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ABSTRACT Human oral microbial communities are diverse, with implications for oral 
and systemic health. Oral microbial communities change over time; thus, it is important 
to understand how healthy versus dysbiotic oral microbiomes differ, especially within 
and between families. There is also a need to understand how the oral microbiome 
composition is changed within an individual including by factors such as environmental 
tobacco smoke (ETS) exposure, metabolic regulation, inflammation, and antioxidant 
potential. Using archived saliva samples collected from caregivers and children during 
a 90-month follow-up assessment in a longitudinal study of child development in the 
context of rural poverty, we used 16S rRNA gene sequencing to determine the salivary 
microbiome. A total of 724 saliva samples were available, 448 of which were from 
caregiver/child dyads, an additional 70 from children and 206 from adults. We com­
pared children’s and caregivers’ oral microbiomes, performed “stomatotype” analyses, 
and examined microbial relations with concentrations of salivary markers associated 
with ETS exposure, metabolic regulation, inflammation, and antioxidant potential (i.e., 
salivary cotinine, adiponectin, C-reactive protein, and uric acid) assayed from the same 
biospecimens. Our results indicate that children and caregivers share much of their oral 
microbiome diversity, but there are distinct differences. Microbiomes from intrafamily 
individuals are more similar than microbiomes from nonfamily individuals, with child/
caregiver dyad explaining 52% of overall microbial variation. Notably, children harbor 
fewer potential pathogens than caregivers, and participants’ microbiomes clustered into 
two groups, with major differences being driven by Streptococcus spp. Differences in 
salivary microbiome composition associated with ETS exposure, and taxa associated 
with salivary analytes representing potential associations between antioxidant potential, 
metabolic regulation, and the oral microbiome.

IMPORTANCE The human oral cavity is a multi-environment habitat that harbors 
a diversity of microorganisms. This oral microbiome is often transmitted between 
cohabitating individuals, which may associate oral and systemic health within family 
members. Furthermore, family social ecology plays a significant role in childhood 
development, which may be associated with lifelong health outcomes. In this study, 
we collected saliva from children and their caregivers and used 16S rRNA gene sequenc­
ing to characterize their oral microbiomes. We also analyzed salivary biomeasures 
of environmental tobacco smoke exposure, metabolic regulation, inflammation, and 
antioxidant potential. We show there are differences in individuals’ oral microbiomes 
mainly due to Streptococcus spp. that family members share much of their microbes, 
and several bacterial taxa associate with the selected salivary biomeasures. Our results 
suggest there are large-scale oral microbiome patterns, and there are likely relationships 
between oral microbiomes and the social ecology of families.
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T he human oral cavity hosts a dense and diverse community of microorganisms 
that is associated with health and a variety of diseases (1–4). A typical human 

oral microbiome comprises hundreds of bacterial taxa, ranging from commensals to 
pathogenic species that cause caries and infections such as periodontitis and gingivi­
tis (3, 4). Aside from directly causing infections, there is growing evidence that the 
oral microbiome is involved in systemic disease, including diabetes, cardiovascular 
disease, and oral cancer (4–7). In this study, we focus on the similarities and differen­
ces in oral microbial taxa between children and their caregivers, and the associations 
between children’s oral microbial community composition and measures of environ­
mental tobacco smoke (ETS) exposure, inflammation, and oxidative stress. There is an 
intricate relationship between the social environment, exposome, host physiology and 
microbes of the oral cavity, and understanding microbial population dynamics can aid in 
disentangling the oral microbiome’s role in human health and development.

The oral microbiome is one of the most diverse microbial communities found in 
humans—second only to the gut in overall bacterial diversity—and represents a unique 
multi-habitat environment that is exposed to both the outside and inside of the body 
(3). Generally, the oral microbiome consists of taxa in the phyla Firmicutes, Fusobacte­
ria, Proteobacteria, Actinobacteria, Bacteroidetes, and others, while at the strain level, 
individuals have personalized bacterial profiles (1, 2). Interestingly, the oral microbiome 
is acquired over time (8–10), and taxa are often shared between caregiver and child 
resulting in microbial communities among family members being similar (11, 12). 
Human microbiomes are thought to be transmitted through contact with the mother 
during birth (13), and augmented by subsequent environmental exposures and close 
social contact. While intrafamily interactions are important for microbial transmission, 
previous large-scale studies have shown that people also tend to share community types 
regardless of family status, and that these groupings may have implications for oral 
health and overall wellbeing (14, 15).

Several factors influence the composition of human oral fluids, including nutrition, 
disease, medication use, and the presence of microbes (3). As a complex biofluid, 
saliva contains thousands of metabolites, chemical compounds and proteins (16, 
17). Oral bacteria live in contact with oral fluid—and receive nutrition from salivary 
components—factors that affect salivary production and composition are important in 
understanding host/microbe relationships (3). For instance, research has been conducted 
on the interactions between oral microbes and host health measured through inflam­
mation and inflammatory molecules (18). Likewise, smoking has been shown to alter 
the composition of oral taxa (19) and increase dental caries (20). Furthermore, there is 
evidence that the oral microbiome produces small molecules that the host may uptake, 
and some microbial taxa may indicate an individual’s overall health (21). As part of an 
exploratory study into the oral microbiome and host physiology, we associated oral taxa 
with the following biomeasures: C-reactive protein (CRP), a molecule that corresponds 
to systemic inflammation and has been implicated in periodontitis (22), adiponectin, a 
protein involved in metabolic regulation and associated with oral inflammation (23, 24), 
cotinine, a nicotine metabolite and indicator of environmental tobacco smoke exposure 
(25), and uric acid, the end product of the purinergic system involved in stress response 
and antioxidant potential (26).

In the context of a large-scale, prospective, longitudinal study of child development 
and the ecology of the home and family environment known as the Family Life Project 
(FLP), we investigated the relationships between the human oral microbiome and the 
similarities of microbiome composition between children and their caregivers. We asked 
several questions: First, does oral microbiome composition differ between children 
and adults, and do family members share a greater proportion of their oral microbes 
than nonfamily members? Second, are any members of the oral microbiome associ­
ated with biomeasures related to inflammation, metabolic regulation, ETS exposure, or 
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antioxidant potential? Lastly, are there bacterial taxa common across people, and are 
there underlying patterns that may indicate oral dysbiosis?

MATERIALS AND METHODS

Participants and procedures in study

The FLP is a prospective longitudinal study of families residing in six predominantly 
low-income and nonurban counties in central Pennsylvania or eastern North Carolina. 
Complex sampling procedures were used to recruit a representative sample of 1,292 
children whose families resided in the target communities at the time the mothers gave 
birth. Participants were oversampled for poverty in both states, and African Ameri­
cans were oversampled in North Carolina. Detailed descriptions of the sampling and 
recruitment procedures are available in (27). Briefly, families with a child born between 
September 2003 and August 2004 were recruited from hospitals at the time of birth, 
and participating families have completed regular interval follow-up assessments. The 
current analyses focused on a subset of data collected at the 90 month follow-up, where 
at home, children and their primary caregivers provided saliva samples. For the purposes 
of this study, the cohoused child and adult who provided parental care (“caregiver”) 
were paired together where possible. Of the 224 dyads, the vast majority of parental 
caregivers were biological parents (N = 221), while 1 dyad contained an adoptive parent, 
and 2 dyads contained a foster parent. These saliva samples were assayed and archived 
in −80°C freezers. Archived biospecimens with adequate saliva remaining for microbiome 
analysis were examined in this study (child N for this microbiome subsample = 294, 
male = 164, female = 130; age 79 to 100 months, average = 87 months); caregiver N 
for this microbiome subsample= 430, females = 429 females, males = 1). Caregivers also 
reported on their smoking status during the study appointment. Procedures for this 
study were run under the IRB of the University of North Carolina (IRB # 07-0646 and 
16-2751) and New York University (IRB # IRB-FY2017-69) using deidentified data. Sample 
IDs were further randomized prior to analysis and reporting.

Biospecimen collection and determination of salivary biomeasures

Following Granger and colleagues (28), whole saliva was collected from children and 
caregivers by passive drool. Samples were immediately frozen, then transported to the 
Institute for Interdisciplinary Salivary Bioscience Research (IISBR) at the University of 
California, Irvine for assay and archiving. On the day of assay, samples were thawed 
and centrifuged to precipitate mucins. All samples were assayed in duplicate for each 
biomeasure.

Adiponectin

Salivary adiponectin was determined using the Human Adiponectin Meso Scale 
Discovery (MSD) Assay kit (Meso Scale Diagnostics, Rockville, MD, USA). Samples were 
diluted fivefold, then assayed following the manufacturer’s supplied protocol using a 
four-log standard curve. Concentrations were derived using MSD Discovery Workbench 
software v4.0 (ng/mL) using curve fit models (4-PL with a weighting function option of 
1/y2). The average intra-assay coefficient of variation (CV) was 3.8%, average inter-assay 
CV was 2.4%, and the assay range of sensitivity was 0.06 to 1,000 ng/mL.

C-reactive protein (CRP)

Salivary CRP was determined using the Human CRP (Vascular Injury Panel 2) V-Plex MSD 
multi-spot Assay (Meso Scale Diagnostics, Rockville, MD, USA). Samples were diluted 
fivefold and used a five­log standard curve following the manufacturer’s recommen­
ded protocol. MSD Discovery Workbench Software V4.0 was used to determine CRP 
concentrations (pg/mL) using curve fit models (4-PL with a weighting function option of 
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1/y2). The average intra-assay CV for CRP was 3.07%, average inter-assay CV was 2.4%, 
and the assay range of sensitivity was 9.9 to 1,010,000 pg/mL.

Cotinine

Salivary cotinine was determined using a commercially available, enzyme-linked 
immunosorbent assay kit (Salimetrics, Carlsbad, CA, USA) following the manufacturer’s 
protocol. In caregivers, if nicotine use was reported, the saliva sample was prediluted 
10-fold before assay. Samples from caregivers not reporting nicotine use and from 
children were tested neat. Cotinine concentrations were computed from a standard 
curve generated using a four-parameter nonlinear regression curve fit (Gen5, BioTek, 
Winooski, VT, USA). Cotinine measurements had an average inter-assay CV of 9.1% 
and the assay range of sensitivity was 0.15 to 200 ng/mL for neat saliva and 1.5 to 
2,000 ng/mL for 10-fold diluted saliva.

Uric acid

Salivary uric acid was determined using an enzymatic assay kit following the manufactur­
er’s protocol (Salimetrics, Carlsbad, CA, USA), and uric acid concentrations were derived 
in mg/dL with Gen5 software (Gen5, BioTek). Uric acid measurements had an average 
intra-assay CV of 3.6%, average inter-assay CV of 2.4%, and the assay range of sensitivity 
was 0.07 to 20 mg/dL.

Preanalysis of salivary biomeasures

As reported above, each analyte was measured independently and had different limits 
of detection (LOD) and lower limits of quantification (LLOQ). We removed samples from 
downstream analyte­specific analyses in cases where the CVs were greater than 15% (N = 
2 from CRP, N = 1 from cotinine, and N = 1 from uric acid­specific analyses). We substitu­
ted values of 1/2 the LLOQ for each sample under the LLOQ [N = 6 for adiponectin, N = 27 
for CRP, N = 129 (N = 76 children and N = 53 caregivers) for cotinine, and N = 28 for uric 
acid].

Microbiome sampling procedure and preprocessing

Saliva samples were thawed, mixed at room temperature, aliquoted 200 µL into cryovials, 
and we shipped the aliquots to the Integrated Microbiome Resource (IMR) at Dalhousie 
University for DNA extraction, library preparation, and 16S rRNA gene sequencing. We 
would like to disclose that all the samples were misplaced by Federal Express during 
shipping and sat at ambient temperature for 1 week in a shipping warehouse before 
being received by IMR, while other samples never arrived.

DNA extraction, library preparation, and next-generation sequencing

IMR handled all DNA extraction, library preparation, and MiSeq sequencing of our 
samples. Briefly, IMR extracted DNA from saliva samples using Qiagen PowerFecal kits 
(Qiagen, Germantown, MD, USA) with bead-beating, then prepared sequencing libraries 
targeting the V6-V8 regions of the 16S rRNA gene with an in-house protocol (29). The 
V6-V8 region was recommended by IMR to reduce the amplification of host mitochon­
dria. IMR quantified libraries and with a Qubit fluorescence reader and by agarose gel 
electrophoresis. IMR then pooled the libraries and sequenced them on an Illumina MiSeq 
sequencer using paired-end V3 2 × 300 bp kits.

16S rRNA gene sequence library processing

IMR used the QIIME2 (30) pipeline to process the 16S rRNA gene sequences. First, 
sequences were visualized, sequences and primers and low-quality ends were trimmed 
off of the reads with QIIME2, reads were joined, then Deblur (31) was used to remove 
chimeras and bin sequences into Amplicon Sequence Variants (ASVs; DNA sequences 
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that are 100% identical). Once sequences were binned, taxonomy was assigned with the 
q2­feature­classifier “classify-sklearn” (32) trained to the V6-V8 region of the 16S rRNA 
gene with the SILVA database (release 132) (33). IMR then filtered out ASVs present at 
less than 0.01% relative abundance to account for singletons and likely contaminants 
and generated a final ASV table (includes unique ASV IDs and SILVA taxonomy; Zenodo 
dataset doi: 10.5281/zenodo.7523443) which we used for all downstream analyses (34).

Bioinformatics and statistics

We used QIIME2 v2019.7 and the computing environment R (35) to generate 
Shannon Diversity indices and Bray–Curtis dissimilarities for each sample and 
calculate taxa relative abundances. We compared the effects of categorical variables 
on alpha diversity through Kruskal–Wallis tests, and beta diversity using Adonis 
(nonparametric ANOVA with 999 permutations) on rarefied data with the R package 
“vegan” (36), and used ANCOM (37) for differential abundance testing of taxa on 
unrarefied data. We used the R package “MaAsLin2” (38) to assess relationships 
between adiponectin, CRP, cotinine, uric acid concentrations, and unrarefied relative 
abundances of bacterial ASVs.

To further investigate the salivary microbiome, we visualized the data with nonmetric 
multidimensional scaling (NMDS) of the Bray–Curtis dissimilarities using the categorical 
variables “caregiver/child,” “smoking/nonsmoking” for caregivers, and “< 1 ng/mL or >1 
ng/mL” cotinine concentration for children as a conservative estimate for ETS exposure 
(25), then plotted the ordinations with the R packages “ggplot2” (39) and “patchwork” 
(40). We also used distance-based Redundancy Analysis (db-RDA) in “vegan” to assess the 
contributions of continuous variables to microbiome variability and plotted the resulting 
ordinations with “ggplot2.”

In addition to the above analyses, we performed stomatotype analysis [as in (14, 41)] 
on ASVs in the paired caregiver/child dyads at greater than 0.01% relative abundance 
using Jensen–Shannon distances and partitioning around medoid (PAM) clustering with 
the R packages “ade4” (42) and “cluster” (43) as in (41). PAM clustering is an unsupervised 
method for determining underlying patterns in microbiome data without including 
metadata variables and is considered more robust than the related k-means methods 
(44). Likewise, we used Jensen–Shannon distances as this measure often results in 
more accurate clustering than Manhattan-based measures (i.e., Bray–Curtis) (45). We 
estimated optimal cluster number with the Calinski–Harabasz (CH) index. Once we 
had determined optimal cluster number, we used ANCOM to test individual ASVs for 
differential abundance between the cluster assignments and plotted a PCoA ordination 
and boxplots of the data with “ggplot2” and “patchwork.”

RESULTS

Overall library statistics

We obtained 17,966,151 16S rRNA gene reads assigned to 6,659 ASVs across 724 
samples (N = 294 children, N = 430 caregivers) with an average of 24,815 reads per 
sample. Through rarefaction analyses, we determined that we had acceptable coverage 
at a sequencing depth of 2,000 reads per sample (Fig. S1). Overall, our samples were 
dominated by few taxa, with the 10 most abundant bacterial families comprising an 
average relative abundance of 86.9% of overall relative abundance. These families were 
Streptococcaceae (60.7%), Carnobacteriaceae (7.6%), Micrococcaceae (5.7%), Lactobacil­
laceae (2.7%), Prevotellaceae (2.5%), Bacillales Family XI (2.1%), Veillonellaceae (2.0%), 
Porphyromonadaceae (1.8%), Clostridiales Family XI (0.9%), and Actinomycetaceae (0.8%) 
(Fig. 1). Within these families, several ASVs were in high relative abundance, with the 
three most abundant ASVs (all Streptococcus) accounting for 55.5% of proportional 
bacterial abundance. Lastly, 10 ASVs were present in at least 75% of samples: one ASV 
from each of Actinomyces, Atopobium, Gemella, Granulicatella, Porphyromonas, Rothia, 
and Veillonella, and three ASVs from Streptococcus.
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Stomatotype cluster analyses of caregivers and children

Samples from caregivers and children were paired into 224 dyads (N = 448 samples). 
As microbial populations often diverge between groups of people, we analyzed the oral 
microbiomes of caregiver/child dyads through PAM clustering and observed that oral 
microbial communities clustered into two major groups, with no metadata category 
obviously corresponding to cluster assignment (Fig. 2). We then used ANCOM and show 
that there were 10 significantly differentially abundant ASVs between the PAM clusters 
(W > 134, Padj < 0.05, Fig. 2). One cluster was dominated by ASVs within the Streptococcus 
mitis group (“Streptococcus2”; this ASV 100% matches S. oralis. S. cristatus, and S. mitis) 
and Tannerella forsythia (“Tannerella126”), and the other cluster was mainly comprised of 
ASVs of Streptococcus oralis dentisani (“Streptococcus198”) and Streptococcus parasangui­
nis (“Streptococcus121”). Other bacterial taxa important in cluster assignment were ASVs 
of Granulicatella, Gemella, Porphyromonas, Corynebacterium, Eubacterium, and Bergeyella, 
a likely pathogenic genus previously found in oral microbiome studies (2) (Fig. 2).

Microbial diversity of caregiver/child dyads

We found that the beta diversity of children and caregivers significantly differed (R2 

= 0.02, F = 10.56, P < 0.001), and that caregiver/child dyad explained the majority of 
variation between our samples (R2 = 0.52, F = 1.13, P = 0.003) (Fig. 3). Alpha diversity was 
not significantly different between pairs of caregivers and children comprising the dyads 
(H = 258, P = 0.053), or between caregivers and children overall (H = 0.001, P = 0.98). We 
then compared bacterial ASVs between caregivers and children and showed that 10 ASVs 
(W > 145, Padj < 0.05 for each ASV) were significantly different (Fig. 3).

FIG 1 Stacked bar plots of the relative abundances of the 10 most proportionally abundant bacterial families plus all others in children’ and caregivers’ oral 

microbiomes. Color denotes bacterial family, and labels indicate which dyad and source (child or caregiver) each sample belongs to.
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Distance-based redundancy analysis of continuous variables on children’s 
microbiome

In order to compare the association of each biomeasure (adiponectin, CRP, uric acid, and 
cotinine) of children’s oral microbiomes, we used distance-based Redundancy Analysis 
(db-RDA) on the Bray–Curtis dissimilarities of samples who had measurements for 
all biomeasures and oral microbiome (N = 288 children). Overall, biomeasures were 
significantly associated with children’s oral microbiomes but only explained 2.3% of the 
variation (F = 1.66, P < 0.001, Fig. 4). We also tested the contribution of each biomeasure 
independently with PERMANOVA, and found adiponectin (F = 1.57, P = 0.003), cotinine 
(F = 1.56, P = 0.003), and uric acid (F = 2.49, P < 0.001) were significantly associated with 
microbiome variation, while CRP was not (F = 1.02, P = 0.43).

FIG 2 (A) PCoA of Jensen–Shannon distances from the partitioning around medoid (PAM) clustering results of Amplicon Sequence Variants (ASVs) at greater 

than 0.01% relative abundance in samples, colored by cluster assignment in caregiver/child dyads. (B) Boxplots of the Log10 adjusted counts of differentially 

abundant ASVs between PAM clusters as measured by ANCOM.

FIG 3 (A) Nonmetric multidimensional scaling (NMDS) plot of the Bray–Curtis dissimilarities of children and caregivers. Microbiomes in children (N = 224) were 

significantly different from microbiomes in caregivers (N = 224) (R2 = 0.02, F = 10.56, P < 0.001), and caregiver/child dyad explained the majority of microbial 

variation between samples (R2 = 0.52, F = 1.13, P = 0.003). (B) Boxplots representing significantly different Amplicon Sequence Variants (ASVs) between caregivers 

and children as tested by ANCOM. Data were Log10 transformed for plotting.
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Associations of the microbiome with adiponectin, uric acid, and CRP

Using the same data in our db-RDA analysis, we included samples from children that 
we measured concentrations of adiponectin, uric acid, or CRP for and microbiome 
data and used MaAsLin2 to find associations between each salivary biomeasure and 
individual microbial ASVs at greater than 0.05% relative abundance. Adiponectin and 
three ASVs were significantly associated, one ASV was associated with CRP, and 13 ASVs 
were significantly associated with uric acid (Padj < 0.05, Fig. 4).

Overall associations of ETS exposure with the oral microbiome

We used caregivers’ survey data and children’s salivary cotinine concentrations to 
determine smoking status and ETS exposure. Because the microbiomes of caregivers 
and children were significantly different, and caregivers and children likely have different 
routes of ETS exposure, we analyzed the effects of tobacco smoke exposure on caregivers 
(N = 239) and children (N = 281) separately.

In caregivers, bacterial beta diversity was slightly different in smokers than nonsmok­
ers (R2 = 0.01, F = 2.76, P = 0.01, Fig. 5), whereas alpha diversity did not significantly 
differ (H = 0.57, P = 0.45). We used ANCOM for differential abundance testing and 
observed significant differences in the relative abundances of eight bacterial ASVs (W 
> 156, Padj < 0.05, Fig. 5). Additionally, we analyzed MaAsLin2 associations between 
cotinine concentrations and individual ASVs and observed that 28 bacterial ASVs were 
significantly associated with cotinine concentrations (Padj < 0.05, Fig. 5).

When comparing the microbiomes from children with salivary cotinine levels < 1 
ng/mL to those with levels >1 ng/mL, we found ETS exposure was associated with 

FIG 4 (A) Biplot of a distance-based redundancy analysis on the Bray–Curtis dissimilarities of children who had all 

biomeasures. In the distance-based Redundancy Analysis (db-RDA) overall, analytes significantly associated with children’s 

oral microbiomes (N = 288, F = 1.66, P < 0.001), with adiponectin, cotinine, and uric acid (P < 0.05 for each) individually 

significantly associating with the oral microbiomes, while C-reactive protein (CRP) did not (P = 0.61, not shown). (B and C) 

Significant MaAsLin2 associations and linear model coefficients between ASVs from N = 294 children at greater than 0.05% 

relative abundance and (B) adiponectin or (C) uric acid concentrations. As CRP was only associated with one Amplicon 

Sequence Variant (ASV), those data are not shown here.

Research Article mSystems

July/August  Volume 8  Issue 4 10.1128/msystems.00036-23 8

https://doi.org/10.1128/msystems.00036-23


slightly increased children’s alpha diversity (H = 4.5, P = 0.035), but not beta diversity (R2 

= 0.005, F = 1.31, P = 0.19), and was not related to any did not affect any bacterial ASV 
(Padj >0.05 for each) through ANCOM testing. When analyzing MaAsLin2 associations, 
only three ASVs were significantly associated with cotinine concentrations (Padj < 0.05, 
Fig. 5).

DISCUSSION

Using biological assessments from the large-scale FLP, we explored relations between 
the human oral microbiome, salivary measures related to metabolic activity, inflam­
mation, ETS exposure, and antioxidant potential, and the similarities of microbiome 
composition in families. The oral microbiomes of within-family dyads of caregivers 
and their children explained most of the variation in oral microbiomes, and overall—
regardless of dyad—children and adults had slightly different oral microbial communi­
ties, which supports previous work (11, 12, 46). We also found that participants clustered 
together by microbial composition, representing a broad view of bacterial communi­
ties between people. This indicates there are likely “stomatotypes” across human oral 
microbiomes that may be involved in oral health (14, 15). Likewise, we investigated 
the associations of ETS exposure and oral microbiomes and saw moderate microbial 
differences in adults who smoke and minor microbial differences in children environ­
mentally exposed to smoke. Finally, through exploratory analyses, we found several 
associations between microbiome and salivary biomeasures related to metabolism, 
inflammation, and children’s antioxidant marker uric acid levels, which suggests that 
levels of these biomeasures may be important in host-microbe interactions.

FIG 5 Nonmetric multidimensional scaling (NMDS) plot of the Bray–Curtis dissimilarities between (A) children (N = 281) 

with salivary cotinine levels of <1 ng/mL or >1 ng/mL, and (B) nonsmoking or smoking caregivers (N = 239). Exposure to 

ETS was significantly associated with altered microbiome beta diversity in caregivers (R2 = 0.01, F = 2.61, P = 0.025) but not 

children (R2 = 0.005, F = 1.34, P = 0.17). Panel C and E illustrates statistically significant MaAsLin2 associations of microbes at > 

0.01% relative abundance with child and caregiver cotinine concentrations, respectively. Panel D shows boxplots of individual 

Amplicon Sequence Variants (ASVs) whose abundances significantly differed between caregiver smokers and nonsmokers as 

tested by ANCOM. Data in panel D were Log10 transformed for plotting.
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Overall, children and adults had slightly different oral microbiomes, with this 
comparison explaining 2% of the variation, and several taxa were differentially abundant 
between the two groups. For example, children had higher relative abundances of 
bacteria thought to be associated with good oral health, such as Streptococcus oralis 
dentisani (47) while having lower relative abundances of pathogenic bacteria such as 
Tannerella forsythia (48), Porphyromonas gingivalis (49), and Eubacterium spp (50). Our 
findings support the hypothesis that children’s oral microbiomes are populated more 
by early-colonizing bacteria (9), and that the proportion of disease-associated oral 
microbes may increase with age (12, 46). Although child and adult oral microbiomes 
were slightly different overall, we found that family members shared much of their 
microbial community composition, as child/caregiver dyad pairing explained 52% of the 
microbial variance—the most substantial association in our data. This finding supports 
research indicating that intrafamily microbial communities are often similar, and that 
there is transmission of oral microbes between family members (11, 12) likely due 
to a shared home environment and similar diets. While ours and others’ research is 
informative, we were unable to identify taxa to strain-level, and we suggest that future 
studies do this by using metagenomics to examine the oral microbiome of children 
and their caregivers. We also recognize that our data are compositional (51), and we 
may be observing artifacts of next-generation sequencing instead of true differential 
abundances of taxa.

Through PAM-cluster analyses, we found that the oral bacterial communities of our 
subjects clustered into two major overlapping groups. The separation of these groups 
was mainly driven by three streptococcus ASVs—and to a lesser extent Eubacterium, 
Tannerella, Bergeyella, or Porphyromonas. Notably, subjects in one cluster were domina­
ted by S. mitis, while the other had higher abundances of S. oralis dentisani and S. 
parasanguinis. While these species are generally health-associated, there is some debate 
over their potential pathogenicity (52). For example, S. mitis group bacteria have been 
associated with dental caries (53), but are also frequently found in healthy mouths. 
Similarly, S. oralis dentisani inhibits cariogenic S. mutans (47), and S. parasanguinis 
antagonizes Pseudomonas aeruginosa in cystic fibrosis patients (54). Furthermore, oral 
bacteria often co-aggregate, which can form microenvironments for competition/coop­
eration and may cause situational population dynamics to occur (55). Coupled with the 
difficulty in resolving Streptococcus species through 16S rRNA gene sequencing (56), we 
were unable to fully determine the relationships between the three S. mitis taxa and 
suggest that future research investigate the competition/cooperation of these bacteria, 
especially in the context of oral and systemic health.

Previous large-scale “stomatotype” studies have placed subjects’ oral microbiomes 
into clusters as well. For instance (14, 14) observed adolescents’ microbial communities 
being mainly separated into clusters of Prevotella-Veillonella or Neisseria-Haemophilus. 
Likewise, Takeshita et al. (15) reported overlap in the clusters of their adults-only 
study and suggest a continuum of clusters being separated by Neisseria-Haemophi­
lus, Streptococcus-Rothia, and Prevotella-Veillonella-Streptococcus. Our work differs by 
sampling both children and adults, and observing cluster separation by Streptococcus 
ASVs, and minorly Eubacterium-Tannerella or Bergeyella-Porphyromonas regardless of 
subject age. As we sampled both children and adults—and concentrated on moder­
ate/high abundance ASVs instead of genera—we expected to find differences between 
ours and others’ work. Our study adds to the growing literature of large-scale oral 
microbiome studies and supports the concept of population-level divisions in oral 
communities.

We analyzed the relations between ETS exposure and oral microbiomes in both 
children and caregivers. ETS-exposed adults had higher microbial diversity, which is 
consistent with other studies (15, 57); and that ETS exposure was very slightly associ­
ated with increased microbial diversity in children. Likewise, several ASVs were signifi­
cantly different between adult smokers and nonsmokers; for example, taxa within the 
potentially pathogenic genera Eubacterium (50) and Porphyromonas were in higher 
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proportional abundance in smokers, along with the debatably beneficial species 
Lactobacillus fermentum and L. gasseri/hominis/johnsonii (we were unable to resolve 
this ASV to species) (58, 59). While it is unknown how smoking influences individual 
species of lactobacilli, our findings are in line with previous studies showing lactobacilli 
abundances are positively-associated with smoking (57, 60), and that these bacteria may 
act as opportunists in smokers’ mouths. Although exposure to ETS is associated with 
poor health outcomes among children, including bacterial infections and dental caries 
(20, 61), we did not observe major relationships between our index of ETS exposure 
and children’s oral microbiomes. As adult’s overall oral microbiomes were associated 
with smoking status, our data support the potential of smoking to cause bacterial 
dysbiosis, which may lead to worsened infections and inflammation, although this may 
be confounded by other lifestyle factors that we did not examine in this study (62).

In addition to categorical smoking status, we examined the associations between 
cotinine concentrations and proportional abundances of individual ASVs in adults and 
children and obtained mixed results. Several putative pathogens, such as Eubacterium, 
Porphyromonas, and Tannerella, along with commensal lactobacilli and streptococci, 
positively associated with salivary cotinine concentrations in adults. Conversely, the 
abundances of other commensals such as Rothia mucilaginosa, and possibly beneficial 
taxa such as S. parasanguinis, were negatively associated with cotinine concentrations in 
adults. We note that cotinine concentration is important when studying the effects of 
smoking on the microbiome, and our associative results complement our comparisons of 
“smoker” to “nonsmoker.” Many of the above-mentioned genera and species have been 
shown to be enriched or depleted in similar ways, [(57, 63) and as reviewed in (64)], 
indicating there may be a dose-response to nicotine exposure. Cotinine concentrations 
only associated with three bacterial taxa in children (Lactobacilli and Streptococci that 
were unresolvable to species and somewhat uncommon), supporting our conclusion 
that ETS exposure has little effect on the child oral microbiome, possibly due children’s 
less direct exposure to ETS.

We assessed associations between microbial ASVs and levels of salivary adiponectin, 
CRP, and uric acid among children. Uric acid concentrations were inversely related to 
several ASVs with potentially pathogenic properties, such as Porphyromonas pasteri 
and Prevotella pallens, and the putative pathobiont Parvimonas micra (1, 65). This is 
interesting because uric acid may possess both pro- and antiinflammatory properties 
(66, 67). It may be that the inverse relationship between uric acid and certain taxa may 
indicate bacterial antiinflammatory activity or is evidence of an immune response to 
these bacteria. It should be noted that measuring inflammatory cytokines would assist in 
understanding the relationship and should be considered in future work. Previous work 
showed that high uric acid levels are associated with an altered oral microbiota, and 
together with our research, suggests an interaction between uric acid and oral microbes 
that may impact or indicate host health (68).

Additionally, we investigated the relationship between adiponectin and oral 
microbes, and found positive associations with ASVs of the commensal bacterium 
Rothia mucilaginosa, and a negative association with S. parasanguinis (a potentially 
beneficial species) (54). Higher adiponectin is generally antiinflammatory (69) and as 
oral infections are often inflammatory, adiponectin may be a useful biomeasure related 
to oral inflammation. Interestingly, we found only one significant association between 
salivary CRP concentrations and the oral microbiome (a Stenotrophomonas ASV). This 
was unexpected, as CRP is secreted by the gingiva (70), and has also been used as 
a marker for systemic inflammation and oral health in adults (22, 71), and chronic 
psychological stress in children (72). Most studies investigate links between adult oral 
health and CRP; however, this association may not be supported or particularly sensitive 
for younger individuals (73).

Research Article mSystems

July/August  Volume 8  Issue 4 10.1128/msystems.00036-23 11

https://doi.org/10.1128/msystems.00036-23


Conclusion

Through a combination of biomeasure assays and 16S rRNA gene sequencing, our 
large-scale study illustrates that there are several underlying factors related to the 
human oral microbiome. We show that the oral microbial community is more similar 
within child/caregiver dyads, and that this microbiome potentially clusters into two 
“stomatotypes” largely driven by Streptococcus taxa. We also found that ETS exposure 
associates with certain oral microbes, and that the intensity of nicotine exposure likely 
correlates with more dramatic changes in adults. Lastly, we show that several microbial 
taxa may interact with salivary biomeasures related to metabolic activity, inflammation, 
and antioxidant potential, however more work is needed to understand the mechanisms 
underlying these associations and their relations to health. We suggest that future 
research investigate the complex interactions between host and microbe on a functional 
level, and that more large-scale studies are needed to understand the microbial ecology 
of oral health.
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