg initial weight) were 
utilized to evaluate the effects of dietary forage level on growth 
performance, dietary energetics, and carcass characteristics. 
The number of pen replicates (5) and animals (30) within 
treatments are enough to determine statistical differences on 
growth performance of feedlot cattle. Indeed, four pens rep-
licates would have been sufficient. Based on power analysis 
and standard deviation for measure, we had a power of 0.955 
for detecting a 5% difference in gain efficiency. Upon arrival 
at the University of California Desert Research Center (El 
Centro, CA, USA), steer calves were vaccinated against IBR, 
BVD (type 1 and 2), PI3, BRSV (Cattle Master Gold FP 5 L5, 
Zoetis, New York, NY, USA), clostridia (Ultrabac 8, Zoetis, 
New York, NY, USA), treated against internal and external 
parasites (Dectomax, Zoetis, New York, NY, USA), injected 
with 1,500 IU vitamin E (as d-alpha-tocopherol) 500,000 IU 
vitamin A (as retinyl-palmitate) and 50,000 IU vitamin D3 
(Vital E-AD, Stuart Products, Bedford, TX, USA), and 300 mg 
tulathromycin (Draxxin, Zoetis, USA). Steers calves were 
blocked by initial shrunk (off truck) weight into five groups 
and randomly assigned within weight groupings to 10 pens 
(six steers per pen). Pens were 62 m2 with 25 m2 overhead 
shade, automatic waterers and 2.4 m fence-line feed bunks. 
Treatments consisted in a steam-flaked corn-based finishing 
diets containing 51% higher fiber (HF) vs 64% lower fiber (LF) 
nonstructural carbohydrates (Table 1). The total nonstruc-
tural carbohydrate concentration of the diets was manipulated 
using dried distiller grain plus solubles and forage (alfalfa hay). 
Accordingly, nonstructural carbohydrates and neutral deter-

gent fiber (NDF) concentrations were 51.3% and 64.2%, and 
21.7% and 13.3% to HF and LF, respectively. Steers were al-
lowed ad libitum access to feed and water. Fresh feed was 
provided twice daily at 06:00 and 14:00 h, offering approxi-
mately 30% of daily consumption in the morning feeding and 
the remainder in the afternoon feeding. Feed and refusal sam-
ples were collected daily for DM analysis, which involved oven 
drying the samples at 105°C until no further weight loss oc-
curred (method 930.15 [11]). The experiment lasted 308 days. 
 Hot carcass weights (HCW) were obtained at time of slaugh-
ter. After carcasses chilled for 24 h, the following measurements 
were obtained: Longissimus muscle (LM) area (cm2) by direct 
grid reading of the muscle at the 12th rib; subcutaneous fat 
(cm) over the LM at the 12th rib taken at a location 3/4 the 
lateral length from the chine bone end (adjusted by eye for 
unusual fat distribution); kidney, pelvic and heart fat (KPH) 
as a percentage of HCW; marbling score ([12] using 3.0 as 
minimum slight, 4.0 as minimum small, 5.0 as minimum 
modest, 6.0 as minimum moderate, etc.), and estimated retail 
yield of boneless, closely trimmed retail cuts from the round, 
loin, rib and chuck (% of HCW) = 52.56 – 1.95×subcutaneous 

Table 1. Composition of experimental diets

Item
Nonstructural carbohydrates (%)

51 64

Diet designation Higher fiber (HF) Lower fiber (LF)
Ingredient composition (% DM)

Alfalfa hay 14.00 6.00
Sudangrass hay 6.00 6.00
Steam-flaked corn 54.65 76.23
Dried distiller grain with solubles 15.00
Yellow grease 2.00 2.00
Cane molasses 6.00 6.00
Limestone 1.00 1.27
Urea 0.50 1.30
Trace mineral salt1) 0.40 0.40
Magnesium oxide 0.15 0.15
Dicalcium phosphate 0.30 0.65

Nutrient composition, DM basis2)

Net energy (Mcal/kg)
Maintenance 2.11 2.19
Gain 1.45 1.53

Crude protein (%) 14.6 12.9
Rumen undegradable protein (%) 36.3 34.5
Rumen degradable protein (%) 63.7 65.5

Nonstructural carbohydrates (%) 51.3 64.2
Neutral detergent fiber (%) 21.7 13.3
Ether extract (%) 6.39 5.54
Calcium (%) 0.81 0.80
Phosphorous (%) 0.41 0.40

DM, dry matter.
1) Trace mineral salt contained: CoSO4, 0.068%; CuSO4, 1.04%; FeSO4, 3.57%; 
ZnO, 0.75% MnSO4, 1.07%; KI, 0.052%; NaCl, 93.4%.
2) Based on tabular values for individual feed ingredients [22].
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fat – 1.06×KPH + 0.106×LM area – 0.018×HCW [13].

Calculations
Energy gain (EG, Mcal/d) was calculated by the equation: EG 
= 0.0557×shrunk body weight (SBW)0.75×average daily gain 
(ADG)1.097; where EG is the daily deposited energy and SBW is 
the equivalent of body weight×0.96 [14]. Maintenance ener-
gy (EM, Mcal/d) was calculated by the equation: EM = 0.084 
SBW0.75 [15]. From the derived estimates of energy required 
for maintenance and gain, the NEm and NEg values of the diet 
were obtained using the quadratic formula: x = (–b– 
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0.41 dry matter intake (DMI)+EG, and c = –0.877DMI, and 
NEg = 0.877 NEm–0.41 [16]. 
 Statistical analyses: The trial was analyzed as a randomized 
complete block design using the pen as experimental unit [17] 
according to the following statistical model: Yij = μ+Bi+Tj+εij, 
where μ is the common experimental effect, Bi represents ini-
tial weight block effect, Tj represent dietary treatment effect, 
and εij represents the residual error. Performance data were 
determined considering initial shrunk weight groupings for 
blocks. In determination of ADG, interim and final weights 
were reduced 4% to account for digestive tract fill. The effects 
of energy level in the diet were tested using orthogonal con-
trast. Significant difference was considered when the p-value 
was ≤0.05 and tendencies when p>0.05≤0.10. Data were an-
alyzed using the MIXED procedure of SAS [17].

RESULTS AND DISCUSSION

Treatment effects on growth performance, dietary net energy 
(NE) and carcass characteristics are shown in Table 2, 3. Steers 
fed HF diet showed marked improvement (8.8%, p = 0.03) in 
ADG during the initial 112-d period. This effect was followed 
by a numerical trend for greater ADG throughout the remain-
der of the study so that overall ADG tended to be greater 
(4.9%, p = 0.06) for the HF than for LF. 
 The relationship between observed and projected [18] in-
cremental ADG during the course of the trial is shown in 
Figure 1. Overall projected ADG for the 308-d feeding period 
was 1.43 kg. This value agrees with observed overall ADG (1.43 
kg) for steers fed the LF diet. Thus, the 5% greater ADG of 
steers on the HF diet was not due to a poorer than expected 
performance of steers on the LF diet. Rather instead, feeding 
the HF diet resulted in a greater than generally anticipated 
overall ADG for implanted calf-fed Holstein steers across the 
weight range in consideration. This effect is consistent with 

Table 2. Effects dietary nonstructural carbohydrate concentration on growth 
performance and dietary net energy of Holstein steers on long-term feeding

Items
Nonstructural carbohydrates (%)

SEM p value
51 64

Pen replicates 5 5
Body weight (kg)1)

Initial 127.5 131.2 0.99 0.06
112 280.0 270.3 2.89 0.08
224 511.6 497.4 3.65 0.06
Final 591.9 573.8 5.89 0.09

ADG (kg/d)
1-112 days 1.36 1.24 0.02 0.03
112-224 days 1.68 1.63 0.32 0.38
224-308 days 1.46 1.42 0.01 0.16
1-308 days 1.50 1.43 0.01 0.06

DMI (kg/d)
1-112 days 5.66 5.62 0.09 0.81
112-224 days 9.72 9.18 0.23 0.19
224-308 days 11.89 11.34 0.32 0.30
1-308 days 8.83 8.48 0.16 0.20

Gain to feed (kg/kg)
1-112 days 0.240 0.220 0.003 0.01
112-224 days 0.173 0.178 0.002 0.24
224-308 days 0.123 0.126 0.002 0.54
1-308 days 0.170 0.169 0.002 0.69

Dietary NE (Mcal/kg)
1-112 days 

NEm 1.93 1.83 0.02 0.02
NEg 1.29 1.20 0.01 0.02

112-224 days
NEm 2.03 2.05 0.02 0.55
NEg 1.37 1.39 0.02 0.55

224-308 days 
NEm 1.97 1.99 0.04 0.82
NEg 1.32 1.33 0.03 0.82

1-308 days 
NEm 2.01 2.00 0.02 0.77
NEg 1.35 1.35 0.01 0.77

SEM, standard error of the mean; ADG, average daily gain; DMI, dry matter intake; 
NE, net energy; NEm, net energy of maintenance; NEg, net energy of gain.
1) Initial weight is the shrunk off truck arrival weight. Interim and final weights 
were reduced 4% to account for digestive tract fill.

Table 3. Effects of dietary nonstructural carbohydrate concentration on carcass 
characteristics of calf-fed Holstein steers

Item
Nonstructural carbohydrates 

(%) SEM p value
51 64

Carcass weight (kg) 366.4 355.2 3.6 0.10
Dressing (%) 61.6 61.5 0.19 0.79
LM area (cm2) 79.9 80.3 1.4 0.85
Fat thickness (cm) 0.84 0.77 0.04 0.26
KPH fat (%) 2.27 2.28 0.09 0.94
Yield grade (%)1) 51.96 52.22 0.086 0.09
Marbling score2) 4.08 4.61 0.25 0.22

SEM, standard error of the mean; LM, longissimus muscle; KPH, kidney, pelvic and 
heart fat as a percentage of carcass weight.
1) Percentage of closely trimmed, mostly boneless, retail product from the round, 
loin, rib, and chuck.
2) Coded: minimum slight =  3, minimum small =  4. 
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the hypothesis of this study; particularly apparent during the 
initial and final 112 d of the 308-d feeding period (Figure 1). 
However, it's important to clarify that the substitution of steam-
flaked corn with alfalfa and dry distillers grains with solubles 
(DDGS) increased crude protein concentration of the HF diet 
(14.6% vs 12.9% CP) versus that of the LF diet. Hence, a por-
tion of the increase in ADG during the initial growing phase 
may be attributable to the great protein level of the HF diet. 
The latter is especially important, as lysine is a limiting amino 
acid during this period [3,19]. According to the diet formu-
lation (Table 1) the metabolizable lysine for steers fed a LF diet 
during the first 112-d of the experiment was slightly lower of 
the requirements indicated by NRC ([19], Level 1). 
 With respect to forage level, Defoor et al [20] likewise ob-
served that increasing dietary NDF in practical feedlot diets 
enhanced weight gain, presumably through reduction in day-
to-day occurrence of subclinical digestive dysfuntions. Erratic 
patterns of intake have been associated with digestive disor-
ders [21,22]. In the present study, variation in DMI (data not 
shown) was 23% lower in HF group (coefficient of variation 
= 5.34%) than in the LF group (coefficient of variation = 
7.32%). Additionally, the risk of subclinical acidosis may be 
assessed in function of the non-structural carbohydrate:NDF 
ratio of the HF and LF diets (2.3 and 4.8, respectively; Table 
1). Based on NRC [19], the predicted (Level 1 approach) aver-
age ruminal pH for steers fed the HF and LF diets are 5.82 and 
5.69, respectively. 
 Notwithstanding differences in dietary NE (Table 1), treat-
ment differences in DMI were not appreciable (p>0.10). Indeed, 
gain efficiency (ADG/DMI) and estimated dietary NE were 
greater (8.3% and 5.2%, respectively, p≤0.02) for HF vs LF 

during the initial 112-d period. Overall (308-d) gain efficiency 
and estimated dietary NE were similar (p≥0.69) for both dietary 
treatments. However, due to differences in tabular dietary NE, 
the ratio of observed:expected dietary NE tended to be greater 
(4.1%, p = 0.06) for the HF vs LF diet. 
 Consistent with the tendency for increased ADG, carcass 
weight also tended to be greater (11.2 kg, p = 0.10) for HF- vs 
LF-fed steers. Otherwise, there were no treatment effects (p> 
0.10) on carcass characteristics. Although there was a tendency 
for a slightly greater (0.5%, p = 0.09) estimated carcass yield.

CONCLUSION

It is concluded that reducing the non-structural carbohydrate 
concentration of a conventional steam-flaked corn-based grow-
ing finishing diet for calf-fed Holstein steers can effectively 
enhance growth performance, particularly during the early 
growing and late finishing phases. 
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